| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/tile_common.h" |
| #include "av1/common/onyxc_int.h" |
| #if CONFIG_HORZONLY_FRAME_SUPERRES |
| #include "av1/common/resize.h" |
| #endif // CONFIG_HORZONLY_FRAME_SUPERRES |
| #include "aom_dsp/aom_dsp_common.h" |
| |
| #if CONFIG_DEPENDENT_HORZTILES |
| void av1_tile_set_tg_boundary(TileInfo *tile, const AV1_COMMON *const cm, |
| int row, int col) { |
| #if CONFIG_DEPENDENT_HORZTILEGROUPS |
| (void)cm; |
| (void)col; |
| #if !CONFIG_MAX_TILE |
| (void)row; |
| #endif |
| tile->tg_horz_boundary = 0; |
| #else |
| const int tg_start_row = cm->tile_group_start_row[row][col]; |
| const int tg_start_col = cm->tile_group_start_col[row][col]; |
| tile->tg_horz_boundary = ((row == tg_start_row && col >= tg_start_col) || |
| (row == tg_start_row + 1 && col < tg_start_col)); |
| #endif |
| #if CONFIG_MAX_TILE |
| if (cm->tile_row_independent[row]) { |
| tile->tg_horz_boundary = 1; // this tile row is independent |
| } |
| #endif |
| } |
| #endif |
| void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) { |
| av1_tile_set_row(tile, cm, row); |
| av1_tile_set_col(tile, cm, col); |
| #if CONFIG_DEPENDENT_HORZTILES |
| av1_tile_set_tg_boundary(tile, cm, row, col); |
| #endif |
| } |
| |
| #if CONFIG_MAX_TILE |
| |
| // Find smallest k>=0 such that (blk_size << k) >= target |
| static int tile_log2(int blk_size, int target) { |
| int k; |
| for (k = 0; (blk_size << k) < target; k++) { |
| } |
| return k; |
| } |
| |
| void av1_get_tile_limits(AV1_COMMON *const cm) { |
| int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2); |
| int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2); |
| int sb_cols = mi_cols >> cm->mib_size_log2; |
| int sb_rows = mi_rows >> cm->mib_size_log2; |
| |
| cm->min_log2_tile_cols = tile_log2(MAX_TILE_WIDTH_SB, sb_cols); |
| cm->max_log2_tile_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS)); |
| cm->max_log2_tile_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS)); |
| cm->min_log2_tiles = tile_log2(MAX_TILE_AREA_SB, sb_cols * sb_rows); |
| cm->min_log2_tiles = AOMMAX(cm->min_log2_tiles, cm->min_log2_tile_cols); |
| // TODO(dominic.symes@arm.com): |
| // Add in levelMinLog2Tiles as a lower limit when levels are defined |
| } |
| |
| void av1_calculate_tile_cols(AV1_COMMON *const cm) { |
| int mi_cols = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2); |
| int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2); |
| int sb_cols = mi_cols >> cm->mib_size_log2; |
| int sb_rows = mi_rows >> cm->mib_size_log2; |
| int i; |
| |
| if (cm->uniform_tile_spacing_flag) { |
| int start_sb; |
| int size_sb = ALIGN_POWER_OF_TWO(sb_cols, cm->log2_tile_cols); |
| size_sb >>= cm->log2_tile_cols; |
| assert(size_sb > 0); |
| for (i = 0, start_sb = 0; start_sb < sb_cols; i++) { |
| cm->tile_col_start_sb[i] = start_sb; |
| start_sb += size_sb; |
| } |
| cm->tile_cols = i; |
| cm->tile_col_start_sb[i] = sb_cols; |
| cm->min_log2_tile_rows = AOMMAX(cm->min_log2_tiles - cm->log2_tile_cols, 0); |
| cm->max_tile_height_sb = sb_rows >> cm->min_log2_tile_rows; |
| } else { |
| int max_tile_area_sb = (sb_rows * sb_cols); |
| int max_tile_width_sb = 1; |
| cm->log2_tile_cols = tile_log2(1, cm->tile_cols); |
| for (i = 0; i < cm->tile_cols; i++) { |
| int size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i]; |
| max_tile_width_sb = AOMMAX(max_tile_width_sb, size_sb); |
| } |
| if (cm->min_log2_tiles) { |
| max_tile_area_sb >>= (cm->min_log2_tiles + 1); |
| } |
| cm->max_tile_height_sb = AOMMAX(max_tile_area_sb / max_tile_width_sb, 1); |
| } |
| } |
| |
| void av1_calculate_tile_rows(AV1_COMMON *const cm) { |
| int mi_rows = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2); |
| int sb_rows = mi_rows >> cm->mib_size_log2; |
| int start_sb, size_sb, i; |
| |
| if (cm->uniform_tile_spacing_flag) { |
| size_sb = ALIGN_POWER_OF_TWO(sb_rows, cm->log2_tile_rows); |
| size_sb >>= cm->log2_tile_rows; |
| assert(size_sb > 0); |
| for (i = 0, start_sb = 0; start_sb < sb_rows; i++) { |
| cm->tile_row_start_sb[i] = start_sb; |
| start_sb += size_sb; |
| } |
| cm->tile_rows = i; |
| cm->tile_row_start_sb[i] = sb_rows; |
| } else { |
| cm->log2_tile_rows = tile_log2(1, cm->tile_rows); |
| } |
| |
| #if CONFIG_DEPENDENT_HORZTILES |
| // Record which tile rows must be indpendent for parallelism |
| for (i = 0, start_sb = 0; i < cm->tile_rows; i++) { |
| cm->tile_row_independent[i] = 0; |
| if (cm->tile_row_start_sb[i + 1] - start_sb > cm->max_tile_height_sb) { |
| cm->tile_row_independent[i] = 1; |
| start_sb = cm->tile_row_start_sb[i]; |
| } |
| } |
| #endif |
| } |
| |
| void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) { |
| assert(row < cm->tile_rows); |
| int mi_row_start = cm->tile_row_start_sb[row] << cm->mib_size_log2; |
| int mi_row_end = cm->tile_row_start_sb[row + 1] << cm->mib_size_log2; |
| tile->mi_row_start = mi_row_start; |
| tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_rows); |
| assert(tile->mi_row_end > tile->mi_row_start); |
| } |
| |
| void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) { |
| assert(col < cm->tile_cols); |
| int mi_col_start = cm->tile_col_start_sb[col] << cm->mib_size_log2; |
| int mi_col_end = cm->tile_col_start_sb[col + 1] << cm->mib_size_log2; |
| tile->mi_col_start = mi_col_start; |
| tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_cols); |
| assert(tile->mi_col_end > tile->mi_col_start); |
| } |
| |
| #else |
| |
| void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) { |
| tile->mi_row_start = row * cm->tile_height; |
| tile->mi_row_end = AOMMIN(tile->mi_row_start + cm->tile_height, cm->mi_rows); |
| } |
| |
| void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) { |
| tile->mi_col_start = col * cm->tile_width; |
| tile->mi_col_end = AOMMIN(tile->mi_col_start + cm->tile_width, cm->mi_cols); |
| } |
| |
| #if CONFIG_EXT_PARTITION |
| #define MIN_TILE_WIDTH_MAX_SB 2 |
| #define MAX_TILE_WIDTH_MAX_SB 32 |
| #else |
| #define MIN_TILE_WIDTH_MAX_SB 4 |
| #define MAX_TILE_WIDTH_MAX_SB 64 |
| #endif // CONFIG_EXT_PARTITION |
| |
| static int get_min_log2_tile_cols(int max_sb_cols) { |
| int min_log2 = 0; |
| while ((MAX_TILE_WIDTH_MAX_SB << min_log2) < max_sb_cols) ++min_log2; |
| return min_log2; |
| } |
| |
| static int get_max_log2_tile_cols(int max_sb_cols) { |
| int max_log2 = 1; |
| while ((max_sb_cols >> max_log2) >= MIN_TILE_WIDTH_MAX_SB) ++max_log2; |
| return max_log2 - 1; |
| } |
| |
| void av1_get_tile_n_bits(int mi_cols, int *min_log2_tile_cols, |
| int *max_log2_tile_cols) { |
| const int max_sb_cols = |
| ALIGN_POWER_OF_TWO(mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; |
| *min_log2_tile_cols = get_min_log2_tile_cols(max_sb_cols); |
| *max_log2_tile_cols = get_max_log2_tile_cols(max_sb_cols); |
| assert(*min_log2_tile_cols <= *max_log2_tile_cols); |
| } |
| #endif // CONFIG_MAX_TILE |
| |
| void av1_setup_frame_boundary_info(const AV1_COMMON *const cm) { |
| BOUNDARY_TYPE *bi = cm->boundary_info; |
| int col; |
| for (col = 0; col < cm->mi_cols; ++col) { |
| *bi |= FRAME_ABOVE_BOUNDARY | TILE_ABOVE_BOUNDARY; |
| bi += 1; |
| } |
| |
| bi = cm->boundary_info; |
| int row; |
| for (row = 0; row < cm->mi_rows; ++row) { |
| *bi |= FRAME_LEFT_BOUNDARY | TILE_LEFT_BOUNDARY; |
| bi += cm->mi_stride; |
| } |
| |
| bi = cm->boundary_info + (cm->mi_rows - 1) * cm->mi_stride; |
| for (col = 0; col < cm->mi_cols; ++col) { |
| *bi |= FRAME_BOTTOM_BOUNDARY | TILE_BOTTOM_BOUNDARY; |
| bi += 1; |
| } |
| |
| bi = cm->boundary_info + cm->mi_cols - 1; |
| for (row = 0; row < cm->mi_rows; ++row) { |
| *bi |= FRAME_RIGHT_BOUNDARY | TILE_RIGHT_BOUNDARY; |
| bi += cm->mi_stride; |
| } |
| } |
| |
| int get_tile_size(int mi_frame_size, int log2_tile_num, int *ntiles) { |
| // Round the frame up to a whole number of max superblocks |
| mi_frame_size = ALIGN_POWER_OF_TWO(mi_frame_size, MAX_MIB_SIZE_LOG2); |
| |
| // Divide by the signalled number of tiles, rounding up to the multiple of |
| // the max superblock size. To do this, shift right (and round up) to get the |
| // tile size in max super-blocks and then shift left again to convert it to |
| // mi units. |
| const int shift = log2_tile_num + MAX_MIB_SIZE_LOG2; |
| const int max_sb_tile_size = |
| ALIGN_POWER_OF_TWO(mi_frame_size, shift) >> shift; |
| const int mi_tile_size = max_sb_tile_size << MAX_MIB_SIZE_LOG2; |
| |
| // The actual number of tiles is the ceiling of the frame size in mi units |
| // divided by mi_size. This is at most 1 << log2_tile_num but might be |
| // strictly less if max_sb_tile_size got rounded up significantly. |
| if (ntiles) { |
| *ntiles = (mi_frame_size + mi_tile_size - 1) / mi_tile_size; |
| assert(*ntiles <= (1 << log2_tile_num)); |
| } |
| |
| return mi_tile_size; |
| } |
| |
| AV1PixelRect av1_get_tile_rect(const TileInfo *tile_info, const AV1_COMMON *cm, |
| int is_uv) { |
| AV1PixelRect r; |
| |
| // Calculate position in the Y plane |
| r.left = tile_info->mi_col_start * MI_SIZE; |
| r.right = tile_info->mi_col_end * MI_SIZE; |
| r.top = tile_info->mi_row_start * MI_SIZE; |
| r.bottom = tile_info->mi_row_end * MI_SIZE; |
| |
| #if CONFIG_HORZONLY_FRAME_SUPERRES |
| // If upscaling is enabled, the tile limits need scaling to match the |
| // upscaled frame where the restoration tiles live. To do this, scale up the |
| // top-left and bottom-right of the tile. |
| if (!av1_superres_unscaled(cm)) { |
| av1_calculate_unscaled_superres_size(&r.left, &r.top, |
| cm->superres_scale_denominator); |
| av1_calculate_unscaled_superres_size(&r.right, &r.bottom, |
| cm->superres_scale_denominator); |
| } |
| |
| const int frame_w = cm->superres_upscaled_width; |
| const int frame_h = cm->superres_upscaled_height; |
| #else |
| const int frame_w = cm->width; |
| const int frame_h = cm->height; |
| #endif // CONFIG_HORZONLY_FRAME_SUPERRES |
| |
| // Make sure we don't fall off the bottom-right of the frame. |
| r.right = AOMMIN(r.right, frame_w); |
| r.bottom = AOMMIN(r.bottom, frame_h); |
| |
| // Convert to coordinates in the appropriate plane |
| const int ss_x = is_uv && cm->subsampling_x; |
| const int ss_y = is_uv && cm->subsampling_y; |
| |
| r.left = ROUND_POWER_OF_TWO(r.left, ss_x); |
| r.right = ROUND_POWER_OF_TWO(r.right, ss_x); |
| r.top = ROUND_POWER_OF_TWO(r.top, ss_y); |
| r.bottom = ROUND_POWER_OF_TWO(r.bottom, ss_y); |
| |
| return r; |
| } |
| |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES || CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| // this function should only be called when loop_filter_across_tile flag is |
| // set to 0 |
| void av1_setup_across_tile_boundary_info(const AV1_COMMON *const cm, |
| const TileInfo *const tile_info) { |
| if (cm->tile_cols * cm->tile_rows > 1) { |
| const int mi_row = tile_info->mi_row_start; |
| const int mi_col = tile_info->mi_col_start; |
| BOUNDARY_TYPE *const bi_start = |
| cm->boundary_info + mi_row * cm->mi_stride + mi_col; |
| // assert(mi_start < cm->mip + cm->mi_alloc_size); |
| BOUNDARY_TYPE *bi = 0; |
| const int row_diff = tile_info->mi_row_end - tile_info->mi_row_start; |
| const int col_diff = tile_info->mi_col_end - tile_info->mi_col_start; |
| int row, col; |
| |
| // when CONFIG_LOOPFILTERING_ACROSS_TILES_EXT is enabled, whether tile |
| // is dependent horizontal tile or not is ignored. tile boundary is always |
| // initialized based on the actual tile boundary. |
| #if CONFIG_DEPENDENT_HORZTILES && !CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| if (!cm->dependent_horz_tiles || tile_info->tg_horz_boundary) |
| #elif CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| if (cm->loop_filter_across_tiles_h_enabled == 0) |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| { |
| bi = bi_start; |
| for (col = 0; col < col_diff; ++col) { |
| *bi |= TILE_ABOVE_BOUNDARY; |
| bi += 1; |
| } |
| } |
| |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| if (cm->loop_filter_across_tiles_v_enabled == 0) |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| { |
| bi = bi_start; |
| for (row = 0; row < row_diff; ++row) { |
| *bi |= TILE_LEFT_BOUNDARY; |
| bi += cm->mi_stride; |
| } |
| } |
| |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| if (cm->loop_filter_across_tiles_h_enabled == 0) |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| { |
| bi = bi_start + (row_diff - 1) * cm->mi_stride; |
| // explicit bounds checking |
| // assert(mi + col_diff <= cm->mip + cm->mi_alloc_size); |
| for (col = 0; col < col_diff; ++col) { |
| *bi |= TILE_BOTTOM_BOUNDARY; |
| bi += 1; |
| } |
| } |
| |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| if (cm->loop_filter_across_tiles_v_enabled == 0) |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| { |
| bi = bi_start + col_diff - 1; |
| for (row = 0; row < row_diff; ++row) { |
| *bi |= TILE_RIGHT_BOUNDARY; |
| bi += cm->mi_stride; |
| } |
| } |
| } // end of cm->tile_cols * cm->tile_rows > 1 |
| } |
| |
| int av1_disable_loopfilter_on_tile_boundary(const struct AV1Common *cm) { |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| return ((!cm->loop_filter_across_tiles_v_enabled || |
| !cm->loop_filter_across_tiles_h_enabled) && |
| #else |
| return (!cm->loop_filter_across_tiles_enabled && |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES_EXT |
| (cm->tile_cols * cm->tile_rows > 1)); |
| } |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES |