| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "./av1_rtcd.h" |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/bitwriter.h" |
| #include "aom_dsp/quantize.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| |
| #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| |
| #include "av1/common/idct.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/scan.h" |
| |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/encodemb.h" |
| #if CONFIG_LV_MAP |
| #include "av1/encoder/encodetxb.h" |
| #endif |
| #include "av1/encoder/hybrid_fwd_txfm.h" |
| #if CONFIG_DAALA_TX |
| #include "av1/common/daala_inv_txfm.h" |
| #endif |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| |
| #if CONFIG_CFL |
| #include "av1/common/cfl.h" |
| #endif |
| |
| // Check if one needs to use c version subtraction. |
| static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; } |
| |
| static void subtract_block(const MACROBLOCKD *xd, int rows, int cols, |
| int16_t *diff, ptrdiff_t diff_stride, |
| const uint8_t *src8, ptrdiff_t src_stride, |
| const uint8_t *pred8, ptrdiff_t pred_stride) { |
| if (check_subtract_block_size(rows, cols)) { |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8, |
| src_stride, pred8, pred_stride, xd->bd); |
| return; |
| } |
| aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8, |
| pred_stride); |
| |
| return; |
| } |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, |
| pred8, pred_stride, xd->bd); |
| return; |
| } |
| aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8, |
| pred_stride); |
| } |
| |
| void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, |
| int blk_col, int blk_row, TX_SIZE tx_size) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| const int tx1d_width = tx_size_wide[tx_size]; |
| const int tx1d_height = tx_size_high[tx_size]; |
| uint8_t *dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| uint8_t *src = |
| &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; |
| int16_t *src_diff = |
| &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; |
| subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src, |
| src_stride, dst, dst_stride); |
| } |
| |
| void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| } |
| |
| #if !CONFIG_LV_MAP |
| // Shifting negative values is undefined behaviour in C99, |
| // and could mislead the optimizer, who might assume the shifted is positive. |
| // This also avoids ubsan warnings. |
| // In practise, this gets inlined by the optimizer to a single instruction. |
| static INLINE int signed_shift_right(int x, int shift) { |
| if (x >= 0) |
| return x >> shift; |
| else |
| return -((-x) >> shift); |
| } |
| |
| // These numbers are empirically obtained. |
| static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = { |
| { 10, 7 }, { 8, 5 }, |
| }; |
| |
| static int optimize_b_greedy(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, |
| int blk_row, int blk_col, int block, |
| TX_SIZE tx_size, int ctx, int fast_mode) { |
| MACROBLOCKD *const xd = &mb->e_mbd; |
| struct macroblock_plane *const p = &mb->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const PLANE_TYPE plane_type = pd->plane_type; |
| const int eob = p->eobs[block]; |
| assert(mb->qindex > 0); |
| assert((!plane_type && !plane) || (plane_type && plane)); |
| assert(eob <= av1_get_max_eob(tx_size)); |
| const int ref = is_inter_block(&xd->mi[0]->mbmi); |
| const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| const int16_t *const dequant_ptr = p->dequant_QTX; |
| const uint8_t *const band_translate = get_band_translate(tx_size); |
| const TX_TYPE tx_type = |
| av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); |
| const SCAN_ORDER *const scan_order = |
| get_scan(cm, tx_size, tx_type, &xd->mi[0]->mbmi); |
| const int16_t *const scan = scan_order->scan; |
| const int16_t *const nb = scan_order->neighbors; |
| #if CONFIG_DAALA_TX |
| // This is one of the few places where RDO is done on coeffs; it |
| // expects the coeffs to be in Q3/D11, so we need to scale them. |
| int depth_shift = (TX_COEFF_DEPTH - 11) * 2; |
| int depth_round = depth_shift > 1 ? (1 << depth_shift >> 1) : 0; |
| #else |
| const int shift = av1_get_tx_scale(tx_size); |
| #endif |
| #if CONFIG_AOM_QM |
| int seg_id = xd->mi[0]->mbmi.segment_id; |
| const TX_SIZE qm_tx_size = av1_get_adjusted_tx_size(tx_size); |
| // Use a flat matrix (i.e. no weighting) for 1D and Identity transforms |
| const qm_val_t *iqmatrix = |
| IS_2D_TRANSFORM(tx_type) |
| ? pd->seg_iqmatrix[seg_id][qm_tx_size] |
| : cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; |
| #endif // CONFIG_AOM_QM |
| #if CONFIG_NEW_QUANT |
| int dq = get_dq_profile(cm->dq_type, mb->qindex, ref, plane_type); |
| #if !CONFIG_AOM_QM |
| const dequant_val_type_nuq *dequant_val = p->dequant_val_nuq_QTX[dq]; |
| #endif // !CONFIG_AOM_QM |
| #endif // CONFIG_NEW_QUANT |
| int64_t rd_cost0, rd_cost1; |
| int16_t t0, t1; |
| int i, final_eob = 0; |
| const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd); |
| int(*head_token_costs)[COEFF_CONTEXTS][TAIL_TOKENS] = |
| mb->token_head_costs[get_txsize_entropy_ctx(tx_size)][plane_type][ref]; |
| int(*tail_token_costs)[COEFF_CONTEXTS][TAIL_TOKENS] = |
| mb->token_tail_costs[get_txsize_entropy_ctx(tx_size)][plane_type][ref]; |
| |
| const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1; |
| int64_t rate0, rate1; |
| int64_t eob_cost0, eob_cost1; |
| tran_low_t before_best_eob_qc = 0; |
| tran_low_t before_best_eob_dqc = 0; |
| |
| uint8_t token_cache[MAX_TX_SQUARE]; |
| |
| // TODO(debargha): Implement a fast mode. For now just skip. |
| if (fast_mode) return eob; |
| |
| for (i = 0; i < eob; i++) { |
| const int rc = scan[i]; |
| token_cache[rc] = av1_pt_energy_class[av1_get_token(qcoeff[rc])]; |
| } |
| |
| /* Record the r-d cost */ |
| int64_t accu_rate = 0; |
| // Initialized to the worst possible error for the largest transform size. |
| // This ensures that it never goes negative. |
| int64_t accu_error = ((int64_t)1) << 50; |
| rate0 = head_token_costs[0][ctx][0]; |
| int64_t best_block_rd_cost = RDCOST(rdmult, rate0, accu_error); |
| |
| // int64_t best_block_rd_cost_all0 = best_block_rd_cost; |
| const int seg_eob = |
| av1_get_tx_eob(&cm->seg, xd->mi[0]->mbmi.segment_id, tx_size); |
| for (i = 0; i < eob; i++) { |
| const int rc = scan[i]; |
| const int x = qcoeff[rc]; |
| const int sz = -(x < 0); |
| const int band_cur = band_translate[i]; |
| const int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i); |
| const int8_t eob_val = |
| (i + 1 == eob) ? (i + 1 == seg_eob ? LAST_EOB : EARLY_EOB) : NO_EOB; |
| const int is_first = (i == 0); |
| |
| if (x == 0) { |
| // no need to search when x == 0 |
| accu_rate += av1_get_coeff_token_cost( |
| ZERO_TOKEN, eob_val, is_first, head_token_costs[band_cur][ctx_cur], |
| tail_token_costs[band_cur][ctx_cur]); |
| // accu_error does not change when x==0 |
| } else { |
| /* Computing distortion |
| */ |
| // compute the distortion for the first candidate |
| // and the distortion for quantizing to 0. |
| #if CONFIG_DAALA_TX |
| int dx0 = coeff[rc]; |
| const int64_t d0 = ((int64_t)dx0 * dx0 + depth_round) >> depth_shift; |
| #else |
| int dx0 = abs(coeff[rc]) * (1 << shift); |
| dx0 >>= xd->bd - 8; |
| |
| const int64_t d0 = (int64_t)dx0 * dx0; |
| #endif |
| const int x_a = x - 2 * sz - 1; |
| int dqv = dequant_ptr[rc != 0]; |
| #if CONFIG_AOM_QM |
| if (iqmatrix != NULL) { |
| const qm_val_t iwt = iqmatrix[rc]; |
| dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS; |
| } |
| #endif // CONFIG_AOM_QM |
| |
| #if CONFIG_DAALA_TX |
| int dx = dqcoeff[rc] - coeff[rc]; |
| const int64_t d2 = ((int64_t)dx * dx + depth_round) >> depth_shift; |
| #else |
| int dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift); |
| dx = signed_shift_right(dx, xd->bd - 8); |
| const int64_t d2 = (int64_t)dx * dx; |
| #endif |
| |
| /* compute the distortion for the second candidate |
| * x_a = x - 2 * sz + 1; |
| */ |
| int64_t d2_a; |
| if (x_a != 0) { |
| #if CONFIG_DAALA_TX |
| #if CONFIG_NEW_QUANT |
| #if CONFIG_AOM_QM |
| dx = av1_dequant_coeff_nuq(x_a, dqv, dq, rc != 0, 0) - coeff[rc]; |
| #else |
| dx = av1_dequant_coeff_nuq(x_a, dqv, dequant_val[rc != 0], 0) - |
| coeff[rc]; |
| #endif // CONFIG_AOM_QM |
| #else // CONFIG_NEW_QUANT |
| dx -= (dqv + sz) ^ sz; |
| #endif // CONFIG_NEW_QUANT |
| d2_a = ((int64_t)dx * dx + depth_round) >> depth_shift; |
| #else // CONFIG_DAALA_TX |
| #if CONFIG_NEW_QUANT |
| #if CONFIG_AOM_QM |
| dx = av1_dequant_coeff_nuq(x_a, dqv, dq, rc != 0, 0) - |
| (coeff[rc] * (1 << shift)); |
| #else |
| dx = av1_dequant_coeff_nuq(x_a, dqv, dequant_val[rc != 0], 0) - |
| (coeff[rc] * (1 << shift)); |
| #endif // CONFIG_AOM_QM |
| dx >>= xd->bd - 8; |
| #else // CONFIG_NEW_QUANT |
| dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz; |
| #endif // CONFIG_NEW_QUANT |
| d2_a = (int64_t)dx * dx; |
| #endif // CONFIG_DAALA_TX |
| } else { |
| d2_a = d0; |
| } |
| |
| // Computing RD cost |
| int64_t base_bits; |
| // rate cost of x |
| base_bits = av1_get_token_cost(x, &t0, cat6_bits); |
| rate0 = base_bits + |
| av1_get_coeff_token_cost(t0, eob_val, is_first, |
| head_token_costs[band_cur][ctx_cur], |
| tail_token_costs[band_cur][ctx_cur]); |
| // rate cost of x_a |
| base_bits = av1_get_token_cost(x_a, &t1, cat6_bits); |
| if (t1 == ZERO_TOKEN && eob_val) { |
| rate1 = base_bits; |
| } else { |
| rate1 = base_bits + |
| av1_get_coeff_token_cost(t1, eob_val, is_first, |
| head_token_costs[band_cur][ctx_cur], |
| tail_token_costs[band_cur][ctx_cur]); |
| } |
| |
| int64_t next_bits0 = 0, next_bits1 = 0; |
| if (i < eob - 1) { |
| int ctx_next; |
| const int band_next = band_translate[i + 1]; |
| const int token_next = av1_get_token(qcoeff[scan[i + 1]]); |
| const int8_t eob_val_next = |
| (i + 2 == eob) ? (i + 2 == seg_eob ? LAST_EOB : EARLY_EOB) : NO_EOB; |
| |
| token_cache[rc] = av1_pt_energy_class[t0]; |
| ctx_next = get_coef_context(nb, token_cache, i + 1); |
| next_bits0 = av1_get_coeff_token_cost( |
| token_next, eob_val_next, 0, head_token_costs[band_next][ctx_next], |
| tail_token_costs[band_next][ctx_next]); |
| |
| token_cache[rc] = av1_pt_energy_class[t1]; |
| ctx_next = get_coef_context(nb, token_cache, i + 1); |
| next_bits1 = av1_get_coeff_token_cost( |
| token_next, eob_val_next, 0, head_token_costs[band_next][ctx_next], |
| tail_token_costs[band_next][ctx_next]); |
| } |
| |
| rd_cost0 = RDCOST(rdmult, (rate0 + next_bits0), d2); |
| rd_cost1 = RDCOST(rdmult, (rate1 + next_bits1), d2_a); |
| const int best_x = (rd_cost1 < rd_cost0); |
| |
| const int eob_v = (i + 1 == seg_eob) ? LAST_EOB : EARLY_EOB; |
| int64_t next_eob_bits0, next_eob_bits1; |
| int best_eob_x; |
| next_eob_bits0 = av1_get_coeff_token_cost( |
| t0, eob_v, is_first, head_token_costs[band_cur][ctx_cur], |
| tail_token_costs[band_cur][ctx_cur]); |
| eob_cost0 = |
| RDCOST(rdmult, (accu_rate + next_eob_bits0), (accu_error + d2 - d0)); |
| eob_cost1 = eob_cost0; |
| if (x_a != 0) { |
| next_eob_bits1 = av1_get_coeff_token_cost( |
| t1, eob_v, is_first, head_token_costs[band_cur][ctx_cur], |
| tail_token_costs[band_cur][ctx_cur]); |
| eob_cost1 = RDCOST(rdmult, (accu_rate + next_eob_bits1), |
| (accu_error + d2_a - d0)); |
| best_eob_x = (eob_cost1 < eob_cost0); |
| } else { |
| best_eob_x = 0; |
| } |
| |
| const int dqc = dqcoeff[rc]; |
| int dqc_a = 0; |
| if (best_x || best_eob_x) { |
| if (x_a != 0) { |
| #if CONFIG_DAALA_TX |
| #if CONFIG_NEW_QUANT |
| #if CONFIG_AOM_QM |
| dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv, dq, rc != 0, 0); |
| #else |
| dqc_a = |
| av1_dequant_abscoeff_nuq(abs(x_a), dqv, dequant_val[rc != 0], 0); |
| #endif // CONFIG_AOM_QM |
| if (sz) dqc_a = -dqc_a; |
| #else |
| dqc_a = x_a * dqv; |
| #endif // CONFIG_NEW_QUANT |
| #else // CONFIG_DAALA_TX |
| #if CONFIG_NEW_QUANT |
| #if CONFIG_AOM_QM |
| dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv, dq, rc != 0, shift); |
| #else |
| dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv, dequant_val[rc != 0], |
| shift); |
| #endif // CONFIG_AOM_QM |
| if (sz) dqc_a = -dqc_a; |
| #else |
| if (x_a < 0) |
| dqc_a = -((-x_a * dqv) >> shift); |
| else |
| dqc_a = (x_a * dqv) >> shift; |
| #endif // CONFIG_NEW_QUANT |
| #endif // CONFIG_DAALA_TX |
| } else { |
| dqc_a = 0; |
| } |
| } |
| |
| // record the better quantized value |
| if (best_x) { |
| assert(d2_a <= d0); |
| qcoeff[rc] = x_a; |
| dqcoeff[rc] = dqc_a; |
| accu_rate += rate1; |
| accu_error += d2_a - d0; |
| token_cache[rc] = av1_pt_energy_class[t1]; |
| } else { |
| assert(d2 <= d0); |
| accu_rate += rate0; |
| accu_error += d2 - d0; |
| token_cache[rc] = av1_pt_energy_class[t0]; |
| } |
| assert(accu_error >= 0); |
| |
| // determine whether to move the eob position to i+1 |
| const int use_a = (x_a != 0) && (best_eob_x); |
| const int64_t best_eob_cost_i = use_a ? eob_cost1 : eob_cost0; |
| if (best_eob_cost_i < best_block_rd_cost) { |
| best_block_rd_cost = best_eob_cost_i; |
| final_eob = i + 1; |
| if (use_a) { |
| before_best_eob_qc = x_a; |
| before_best_eob_dqc = dqc_a; |
| } else { |
| before_best_eob_qc = x; |
| before_best_eob_dqc = dqc; |
| } |
| } |
| } // if (x==0) |
| } // for (i) |
| |
| assert(final_eob <= eob); |
| if (final_eob > 0) { |
| assert(before_best_eob_qc != 0); |
| i = final_eob - 1; |
| int rc = scan[i]; |
| qcoeff[rc] = before_best_eob_qc; |
| dqcoeff[rc] = before_best_eob_dqc; |
| } |
| |
| for (i = final_eob; i < eob; i++) { |
| int rc = scan[i]; |
| qcoeff[rc] = 0; |
| dqcoeff[rc] = 0; |
| } |
| |
| p->eobs[block] = final_eob; |
| return final_eob; |
| } |
| #endif // !CONFIG_LV_MAP |
| |
| int av1_optimize_b(const struct AV1_COMP *cpi, MACROBLOCK *mb, int plane, |
| int blk_row, int blk_col, int block, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, const ENTROPY_CONTEXT *a, |
| const ENTROPY_CONTEXT *l, int fast_mode) { |
| MACROBLOCKD *const xd = &mb->e_mbd; |
| struct macroblock_plane *const p = &mb->plane[plane]; |
| const int eob = p->eobs[block]; |
| if (eob == 0 || !mb->optimize || xd->lossless[xd->mi[0]->mbmi.segment_id]) |
| return eob; |
| |
| #if !CONFIG_LV_MAP |
| (void)plane_bsize; |
| (void)blk_row; |
| (void)blk_col; |
| int ctx = get_entropy_context(tx_size, a, l); |
| const AV1_COMMON *const cm = &cpi->common; |
| return optimize_b_greedy(cm, mb, plane, blk_row, blk_col, block, tx_size, ctx, |
| fast_mode); |
| #else // !CONFIG_LV_MAP |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); |
| return av1_optimize_txb(cpi, mb, plane, blk_row, blk_col, block, tx_size, |
| &txb_ctx, fast_mode); |
| #endif // !CONFIG_LV_MAP |
| } |
| |
| typedef enum QUANT_FUNC { |
| QUANT_FUNC_LOWBD = 0, |
| QUANT_FUNC_HIGHBD = 1, |
| QUANT_FUNC_TYPES = 2 |
| } QUANT_FUNC; |
| |
| static AV1_QUANT_FACADE |
| quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = { |
| #if !CONFIG_NEW_QUANT |
| { av1_quantize_fp_facade, av1_highbd_quantize_fp_facade }, |
| { av1_quantize_b_facade, av1_highbd_quantize_b_facade }, |
| { av1_quantize_dc_facade, av1_highbd_quantize_dc_facade }, |
| #else // !CONFIG_NEW_QUANT |
| { av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade }, |
| { av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade }, |
| { av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade }, |
| #endif // !CONFIG_NEW_QUANT |
| { NULL, NULL } |
| }; |
| |
| void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block, |
| int blk_row, int blk_col, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, AV1_XFORM_QUANT xform_quant_idx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| PLANE_TYPE plane_type = get_plane_type(plane); |
| TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); |
| |
| #if CONFIG_NEW_QUANT |
| const int is_inter = is_inter_block(mbmi); |
| #endif |
| const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi); |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint16_t *const eob = &p->eobs[block]; |
| const int diff_stride = block_size_wide[plane_bsize]; |
| #if CONFIG_AOM_QM |
| int seg_id = mbmi->segment_id; |
| const TX_SIZE qm_tx_size = av1_get_adjusted_tx_size(tx_size); |
| // Use a flat matrix (i.e. no weighting) for 1D and Identity transforms |
| const qm_val_t *qmatrix = |
| IS_2D_TRANSFORM(tx_type) ? pd->seg_qmatrix[seg_id][qm_tx_size] |
| : cm->gqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; |
| const qm_val_t *iqmatrix = |
| IS_2D_TRANSFORM(tx_type) |
| ? pd->seg_iqmatrix[seg_id][qm_tx_size] |
| : cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size]; |
| #endif // CONFIG_AOM_QM |
| |
| TxfmParam txfm_param; |
| QUANT_PARAM qparam; |
| const int16_t *src_diff; |
| |
| src_diff = |
| &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; |
| #if CONFIG_DAALA_TX |
| qparam.log_scale = 0; |
| #else |
| qparam.log_scale = av1_get_tx_scale(tx_size); |
| #endif |
| qparam.tx_size = tx_size; |
| #if CONFIG_NEW_QUANT |
| qparam.dq = get_dq_profile(cm->dq_type, x->qindex, is_inter, plane_type); |
| qparam.x0 = get_x0_profile(x->optimize, x->qindex, is_inter, plane_type); |
| #endif // CONFIG_NEW_QUANT |
| #if CONFIG_AOM_QM |
| qparam.qmatrix = qmatrix; |
| qparam.iqmatrix = iqmatrix; |
| #endif // CONFIG_AOM_QM |
| |
| txfm_param.tx_type = tx_type; |
| txfm_param.tx_size = tx_size; |
| txfm_param.lossless = xd->lossless[mbmi->segment_id]; |
| txfm_param.tx_set_type = |
| get_ext_tx_set_type(txfm_param.tx_size, plane_bsize, is_inter_block(mbmi), |
| cm->reduced_tx_set_used); |
| |
| txfm_param.bd = xd->bd; |
| txfm_param.is_hbd = get_bitdepth_data_path_index(xd); |
| |
| av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, &txfm_param); |
| |
| if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) { |
| const int n_coeffs = av1_get_max_eob(tx_size); |
| if (LIKELY(!x->skip_block)) { |
| #if CONFIG_DAALA_TX |
| quant_func_list[xform_quant_idx][1](coeff, n_coeffs, p, qcoeff, dqcoeff, |
| eob, scan_order, &qparam); |
| #else |
| quant_func_list[xform_quant_idx][txfm_param.is_hbd]( |
| coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, &qparam); |
| #endif |
| } else { |
| av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob); |
| } |
| } |
| #if CONFIG_LV_MAP |
| p->txb_entropy_ctx[block] = |
| (uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob); |
| #endif // CONFIG_LV_MAP |
| return; |
| } |
| |
| static void encode_block(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg, |
| int mi_row, int mi_col, RUN_TYPE dry_run) { |
| (void)mi_row; |
| (void)mi_col; |
| (void)dry_run; |
| struct encode_b_args *const args = arg; |
| const AV1_COMMON *const cm = &args->cpi->common; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| uint8_t *dst; |
| ENTROPY_CONTEXT *a, *l; |
| |
| int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| dst = &pd->dst |
| .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; |
| |
| a = &args->ta[blk_col]; |
| l = &args->tl[blk_row]; |
| |
| // Assert not magic number (uninitialized). |
| assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234); |
| |
| if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) { |
| if (args->enable_optimize_b) { |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, |
| tx_size, AV1_XFORM_QUANT_FP); |
| av1_optimize_b(args->cpi, x, plane, blk_row, blk_col, block, plane_bsize, |
| tx_size, a, l, CONFIG_LV_MAP); |
| } else { |
| av1_xform_quant( |
| cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); |
| } |
| } else { |
| p->eobs[block] = 0; |
| #if CONFIG_LV_MAP |
| p->txb_entropy_ctx[block] = 0; |
| #endif |
| } |
| |
| av1_set_txb_context(x, plane, block, tx_size, a, l); |
| |
| if (p->eobs[block]) { |
| *(args->skip) = 0; |
| |
| TX_TYPE tx_type = |
| av1_get_tx_type(pd->plane_type, xd, blk_row, blk_col, tx_size); |
| av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, |
| pd->dst.stride, p->eobs[block], |
| cm->reduced_tx_set_used); |
| } |
| |
| #if CONFIG_TXK_SEL |
| if (plane == 0 && p->eobs[block] == 0) { |
| if (args->enable_optimize_b) { |
| xd->mi[0]->mbmi.txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] = |
| DCT_DCT; |
| } else { |
| assert( |
| xd->mi[0]->mbmi.txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] == |
| DCT_DCT); |
| } |
| } |
| #endif // CONFIG_TXK_SEL |
| |
| #if CONFIG_MISMATCH_DEBUG |
| if (dry_run == OUTPUT_ENABLED) { |
| int pixel_c, pixel_r; |
| BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; |
| int blk_w = block_size_wide[bsize]; |
| int blk_h = block_size_high[bsize]; |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row, |
| pd->subsampling_x, pd->subsampling_y); |
| mismatch_record_block_tx(dst, pd->dst.stride, plane, pixel_c, pixel_r, |
| blk_w, blk_h); |
| } |
| #endif |
| } |
| |
| static void encode_block_inter(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg, int mi_row, int mi_col, |
| RUN_TYPE dry_run) { |
| (void)mi_row; |
| (void)mi_col; |
| struct encode_b_args *const args = arg; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int tx_row = blk_row >> (1 - pd->subsampling_y); |
| const int tx_col = blk_col >> (1 - pd->subsampling_x); |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_uv_tx_size(mbmi, pd->subsampling_x, pd->subsampling_y) |
| : mbmi->inter_tx_size[tx_row][tx_col]; |
| |
| if (tx_size == plane_tx_size || plane) { |
| encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg, |
| mi_row, mi_col, dry_run); |
| } else { |
| assert(tx_size < TX_SIZES_ALL); |
| const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size]; |
| assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); |
| assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); |
| // This is the square transform block partition entry point. |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int step = bsh * bsw; |
| assert(bsw > 0 && bsh > 0); |
| |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| |
| encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs, |
| arg, mi_row, mi_col, dry_run); |
| block += step; |
| } |
| } |
| } |
| } |
| |
| typedef struct encode_block_pass1_args { |
| AV1_COMMON *cm; |
| MACROBLOCK *x; |
| } encode_block_pass1_args; |
| |
| static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| encode_block_pass1_args *args = (encode_block_pass1_args *)arg; |
| AV1_COMMON *cm = args->cm; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| TxfmParam txfm_param; |
| uint8_t *dst; |
| dst = &pd->dst |
| .buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]]; |
| |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| AV1_XFORM_QUANT_B); |
| |
| if (p->eobs[block] > 0) { |
| txfm_param.bd = xd->bd; |
| txfm_param.is_hbd = get_bitdepth_data_path_index(xd); |
| txfm_param.tx_type = DCT_DCT; |
| txfm_param.tx_size = tx_size; |
| txfm_param.eob = p->eobs[block]; |
| txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; |
| txfm_param.tx_set_type = get_ext_tx_set_type( |
| txfm_param.tx_size, plane_bsize, is_inter_block(&xd->mi[0]->mbmi), |
| cm->reduced_tx_set_used); |
| #if CONFIG_DAALA_TX |
| daala_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param); |
| #else |
| if (txfm_param.is_hbd) { |
| av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride, &txfm_param); |
| return; |
| } |
| if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { |
| av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, &txfm_param); |
| } else { |
| av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, &txfm_param); |
| } |
| #endif |
| } |
| } |
| |
| void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) { |
| encode_block_pass1_args args = { cm, x }; |
| av1_subtract_plane(x, bsize, 0); |
| av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, |
| encode_block_pass1, &args); |
| } |
| |
| void av1_encode_sb(const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, RUN_TYPE dry_run) { |
| (void)dry_run; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct optimize_ctx ctx; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| struct encode_b_args arg = { cpi, x, &ctx, &mbmi->skip, |
| NULL, NULL, x->optimize }; |
| int plane; |
| |
| mbmi->skip = 1; |
| |
| if (x->skip) return; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const int subsampling_x = xd->plane[plane].subsampling_x; |
| const int subsampling_y = xd->plane[plane].subsampling_y; |
| |
| if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x, |
| subsampling_y)) |
| continue; |
| |
| const BLOCK_SIZE bsizec = |
| scale_chroma_bsize(bsize, subsampling_x, subsampling_y); |
| |
| // TODO(jingning): Clean this up. |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsizec, pd); |
| const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0]; |
| TX_SIZE max_tx_size = get_vartx_max_txsize( |
| xd, plane_bsize, pd->subsampling_x || pd->subsampling_y); |
| |
| const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; |
| const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0]; |
| const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0]; |
| int idx, idy; |
| int block = 0; |
| int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| av1_get_entropy_contexts(bsizec, 0, pd, ctx.ta[plane], ctx.tl[plane]); |
| |
| av1_subtract_plane(x, bsizec, plane); |
| |
| arg.ta = ctx.ta[plane]; |
| arg.tl = ctx.tl[plane]; |
| |
| const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd); |
| int mu_blocks_wide = |
| block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; |
| int mu_blocks_high = |
| block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; |
| |
| mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(mi_height, mu_blocks_high); |
| |
| for (idy = 0; idy < mi_height; idy += mu_blocks_high) { |
| for (idx = 0; idx < mi_width; idx += mu_blocks_wide) { |
| int blk_row, blk_col; |
| const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height); |
| const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width); |
| for (blk_row = idy; blk_row < unit_height; blk_row += bh) { |
| for (blk_col = idx; blk_col < unit_width; blk_col += bw) { |
| encode_block_inter(plane, block, blk_row, blk_col, plane_bsize, |
| max_tx_size, &arg, mi_row, mi_col, dry_run); |
| block += step; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size, |
| ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { |
| (void)tx_size; |
| struct macroblock_plane *p = &x->plane[plane]; |
| |
| #if !CONFIG_LV_MAP |
| *a = *l = p->eobs[block] > 0; |
| #else // !CONFIG_LV_MAP |
| *a = *l = p->txb_entropy_ctx[block]; |
| #endif // !CONFIG_LV_MAP |
| |
| int i; |
| for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0]; |
| |
| for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0]; |
| } |
| |
| static void encode_block_intra_and_set_context(int plane, int block, |
| int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, void *arg) { |
| av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| arg); |
| |
| struct encode_b_args *const args = arg; |
| MACROBLOCK *x = args->x; |
| ENTROPY_CONTEXT *a = &args->ta[blk_col]; |
| ENTROPY_CONTEXT *l = &args->tl[blk_row]; |
| av1_set_txb_context(x, plane, block, tx_size, a, l); |
| } |
| |
| void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| struct encode_b_args *const args = arg; |
| const AV1_COMMON *const cm = &args->cpi->common; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| PLANE_TYPE plane_type = get_plane_type(plane); |
| const TX_TYPE tx_type = |
| av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size); |
| uint16_t *eob = &p->eobs[block]; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| |
| av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); |
| |
| #if CONFIG_TXK_SEL |
| const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| if (x->blk_skip[plane][blk_row * bw + blk_col] && plane == 0) { |
| *eob = 0; |
| p->txb_entropy_ctx[block] = 0; |
| *(args->skip) = 0; |
| assert(xd->mi[0]->mbmi.txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] == |
| DCT_DCT); |
| |
| #if CONFIG_CFL |
| if (plane == AOM_PLANE_Y && xd->cfl.store_y && |
| is_cfl_allowed(&xd->mi[0]->mbmi)) { |
| cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); |
| } |
| #endif // CONFIG_CFL |
| return; |
| } |
| #endif |
| |
| av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); |
| |
| const ENTROPY_CONTEXT *a = &args->ta[blk_col]; |
| const ENTROPY_CONTEXT *l = &args->tl[blk_row]; |
| if (args->enable_optimize_b) { |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| AV1_XFORM_QUANT_FP); |
| av1_optimize_b(args->cpi, x, plane, blk_row, blk_col, block, plane_bsize, |
| tx_size, a, l, CONFIG_LV_MAP); |
| |
| #if CONFIG_TXK_SEL |
| if (plane == 0 && p->eobs[block] == 0) { |
| assert( |
| xd->mi[0]->mbmi.txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] == |
| DCT_DCT); |
| } |
| #endif // CONFIG_TXK_SEL |
| } else { |
| av1_xform_quant( |
| cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); |
| } |
| |
| av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, |
| dst_stride, *eob, cm->reduced_tx_set_used); |
| |
| if (*eob) *(args->skip) = 0; |
| |
| #if CONFIG_CFL |
| if (plane == AOM_PLANE_Y && xd->cfl.store_y && |
| is_cfl_allowed(&xd->mi[0]->mbmi)) { |
| cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); |
| } |
| #endif // CONFIG_CFL |
| } |
| |
| void av1_encode_intra_block_plane(const struct AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int plane, |
| int enable_optimize_b, int mi_row, |
| int mi_col) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 }; |
| ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 }; |
| |
| struct encode_b_args arg = { |
| cpi, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b |
| }; |
| |
| if (!is_chroma_reference(mi_row, mi_col, bsize, |
| xd->plane[plane].subsampling_x, |
| xd->plane[plane].subsampling_y)) |
| return; |
| |
| if (enable_optimize_b) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const TX_SIZE tx_size = av1_get_tx_size(plane, xd); |
| av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl); |
| } |
| av1_foreach_transformed_block_in_plane( |
| xd, bsize, plane, encode_block_intra_and_set_context, &arg); |
| } |