blob: ef9fc0f52d5b1c74277226598e483af654930661 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "aom_ports/mem.h"
#include "av1/common/scan.h"
#include "av1/common/blockd.h"
#include "av1/common/idct.h"
#include "av1/common/pred_common.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/hash.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/tokenize.h"
#define TEST_OPTIMIZE_TXB 0
static int hbt_hash_needs_init = 1;
static CRC_CALCULATOR crc_calculator;
static CRC_CALCULATOR crc_calculator2;
static const int HBT_HASH_EOB = 16; // also the length in opt_qcoeff
typedef struct OptTxbQcoeff {
uint32_t hbt_hash_match;
double hits;
tran_low_t opt_qcoeff[16];
} OptTxbQcoeff;
OptTxbQcoeff hbt_hash_table[65536][16];
typedef struct LevelDownStats {
int update;
tran_low_t low_qc;
tran_low_t low_dqc;
int64_t dist0;
int rate;
int rate_low;
int64_t dist;
int64_t dist_low;
int64_t rd;
int64_t rd_low;
int64_t nz_rd;
int64_t rd_diff;
int cost_diff;
int64_t dist_diff;
int new_eob;
} LevelDownStats;
void av1_alloc_txb_buf(AV1_COMP *cpi) {
#if 0
AV1_COMMON *cm = &cpi->common;
int mi_block_size = 1 << MI_SIZE_LOG2;
// TODO(angiebird): Make sure cm->subsampling_x/y is set correctly, and then
// use precise buffer size according to cm->subsampling_x/y
int pixel_stride = mi_block_size * cm->mi_cols;
int pixel_height = mi_block_size * cm->mi_rows;
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
CHECK_MEM_ERROR(
cm, cpi->tcoeff_buf[i],
aom_malloc(sizeof(*cpi->tcoeff_buf[i]) * pixel_stride * pixel_height));
}
#else
AV1_COMMON *cm = &cpi->common;
int size = ((cm->mi_rows >> cm->mib_size_log2) + 1) *
((cm->mi_cols >> cm->mib_size_log2) + 1);
av1_free_txb_buf(cpi);
// TODO(jingning): This should be further reduced.
CHECK_MEM_ERROR(cm, cpi->coeff_buffer_base,
aom_malloc(sizeof(*cpi->coeff_buffer_base) * size));
#endif
}
void av1_free_txb_buf(AV1_COMP *cpi) {
#if 0
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
aom_free(cpi->tcoeff_buf[i]);
}
#else
aom_free(cpi->coeff_buffer_base);
#endif
}
void av1_set_coeff_buffer(const AV1_COMP *const cpi, MACROBLOCK *const x,
int mi_row, int mi_col) {
int mib_size_log2 = cpi->common.mib_size_log2;
int stride = (cpi->common.mi_cols >> mib_size_log2) + 1;
int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2);
CB_COEFF_BUFFER *coeff_buf = &cpi->coeff_buffer_base[offset];
const int txb_offset = x->cb_offset / (TX_SIZE_W_MIN * TX_SIZE_H_MIN);
for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
x->mbmi_ext->tcoeff[plane] = coeff_buf->tcoeff[plane] + x->cb_offset;
x->mbmi_ext->eobs[plane] = coeff_buf->eobs[plane] + txb_offset;
x->mbmi_ext->txb_skip_ctx[plane] =
coeff_buf->txb_skip_ctx[plane] + txb_offset;
x->mbmi_ext->dc_sign_ctx[plane] =
coeff_buf->dc_sign_ctx[plane] + txb_offset;
}
}
static void write_golomb(aom_writer *w, int level) {
int x = level + 1;
int i = x;
int length = 0;
while (i) {
i >>= 1;
++length;
}
assert(length > 0);
for (i = 0; i < length - 1; ++i) aom_write_bit(w, 0);
for (i = length - 1; i >= 0; --i) aom_write_bit(w, (x >> i) & 0x01);
}
static INLINE tran_low_t get_lower_coeff(tran_low_t qc) {
if (qc == 0) {
return 0;
}
return qc > 0 ? qc - 1 : qc + 1;
}
static INLINE tran_low_t qcoeff_to_dqcoeff(tran_low_t qc,
#if CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
int dq_idx, int is_ac_coeff,
#else
const tran_low_t *nq_dq,
#endif // CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
int dqv, int shift) {
int sgn = qc < 0 ? -1 : 1;
#if CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
int dqcoeff = av1_dequant_coeff_nuq(abs(qc), dqv, dq_idx, is_ac_coeff, shift);
#else
int dqcoeff = av1_dequant_coeff_nuq(abs(qc), dqv, nq_dq, shift);
#endif // CONFIG_AOM_QM
return sgn * dqcoeff;
#endif // CONFIG_NEW_QUANT
return sgn * ((abs(qc) * dqv) >> shift);
}
static INLINE int64_t get_coeff_dist(tran_low_t tcoeff, tran_low_t dqcoeff,
int shift) {
#if CONFIG_DAALA_TX
int depth_shift = (TX_COEFF_DEPTH - 11) * 2;
int depth_round = depth_shift > 1 ? (1 << (depth_shift - 1)) : 0;
const int64_t diff = tcoeff - dqcoeff;
const int64_t error = (diff * diff + depth_round) >> depth_shift;
(void)shift;
#else
const int64_t diff = (tcoeff - dqcoeff) * (1 << shift);
const int64_t error = diff * diff;
#endif
return error;
}
void av1_update_eob_context(int eob, int seg_eob, TX_SIZE tx_size,
TX_TYPE tx_type, PLANE_TYPE plane,
FRAME_CONTEXT *ec_ctx, FRAME_COUNTS *counts,
uint8_t allow_update_cdf) {
int eob_extra, dummy;
const int eob_pt = get_eob_pos_token(eob, &eob_extra);
const int max_eob_pt = get_eob_pos_token(seg_eob, &dummy);
TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
(void)max_eob_pt;
const int eob_multi_size = txsize_log2_minus4[tx_size];
const int eob_multi_ctx = (tx_type_to_class[tx_type] == TX_CLASS_2D) ? 0 : 1;
switch (eob_multi_size) {
case 0:
++counts->eob_multi16[plane][eob_multi_ctx][eob_pt - 1];
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf16[plane][eob_multi_ctx], eob_pt - 1, 5);
break;
case 1:
++counts->eob_multi32[plane][eob_multi_ctx][eob_pt - 1];
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf32[plane][eob_multi_ctx], eob_pt - 1, 6);
break;
case 2:
++counts->eob_multi64[plane][eob_multi_ctx][eob_pt - 1];
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf64[plane][eob_multi_ctx], eob_pt - 1, 7);
break;
case 3:
++counts->eob_multi128[plane][eob_multi_ctx][eob_pt - 1];
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf128[plane][eob_multi_ctx], eob_pt - 1,
8);
break;
case 4:
++counts->eob_multi256[plane][eob_multi_ctx][eob_pt - 1];
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf256[plane][eob_multi_ctx], eob_pt - 1,
9);
break;
case 5:
++counts->eob_multi512[plane][eob_multi_ctx][eob_pt - 1];
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf512[plane][eob_multi_ctx], eob_pt - 1,
10);
break;
case 6:
default:
++counts->eob_multi1024[plane][eob_multi_ctx][eob_pt - 1];
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf1024[plane][eob_multi_ctx], eob_pt - 1,
11);
break;
}
if (k_eob_offset_bits[eob_pt] > 0) {
int eob_shift = k_eob_offset_bits[eob_pt] - 1;
int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
#if CONFIG_ENTROPY_STATS
counts->eob_extra[txs_ctx][plane][eob_pt][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(ec_ctx->eob_extra_cdf[txs_ctx][plane][eob_pt], bit, 2);
}
}
static int get_eob_cost(int eob, int seg_eob,
const LV_MAP_EOB_COST *txb_eob_costs,
const LV_MAP_COEFF_COST *txb_costs, TX_TYPE tx_type) {
int eob_extra, dummy;
const int eob_pt = get_eob_pos_token(eob, &eob_extra);
const int max_eob_pt = get_eob_pos_token(seg_eob, &dummy);
int eob_cost = 0;
(void)max_eob_pt;
const int eob_multi_ctx = (tx_type_to_class[tx_type] == TX_CLASS_2D) ? 0 : 1;
eob_cost = txb_eob_costs->eob_cost[eob_multi_ctx][eob_pt - 1];
if (k_eob_offset_bits[eob_pt] > 0) {
int eob_shift = k_eob_offset_bits[eob_pt] - 1;
int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
eob_cost += txb_costs->eob_extra_cost[eob_pt][bit];
for (int i = 1; i < k_eob_offset_bits[eob_pt]; i++) {
eob_shift = k_eob_offset_bits[eob_pt] - 1 - i;
bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
eob_cost += av1_cost_bit(128, bit);
}
}
return eob_cost;
}
static int get_coeff_cost(const tran_low_t qc, const int scan_idx,
const int is_eob, const TxbInfo *const txb_info,
const LV_MAP_COEFF_COST *const txb_costs,
const int coeff_ctx);
static void get_dist_cost_stats(LevelDownStats *const stats, const int scan_idx,
const int is_eob,
const LV_MAP_COEFF_COST *const txb_costs,
const TxbInfo *const txb_info,
int has_nz_tail) {
const int16_t *const scan = txb_info->scan_order->scan;
const int coeff_idx = scan[scan_idx];
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const uint8_t *const levels = txb_info->levels;
stats->new_eob = -1;
stats->update = 0;
stats->rd_low = 0;
stats->rd = 0;
// TODO(mfo): explore if there's a better way to prevent compiler init
// warnings
stats->nz_rd = 0;
stats->dist_low = 0;
stats->rate_low = 0;
stats->low_qc = 0;
const tran_low_t tqc = txb_info->tcoeff[coeff_idx];
const int dqv = txb_info->dequant[coeff_idx != 0];
#if CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
const int dq_idx = txb_info->dq_idx;
#else
const tran_low_t *nq_dequant_val = txb_info->nq_dequant_vals[coeff_idx != 0];
#endif // CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
const int coeff_ctx =
get_nz_map_ctx(levels, coeff_idx, txb_info->bwl, txb_info->height,
scan_idx, is_eob, txb_info->tx_size, txb_info->tx_type);
const int qc_cost =
get_coeff_cost(qc, scan_idx, is_eob, txb_info, txb_costs, coeff_ctx);
if (qc == 0) {
stats->dist = 0;
stats->rate = qc_cost;
return;
} else {
const tran_low_t dqc = qcoeff_to_dqcoeff(qc,
#if CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
dq_idx, coeff_idx != 0,
#else
nq_dequant_val,
#endif // CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
dqv, txb_info->shift);
const int64_t dqc_dist = get_coeff_dist(tqc, dqc, txb_info->shift);
// distortion difference when coefficient is quantized to 0
const tran_low_t dqc0 = qcoeff_to_dqcoeff(0,
#if CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
dq_idx, coeff_idx != 0,
#else
nq_dequant_val,
#endif // CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
dqv, txb_info->shift);
stats->dist0 = get_coeff_dist(tqc, dqc0, txb_info->shift);
stats->dist = dqc_dist - stats->dist0;
stats->rate = qc_cost;
}
stats->rd = RDCOST(txb_info->rdmult, stats->rate, stats->dist);
stats->low_qc = get_lower_coeff(qc);
if (is_eob && stats->low_qc == 0) {
stats->rd_low = stats->rd; // disable selection of low_qc in this case.
} else {
if (stats->low_qc == 0) {
stats->dist_low = 0;
} else {
stats->low_dqc = qcoeff_to_dqcoeff(stats->low_qc,
#if CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
dq_idx, coeff_idx != 0,
#else
nq_dequant_val,
#endif // CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
dqv, txb_info->shift);
const int64_t low_dqc_dist =
get_coeff_dist(tqc, stats->low_dqc, txb_info->shift);
stats->dist_low = low_dqc_dist - stats->dist0;
}
const int low_qc_cost = get_coeff_cost(stats->low_qc, scan_idx, is_eob,
txb_info, txb_costs, coeff_ctx);
stats->rate_low = low_qc_cost;
stats->rd_low = RDCOST(txb_info->rdmult, stats->rate_low, stats->dist_low);
}
if ((has_nz_tail < 2) && !is_eob) {
(void)levels;
const int coeff_ctx_temp =
get_nz_map_ctx(levels, coeff_idx, txb_info->bwl, txb_info->height,
scan_idx, 1, txb_info->tx_size, txb_info->tx_type);
const int qc_eob_cost =
get_coeff_cost(qc, scan_idx, 1, txb_info, txb_costs, coeff_ctx_temp);
int64_t rd_eob = RDCOST(txb_info->rdmult, qc_eob_cost, stats->dist);
if (stats->low_qc != 0) {
const int low_qc_eob_cost = get_coeff_cost(
stats->low_qc, scan_idx, 1, txb_info, txb_costs, coeff_ctx_temp);
int64_t rd_eob_low =
RDCOST(txb_info->rdmult, low_qc_eob_cost, stats->dist_low);
rd_eob = (rd_eob > rd_eob_low) ? rd_eob_low : rd_eob;
}
stats->nz_rd = AOMMIN(stats->rd_low, stats->rd) - rd_eob;
}
}
static INLINE void update_qcoeff(const int coeff_idx, const tran_low_t qc,
const TxbInfo *const txb_info) {
txb_info->qcoeff[coeff_idx] = qc;
txb_info->levels[get_padded_idx(coeff_idx, txb_info->bwl)] =
(uint8_t)clamp(abs(qc), 0, INT8_MAX);
}
static INLINE void update_coeff(const int coeff_idx, const tran_low_t qc,
const TxbInfo *const txb_info) {
update_qcoeff(coeff_idx, qc, txb_info);
const int dqv = txb_info->dequant[coeff_idx != 0];
#if CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
const int dq_idx = txb_info->dq_idx;
#else
const tran_low_t *nq_dequant_val = txb_info->nq_dequant_vals[coeff_idx != 0];
#endif // CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
txb_info->dqcoeff[coeff_idx] = qcoeff_to_dqcoeff(qc,
#if CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
dq_idx, coeff_idx != 0,
#else
nq_dequant_val,
#endif // CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
dqv, txb_info->shift);
}
static INLINE void av1_txb_init_levels(const tran_low_t *const coeff,
const int width, const int height,
uint8_t *const levels) {
const int stride = width + TX_PAD_HOR;
uint8_t *ls = levels;
memset(levels - TX_PAD_TOP * stride, 0,
sizeof(*levels) * TX_PAD_TOP * stride);
memset(levels + stride * height, 0,
sizeof(*levels) * (TX_PAD_BOTTOM * stride + TX_PAD_END));
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
*ls++ = (uint8_t)clamp(abs(coeff[i * width + j]), 0, INT8_MAX);
}
for (int j = 0; j < TX_PAD_HOR; j++) {
*ls++ = 0;
}
}
}
void av1_get_nz_map_contexts_c(const uint8_t *const levels,
const int16_t *const scan, const uint16_t eob,
const TX_SIZE tx_size, const TX_TYPE tx_type,
int8_t *const coeff_contexts) {
const int bwl = get_txb_bwl(tx_size);
const int height = get_txb_high(tx_size);
for (int i = 0; i < eob; ++i) {
const int pos = scan[i];
coeff_contexts[pos] = get_nz_map_ctx(levels, pos, bwl, height, i,
i == eob - 1, tx_size, tx_type);
}
}
void av1_write_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCKD *xd,
aom_writer *w, int blk_row, int blk_col, int plane,
TX_SIZE tx_size, const tran_low_t *tcoeff,
uint16_t eob, TXB_CTX *txb_ctx) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
const int16_t *const scan = scan_order->scan;
const int seg_eob = av1_get_max_eob(tx_size);
int c;
const int bwl = get_txb_bwl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
int update_eob = -1;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
DECLARE_ALIGNED(16, uint8_t, level_counts[MAX_TX_SQUARE]);
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
aom_write_bin(w, eob == 0,
ec_ctx->txb_skip_cdf[txs_ctx][txb_ctx->txb_skip_ctx], 2);
#if CONFIG_TXK_SEL
if (plane == 0 && eob == 0) {
assert(tx_type == DCT_DCT);
}
#endif
if (eob == 0) return;
av1_txb_init_levels(tcoeff, width, height, levels);
#if CONFIG_TXK_SEL
av1_write_tx_type(cm, xd, blk_row, blk_col, plane, tx_size, w);
#endif
int eob_extra, dummy;
const int eob_pt = get_eob_pos_token(eob, &eob_extra);
const int max_eob_pt = get_eob_pos_token(seg_eob, &dummy);
(void)max_eob_pt;
const int eob_multi_size = txsize_log2_minus4[tx_size];
const int eob_multi_ctx = (tx_type_to_class[tx_type] == TX_CLASS_2D) ? 0 : 1;
switch (eob_multi_size) {
case 0:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf16[plane_type][eob_multi_ctx], 5);
break;
case 1:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf32[plane_type][eob_multi_ctx], 6);
break;
case 2:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf64[plane_type][eob_multi_ctx], 7);
break;
case 3:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf128[plane_type][eob_multi_ctx], 8);
break;
case 4:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf256[plane_type][eob_multi_ctx], 9);
break;
case 5:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf512[plane_type][eob_multi_ctx], 10);
break;
default:
aom_write_symbol(w, eob_pt - 1,
ec_ctx->eob_flag_cdf1024[plane_type][eob_multi_ctx], 11);
break;
}
if (k_eob_offset_bits[eob_pt] > 0) {
int eob_shift = k_eob_offset_bits[eob_pt] - 1;
int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
aom_write_bin(w, bit, ec_ctx->eob_extra_cdf[txs_ctx][plane_type][eob_pt],
2);
for (int i = 1; i < k_eob_offset_bits[eob_pt]; i++) {
eob_shift = k_eob_offset_bits[eob_pt] - 1 - i;
bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
aom_write_bit(w, bit);
}
}
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_type, coeff_contexts);
for (c = eob - 1; c >= 0; --c) {
const int pos = scan[c];
const int coeff_ctx = coeff_contexts[pos];
const tran_low_t v = tcoeff[pos];
if (c == eob - 1) {
aom_write_symbol(
w, AOMMIN(abs(v), 3) - 1,
ec_ctx->coeff_base_eob_cdf[txs_ctx][plane_type][coeff_ctx], 3);
} else {
aom_write_symbol(w, AOMMIN(abs(v), 3),
ec_ctx->coeff_base_cdf[txs_ctx][plane_type][coeff_ctx],
4);
}
}
update_eob = eob - 1;
// Loop to code all signs in the transform block,
// starting with the sign of DC (if applicable)
for (c = 0; c < eob; ++c) {
const tran_low_t v = tcoeff[scan[c]];
const tran_low_t level = abs(v);
const int sign = (v < 0) ? 1 : 0;
if (level == 0) continue;
if (c == 0) {
aom_write_bin(w, sign,
ec_ctx->dc_sign_cdf[plane_type][txb_ctx->dc_sign_ctx], 2);
} else {
aom_write_bit(w, sign);
}
}
if (update_eob >= 0) {
for (c = update_eob; c >= 0; --c) {
const int pos = scan[c];
const tran_low_t level = abs(tcoeff[pos]);
int idx;
int ctx;
if (level <= NUM_BASE_LEVELS) continue;
// level is above 1.
const int base_range = level - 1 - NUM_BASE_LEVELS;
#if USE_CAUSAL_BR_CTX
ctx = get_br_ctx(levels, pos, bwl, level_counts[pos], tx_type);
#else
ctx = get_br_ctx(levels, pos, bwl, level_counts[pos]);
#endif
for (idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) {
const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1);
aom_write_symbol(w, k,
#if 0
ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_16X16)][plane_type][ctx],
#else
ec_ctx->coeff_br_cdf[AOMMIN(txs_ctx, TX_32X32)]
[plane_type][ctx],
#endif
BR_CDF_SIZE);
if (k < BR_CDF_SIZE - 1) break;
}
if (base_range < COEFF_BASE_RANGE) continue;
// use 0-th order Golomb code to handle the residual level.
write_golomb(w,
abs(tcoeff[pos]) - COEFF_BASE_RANGE - 1 - NUM_BASE_LEVELS);
}
}
}
typedef struct encode_txb_args {
const AV1_COMMON *cm;
MACROBLOCK *x;
aom_writer *w;
} ENCODE_TXB_ARGS;
static void write_coeffs_txb_wrap(const AV1_COMMON *cm, MACROBLOCK *x,
aom_writer *w, int plane, int block,
int blk_row, int blk_col, TX_SIZE tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block);
uint16_t eob = x->mbmi_ext->eobs[plane][block];
TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block],
x->mbmi_ext->dc_sign_ctx[plane][block] };
av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff, eob,
&txb_ctx);
}
void av1_write_coeffs_mb(const AV1_COMMON *const cm, MACROBLOCK *x, int mi_row,
int mi_col, aom_writer *w, BLOCK_SIZE bsize) {
MACROBLOCKD *xd = &x->e_mbd;
const int num_planes = av1_num_planes(cm);
int block[MAX_MB_PLANE] = { 0 };
int row, col;
const struct macroblockd_plane *const y_pd = &xd->plane[0];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, y_pd);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, y_pd);
int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
const int step = stepr * stepc;
const int unit_height = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y);
const int unit_width = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x);
for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height;
blk_row += stepr) {
for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width;
blk_col += stepc) {
write_coeffs_txb_wrap(cm, x, w, plane, block[plane], blk_row,
blk_col, tx_size);
block[plane] += step;
}
}
}
}
}
}
static INLINE int get_br_cost(tran_low_t abs_qc, int ctx,
const int *coeff_lps) {
const tran_low_t min_level = 1 + NUM_BASE_LEVELS;
const tran_low_t max_level = 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE;
(void)ctx;
if (abs_qc >= min_level) {
if (abs_qc >= max_level)
return coeff_lps[COEFF_BASE_RANGE]; // COEFF_BASE_RANGE * cost0;
else
return coeff_lps[(abs_qc - min_level)]; // * cost0 + cost1;
} else {
return 0;
}
}
// Note: don't call this function when eob is 0.
int av1_cost_coeffs_txb(const AV1_COMMON *const cm, const MACROBLOCK *x,
const int plane, const int blk_row, const int blk_col,
const int block, const TX_SIZE tx_size,
const TXB_CTX *const txb_ctx) {
const MACROBLOCKD *const xd = &x->e_mbd;
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size);
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const struct macroblock_plane *p = &x->plane[plane];
const int eob = p->eobs[block];
const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
int c, cost;
const int txb_skip_ctx = txb_ctx->txb_skip_ctx;
const int bwl = get_txb_bwl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
const int16_t *const scan = scan_order->scan;
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
DECLARE_ALIGNED(16, uint8_t, level_counts[MAX_TX_SQUARE]);
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
const LV_MAP_COEFF_COST *const coeff_costs =
&x->coeff_costs[txs_ctx][plane_type];
const int eob_multi_size = txsize_log2_minus4[tx_size];
const LV_MAP_EOB_COST *const eob_costs =
&x->eob_costs[eob_multi_size][plane_type];
// eob must be greater than 0 here.
assert(eob > 0);
cost = coeff_costs->txb_skip_cost[txb_skip_ctx][0];
av1_txb_init_levels(qcoeff, width, height, levels);
#if CONFIG_TXK_SEL
cost += av1_tx_type_cost(cm, x, xd, mbmi->sb_type, plane, tx_size, tx_type);
#endif
const int seg_eob = av1_get_max_eob(tx_size);
int eob_cost = get_eob_cost(eob, seg_eob, eob_costs, coeff_costs, tx_type);
cost += eob_cost;
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_type, coeff_contexts);
for (c = eob - 1; c >= 0; --c) {
const int pos = scan[c];
const tran_low_t v = qcoeff[pos];
const int is_nz = (v != 0);
const int level = abs(v);
const int coeff_ctx = coeff_contexts[pos];
if (c == eob - 1) {
cost += coeff_costs->base_eob_cost[coeff_ctx][AOMMIN(level, 3) - 1];
} else {
cost += coeff_costs->base_cost[coeff_ctx][AOMMIN(level, 3)];
}
if (is_nz) {
int sign = (v < 0) ? 1 : 0;
// sign bit cost
if (c == 0) {
int dc_sign_ctx = txb_ctx->dc_sign_ctx;
cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign];
} else {
cost += av1_cost_bit(128, sign);
}
if (level > NUM_BASE_LEVELS) {
int ctx;
#if USE_CAUSAL_BR_CTX
ctx = get_br_ctx(levels, pos, bwl, level_counts[pos], tx_type);
#else
ctx = get_br_ctx(levels, pos, bwl, level_counts[pos]);
#endif
const int base_range = level - 1 - NUM_BASE_LEVELS;
if (base_range < COEFF_BASE_RANGE) {
cost += coeff_costs->lps_cost[ctx][base_range];
} else {
cost += coeff_costs->lps_cost[ctx][COEFF_BASE_RANGE];
}
if (level >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
// residual cost
int r = level - COEFF_BASE_RANGE - NUM_BASE_LEVELS;
int ri = r;
int length = 0;
while (ri) {
ri >>= 1;
++length;
}
for (ri = 0; ri < length - 1; ++ri) cost += av1_cost_bit(128, 0);
for (ri = length - 1; ri >= 0; --ri)
cost += av1_cost_bit(128, (r >> ri) & 0x01);
}
}
}
}
return cost;
}
static INLINE int has_base(tran_low_t qc, int base_idx) {
const int level = base_idx + 1;
return abs(qc) >= level;
}
static INLINE int has_br(tran_low_t qc) {
return abs(qc) >= 1 + NUM_BASE_LEVELS;
}
static INLINE int get_sign_bit_cost(tran_low_t qc, int coeff_idx,
const int (*dc_sign_cost)[2],
int dc_sign_ctx) {
const int sign = (qc < 0) ? 1 : 0;
// sign bit cost
if (coeff_idx == 0) {
return dc_sign_cost[dc_sign_ctx][sign];
} else {
return av1_cost_bit(128, sign);
}
}
static INLINE int get_golomb_cost(int abs_qc) {
if (abs_qc >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
// residual cost
int r = abs_qc - COEFF_BASE_RANGE - NUM_BASE_LEVELS;
int ri = r;
int length = 0;
while (ri) {
ri >>= 1;
++length;
}
return av1_cost_literal(2 * length - 1);
} else {
return 0;
}
}
void gen_txb_cache(TxbCache *txb_cache, TxbInfo *txb_info) {
// gen_nz_count_arr
const int16_t *const scan = txb_info->scan_order->scan;
const int bwl = txb_info->bwl;
const int height = txb_info->height;
const tran_low_t *const qcoeff = txb_info->qcoeff;
const uint8_t *const levels = txb_info->levels;
const BASE_CTX_TABLE *base_ctx_table =
txb_info->coeff_ctx_table->base_ctx_table;
for (int c = 0; c < txb_info->eob; ++c) {
const int coeff_idx = scan[c]; // raster order
const int row = coeff_idx >> bwl;
const int col = coeff_idx - (row << bwl);
txb_cache->nz_count_arr[coeff_idx] =
get_nz_count(levels + get_padded_idx(coeff_idx, bwl), bwl,
tx_type_to_class[txb_info->tx_type]);
txb_cache->nz_ctx_arr[coeff_idx] =
get_nz_map_ctx_from_stats(0, coeff_idx, bwl, txb_info->tx_size,
tx_type_to_class[txb_info->tx_type]);
// gen_base_count_mag_arr
if (!has_base(qcoeff[coeff_idx], 0)) continue;
int *base_mag = txb_cache->base_mag_arr[coeff_idx];
int count[NUM_BASE_LEVELS];
get_base_count_mag(base_mag, count, qcoeff, bwl, height, row, col);
for (int i = 0; i < NUM_BASE_LEVELS; ++i) {
if (!has_base(qcoeff[coeff_idx], i)) break;
txb_cache->base_count_arr[i][coeff_idx] = count[i];
const int level = i + 1;
txb_cache->base_ctx_arr[i][coeff_idx] =
base_ctx_table[row != 0][col != 0][base_mag[0] > level][count[i]];
}
// gen_br_count_mag_arr
if (!has_br(qcoeff[coeff_idx])) continue;
int *br_count = txb_cache->br_count_arr + coeff_idx;
int *br_mag = txb_cache->br_mag_arr[coeff_idx];
*br_count = get_br_count_mag(br_mag, qcoeff, bwl, height, row, col,
NUM_BASE_LEVELS);
txb_cache->br_ctx_arr[coeff_idx] =
get_br_ctx_from_count_mag(row, col, *br_count, br_mag[0]);
}
}
static INLINE const int *get_level_prob(int level, int coeff_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs) {
if (level < 1 + NUM_BASE_LEVELS) {
const int ctx = txb_cache->nz_ctx_arr[coeff_idx];
return &txb_costs->base_cost[ctx][level];
} else if (level >= 1 + NUM_BASE_LEVELS &&
level < 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
const int ctx = txb_cache->br_ctx_arr[coeff_idx];
return txb_costs->lps_cost[ctx];
} else if (level >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
// printf("get_level_prob does not support golomb\n");
assert(0);
return 0;
} else {
assert(0);
return 0;
}
}
static INLINE void update_mag_arr(int *mag_arr, int abs_qc) {
if (mag_arr[0] == abs_qc) {
mag_arr[1] -= 1;
assert(mag_arr[1] >= 0);
}
}
static INLINE int get_mag_from_mag_arr(const int *mag_arr) {
int mag;
if (mag_arr[1] > 0) {
mag = mag_arr[0];
} else if (mag_arr[0] > 0) {
mag = mag_arr[0] - 1;
} else {
// no neighbor
assert(mag_arr[0] == 0 && mag_arr[1] == 0);
mag = 0;
}
return mag;
}
static int neighbor_level_down_update(int *new_count, int *new_mag, int count,
const int *mag, int coeff_idx,
tran_low_t abs_nb_coeff, int nb_coeff_idx,
int level, const TxbInfo *txb_info) {
*new_count = count;
*new_mag = get_mag_from_mag_arr(mag);
int update = 0;
// check if br_count changes
if (abs_nb_coeff == level) {
update = 1;
*new_count -= 1;
assert(*new_count >= 0);
}
const int row = coeff_idx >> txb_info->bwl;
const int col = coeff_idx - (row << txb_info->bwl);
const int nb_row = nb_coeff_idx >> txb_info->bwl;
const int nb_col = nb_coeff_idx - (nb_row << txb_info->bwl);
// check if mag changes
if (nb_row >= row && nb_col >= col) {
if (abs_nb_coeff == mag[0]) {
assert(mag[1] > 0);
if (mag[1] == 1) {
// the nb is the only qc with max mag
*new_mag -= 1;
assert(*new_mag >= 0);
update = 1;
}
}
}
return update;
}
static int try_neighbor_level_down_br(int coeff_idx, int nb_coeff_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
const TxbInfo *txb_info) {
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const tran_low_t abs_qc = abs(qc);
const int level = NUM_BASE_LEVELS + 1;
if (abs_qc < level) return 0;
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
const tran_low_t abs_nb_coeff = abs(nb_coeff);
const int count = txb_cache->br_count_arr[coeff_idx];
const int *mag = txb_cache->br_mag_arr[coeff_idx];
int new_count;
int new_mag;
const int update =
neighbor_level_down_update(&new_count, &new_mag, count, mag, coeff_idx,
abs_nb_coeff, nb_coeff_idx, level, txb_info);
if (update) {
const int row = coeff_idx >> txb_info->bwl;
const int col = coeff_idx - (row << txb_info->bwl);
const int ctx = txb_cache->br_ctx_arr[coeff_idx];
const int org_cost = get_br_cost(abs_qc, ctx, txb_costs->lps_cost[ctx]);
const int new_ctx = get_br_ctx_from_count_mag(row, col, new_count, new_mag);
const int new_cost =
get_br_cost(abs_qc, new_ctx, txb_costs->lps_cost[new_ctx]);
const int cost_diff = -org_cost + new_cost;
return cost_diff;
} else {
return 0;
}
}
static int try_neighbor_level_down_base(int coeff_idx, int nb_coeff_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
const TxbInfo *txb_info) {
// TODO(olah): not implemented yet
(void)coeff_idx;
(void)nb_coeff_idx;
(void)txb_cache;
(void)txb_costs;
(void)txb_info;
return 0;
}
static int try_neighbor_level_down_nz(int coeff_idx, int nb_coeff_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
TxbInfo *txb_info) {
// assume eob doesn't change
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const tran_low_t abs_qc = abs(qc);
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
const tran_low_t abs_nb_coeff = abs(nb_coeff);
if (abs_nb_coeff != 1) return 0;
const int16_t *const iscan = txb_info->scan_order->iscan;
const int scan_idx = iscan[coeff_idx];
if (scan_idx == txb_info->seg_eob) return 0;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < scan_idx) {
const int count = txb_cache->nz_count_arr[coeff_idx];
(void)count;
assert(count > 0);
update_qcoeff(nb_coeff_idx, get_lower_coeff(nb_coeff), txb_info);
const int new_ctx = get_nz_map_ctx_from_stats(
0, coeff_idx, txb_info->bwl, txb_info->tx_size,
tx_type_to_class[txb_info->tx_type]);
update_qcoeff(nb_coeff_idx, nb_coeff, txb_info);
const int ctx = txb_cache->nz_ctx_arr[coeff_idx];
const int org_cost = txb_costs->base_cost[ctx][AOMMIN(abs_qc, 3)];
const int new_cost = txb_costs->base_cost[new_ctx][AOMMIN(abs_qc, 3)];
const int cost_diff = new_cost - org_cost;
return cost_diff;
} else {
return 0;
}
}
static int try_self_level_down(tran_low_t *low_coeff, int coeff_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
TxbInfo *txb_info) {
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
if (qc == 0) {
*low_coeff = 0;
return 0;
}
const tran_low_t abs_qc = abs(qc);
*low_coeff = get_lower_coeff(qc);
int cost_diff;
if (*low_coeff == 0) {
const int scan_idx = txb_info->scan_order->iscan[coeff_idx];
const int *level_cost =
get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs);
const int *low_level_cost =
get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs);
if (scan_idx < txb_info->eob - 1) {
// When level-0, we code the binary of abs_qc > level
// but when level-k k > 0 we code the binary of abs_qc == level
// That's why wee need this special treatment for level-0 map
// TODO(angiebird): make leve-0 consistent to other levels
cost_diff = -level_cost[1] + low_level_cost[0] - low_level_cost[1];
} else {
cost_diff = -level_cost[1];
}
const int sign_cost = get_sign_bit_cost(
qc, coeff_idx, txb_costs->dc_sign_cost, txb_info->txb_ctx->dc_sign_ctx);
cost_diff -= sign_cost;
} else if (abs_qc <= NUM_BASE_LEVELS) {
const int *level_cost =
get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs);
const int *low_level_cost =
get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs);
cost_diff = -level_cost[1] + low_level_cost[1] - low_level_cost[0];
} else if (abs_qc == NUM_BASE_LEVELS + 1) {
const int *level_cost =
get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs);
const int *low_level_cost =
get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs);
cost_diff = -level_cost[0] + low_level_cost[1] - low_level_cost[0];
} else if (abs_qc < 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
const int *level_cost =
get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs);
const int *low_level_cost =
get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs);
cost_diff = -level_cost[abs_qc - 1 - NUM_BASE_LEVELS] +
low_level_cost[abs(*low_coeff) - 1 - NUM_BASE_LEVELS];
} else if (abs_qc == 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
const int *low_level_cost =
get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs);
cost_diff = -get_golomb_cost(abs_qc) - low_level_cost[COEFF_BASE_RANGE] +
low_level_cost[COEFF_BASE_RANGE - 1];
} else {
assert(abs_qc > 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE);
const tran_low_t abs_low_coeff = abs(*low_coeff);
cost_diff = -get_golomb_cost(abs_qc) + get_golomb_cost(abs_low_coeff);
}
return cost_diff;
}
#define COST_MAP_SIZE 5
#define COST_MAP_OFFSET 2
static INLINE int check_nz_neighbor(tran_low_t qc) { return abs(qc) == 1; }
static INLINE int check_base_neighbor(tran_low_t qc) {
return abs(qc) <= 1 + NUM_BASE_LEVELS;
}
static INLINE int check_br_neighbor(tran_low_t qc) {
return abs(qc) > BR_MAG_OFFSET;
}
#define FAST_OPTIMIZE_TXB 1
#if FAST_OPTIMIZE_TXB
#define ALNB_REF_OFFSET_NUM 2
static const int alnb_ref_offset[ALNB_REF_OFFSET_NUM][2] = {
{ -1, 0 }, { 0, -1 },
};
#define NB_REF_OFFSET_NUM 4
static const int nb_ref_offset[NB_REF_OFFSET_NUM][2] = {
{ -1, 0 }, { 0, -1 }, { 1, 0 }, { 0, 1 },
};
#endif // FAST_OPTIMIZE_TXB
// TODO(angiebird): add static to this function once it's called
int try_level_down(int coeff_idx, const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs, TxbInfo *txb_info,
int (*cost_map)[COST_MAP_SIZE], int fast_mode) {
#if !FAST_OPTIMIZE_TXB
(void)fast_mode;
#endif
if (cost_map) {
for (int i = 0; i < COST_MAP_SIZE; ++i) av1_zero(cost_map[i]);
}
tran_low_t qc = txb_info->qcoeff[coeff_idx];
tran_low_t low_coeff;
if (qc == 0) return 0;
int accu_cost_diff = 0;
const int16_t *const iscan = txb_info->scan_order->iscan;
const int eob = txb_info->eob;
const int scan_idx = iscan[coeff_idx];
if (scan_idx < eob) {
const int cost_diff = try_self_level_down(&low_coeff, coeff_idx, txb_cache,
txb_costs, txb_info);
if (cost_map)
cost_map[0 + COST_MAP_OFFSET][0 + COST_MAP_OFFSET] = cost_diff;
accu_cost_diff += cost_diff;
}
const int row = coeff_idx >> txb_info->bwl;
const int col = coeff_idx - (row << txb_info->bwl);
if (check_nz_neighbor(qc)) {
#if FAST_OPTIMIZE_TXB
const int(*ref_offset)[2];
int ref_num;
if (fast_mode) {
ref_offset = alnb_ref_offset;
ref_num = ALNB_REF_OFFSET_NUM;
} else {
ref_offset = sig_ref_offset;
ref_num = SIG_REF_OFFSET_NUM;
}
#else
const int(*ref_offset)[2] = sig_ref_offset;
const int ref_num = SIG_REF_OFFSET_NUM;
#endif
for (int i = 0; i < ref_num; ++i) {
const int nb_row = row - ref_offset[i][0];
const int nb_col = col - ref_offset[i][1];
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
if (nb_row < 0 || nb_col < 0 || nb_row >= txb_info->height ||
nb_col >= txb_info->width)
continue;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < eob) {
const int cost_diff = try_neighbor_level_down_nz(
nb_coeff_idx, coeff_idx, txb_cache, txb_costs, txb_info);
if (cost_map)
cost_map[nb_row - row + COST_MAP_OFFSET]
[nb_col - col + COST_MAP_OFFSET] += cost_diff;
accu_cost_diff += cost_diff;
}
}
}
if (check_base_neighbor(qc)) {
#if FAST_OPTIMIZE_TXB
const int(*ref_offset)[2];
int ref_num;
if (fast_mode) {
ref_offset = nb_ref_offset;
ref_num = NB_REF_OFFSET_NUM;
} else {
ref_offset = base_ref_offset;
ref_num = BASE_CONTEXT_POSITION_NUM;
}
#else
const int(*ref_offset)[2] = base_ref_offset;
int ref_num = BASE_CONTEXT_POSITION_NUM;
#endif
for (int i = 0; i < ref_num; ++i) {
const int nb_row = row - ref_offset[i][0];
const int nb_col = col - ref_offset[i][1];
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
if (nb_row < 0 || nb_col < 0 || nb_row >= txb_info->height ||
nb_col >= txb_info->width)
continue;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < eob) {
const int cost_diff = try_neighbor_level_down_base(
nb_coeff_idx, coeff_idx, txb_cache, txb_costs, txb_info);
if (cost_map)
cost_map[nb_row - row + COST_MAP_OFFSET]
[nb_col - col + COST_MAP_OFFSET] += cost_diff;
accu_cost_diff += cost_diff;
}
}
}
if (check_br_neighbor(qc)) {
#if FAST_OPTIMIZE_TXB
const int(*ref_offset)[2];
int ref_num;
if (fast_mode) {
ref_offset = nb_ref_offset;
ref_num = NB_REF_OFFSET_NUM;
} else {
ref_offset = br_ref_offset;
ref_num = BR_CONTEXT_POSITION_NUM;
}
#else
const int(*ref_offset)[2] = br_ref_offset;
const int ref_num = BR_CONTEXT_POSITION_NUM;
#endif
for (int i = 0; i < ref_num; ++i) {
const int nb_row = row - ref_offset[i][0];
const int nb_col = col - ref_offset[i][1];
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
if (nb_row < 0 || nb_col < 0 || nb_row >= txb_info->height ||
nb_col >= txb_info->width)
continue;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < eob) {
const int cost_diff = try_neighbor_level_down_br(
nb_coeff_idx, coeff_idx, txb_cache, txb_costs, txb_info);
if (cost_map)
cost_map[nb_row - row + COST_MAP_OFFSET]
[nb_col - col + COST_MAP_OFFSET] += cost_diff;
accu_cost_diff += cost_diff;
}
}
}
return accu_cost_diff;
}
static INLINE void set_eob(TxbInfo *txb_info, int eob) {
txb_info->eob = eob;
txb_info->seg_eob = av1_get_max_eob(txb_info->tx_size);
}
// TODO(angiebird): add static to this function it's called
void update_level_down(const int coeff_idx, TxbCache *const txb_cache,
TxbInfo *const txb_info) {
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const int abs_qc = abs(qc);
if (qc == 0) return;
const tran_low_t low_coeff = get_lower_coeff(qc);
update_coeff(coeff_idx, low_coeff, txb_info);
const int row = coeff_idx >> txb_info->bwl;
const int col = coeff_idx - (row << txb_info->bwl);
const int eob = txb_info->eob;
const int16_t *const iscan = txb_info->scan_order->iscan;
for (int i = 0; i < SIG_REF_OFFSET_NUM; ++i) {
const int nb_row = row - sig_ref_offset[i][0];
const int nb_col = col - sig_ref_offset[i][1];
if (!(nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height &&
nb_col < txb_info->width))
continue;
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < eob) {
const int scan_idx = iscan[coeff_idx];
if (scan_idx < nb_scan_idx) {
const int level = 1;
if (abs_qc == level) {
txb_cache->nz_count_arr[nb_coeff_idx] -= 1;
assert(txb_cache->nz_count_arr[nb_coeff_idx] >= 0);
}
txb_cache->nz_ctx_arr[nb_coeff_idx] = get_nz_map_ctx_from_stats(
0, nb_coeff_idx, txb_info->bwl, txb_info->tx_size,
tx_type_to_class[txb_info->tx_type]);
}
}
}
const BASE_CTX_TABLE *base_ctx_table =
txb_info->coeff_ctx_table->base_ctx_table;
for (int i = 0; i < BASE_CONTEXT_POSITION_NUM; ++i) {
const int nb_row = row - base_ref_offset[i][0];
const int nb_col = col - base_ref_offset[i][1];
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
if (!(nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height &&
nb_col < txb_info->width))
continue;
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
if (!has_base(nb_coeff, 0)) continue;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < eob) {
if (row >= nb_row && col >= nb_col)
update_mag_arr(txb_cache->base_mag_arr[nb_coeff_idx], abs_qc);
const int mag =
get_mag_from_mag_arr(txb_cache->base_mag_arr[nb_coeff_idx]);
for (int base_idx = 0; base_idx < NUM_BASE_LEVELS; ++base_idx) {
if (!has_base(nb_coeff, base_idx)) continue;
const int level = base_idx + 1;
if (abs_qc == level) {
txb_cache->base_count_arr[base_idx][nb_coeff_idx] -= 1;
assert(txb_cache->base_count_arr[base_idx][nb_coeff_idx] >= 0);
}
const int count = txb_cache->base_count_arr[base_idx][nb_coeff_idx];
txb_cache->base_ctx_arr[base_idx][nb_coeff_idx] =
base_ctx_table[nb_row != 0][nb_col != 0][mag > level][count];
}
}
}
for (int i = 0; i < BR_CONTEXT_POSITION_NUM; ++i) {
const int nb_row = row - br_ref_offset[i][0];
const int nb_col = col - br_ref_offset[i][1];
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
if (!(nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height &&
nb_col < txb_info->width))
continue;
const int nb_scan_idx = iscan[nb_coeff_idx];
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
if (!has_br(nb_coeff)) continue;
if (nb_scan_idx < eob) {
const int level = 1 + NUM_BASE_LEVELS;
if (abs_qc == level) {
txb_cache->br_count_arr[nb_coeff_idx] -= 1;
assert(txb_cache->br_count_arr[nb_coeff_idx] >= 0);
}
if (row >= nb_row && col >= nb_col)
update_mag_arr(txb_cache->br_mag_arr[nb_coeff_idx], abs_qc);
const int count = txb_cache->br_count_arr[nb_coeff_idx];
const int mag = get_mag_from_mag_arr(txb_cache->br_mag_arr[nb_coeff_idx]);
txb_cache->br_ctx_arr[nb_coeff_idx] =
get_br_ctx_from_count_mag(nb_row, nb_col, count, mag);
}
}
}
static int get_coeff_cost(const tran_low_t qc, const int scan_idx,
const int is_eob, const TxbInfo *const txb_info,
const LV_MAP_COEFF_COST *const txb_costs,
const int coeff_ctx) {
const TXB_CTX *txb_ctx = txb_info->txb_ctx;
const int is_nz = (qc != 0);
const tran_low_t abs_qc = abs(qc);
int cost = 0;
const int16_t *const scan = txb_info->scan_order->scan;
const int pos = scan[scan_idx];
if (is_eob) {
cost += txb_costs->base_eob_cost[coeff_ctx][AOMMIN(abs_qc, 3) - 1];
} else {
cost += txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)];
}
if (is_nz) {
cost += get_sign_bit_cost(qc, scan_idx, txb_costs->dc_sign_cost,
txb_ctx->dc_sign_ctx);
if (abs_qc > NUM_BASE_LEVELS) {
const int row = pos >> txb_info->bwl;
const int col = pos - (row << txb_info->bwl);
#if USE_CAUSAL_BR_CTX
(void)col;
const int count = 0;
const int ctx = get_br_ctx(txb_info->levels, pos, txb_info->bwl, count,
txb_info->tx_type);
#else
const int count = get_level_count(
txb_info->levels, (1 << txb_info->bwl) + TX_PAD_HOR, row, col,
NUM_BASE_LEVELS, br_ref_offset, BR_CONTEXT_POSITION_NUM);
const int ctx = get_br_ctx(txb_info->levels, pos, txb_info->bwl, count);
#endif
cost += get_br_cost(abs_qc, ctx, txb_costs->lps_cost[ctx]);
cost += get_golomb_cost(abs_qc);
}
}
return cost;
}
#if TEST_OPTIMIZE_TXB
#define ALL_REF_OFFSET_NUM 17
static const int all_ref_offset[ALL_REF_OFFSET_NUM][2] = {
{ 0, 0 }, { -2, -1 }, { -2, 0 }, { -2, 1 }, { -1, -2 }, { -1, -1 },
{ -1, 0 }, { -1, 1 }, { 0, -2 }, { 0, -1 }, { 1, -2 }, { 1, -1 },
{ 1, 0 }, { 2, 0 }, { 0, 1 }, { 0, 2 }, { 1, 1 },
};
static int try_level_down_ref(int coeff_idx, const LV_MAP_COEFF_COST *txb_costs,
TxbInfo *txb_info,
int (*cost_map)[COST_MAP_SIZE]) {
if (cost_map) {
for (int i = 0; i < COST_MAP_SIZE; ++i) av1_zero(cost_map[i]);
}
tran_low_t qc = txb_info->qcoeff[coeff_idx];
if (qc == 0) return 0;
int row = coeff_idx >> txb_info->bwl;
int col = coeff_idx - (row << txb_info->bwl);
int org_cost = 0;
for (int i = 0; i < ALL_REF_OFFSET_NUM; ++i) {
int nb_row = row - all_ref_offset[i][0];
int nb_col = col - all_ref_offset[i][1];
int nb_coeff_idx = nb_row * txb_info->width + nb_col;
int nb_scan_idx = txb_info->scan_order->iscan[nb_coeff_idx];
if (nb_scan_idx < txb_info->eob && nb_row >= 0 && nb_col >= 0 &&
nb_row < txb_info->height && nb_col < txb_info->width) {
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
const int coeff_ctx = get_nz_map_ctx(
txb_info->levels, nb_coeff_idx, txb_info->bwl, txb_info->height,
nb_scan_idx, is_eob, txb_info->tx_size, txb_info->tx_type);
const int cost = get_coeff_cost(nb_coeff, nb_scan_idx, is_eob, txb_info,
txb_costs, coeff_ctx);
if (cost_map)
cost_map[nb_row - row + COST_MAP_OFFSET]
[nb_col - col + COST_MAP_OFFSET] -= cost;
org_cost += cost;
}
}
update_qcoeff(coeff_idx, get_lower_coeff(qc), txb_info);
int new_cost = 0;
for (int i = 0; i < ALL_REF_OFFSET_NUM; ++i) {
int nb_row = row - all_ref_offset[i][0];
int nb_col = col - all_ref_offset[i][1];
int nb_coeff_idx = nb_row * txb_info->width + nb_col;
int nb_scan_idx = txb_info->scan_order->iscan[nb_coeff_idx];
if (nb_scan_idx < txb_info->eob && nb_row >= 0 && nb_col >= 0 &&
nb_row < txb_info->height && nb_col < txb_info->width) {
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
const int coeff_ctx = get_nz_map_ctx(
txb_info->levels, nb_coeff_idx, txb_info->bwl, txb_info->height,
nb_scan_idx, is_eob, txb_info->tx_size, txb_info->tx_type);
const int cost = get_coeff_cost(nb_coeff, nb_scan_idx, is_eob, txb_info,
txb_costs, coeff_ctx);
if (cost_map)
cost_map[nb_row - row + COST_MAP_OFFSET]
[nb_col - col + COST_MAP_OFFSET] += cost;
new_cost += cost;
}
}
update_qcoeff(coeff_idx, qc, txb_info);
return new_cost - org_cost;
}
static void test_level_down(int coeff_idx, const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
TxbInfo *txb_info) {
int cost_map[COST_MAP_SIZE][COST_MAP_SIZE];
int ref_cost_map[COST_MAP_SIZE][COST_MAP_SIZE];
const int cost_diff =
try_level_down(coeff_idx, txb_cache, txb_costs, txb_info, cost_map, 0);
const int cost_diff_ref =
try_level_down_ref(coeff_idx, txb_costs, txb_info, ref_cost_map);
if (cost_diff != cost_diff_ref) {
printf("qc %d cost_diff %d cost_diff_ref %d\n", txb_info->qcoeff[coeff_idx],
cost_diff, cost_diff_ref);
for (int r = 0; r < COST_MAP_SIZE; ++r) {
for (int c = 0; c < COST_MAP_SIZE; ++c) {
printf("%d:%d ", cost_map[r][c], ref_cost_map[r][c]);
}
printf("\n");
}
}
}
#endif
// TODO(angiebird): make this static once it's called
int get_txb_cost(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs) {
int cost = 0;
const int txb_skip_ctx = txb_info->txb_ctx->txb_skip_ctx;
const int16_t *const scan = txb_info->scan_order->scan;
if (txb_info->eob == 0) {
cost = txb_costs->txb_skip_cost[txb_skip_ctx][1];
return cost;
}
cost = txb_costs->txb_skip_cost[txb_skip_ctx][0];
for (int c = 0; c < txb_info->eob; ++c) {
const int pos = scan[c];
const tran_low_t qc = txb_info->qcoeff[pos];
const int coeff_ctx = get_nz_map_ctx(
txb_info->levels, pos, txb_info->bwl, txb_info->height, c,
c == txb_info->eob - 1, txb_info->tx_size, txb_info->tx_type);
const int coeff_cost = get_coeff_cost(qc, c, c == txb_info->eob - 1,
txb_info, txb_costs, coeff_ctx);
cost += coeff_cost;
}
return cost;
}
#if TEST_OPTIMIZE_TXB
void test_try_change_eob(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
TxbCache *txb_cache) {
const int eob = txb_info->eob;
const int16_t *const scan = txb_info->scan_order->scan;
if (eob > 0) {
int last_si = eob - 1;
int last_ci = scan[last_si];
int last_coeff = txb_info->qcoeff[last_ci];
if (abs(last_coeff) == 1) {
int new_eob;
int cost_diff =
try_change_eob(&new_eob, last_ci, txb_cache, txb_costs, txb_info, 0);
int org_eob = txb_info->eob;
int cost = get_txb_cost(txb_info, txb_costs);
update_qcoeff(last_ci, get_lower_coeff(last_coeff), txb_info);
set_eob(txb_info, new_eob);
int new_cost = get_txb_cost(txb_info, txb_costs);
set_eob(txb_info, org_eob);
update_qcoeff(last_ci, last_coeff, txb_info);
int ref_cost_diff = -cost + new_cost;
if (cost_diff != ref_cost_diff)
printf("org_eob %d new_eob %d cost_diff %d ref_cost_diff %d\n", org_eob,
new_eob, cost_diff, ref_cost_diff);
}
}
}
#endif
#if 1
static int optimize_txb(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
const LV_MAP_EOB_COST *txb_eob_costs,
TxbCache *txb_cache, int dry_run, int fast_mode) {
(void)fast_mode;
(void)txb_cache;
int update = 0;
// return update; // TODO(DKHE): training only.
if (txb_info->eob == 0) return update;
const int max_eob = av1_get_max_eob(txb_info->tx_size);
#if TEST_OPTIMIZE_TXB
int64_t sse;
int64_t org_dist =
av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) *
(1 << (2 * txb_info->shift));
int org_cost = get_txb_cost(txb_info, txb_probs);
#endif
tran_low_t *org_qcoeff = txb_info->qcoeff;
tran_low_t *org_dqcoeff = txb_info->dqcoeff;
uint8_t *const org_levels = txb_info->levels;
tran_low_t tmp_qcoeff[MAX_TX_SQUARE];
tran_low_t tmp_dqcoeff[MAX_TX_SQUARE];
uint8_t tmp_levels_buf[TX_PAD_2D];
uint8_t *const tmp_levels = set_levels(tmp_levels_buf, txb_info->width);
const int org_eob = txb_info->eob;
if (dry_run) {
const int stride = txb_info->width + TX_PAD_HOR;
const int levels_size =
(stride * (txb_info->height + TX_PAD_VER) + TX_PAD_END);
memcpy(tmp_qcoeff, org_qcoeff, sizeof(org_qcoeff[0]) * max_eob);
memcpy(tmp_dqcoeff, org_dqcoeff, sizeof(org_dqcoeff[0]) * max_eob);
memcpy(tmp_levels, org_levels - TX_PAD_TOP * stride,
sizeof(org_levels[0]) * levels_size);
txb_info->qcoeff = tmp_qcoeff;
txb_info->dqcoeff = tmp_dqcoeff;
txb_info->levels = tmp_levels;
}
const int16_t *const scan = txb_info->scan_order->scan;
// forward optimize the nz_map`
const int init_eob = txb_info->eob;
const int seg_eob = txb_info->seg_eob;
const int eob_cost = get_eob_cost(init_eob, seg_eob, txb_eob_costs, txb_costs,
txb_info->tx_type);
// backward optimize the level-k map
int64_t accu_rate = eob_cost;
int64_t accu_dist = 0;
int64_t prev_eob_rd_cost = INT64_MAX;
int64_t cur_eob_rd_cost = 0;
int8_t has_nz_tail = 0;
for (int si = init_eob - 1; si >= 0; --si) {
const int coeff_idx = scan[si];
tran_low_t qc = txb_info->qcoeff[coeff_idx];
LevelDownStats stats;
get_dist_cost_stats(&stats, si, si == init_eob - 1, txb_costs, txb_info,
has_nz_tail);
if (qc == 0) {
accu_rate += stats.rate;
} else {
if (has_nz_tail < 2) {
if (si == init_eob - 1) {
if ((stats.rd_low < stats.rd) && (stats.low_qc != 0)) {
update = 1;
update_coeff(coeff_idx, stats.low_qc, txb_info);
accu_rate += stats.rate_low;
accu_dist += stats.dist_low;
} else {
accu_rate += stats.rate;
accu_dist += stats.dist;
}
continue;
} else {
// check if it is better to make this the last significant coefficient
int cur_eob_rate = get_eob_cost(si + 1, seg_eob, txb_eob_costs,
txb_costs, txb_info->tx_type);
cur_eob_rd_cost = RDCOST(txb_info->rdmult, cur_eob_rate, 0);
prev_eob_rd_cost =
RDCOST(txb_info->rdmult, accu_rate, accu_dist) + stats.nz_rd;
if (cur_eob_rd_cost <= prev_eob_rd_cost) {
update = 1;
for (int j = si + 1; j < txb_info->eob; j++) {
const int coeff_pos_j = scan[j];
update_coeff(coeff_pos_j, 0, txb_info);
}
txb_info->eob = si + 1;
// rerun cost calculation due to change of eob
accu_rate = cur_eob_rate;
accu_dist = 0;
get_dist_cost_stats(&stats, si, 1, txb_costs, txb_info,
has_nz_tail);
if ((stats.rd_low < stats.rd) && (stats.low_qc != 0)) {
update = 1;
update_coeff(coeff_idx, stats.low_qc, txb_info);
accu_rate += stats.rate_low;
accu_dist += stats.dist_low;
} else {
accu_rate += stats.rate;
accu_dist += stats.dist;
}
// reset non zero tail when new eob is found
has_nz_tail = 0;
continue;
}
}
}
int bUpdCoeff = 0;
if (stats.rd_low < stats.rd) {
if ((si < txb_info->eob - 1)) {
bUpdCoeff = 1;
update = 1;
}
} else {
++has_nz_tail;
}
if (bUpdCoeff) {
update_coeff(coeff_idx, stats.low_qc, txb_info);
accu_rate += stats.rate_low;
accu_dist += stats.dist_low;
} else {
accu_rate += stats.rate;
accu_dist += stats.dist;
}
}
} // for (si)
int non_zero_blk_rate =
txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][0];
prev_eob_rd_cost =
RDCOST(txb_info->rdmult, accu_rate + non_zero_blk_rate, accu_dist);
int zero_blk_rate =
txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][1];
int64_t zero_blk_rd_cost = RDCOST(txb_info->rdmult, zero_blk_rate, 0);
if (zero_blk_rd_cost <= prev_eob_rd_cost) {
update = 1;
for (int j = 0; j < txb_info->eob; j++) {
const int coeff_pos_j = scan[j];
update_coeff(coeff_pos_j, 0, txb_info);
}
txb_info->eob = 0;
}
#if TEST_OPTIMIZE_TXB
int cost_diff = 0;
int64_t dist_diff = 0;
int64_t rd_diff = 0;
int64_t new_dist =
av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) *
(1 << (2 * txb_info->shift));
int new_cost = get_txb_cost(txb_info, txb_probs);
int64_t ref_dist_diff = new_dist - org_dist;
int ref_cost_diff = new_cost - org_cost;
if (cost_diff != ref_cost_diff || dist_diff != ref_dist_diff)
printf(
"overall rd_diff %ld\ncost_diff %d ref_cost_diff%d\ndist_diff %ld "
"ref_dist_diff %ld\neob %d new_eob %d\n\n",
rd_diff, cost_diff, ref_cost_diff, dist_diff, ref_dist_diff, org_eob,
txb_info->eob);
#endif
if (dry_run) {
txb_info->qcoeff = org_qcoeff;
txb_info->dqcoeff = org_dqcoeff;
txb_info->levels = org_levels;
set_eob(txb_info, org_eob);
}
return update;
}
#else
static int optimize_txb(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
TxbCache *txb_cache, int dry_run, int fast_mode) {
int update = 0;
if (txb_info->eob == 0) return update;
int cost_diff = 0;
int64_t dist_diff = 0;
int64_t rd_diff = 0;
const int max_eob = av1_get_max_eob(txb_info->tx_size);
#if TEST_OPTIMIZE_TXB
int64_t sse;
int64_t org_dist =
av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) *
(1 << (2 * txb_info->shift));
int org_cost = get_txb_cost(txb_info, txb_costs);
#endif
tran_low_t *org_qcoeff = txb_info->qcoeff;
tran_low_t *org_dqcoeff = txb_info->dqcoeff;
uint8_t *const org_levels = txb_info->levels;
tran_low_t tmp_qcoeff[MAX_TX_SQUARE];
tran_low_t tmp_dqcoeff[MAX_TX_SQUARE];
uint8_t tmp_levels_buf[TX_PAD_2D];
uint8_t *const tmp_levels = set_levels(tmp_levels_buf, txb_info->width);
const int org_eob = txb_info->eob;
if (dry_run) {
const int stride = txb_info->width + TX_PAD_HOR;
const int levels_size =
(stride * (txb_info->height + TX_PAD_VER) + TX_PAD_END);
memcpy(tmp_qcoeff, org_qcoeff, sizeof(org_qcoeff[0]) * max_eob);
memcpy(tmp_dqcoeff, org_dqcoeff, sizeof(org_dqcoeff[0]) * max_eob);
memcpy(tmp_levels, org_levels - TX_PAD_TOP * stride,
sizeof(org_levels[0]) * levels_size);
txb_info->qcoeff = tmp_qcoeff;
txb_info->dqcoeff = tmp_dqcoeff;
txb_info->levels = tmp_levels;
}
const int16_t *const scan = txb_info->scan_order->scan;
// forward optimize the nz_map
const int cur_eob = txb_info->eob;
for (int si = 0; si < cur_eob; ++si) {
const int coeff_idx = scan[si];
tran_low_t qc = txb_info->qcoeff[coeff_idx];
if (abs(qc) == 1) {
LevelDownStats stats;
try_level_down_facade(&stats, si, txb_cache, txb_costs, txb_info,
fast_mode);
if (stats.update) {
update = 1;
cost_diff += stats.cost_diff;
dist_diff += stats.dist_diff;
rd_diff += stats.rd_diff;
update_level_down(coeff_idx, txb_cache, txb_info);
set_eob(txb_info, stats.new_eob);
}
}
}
// backward optimize the level-k map
int eob_fix = 0;
for (int si = txb_info->eob - 1; si >= 0; --si) {
const int coeff_idx = scan[si];
if (eob_fix == 1 && txb_info->qcoeff[coeff_idx] == 1) {
// when eob is fixed, there is not need to optimize again when
// abs(qc) == 1
continue;
}
LevelDownStats stats;
try_level_down_facade(&stats, si, txb_cache, txb_costs, txb_info,
fast_mode);
if (stats.update) {
#if TEST_OPTIMIZE_TXB
// printf("si %d low_qc %d cost_diff %d dist_diff %ld rd_diff %ld eob %d new_eob
// %d\n", si, stats.low_qc, stats.cost_diff, stats.dist_diff, stats.rd_diff,
// txb_info->eob, stats.new_eob);
#endif
update = 1;
cost_diff += stats.cost_diff;
dist_diff += stats.dist_diff;
rd_diff += stats.rd_diff;
update_level_down(coeff_idx, txb_cache, txb_info);
set_eob(txb_info, stats.new_eob);
}
if (eob_fix == 0 && txb_info->qcoeff[coeff_idx] != 0) eob_fix = 1;
if (si > txb_info->eob) si = txb_info->eob;
}
#if TEST_OPTIMIZE_TXB
int64_t new_dist =
av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) *
(1 << (2 * txb_info->shift));
int new_cost = get_txb_cost(txb_info, txb_costs);
int64_t ref_dist_diff = new_dist - org_dist;
int ref_cost_diff = new_cost - org_cost;
if (cost_diff != ref_cost_diff || dist_diff != ref_dist_diff)
printf(
"overall rd_diff %ld\ncost_diff %d ref_cost_diff%d\ndist_diff %ld "
"ref_dist_diff %ld\neob %d new_eob %d\n\n",
rd_diff, cost_diff, ref_cost_diff, dist_diff, ref_dist_diff, org_eob,
txb_info->eob);
#endif
if (dry_run) {
txb_info->qcoeff = org_qcoeff;
txb_info->dqcoeff = org_dqcoeff;
txb_info->levels = org_levels;
set_eob(txb_info, org_eob);
}
return update;
}
#endif
// These numbers are empirically obtained.
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
{ 17, 13 }, { 16, 10 },
};
void hbt_hash_init() {
av1_crc_calculator_init(&crc_calculator, 16, 0x5D6DCB); // ctx 16 bit hash
av1_crc_calculator_init(&crc_calculator2, 16, 0x5D6DCB); // qc 16 bit hash
memset(hbt_hash_table, 0, sizeof(hbt_hash_table[0][0]) * 65536 * 16);
hbt_hash_needs_init = 0;
}
int hbt_hash_miss(int found_index, uint16_t hbt_hash_index,
uint32_t hbt_hash_match, TxbInfo *txb_info,
const LV_MAP_COEFF_COST *txb_costs,
const LV_MAP_EOB_COST *txb_eob_costs,
const struct macroblock_plane *p, int block, int fast_mode) {
const int16_t *scan = txb_info->scan_order->scan;
av1_txb_init_levels(txb_info->qcoeff, txb_info->width, txb_info->height,
txb_info->levels);
// The hash_based_trellis speed feature requires lv_map_multi, so always true.
const int update =
optimize_txb(txb_info, txb_costs, txb_eob_costs, NULL, 0, fast_mode);
if (update) {
// Overwrite old lowest entry
hbt_hash_table[hbt_hash_index][found_index].hbt_hash_match = hbt_hash_match;
hbt_hash_table[hbt_hash_index][found_index].hits = 1.0;
for (int i = 0; i < txb_info->eob; i++) {
hbt_hash_table[hbt_hash_index][found_index].opt_qcoeff[i] =
txb_info->qcoeff[scan[i]];
}
for (int i = txb_info->eob; i < HBT_HASH_EOB; i++) {
hbt_hash_table[hbt_hash_index][found_index].opt_qcoeff[i] = 0;
}
p->eobs[block] = txb_info->eob;
p->txb_entropy_ctx[block] = av1_get_txb_entropy_context(
txb_info->qcoeff, txb_info->scan_order, txb_info->eob);
}
return txb_info->eob;
}
int hbt_hash_hit(uint16_t hbt_hash_index, int found_index, TxbInfo *txb_info,
const struct macroblock_plane *p, int block) {
const int16_t *scan = txb_info->scan_order->scan;
int new_eob = 0;
int update = 0;
for (int i = 0; i < txb_info->eob; i++) {
if (txb_info->qcoeff[scan[i]] !=
hbt_hash_table[hbt_hash_index][found_index].opt_qcoeff[i]) {
txb_info->qcoeff[scan[i]] =
hbt_hash_table[hbt_hash_index][found_index].opt_qcoeff[i];
update = 1;
update_coeff(scan[i], txb_info->qcoeff[scan[i]], txb_info);
}
if (txb_info->qcoeff[scan[i]]) new_eob = i + 1;
}
if (update) {
txb_info->eob = new_eob;
p->eobs[block] = txb_info->eob;
p->txb_entropy_ctx[block] = av1_get_txb_entropy_context(
txb_info->qcoeff, txb_info->scan_order, txb_info->eob);
}
return txb_info->eob;
}
int search_hbt_hash_match(uint16_t hbt_hash_index, uint32_t hbt_hash_match,
TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
const LV_MAP_EOB_COST *txb_eob_costs,
const struct macroblock_plane *p, int block,
int fast_mode) {
// Decay all hits
double lowest_hits = 1.0;
int lowest_index = 0;
for (int i = 0; i < 16; i++) {
hbt_hash_table[hbt_hash_index][i].hits *= 31.0;
hbt_hash_table[hbt_hash_index][i].hits /= 32.0;
if (hbt_hash_table[hbt_hash_index][i].hits < lowest_hits) {
lowest_hits = hbt_hash_table[hbt_hash_index][i].hits;
lowest_index = i;
}
}
// Search soft hash vector for qcoeff match
int found_index = -1;
for (int i = 0; i < 16; i++) { // OptTxbQcoeff array has fixed size of 16.
if (hbt_hash_table[hbt_hash_index][i].hbt_hash_match == hbt_hash_match) {
found_index = i;
hbt_hash_table[hbt_hash_index][i].hits += 1.0;
break; // Found a match and it's at found_index
}
}
if (found_index == -1) { // Add new OptTxbQcoeff into array.
return hbt_hash_miss(lowest_index, hbt_hash_index, hbt_hash_match, txb_info,
txb_costs, txb_eob_costs, p, block, fast_mode);
} else { // Retrieve data from array.
return hbt_hash_hit(hbt_hash_index, found_index, txb_info, p, block);
}
}
int hash_based_trellis_mode(TxbInfo *txb_info,
const LV_MAP_COEFF_COST *txb_costs,
const LV_MAP_EOB_COST *txb_eob_costs,
const struct macroblock_plane *p, int block,
int fast_mode, TXB_CTX *txb_ctx) {
// Initialize hash table if needed.
if (hbt_hash_needs_init) {
hbt_hash_init();
}
//// Hash creation
// TODO(mfo): use exact length once input finalized
uint8_t txb_hash_data[256];
const int16_t *scan = txb_info->scan_order->scan;
uint8_t chunk = 0;
uint16_t ctx_hash = 0;
uint32_t qc_hash = 0;
int hash_data_index = 0;
for (int i = 0; i < txb_info->eob; i++) {
// Data softening: data from -3 -> 3 is left alone,
// while 'large' data is put into buckets of 16s
// Consider bucketing less than 16 down to 4 instead of 0
// if(txb_info->qcoeff[scan[i]] < 4 && txb_info->qcoeff[scan[i]] > -4)
chunk = (txb_info->qcoeff[scan[i]]) & 0xff;
/*else if(txb_info->qcoeff[scan[i]] < 16 && txb_info->qcoeff[scan[i]] > -16)
chunk = (txb_info->qcoeff[scan[i]]) & 0xfc; //
else
chunk = (txb_info->qcoeff[scan[i]]) & 0xf0; // greater than 16*/
txb_hash_data[hash_data_index++] = chunk;
chunk = ((txb_info->qcoeff[scan[i]]) & 0xff00) >> 8;
txb_hash_data[hash_data_index++] = chunk;
}
assert(hash_data_index <= 256);
// 16 bit
qc_hash = av1_get_crc_value(&crc_calculator2, txb_hash_data, hash_data_index);
hash_data_index = 0;
// tcoeff
for (int i = 0; i < txb_info->eob; i++) {
chunk = (txb_info->tcoeff[scan[i]] - txb_info->dqcoeff[scan[i]]) & 0xff;
txb_hash_data[hash_data_index++] = chunk;
}
// txb_ctx
chunk = txb_ctx->txb_skip_ctx & 0xff;
txb_hash_data[hash_data_index++] = chunk;
chunk = txb_ctx->dc_sign_ctx & 0xff;
txb_hash_data[hash_data_index++] = chunk;
// dequant
chunk = txb_info->dequant[0] & 0xff;
txb_hash_data[hash_data_index++] = chunk;
chunk = (txb_info->dequant[0] & 0xff00) >> 8;
txb_hash_data[hash_data_index++] = chunk;
chunk = txb_info->dequant[1] & 0xff;
txb_hash_data[hash_data_index++] = chunk;
chunk = (txb_info->dequant[1] & 0xff00) >> 8;
txb_hash_data[hash_data_index++] = chunk;
// txb_skip_cost
/*for (int i = 0; i < 2; i++) {
for (int j = 0; j < TXB_SKIP_CONTEXTS; j++) {
chunk = (txb_costs->txb_skip_cost[j][i] & 0xff00) >> 8;
txb_hash_data[hash_data_index++] = chunk;
}
}
// base_eob_cost
for (int i = 1; i < 3; i++) { // i = 0 are softened away
for (int j = 0; j < SIG_COEF_CONTEXTS_EOB; j++) {
chunk = (txb_costs->base_eob_cost[j][i] & 0xff00) >> 8;
txb_hash_data[hash_data_index++] = chunk;
}
}*/
assert(hash_data_index <= 256);
// Gives 16 bit hash for ctx
ctx_hash = av1_get_crc_value(&crc_calculator, txb_hash_data, hash_data_index);
uint16_t hbt_hash_index = ctx_hash; // 16 bit ctx_hash: index to table
uint32_t hbt_hash_match = qc_hash; // 16 bit qc_hash: matched in array
//// End hash creation
return search_hbt_hash_match(hbt_hash_index, hbt_hash_match, txb_info,
txb_costs, txb_eob_costs, p, block, fast_mode);
}
int av1_optimize_txb(const struct AV1_COMP *cpi, MACROBLOCK *x, int plane,
int blk_row, int blk_col, int block, TX_SIZE tx_size,
TXB_CTX *txb_ctx, int fast_mode) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size);
const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const int eob = p->eobs[block];
tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const tran_low_t *tcoeff = BLOCK_OFFSET(p->coeff, block);
const int16_t *dequant = p->dequant_QTX;
const int seg_eob = av1_get_max_eob(tx_size);
const int bwl = get_txb_bwl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
const int is_inter = is_inter_block(mbmi);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
const LV_MAP_COEFF_COST txb_costs = x->coeff_costs[txs_ctx][plane_type];
#if CONFIG_NEW_QUANT
int dq = get_dq_profile(cm->dq_type, x->qindex, is_inter, plane_type);
#if !CONFIG_AOM_QM
const dequant_val_type_nuq *dequant_val = p->dequant_val_nuq_QTX[dq];
#endif // !CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
const int eob_multi_size = txsize_log2_minus4[tx_size];
const LV_MAP_EOB_COST txb_eob_costs =
x->eob_costs[eob_multi_size][plane_type];
#if CONFIG_DAALA_TX
const int shift = 0;
#else
const int shift = av1_get_tx_scale(tx_size);
#endif
const int64_t rdmult =
((x->rdmult * plane_rd_mult[is_inter][plane_type] << (2 * (xd->bd - 8))) +
2) >>
2;
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
assert(width == (1 << bwl));
TxbInfo txb_info = {
qcoeff,
levels,
dqcoeff,
tcoeff,
dequant,
#if CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
dq,
#else
dequant_val,
#endif // CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
shift,
tx_size,
txs_ctx,
tx_type,
bwl,
width,
height,
eob,
seg_eob,
scan_order,
txb_ctx,
rdmult,
&cm->coeff_ctx_table
};
// Hash based trellis (hbt) speed feature: avoid expensive optimize_txb calls
// by storing the optimized coefficients in a hash table.
// Currently disabled in speedfeatures.c
if (eob <= HBT_HASH_EOB && eob > 0 && cpi->sf.use_hash_based_trellis) {
return hash_based_trellis_mode(&txb_info, &txb_costs, &txb_eob_costs, p,
block, fast_mode, txb_ctx);
}
av1_txb_init_levels(qcoeff, width, height, levels);
const int update =
optimize_txb(&txb_info, &txb_costs, &txb_eob_costs, NULL, 0, fast_mode);
if (update) {
p->eobs[block] = txb_info.eob;
p->txb_entropy_ctx[block] =
av1_get_txb_entropy_context(qcoeff, scan_order, txb_info.eob);
}
return txb_info.eob;
}
int av1_get_txb_entropy_context(const tran_low_t *qcoeff,
const SCAN_ORDER *scan_order, int eob) {
const int16_t *const scan = scan_order->scan;
int cul_level = 0;
int c;
if (eob == 0) return 0;
for (c = 0; c < eob; ++c) {
cul_level += abs(qcoeff[scan[c]]);
}
cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level);
set_dc_sign(&cul_level, qcoeff[0]);
return cul_level;
}
void av1_update_txb_context_b(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct tokenize_b_args *const args = arg;
const AV1_COMP *cpi = args->cpi;
const AV1_COMMON *cm = &cpi->common;
ThreadData *const td = args->td;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const uint16_t eob = p->eobs[block];
const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
const PLANE_TYPE plane_type = pd->plane_type;
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
(void)plane_bsize;
int cul_level = av1_get_txb_entropy_context(qcoeff, scan_order, eob);
av1_set_contexts(xd, pd, plane, tx_size, cul_level, blk_col, blk_row);
}
void av1_update_and_record_txb_context(int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct tokenize_b_args *const args = arg;
const AV1_COMP *cpi = args->cpi;
const AV1_COMMON *cm = &cpi->common;
ThreadData *const td = args->td;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
int eob = p->eobs[block], update_eob = -1;
const PLANE_TYPE plane_type = pd->plane_type;
const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block);
const int segment_id = mbmi->segment_id;
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
const int16_t *const scan = scan_order->scan;
const int seg_eob = av1_get_tx_eob(&cpi->common.seg, segment_id, tx_size);
int c;
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, pd->above_context + blk_col,
pd->left_context + blk_row, &txb_ctx);
const int bwl = get_txb_bwl(tx_size);
const int width = get_txb_wide(tx_size);
const int height = get_txb_high(tx_size);
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
DECLARE_ALIGNED(16, uint8_t, level_counts[MAX_TX_SQUARE]);
const uint8_t allow_update_cdf = args->allow_update_cdf;
TX_SIZE txsize_ctx = get_txsize_entropy_ctx(tx_size);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
DECLARE_ALIGNED(16, int8_t, coeff_contexts[MAX_TX_SQUARE]);
memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob);
#if CONFIG_ENTROPY_STATS
++td->counts->txb_skip[txsize_ctx][txb_ctx.txb_skip_ctx][eob == 0];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_bin(ec_ctx->txb_skip_cdf[txsize_ctx][txb_ctx.txb_skip_ctx], eob == 0,
2);
x->mbmi_ext->txb_skip_ctx[plane][block] = txb_ctx.txb_skip_ctx;
x->mbmi_ext->eobs[plane][block] = eob;
if (eob == 0) {
av1_set_contexts(xd, pd, plane, tx_size, 0, blk_col, blk_row);
return;
}
av1_txb_init_levels(tcoeff, width, height, levels);
#if CONFIG_TXK_SEL
av1_update_tx_type_count(cm, xd, blk_row, blk_col, plane, mbmi->sb_type,
tx_size, td->counts, allow_update_cdf);
#endif
av1_update_eob_context(eob, seg_eob, tx_size, tx_type, plane_type, ec_ctx,
td->counts, allow_update_cdf);
av1_get_nz_map_contexts(levels, scan, eob, tx_size, tx_type, coeff_contexts);
update_eob = eob - 1;
for (c = eob - 1; c >= 0; --c) {
const int pos = scan[c];
const int coeff_ctx = coeff_contexts[pos];
const tran_low_t v = qcoeff[pos];
const int is_nz = (v != 0);
(void)is_nz;
if (allow_update_cdf) {
if (c == eob - 1) {
assert(coeff_ctx < 4);
update_cdf(
ec_ctx->coeff_base_eob_cdf[txsize_ctx][plane_type][coeff_ctx],
AOMMIN(abs(v), 3) - 1, 3);
} else {
update_cdf(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][coeff_ctx],
AOMMIN(abs(v), 3), 4);
}
}
{
if (c == eob - 1) {
assert(coeff_ctx < 4);
++td->counts->coeff_base_eob_multi[txsize_ctx][plane_type][coeff_ctx]
[AOMMIN(abs(v), 3) - 1];
} else {
++td->counts->coeff_base_multi[txsize_ctx][plane_type][coeff_ctx]
[AOMMIN(abs(v), 3)];
}
}
}
// Update the context needed to code the DC sign (if applicable)
const int sign = (tcoeff[0] < 0) ? 1 : 0;
if (tcoeff[0] != 0) {
int dc_sign_ctx = txb_ctx.dc_sign_ctx;
#if CONFIG_ENTROPY_STATS
++td->counts->dc_sign[plane_type][dc_sign_ctx][sign];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_bin(ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx], sign, 2);
x->mbmi_ext->dc_sign_ctx[plane][block] = dc_sign_ctx;
}
if (update_eob >= 0) {
for (c = update_eob; c >= 0; --c) {
const int pos = scan[c];
const tran_low_t level = abs(tcoeff[pos]);
int idx;
int ctx;
if (level <= NUM_BASE_LEVELS) continue;
// level is above 1.
const int base_range = level - 1 - NUM_BASE_LEVELS;
#if USE_CAUSAL_BR_CTX
ctx = get_br_ctx(levels, pos, bwl, level_counts[pos], tx_type);
#else
ctx = get_br_ctx(levels, pos, bwl, level_counts[pos]);
#endif
for (idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) {
const int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1);
if (allow_update_cdf) {
update_cdf(
#if 0
ec_ctx->coeff_br_cdf[AOMMIN(txsize_ctx, TX_16X16)][plane_type][ctx],
#else
ec_ctx
->coeff_br_cdf[AOMMIN(txsize_ctx, TX_32X32)][plane_type][ctx],
#endif
k, BR_CDF_SIZE);
}
for (int lps = 0; lps < BR_CDF_SIZE - 1; lps++) {
#if CONFIG_ENTROPY_STATS
#if 0
++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_16X16)][plane_type][lps]
[ctx][lps == k];
#else
++td->counts->coeff_lps[AOMMIN(txsize_ctx, TX_32X32)][plane_type][lps]
[ctx][lps == k];
#endif
#endif // CONFIG_ENTROPY_STATS
if (lps == k) break;
}
++td->counts->coeff_lps_multi[AOMMIN(txsize_ctx, TX_32X32)][plane_type]
[ctx][k];
if (k < BR_CDF_SIZE - 1) break;
}
// use 0-th order Golomb code to handle the residual level.
}
}
int cul_level = av1_get_txb_entropy_context(tcoeff, scan_order, eob);
av1_set_contexts(xd, pd, plane, tx_size, cul_level, blk_col, blk_row);
}
void av1_update_txb_context(const AV1_COMP *cpi, ThreadData *td,
RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate,
int mi_row, int mi_col, uint8_t allow_update_cdf) {
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
struct tokenize_b_args arg = { cpi, td, NULL, 0, allow_update_cdf };
(void)rate;
(void)mi_row;
(void)mi_col;
if (mbmi->skip) {
av1_reset_skip_context(xd, mi_row, mi_col, bsize);
return;
}
if (!dry_run) {
av1_foreach_transformed_block(xd, bsize, mi_row, mi_col,
av1_update_and_record_txb_context, &arg);
} else if (dry_run == DRY_RUN_NORMAL) {
av1_foreach_transformed_block(xd, bsize, mi_row, mi_col,
av1_update_txb_context_b, &arg);
} else {
printf("DRY_RUN_COSTCOEFFS is not supported yet\n");
assert(0);
}
}
#if CONFIG_TXK_SEL
int64_t av1_search_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
const ENTROPY_CONTEXT *a, const ENTROPY_CONTEXT *l,
int use_fast_coef_costing, RD_STATS *rd_stats) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
TX_TYPE txk_start = DCT_DCT;
TX_TYPE txk_end = TX_TYPES - 1;
TX_TYPE best_tx_type = txk_start;
int64_t best_rd = INT64_MAX;
uint8_t best_txb_ctx = 0;
uint16_t best_eob = 0;
RD_STATS best_rd_stats;
TX_TYPE tx_type;
av1_invalid_rd_stats(&best_rd_stats);
for (tx_type = txk_start; tx_type <= txk_end; ++tx_type) {
if (plane == 0)
mbmi->txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] = tx_type;
TX_TYPE ref_tx_type =
av1_get_tx_type(get_plane_type(plane), xd, blk_row, blk_col, tx_size);
if (tx_type != ref_tx_type) {
// use av1_get_tx_type() to check if the tx_type is valid for the current
// mode if it's not, we skip it here.
continue;
}
RD_STATS this_rd_stats;
av1_invalid_rd_stats(&this_rd_stats);
if (cpi->sf.optimize_coefficients != FULL_TRELLIS_OPT) {
av1_xform_quant(
cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP);
} else {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
tx_size, AV1_XFORM_QUANT_FP);
av1_optimize_b(cpi, x, plane, blk_row, blk_col, block, plane_bsize,
tx_size, a, l, 1);
}
av1_dist_block(cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size,
&this_rd_stats.dist, &this_rd_stats.sse,
OUTPUT_HAS_PREDICTED_PIXELS);
const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, mbmi);
this_rd_stats.rate =
av1_cost_coeffs(cpi, x, plane, blk_row, blk_col, block, tx_size,
scan_order, a, l, use_fast_coef_costing);
int64_t rd = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
if (rd < best_rd) {
best_rd = rd;
best_rd_stats = this_rd_stats;
best_tx_type = tx_type;
best_txb_ctx = x->plane[plane].txb_entropy_ctx[block];
best_eob = x->plane[plane].eobs[block];
}
}
av1_merge_rd_stats(rd_stats, &best_rd_stats);
if (best_eob == 0) best_tx_type = DCT_DCT;
if (plane == 0)
mbmi->txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] = best_tx_type;
x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx;
x->plane[plane].eobs[block] = best_eob;
if (!is_inter_block(mbmi) && best_eob) {
// intra mode needs decoded result such that the next transform block
// can use it for prediction.
if (cpi->sf.optimize_coefficients != FULL_TRELLIS_OPT) {
av1_xform_quant(
cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP);
} else {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
tx_size, AV1_XFORM_QUANT_FP);
av1_optimize_b(cpi, x, plane, blk_row, blk_col, block, plane_bsize,
tx_size, a, l, 1);
}
av1_inverse_transform_block_facade(xd, plane, block, blk_row, blk_col,
x->plane[plane].eobs[block],
cm->reduced_tx_set_used);
}
return best_rd;
}
#endif // CONFIG_TXK_SEL