blob: c7282217dfbc1de89e2a8e1591da4da52782bc18 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "./vp10_rtcd.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "vpx_ports/system_state.h"
#if CONFIG_VP9_HIGHBITDEPTH
#include "vpx_dsp/vpx_dsp_common.h"
#endif // CONFIG_VP9_HIGHBITDEPTH
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vpx_ports/vpx_once.h"
#if CONFIG_EXT_INTRA
#include "vp10/common/intra_filters.h"
#endif
#include "vp10/common/reconintra.h"
#include "vp10/common/onyxc_int.h"
enum {
NEED_LEFT = 1 << 1,
NEED_ABOVE = 1 << 2,
NEED_ABOVERIGHT = 1 << 3,
NEED_ABOVELEFT = 1 << 4,
NEED_BOTTOMLEFT = 1 << 5,
};
static const uint8_t extend_modes[INTRA_MODES] = {
NEED_ABOVE | NEED_LEFT, // DC
NEED_ABOVE, // V
NEED_LEFT, // H
NEED_ABOVE | NEED_ABOVERIGHT, // D45
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D117
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D153
NEED_LEFT | NEED_BOTTOMLEFT, // D207
NEED_ABOVE | NEED_ABOVERIGHT, // D63
NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // TM
};
static const uint8_t orders_128x128[1] = { 0 };
static const uint8_t orders_128x64[2] = { 0, 1 };
static const uint8_t orders_64x128[2] = { 0, 1 };
static const uint8_t orders_64x64[4] = {
0, 1, 2, 3,
};
static const uint8_t orders_64x32[8] = {
0, 2, 1, 3, 4, 6, 5, 7,
};
static const uint8_t orders_32x64[8] = {
0, 1, 2, 3, 4, 5, 6, 7,
};
static const uint8_t orders_32x32[16] = {
0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15,
};
static const uint8_t orders_32x16[32] = {
0, 2, 8, 10, 1, 3, 9, 11, 4, 6, 12, 14, 5, 7, 13, 15,
16, 18, 24, 26, 17, 19, 25, 27, 20, 22, 28, 30, 21, 23, 29, 31,
};
static const uint8_t orders_16x32[32] = {
0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15,
16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31,
};
static const uint8_t orders_16x16[64] = {
0, 1, 4, 5, 16, 17, 20, 21, 2, 3, 6, 7, 18, 19, 22, 23,
8, 9, 12, 13, 24, 25, 28, 29, 10, 11, 14, 15, 26, 27, 30, 31,
32, 33, 36, 37, 48, 49, 52, 53, 34, 35, 38, 39, 50, 51, 54, 55,
40, 41, 44, 45, 56, 57, 60, 61, 42, 43, 46, 47, 58, 59, 62, 63,
};
#if CONFIG_EXT_PARTITION
static const uint8_t orders_16x8[128] = {
0, 2, 8, 10, 32, 34, 40, 42, 1, 3, 9, 11, 33, 35, 41, 43,
4, 6, 12, 14, 36, 38, 44, 46, 5, 7, 13, 15, 37, 39, 45, 47,
16, 18, 24, 26, 48, 50, 56, 58, 17, 19, 25, 27, 49, 51, 57, 59,
20, 22, 28, 30, 52, 54, 60, 62, 21, 23, 29, 31, 53, 55, 61, 63,
64, 66, 72, 74, 96, 98, 104, 106, 65, 67, 73, 75, 97, 99, 105, 107,
68, 70, 76, 78, 100, 102, 108, 110, 69, 71, 77, 79, 101, 103, 109, 111,
80, 82, 88, 90, 112, 114, 120, 122, 81, 83, 89, 91, 113, 115, 121, 123,
84, 86, 92, 94, 116, 118, 124, 126, 85, 87, 93, 95, 117, 119, 125, 127,
};
static const uint8_t orders_8x16[128] = {
0, 1, 2, 3, 8, 9, 10, 11, 32, 33, 34, 35, 40, 41, 42, 43,
4, 5, 6, 7, 12, 13, 14, 15, 36, 37, 38, 39, 44, 45, 46, 47,
16, 17, 18, 19, 24, 25, 26, 27, 48, 49, 50, 51, 56, 57, 58, 59,
20, 21, 22, 23, 28, 29, 30, 31, 52, 53, 54, 55, 60, 61, 62, 63,
64, 65, 66, 67, 72, 73, 74, 75, 96, 97, 98, 99, 104, 105, 106, 107,
68, 69, 70, 71, 76, 77, 78, 79, 100, 101, 102, 103, 108, 109, 110, 111,
80, 81, 82, 83, 88, 89, 90, 91, 112, 113, 114, 115, 120, 121, 122, 123,
84, 85, 86, 87, 92, 93, 94, 95, 116, 117, 118, 119, 124, 125, 126, 127,
};
static const uint8_t orders_8x8[256] = {
0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84,
85, 2, 3, 6, 7, 18, 19, 22, 23, 66, 67, 70, 71, 82, 83,
86, 87, 8, 9, 12, 13, 24, 25, 28, 29, 72, 73, 76, 77, 88,
89, 92, 93, 10, 11, 14, 15, 26, 27, 30, 31, 74, 75, 78, 79,
90, 91, 94, 95, 32, 33, 36, 37, 48, 49, 52, 53, 96, 97, 100,
101, 112, 113, 116, 117, 34, 35, 38, 39, 50, 51, 54, 55, 98, 99,
102, 103, 114, 115, 118, 119, 40, 41, 44, 45, 56, 57, 60, 61, 104,
105, 108, 109, 120, 121, 124, 125, 42, 43, 46, 47, 58, 59, 62, 63,
106, 107, 110, 111, 122, 123, 126, 127, 128, 129, 132, 133, 144, 145, 148,
149, 192, 193, 196, 197, 208, 209, 212, 213, 130, 131, 134, 135, 146, 147,
150, 151, 194, 195, 198, 199, 210, 211, 214, 215, 136, 137, 140, 141, 152,
153, 156, 157, 200, 201, 204, 205, 216, 217, 220, 221, 138, 139, 142, 143,
154, 155, 158, 159, 202, 203, 206, 207, 218, 219, 222, 223, 160, 161, 164,
165, 176, 177, 180, 181, 224, 225, 228, 229, 240, 241, 244, 245, 162, 163,
166, 167, 178, 179, 182, 183, 226, 227, 230, 231, 242, 243, 246, 247, 168,
169, 172, 173, 184, 185, 188, 189, 232, 233, 236, 237, 248, 249, 252, 253,
170, 171, 174, 175, 186, 187, 190, 191, 234, 235, 238, 239, 250, 251, 254,
255,
};
/* clang-format off */
static const uint8_t *const orders[BLOCK_SIZES] = {
// 4X4
orders_8x8,
// 4X8, 8X4, 8X8
orders_8x8, orders_8x8, orders_8x8,
// 8X16, 16X8, 16X16
orders_8x16, orders_16x8, orders_16x16,
// 16X32, 32X16, 32X32
orders_16x32, orders_32x16, orders_32x32,
// 32X64, 64X32, 64X64
orders_32x64, orders_64x32, orders_64x64,
// 64x128, 128x64, 128x128
orders_64x128, orders_128x64, orders_128x128
};
/* clang-format on */
#else
/* clang-format off */
static const uint8_t *const orders[BLOCK_SIZES] = {
// 4X4
orders_16x16,
// 4X8, 8X4, 8X8
orders_16x16, orders_16x16, orders_16x16,
// 8X16, 16X8, 16X16
orders_16x32, orders_32x16, orders_32x32,
// 16X32, 32X16, 32X32
orders_32x64, orders_64x32, orders_64x64,
// 32X64, 64X32, 64X64
orders_64x128, orders_128x64, orders_128x128
};
/* clang-format on */
#endif // CONFIG_EXT_PARTITION
#if CONFIG_EXT_PARTITION_TYPES
static const uint8_t orders_verta_64x64[4] = {
0, 2, 1, 2,
};
static const uint8_t orders_verta_32x32[16] = {
0, 2, 4, 6, 1, 2, 5, 6, 8, 10, 12, 14, 9, 10, 13, 14,
};
static const uint8_t orders_verta_16x16[64] = {
0, 2, 4, 6, 16, 18, 20, 22, 1, 2, 5, 6, 17, 18, 21, 22,
8, 10, 12, 14, 24, 26, 28, 30, 9, 10, 13, 14, 25, 26, 29, 30,
32, 34, 36, 38, 48, 50, 52, 54, 33, 34, 37, 38, 49, 50, 53, 54,
40, 42, 44, 46, 56, 58, 60, 62, 41, 42, 45, 46, 57, 58, 61, 62,
};
#if CONFIG_EXT_PARTITION
static const uint8_t orders_verta_8x8[256] = {
0, 2, 4, 6, 16, 18, 20, 22, 64, 66, 68, 70, 80, 82, 84,
86, 1, 2, 5, 6, 17, 18, 21, 22, 65, 66, 69, 70, 81, 82,
85, 86, 8, 10, 12, 14, 24, 26, 28, 30, 72, 74, 76, 78, 88,
90, 92, 94, 9, 10, 13, 14, 25, 26, 29, 30, 73, 74, 77, 78,
89, 90, 93, 94, 32, 34, 36, 38, 48, 50, 52, 54, 96, 98, 100,
102, 112, 114, 116, 118, 33, 34, 37, 38, 49, 50, 53, 54, 97, 98,
101, 102, 113, 114, 117, 118, 40, 42, 44, 46, 56, 58, 60, 62, 104,
106, 108, 110, 120, 122, 124, 126, 41, 42, 45, 46, 57, 58, 61, 62,
105, 106, 109, 110, 121, 122, 125, 126, 128, 130, 132, 134, 144, 146, 148,
150, 192, 194, 196, 198, 208, 210, 212, 214, 129, 130, 133, 134, 145, 146,
149, 150, 193, 194, 197, 198, 209, 210, 213, 214, 136, 138, 140, 142, 152,
154, 156, 158, 200, 202, 204, 206, 216, 218, 220, 222, 137, 138, 141, 142,
153, 154, 157, 158, 201, 202, 205, 206, 217, 218, 221, 222, 160, 162, 164,
166, 176, 178, 180, 182, 224, 226, 228, 230, 240, 242, 244, 246, 161, 162,
165, 166, 177, 178, 181, 182, 225, 226, 229, 230, 241, 242, 245, 246, 168,
170, 172, 174, 184, 186, 188, 190, 232, 234, 236, 238, 248, 250, 252, 254,
169, 170, 173, 174, 185, 186, 189, 190, 233, 234, 237, 238, 249, 250, 253,
254,
};
/* clang-format off */
static const uint8_t *const orders_verta[BLOCK_SIZES] = {
// 4X4
orders_verta_8x8,
// 4X8, 8X4, 8X8
orders_verta_8x8, orders_verta_8x8, orders_verta_8x8,
// 8X16, 16X8, 16X16
orders_8x16, orders_16x8, orders_verta_16x16,
// 16X32, 32X16, 32X32
orders_16x32, orders_32x16, orders_verta_32x32,
// 32X64, 64X32, 64X64
orders_32x64, orders_64x32, orders_verta_64x64,
// 64x128, 128x64, 128x128
orders_64x128, orders_128x64, orders_128x128
};
/* clang-format on */
#else
/* clang-format off */
static const uint8_t *const orders_verta[BLOCK_SIZES] = {
// 4X4
orders_verta_16x16,
// 4X8, 8X4, 8X8
orders_verta_16x16, orders_verta_16x16, orders_verta_16x16,
// 8X16, 16X8, 16X16
orders_16x32, orders_32x16, orders_verta_32x32,
// 16X32, 32X16, 32X32
orders_32x64, orders_64x32, orders_verta_64x64,
// 32X64, 64X32, 64X64
orders_64x128, orders_128x64, orders_128x128
};
/* clang-format on */
#endif // CONFIG_EXT_PARTITION
#endif // CONFIG_EXT_PARTITION_TYPES
static int vp10_has_right(BLOCK_SIZE bsize, int mi_row, int mi_col,
int right_available,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif
TX_SIZE txsz, int y, int x, int ss_x) {
const int wl = mi_width_log2_lookup[bsize];
const int w = VPXMAX(num_4x4_blocks_wide_lookup[bsize] >> ss_x, 1);
const int step = 1 << txsz;
if (!right_available) {
return 0;
} else {
// Handle block size 4x8 and 4x4
if (ss_x == 0 && num_4x4_blocks_wide_lookup[bsize] < 2 && x == 0) return 1;
if (y == 0) {
const int hl = mi_height_log2_lookup[bsize];
const uint8_t *order;
int my_order, tr_order;
#if CONFIG_EXT_PARTITION_TYPES
if (partition == PARTITION_VERT_A)
order = orders_verta[bsize];
else
#endif // CONFIG_EXT_PARTITION_TYPES
order = orders[bsize];
if (x + step < w) return 1;
mi_row = (mi_row & MAX_MIB_MASK) >> hl;
mi_col = (mi_col & MAX_MIB_MASK) >> wl;
// If top row of coding unit
if (mi_row == 0) return 1;
// If rightmost column of coding unit
if (((mi_col + 1) << wl) >= MAX_MIB_SIZE) return 0;
my_order = order[((mi_row + 0) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col + 0];
tr_order = order[((mi_row - 1) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col + 1];
return my_order > tr_order;
} else {
return x + step < w;
}
}
}
static int vp10_has_bottom(BLOCK_SIZE bsize, int mi_row, int mi_col,
int bottom_available, TX_SIZE txsz, int y, int x,
int ss_y) {
if (!bottom_available || x != 0) {
return 0;
} else {
const int wl = mi_width_log2_lookup[bsize];
const int hl = mi_height_log2_lookup[bsize];
const int h = 1 << (hl + 1 - ss_y);
const int step = 1 << txsz;
const uint8_t *order = orders[bsize];
int my_order, bl_order;
// Handle block size 8x4 and 4x4
if (ss_y == 0 && num_4x4_blocks_high_lookup[bsize] < 2 && y == 0) return 1;
if (y + step < h) return 1;
mi_row = (mi_row & MAX_MIB_MASK) >> hl;
mi_col = (mi_col & MAX_MIB_MASK) >> wl;
if (mi_col == 0)
return (mi_row << (hl + !ss_y)) + y + step < (MAX_MIB_SIZE << !ss_y);
if (((mi_row + 1) << hl) >= MAX_MIB_SIZE) return 0;
my_order = order[((mi_row + 0) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col + 0];
bl_order = order[((mi_row + 1) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col - 1];
return bl_order < my_order;
}
}
typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left);
static intra_pred_fn pred[INTRA_MODES][TX_SIZES];
static intra_pred_fn dc_pred[2][2][TX_SIZES];
#if CONFIG_VP9_HIGHBITDEPTH
typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd);
static intra_high_pred_fn pred_high[INTRA_MODES][4];
static intra_high_pred_fn dc_pred_high[2][2][4];
#endif // CONFIG_VP9_HIGHBITDEPTH
static void vp10_init_intra_predictors_internal(void) {
#define INIT_NO_4X4(p, type) \
p[TX_8X8] = vpx_##type##_predictor_8x8; \
p[TX_16X16] = vpx_##type##_predictor_16x16; \
p[TX_32X32] = vpx_##type##_predictor_32x32
#define INIT_ALL_SIZES(p, type) \
p[TX_4X4] = vpx_##type##_predictor_4x4; \
INIT_NO_4X4(p, type)
INIT_ALL_SIZES(pred[V_PRED], v);
INIT_ALL_SIZES(pred[H_PRED], h);
INIT_ALL_SIZES(pred[D207_PRED], d207e);
INIT_ALL_SIZES(pred[D45_PRED], d45e);
INIT_ALL_SIZES(pred[D63_PRED], d63e);
INIT_ALL_SIZES(pred[D117_PRED], d117);
INIT_ALL_SIZES(pred[D135_PRED], d135);
INIT_ALL_SIZES(pred[D153_PRED], d153);
INIT_ALL_SIZES(pred[TM_PRED], tm);
INIT_ALL_SIZES(dc_pred[0][0], dc_128);
INIT_ALL_SIZES(dc_pred[0][1], dc_top);
INIT_ALL_SIZES(dc_pred[1][0], dc_left);
INIT_ALL_SIZES(dc_pred[1][1], dc);
#if CONFIG_VP9_HIGHBITDEPTH
INIT_ALL_SIZES(pred_high[V_PRED], highbd_v);
INIT_ALL_SIZES(pred_high[H_PRED], highbd_h);
INIT_ALL_SIZES(pred_high[D207_PRED], highbd_d207e);
INIT_ALL_SIZES(pred_high[D45_PRED], highbd_d45e);
INIT_ALL_SIZES(pred_high[D63_PRED], highbd_d63e);
INIT_ALL_SIZES(pred_high[D117_PRED], highbd_d117);
INIT_ALL_SIZES(pred_high[D135_PRED], highbd_d135);
INIT_ALL_SIZES(pred_high[D153_PRED], highbd_d153);
INIT_ALL_SIZES(pred_high[TM_PRED], highbd_tm);
INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128);
INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top);
INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left);
INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc);
#endif // CONFIG_VP9_HIGHBITDEPTH
#undef intra_pred_allsizes
}
#if CONFIG_EXT_INTRA
static const uint8_t ext_intra_extend_modes[FILTER_INTRA_MODES] = {
NEED_LEFT | NEED_ABOVE, // FILTER_DC
NEED_LEFT | NEED_ABOVE, // FILTER_V
NEED_LEFT | NEED_ABOVE, // FILTER_H
NEED_LEFT | NEED_ABOVE, // FILTER_D45
NEED_LEFT | NEED_ABOVE, // FILTER_D135
NEED_LEFT | NEED_ABOVE, // FILTER_D117
NEED_LEFT | NEED_ABOVE, // FILTER_D153
NEED_LEFT | NEED_ABOVE, // FILTER_D207
NEED_LEFT | NEED_ABOVE, // FILTER_D63
NEED_LEFT | NEED_ABOVE, // FILTER_TM
};
static int intra_subpel_interp(int base, int shift, const uint8_t *ref,
int ref_start_idx, int ref_end_idx,
INTRA_FILTER filter_type) {
int val, k, idx, filter_idx = 0;
const int16_t *filter = NULL;
if (filter_type == INTRA_FILTER_LINEAR) {
val = ref[base] * (256 - shift) + ref[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 8);
} else {
filter_idx = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS);
filter = vp10_intra_filter_kernels[filter_type][filter_idx];
if (filter_idx < (1 << SUBPEL_BITS)) {
val = 0;
for (k = 0; k < SUBPEL_TAPS; ++k) {
idx = base + 1 - (SUBPEL_TAPS / 2) + k;
idx = VPXMAX(VPXMIN(idx, ref_end_idx), ref_start_idx);
val += ref[idx] * filter[k];
}
val = ROUND_POWER_OF_TWO(val, FILTER_BITS);
} else {
val = ref[base + 1];
}
}
return val;
}
// Directional prediction, zone 1: 0 < angle < 90
static void dr_prediction_z1(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left, int dx,
int dy, INTRA_FILTER filter_type) {
int r, c, x, base, shift, val;
(void)left;
(void)dy;
assert(dy == 1);
assert(dx < 0);
if (filter_type != INTRA_FILTER_LINEAR) {
const int pad_size = SUBPEL_TAPS >> 1;
int len;
DECLARE_ALIGNED(16, uint8_t, buf[SUBPEL_SHIFTS][MAX_SB_SIZE]);
DECLARE_ALIGNED(16, uint8_t, src[MAX_SB_SIZE + SUBPEL_TAPS]);
uint8_t flags[SUBPEL_SHIFTS];
memset(flags, 0, SUBPEL_SHIFTS * sizeof(flags[0]));
memset(src, above[0], pad_size * sizeof(above[0]));
memcpy(src + pad_size, above, 2 * bs * sizeof(above[0]));
memset(src + pad_size + 2 * bs, above[2 * bs - 1],
pad_size * sizeof(above[0]));
flags[0] = 1;
x = -dx;
for (r = 0; r < bs; ++r, dst += stride, x -= dx) {
base = x >> 8;
shift = x & 0xFF;
shift = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS);
if (shift == SUBPEL_SHIFTS) {
base += 1;
shift = 0;
}
len = VPXMIN(bs, 2 * bs - 1 - base);
if (len <= 0) {
int i;
for (i = r; i < bs; ++i) {
memset(dst, above[2 * bs - 1], bs * sizeof(dst[0]));
dst += stride;
}
return;
}
if (len <= (bs >> 1) && !flags[shift]) {
base = x >> 8;
shift = x & 0xFF;
for (c = 0; c < len; ++c) {
val = intra_subpel_interp(base, shift, above, 0, 2 * bs - 1,
filter_type);
dst[c] = clip_pixel(val);
++base;
}
} else {
if (!flags[shift]) {
const int16_t *filter = vp10_intra_filter_kernels[filter_type][shift];
vpx_convolve8_horiz(src + pad_size, 2 * bs, buf[shift], 2 * bs,
filter, 16, NULL, 16, 2 * bs,
2 * bs < 16 ? 2 : 1);
flags[shift] = 1;
}
memcpy(dst, shift == 0 ? src + pad_size + base : &buf[shift][base],
len * sizeof(dst[0]));
}
if (len < bs)
memset(dst + len, above[2 * bs - 1], (bs - len) * sizeof(dst[0]));
}
return;
}
// For linear filter, C code is faster.
x = -dx;
for (r = 0; r < bs; ++r, dst += stride, x -= dx) {
base = x >> 8;
shift = x & 0xFF;
if (base >= 2 * bs - 1) {
int i;
for (i = r; i < bs; ++i) {
memset(dst, above[2 * bs - 1], bs * sizeof(dst[0]));
dst += stride;
}
return;
}
for (c = 0; c < bs; ++c, ++base) {
if (base < 2 * bs - 1) {
val = above[base] * (256 - shift) + above[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 8);
dst[c] = clip_pixel(val);
} else {
dst[c] = above[2 * bs - 1];
}
}
}
}
// Directional prediction, zone 2: 90 < angle < 180
static void dr_prediction_z2(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left, int dx,
int dy, INTRA_FILTER filter_type) {
int r, c, x, y, shift1, shift2, val, base1, base2;
assert(dx > 0);
assert(dy > 0);
x = -dx;
for (r = 0; r < bs; ++r, x -= dx, dst += stride) {
base1 = x >> 8;
y = (r << 8) - dy;
for (c = 0; c < bs; ++c, ++base1, y -= dy) {
if (base1 >= -1) {
shift1 = x & 0xFF;
val =
intra_subpel_interp(base1, shift1, above, -1, bs - 1, filter_type);
} else {
base2 = y >> 8;
if (base2 >= 0) {
shift2 = y & 0xFF;
val =
intra_subpel_interp(base2, shift2, left, 0, bs - 1, filter_type);
} else {
val = left[0];
}
}
dst[c] = clip_pixel(val);
}
}
}
// Directional prediction, zone 3: 180 < angle < 270
static void dr_prediction_z3(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left, int dx,
int dy, INTRA_FILTER filter_type) {
int r, c, y, base, shift, val;
(void)above;
(void)dx;
assert(dx == 1);
assert(dy < 0);
if (filter_type != INTRA_FILTER_LINEAR) {
const int pad_size = SUBPEL_TAPS >> 1;
int len, i;
DECLARE_ALIGNED(16, uint8_t, buf[MAX_SB_SIZE][4 * SUBPEL_SHIFTS]);
DECLARE_ALIGNED(16, uint8_t, src[(MAX_SB_SIZE + SUBPEL_TAPS) * 4]);
uint8_t flags[SUBPEL_SHIFTS];
memset(flags, 0, SUBPEL_SHIFTS * sizeof(flags[0]));
for (i = 0; i < pad_size; ++i) src[4 * i] = left[0];
for (i = 0; i < 2 * bs; ++i) src[4 * (i + pad_size)] = left[i];
for (i = 0; i < pad_size; ++i)
src[4 * (i + 2 * bs + pad_size)] = left[2 * bs - 1];
flags[0] = 1;
y = -dy;
for (c = 0; c < bs; ++c, y -= dy) {
base = y >> 8;
shift = y & 0xFF;
shift = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS);
if (shift == SUBPEL_SHIFTS) {
base += 1;
shift = 0;
}
len = VPXMIN(bs, 2 * bs - 1 - base);
if (len <= 0) {
for (r = 0; r < bs; ++r) {
dst[r * stride + c] = left[2 * bs - 1];
}
continue;
}
if (len <= (bs >> 1) && !flags[shift]) {
base = y >> 8;
shift = y & 0xFF;
for (r = 0; r < len; ++r) {
val = intra_subpel_interp(base, shift, left, 0, 2 * bs - 1,
filter_type);
dst[r * stride + c] = clip_pixel(val);
++base;
}
} else {
if (!flags[shift]) {
const int16_t *filter = vp10_intra_filter_kernels[filter_type][shift];
vpx_convolve8_vert(src + 4 * pad_size, 4, buf[0] + 4 * shift,
4 * SUBPEL_SHIFTS, NULL, 16, filter, 16,
2 * bs < 16 ? 4 : 4, 2 * bs);
flags[shift] = 1;
}
if (shift == 0) {
for (r = 0; r < len; ++r) {
dst[r * stride + c] = left[r + base];
}
} else {
for (r = 0; r < len; ++r) {
dst[r * stride + c] = buf[r + base][4 * shift];
}
}
}
if (len < bs) {
for (r = len; r < bs; ++r) {
dst[r * stride + c] = left[2 * bs - 1];
}
}
}
return;
}
// For linear filter, C code is faster.
y = -dy;
for (c = 0; c < bs; ++c, y -= dy) {
base = y >> 8;
shift = y & 0xFF;
for (r = 0; r < bs; ++r, ++base) {
if (base < 2 * bs - 1) {
val = left[base] * (256 - shift) + left[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 8);
dst[r * stride + c] = clip_pixel(val);
} else {
for (; r < bs; ++r) dst[r * stride + c] = left[2 * bs - 1];
break;
}
}
}
}
// Get the shift (up-scaled by 256) in X w.r.t a unit change in Y.
// If angle > 0 && angle < 90, dx = -((int)(256 / t));
// If angle > 90 && angle < 180, dx = (int)(256 / t);
// If angle > 180 && angle < 270, dx = 1;
static inline int get_dx(int angle) {
if (angle > 0 && angle < 90) {
return -dr_intra_derivative[angle];
} else if (angle > 90 && angle < 180) {
return dr_intra_derivative[180 - angle];
} else {
// In this case, we are not really going to use dx. We may return any value.
return 1;
}
}
// Get the shift (up-scaled by 256) in Y w.r.t a unit change in X.
// If angle > 0 && angle < 90, dy = 1;
// If angle > 90 && angle < 180, dy = (int)(256 * t);
// If angle > 180 && angle < 270, dy = -((int)(256 * t));
static inline int get_dy(int angle) {
if (angle > 90 && angle < 180) {
return dr_intra_derivative[angle - 90];
} else if (angle > 180 && angle < 270) {
return -dr_intra_derivative[270 - angle];
} else {
// In this case, we are not really going to use dy. We may return any value.
return 1;
}
}
static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size,
const uint8_t *above, const uint8_t *left, int angle,
INTRA_FILTER filter_type) {
const int dx = get_dx(angle);
const int dy = get_dy(angle);
const int bs = 4 * num_4x4_blocks_wide_txsize_lookup[tx_size];
assert(angle > 0 && angle < 270);
if (angle > 0 && angle < 90) {
dr_prediction_z1(dst, stride, bs, above, left, dx, dy, filter_type);
} else if (angle > 90 && angle < 180) {
dr_prediction_z2(dst, stride, bs, above, left, dx, dy, filter_type);
} else if (angle > 180 && angle < 270) {
dr_prediction_z3(dst, stride, bs, above, left, dx, dy, filter_type);
} else if (angle == 90) {
pred[V_PRED][tx_size](dst, stride, above, left);
} else if (angle == 180) {
pred[H_PRED][tx_size](dst, stride, above, left);
}
}
static void filter_intra_predictors_4tap(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above,
const uint8_t *left, int mode) {
int k, r, c;
int pred[33][65];
int mean, ipred;
const TX_SIZE tx_size =
(bs == 32) ? TX_32X32
: ((bs == 16) ? TX_16X16 : ((bs == 8) ? TX_8X8 : (TX_4X4)));
const int c0 = filter_intra_taps_4[tx_size][mode][0];
const int c1 = filter_intra_taps_4[tx_size][mode][1];
const int c2 = filter_intra_taps_4[tx_size][mode][2];
const int c3 = filter_intra_taps_4[tx_size][mode][3];
k = 0;
mean = 0;
while (k < bs) {
mean = mean + (int)left[k];
mean = mean + (int)above[k];
k++;
}
mean = (mean + bs) / (2 * bs);
for (r = 0; r < bs; ++r) pred[r + 1][0] = (int)left[r] - mean;
for (c = 0; c < 2 * bs + 1; ++c) pred[0][c] = (int)above[c - 1] - mean;
for (r = 1; r < bs + 1; ++r)
for (c = 1; c < 2 * bs + 1 - r; ++c) {
ipred = c0 * pred[r - 1][c] + c1 * pred[r][c - 1] +
c2 * pred[r - 1][c - 1] + c3 * pred[r - 1][c + 1];
pred[r][c] = ROUND_POWER_OF_TWO_SIGNED(ipred, FILTER_INTRA_PREC_BITS);
}
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c) {
ipred = pred[r + 1][c + 1] + mean;
dst[c] = clip_pixel(ipred);
}
dst += stride;
}
}
void vp10_dc_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictors_4tap(dst, stride, bs, above, left, DC_PRED);
}
void vp10_v_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictors_4tap(dst, stride, bs, above, left, V_PRED);
}
void vp10_h_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictors_4tap(dst, stride, bs, above, left, H_PRED);
}
void vp10_d45_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictors_4tap(dst, stride, bs, above, left, D45_PRED);
}
void vp10_d135_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictors_4tap(dst, stride, bs, above, left, D135_PRED);
}
void vp10_d117_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictors_4tap(dst, stride, bs, above, left, D117_PRED);
}
void vp10_d153_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictors_4tap(dst, stride, bs, above, left, D153_PRED);
}
void vp10_d207_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictors_4tap(dst, stride, bs, above, left, D207_PRED);
}
void vp10_d63_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictors_4tap(dst, stride, bs, above, left, D63_PRED);
}
void vp10_tm_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
filter_intra_predictors_4tap(dst, stride, bs, above, left, TM_PRED);
}
static void filter_intra_predictors(int mode, uint8_t *dst, ptrdiff_t stride,
int bs, const uint8_t *above,
const uint8_t *left) {
switch (mode) {
case DC_PRED: vp10_dc_filter_predictor(dst, stride, bs, above, left); break;
case V_PRED: vp10_v_filter_predictor(dst, stride, bs, above, left); break;
case H_PRED: vp10_h_filter_predictor(dst, stride, bs, above, left); break;
case D45_PRED:
vp10_d45_filter_predictor(dst, stride, bs, above, left);
break;
case D135_PRED:
vp10_d135_filter_predictor(dst, stride, bs, above, left);
break;
case D117_PRED:
vp10_d117_filter_predictor(dst, stride, bs, above, left);
break;
case D153_PRED:
vp10_d153_filter_predictor(dst, stride, bs, above, left);
break;
case D207_PRED:
vp10_d207_filter_predictor(dst, stride, bs, above, left);
break;
case D63_PRED:
vp10_d63_filter_predictor(dst, stride, bs, above, left);
break;
case TM_PRED: vp10_tm_filter_predictor(dst, stride, bs, above, left); break;
default: assert(0);
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static int highbd_intra_subpel_interp(int base, int shift, const uint16_t *ref,
int ref_start_idx, int ref_end_idx,
INTRA_FILTER filter_type) {
int val, k, idx, filter_idx = 0;
const int16_t *filter = NULL;
if (filter_type == INTRA_FILTER_LINEAR) {
val = ref[base] * (256 - shift) + ref[base + 1] * shift;
val = ROUND_POWER_OF_TWO(val, 8);
} else {
filter_idx = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS);
filter = vp10_intra_filter_kernels[filter_type][filter_idx];
if (filter_idx < (1 << SUBPEL_BITS)) {
val = 0;
for (k = 0; k < SUBPEL_TAPS; ++k) {
idx = base + 1 - (SUBPEL_TAPS / 2) + k;
idx = VPXMAX(VPXMIN(idx, ref_end_idx), ref_start_idx);
val += ref[idx] * filter[k];
}
val = ROUND_POWER_OF_TWO(val, FILTER_BITS);
} else {
val = ref[base + 1];
}
}
return val;
}
// Directional prediction, zone 1: 0 < angle < 90
static void highbd_dr_prediction_z1(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above, const uint16_t *left,
int dx, int dy, int bd,
INTRA_FILTER filter_type) {
int r, c, x, y, base, shift, val;
(void)left;
(void)dy;
assert(dy == 1);
assert(dx < 0);
for (r = 0; r < bs; ++r) {
y = r + 1;
for (c = 0; c < bs; ++c) {
x = (c << 8) - y * dx;
base = x >> 8;
shift = x - (base << 8);
if (base < 2 * bs - 1) {
val = highbd_intra_subpel_interp(base, shift, above, 0, 2 * bs - 1,
filter_type);
dst[c] = clip_pixel_highbd(val, bd);
} else {
dst[c] = above[2 * bs - 1];
}
}
dst += stride;
}
}
// Directional prediction, zone 2: 90 < angle < 180
static void highbd_dr_prediction_z2(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above, const uint16_t *left,
int dx, int dy, int bd,
INTRA_FILTER filter_type) {
int r, c, x, y, shift, val, base;
assert(dx > 0);
assert(dy > 0);
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c) {
y = r + 1;
x = (c << 8) - y * dx;
base = x >> 8;
if (base >= -1) {
shift = x - (base << 8);
val = highbd_intra_subpel_interp(base, shift, above, -1, bs - 1,
filter_type);
} else {
x = c + 1;
y = (r << 8) - x * dy;
base = y >> 8;
if (base >= 0) {
shift = y - (base << 8);
val = highbd_intra_subpel_interp(base, shift, left, 0, bs - 1,
filter_type);
} else {
val = left[0];
}
}
dst[c] = clip_pixel_highbd(val, bd);
}
dst += stride;
}
}
// Directional prediction, zone 3: 180 < angle < 270
static void highbd_dr_prediction_z3(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above, const uint16_t *left,
int dx, int dy, int bd,
INTRA_FILTER filter_type) {
int r, c, x, y, base, shift, val;
(void)above;
(void)dx;
assert(dx == 1);
assert(dy < 0);
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c) {
x = c + 1;
y = (r << 8) - x * dy;
base = y >> 8;
shift = y - (base << 8);
if (base < 2 * bs - 1) {
val = highbd_intra_subpel_interp(base, shift, left, 0, 2 * bs - 1,
filter_type);
dst[c] = clip_pixel_highbd(val, bd);
} else {
dst[c] = left[2 * bs - 1];
}
}
dst += stride;
}
}
static INLINE void highbd_v_predictor(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above,
const uint16_t *left, int bd) {
int r;
(void)left;
(void)bd;
for (r = 0; r < bs; r++) {
memcpy(dst, above, bs * sizeof(uint16_t));
dst += stride;
}
}
static INLINE void highbd_h_predictor(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above,
const uint16_t *left, int bd) {
int r;
(void)above;
(void)bd;
for (r = 0; r < bs; r++) {
vpx_memset16(dst, left[r], bs);
dst += stride;
}
}
static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above, const uint16_t *left,
int angle, int bd, INTRA_FILTER filter) {
const int dx = get_dx(angle);
const int dy = get_dy(angle);
assert(angle > 0 && angle < 270);
if (angle > 0 && angle < 90) {
highbd_dr_prediction_z1(dst, stride, bs, above, left, dx, dy, bd, filter);
} else if (angle > 90 && angle < 180) {
highbd_dr_prediction_z2(dst, stride, bs, above, left, dx, dy, bd, filter);
} else if (angle > 180 && angle < 270) {
highbd_dr_prediction_z3(dst, stride, bs, above, left, dx, dy, bd, filter);
} else if (angle == 90) {
highbd_v_predictor(dst, stride, bs, above, left, bd);
} else if (angle == 180) {
highbd_h_predictor(dst, stride, bs, above, left, bd);
}
}
static void highbd_filter_intra_predictors_4tap(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int mode,
int bd) {
int k, r, c;
int pred[33][65];
int mean, ipred;
const TX_SIZE tx_size =
(bs == 32) ? TX_32X32
: ((bs == 16) ? TX_16X16 : ((bs == 8) ? TX_8X8 : (TX_4X4)));
const int c0 = filter_intra_taps_4[tx_size][mode][0];
const int c1 = filter_intra_taps_4[tx_size][mode][1];
const int c2 = filter_intra_taps_4[tx_size][mode][2];
const int c3 = filter_intra_taps_4[tx_size][mode][3];
k = 0;
mean = 0;
while (k < bs) {
mean = mean + (int)left[k];
mean = mean + (int)above[k];
k++;
}
mean = (mean + bs) / (2 * bs);
for (r = 0; r < bs; ++r) pred[r + 1][0] = (int)left[r] - mean;
for (c = 0; c < 2 * bs + 1; ++c) pred[0][c] = (int)above[c - 1] - mean;
for (r = 1; r < bs + 1; ++r)
for (c = 1; c < 2 * bs + 1 - r; ++c) {
ipred = c0 * pred[r - 1][c] + c1 * pred[r][c - 1] +
c2 * pred[r - 1][c - 1] + c3 * pred[r - 1][c + 1];
pred[r][c] = ROUND_POWER_OF_TWO_SIGNED(ipred, FILTER_INTRA_PREC_BITS);
}
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c) {
ipred = pred[r + 1][c + 1] + mean;
dst[c] = clip_pixel_highbd(ipred, bd);
}
dst += stride;
}
}
void vp10_highbd_dc_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, DC_PRED,
bd);
}
void vp10_highbd_v_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, V_PRED, bd);
}
void vp10_highbd_h_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, H_PRED, bd);
}
void vp10_highbd_d45_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D45_PRED,
bd);
}
void vp10_highbd_d135_filter_predictor_c(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D135_PRED,
bd);
}
void vp10_highbd_d117_filter_predictor_c(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D117_PRED,
bd);
}
void vp10_highbd_d153_filter_predictor_c(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D153_PRED,
bd);
}
void vp10_highbd_d207_filter_predictor_c(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D207_PRED,
bd);
}
void vp10_highbd_d63_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D63_PRED,
bd);
}
void vp10_highbd_tm_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above,
const uint16_t *left, int bd) {
highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, TM_PRED,
bd);
}
static void highbd_filter_intra_predictors(int mode, uint16_t *dst,
ptrdiff_t stride, int bs,
const uint16_t *above,
const uint16_t *left, int bd) {
switch (mode) {
case DC_PRED:
vp10_highbd_dc_filter_predictor(dst, stride, bs, above, left, bd);
break;
case V_PRED:
vp10_highbd_v_filter_predictor(dst, stride, bs, above, left, bd);
break;
case H_PRED:
vp10_highbd_h_filter_predictor(dst, stride, bs, above, left, bd);
break;
case D45_PRED:
vp10_highbd_d45_filter_predictor(dst, stride, bs, above, left, bd);
break;
case D135_PRED:
vp10_highbd_d135_filter_predictor(dst, stride, bs, above, left, bd);
break;
case D117_PRED:
vp10_highbd_d117_filter_predictor(dst, stride, bs, above, left, bd);
break;
case D153_PRED:
vp10_highbd_d153_filter_predictor(dst, stride, bs, above, left, bd);
break;
case D207_PRED:
vp10_highbd_d207_filter_predictor(dst, stride, bs, above, left, bd);
break;
case D63_PRED:
vp10_highbd_d63_filter_predictor(dst, stride, bs, above, left, bd);
break;
case TM_PRED:
vp10_highbd_tm_filter_predictor(dst, stride, bs, above, left, bd);
break;
default: assert(0);
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // CONFIG_EXT_INTRA
#if CONFIG_VP9_HIGHBITDEPTH
static void build_intra_predictors_high(
const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8,
int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px,
int n_topright_px, int n_left_px, int n_bottomleft_px, int plane) {
int i;
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
DECLARE_ALIGNED(16, uint16_t, left_col[MAX_SB_SIZE]);
DECLARE_ALIGNED(16, uint16_t, above_data[MAX_SB_SIZE + 16]);
uint16_t *above_row = above_data + 16;
const uint16_t *const_above_row = above_row;
const int bs = 4 * num_4x4_blocks_wide_txsize_lookup[tx_size];
int need_left = extend_modes[mode] & NEED_LEFT;
int need_above = extend_modes[mode] & NEED_ABOVE;
const uint16_t *above_ref = ref - ref_stride;
int base = 128 << (xd->bd - 8);
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
#if CONFIG_EXT_INTRA
const EXT_INTRA_MODE_INFO *ext_intra_mode_info =
&xd->mi[0]->mbmi.ext_intra_mode_info;
const EXT_INTRA_MODE ext_intra_mode =
ext_intra_mode_info->ext_intra_mode[plane != 0];
int p_angle = 0;
if (mode != DC_PRED && mode != TM_PRED &&
xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) {
p_angle = mode_to_angle_map[mode] +
xd->mi[0]->mbmi.angle_delta[plane != 0] * ANGLE_STEP;
if (p_angle <= 90)
need_above = 1, need_left = 0;
else if (p_angle < 180)
need_above = 1, need_left = 1;
else
need_above = 0, need_left = 1;
}
if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) {
EXT_INTRA_MODE ext_intra_mode =
ext_intra_mode_info->ext_intra_mode[plane != 0];
need_left = ext_intra_extend_modes[ext_intra_mode] & NEED_LEFT;
need_above = ext_intra_extend_modes[ext_intra_mode] & NEED_ABOVE;
}
#endif // CONFIG_EXT_INTRA
(void)plane;
assert(n_top_px >= 0);
assert(n_topright_px >= 0);
assert(n_left_px >= 0);
assert(n_bottomleft_px >= 0);
if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
int i;
const int val = (n_left_px == 0) ? base + 1 : base - 1;
for (i = 0; i < bs; ++i) {
vpx_memset16(dst, val, bs);
dst += dst_stride;
}
return;
}
// NEED_LEFT
if (need_left) {
#if CONFIG_EXT_INTRA
int need_bottom;
if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) {
need_bottom = 0;
} else if (mode != DC_PRED && mode != TM_PRED &&
xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) {
need_bottom = p_angle > 180;
} else {
need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT);
}
#else
const int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT);
#endif // CONFIG_EXT_INTRA
i = 0;
if (n_left_px > 0) {
for (; i < n_left_px; i++) left_col[i] = ref[i * ref_stride - 1];
if (need_bottom && n_bottomleft_px > 0) {
assert(i == bs);
for (; i < bs + n_bottomleft_px; i++)
left_col[i] = ref[i * ref_stride - 1];
}
if (i < (bs << need_bottom))
vpx_memset16(&left_col[i], left_col[i - 1], (bs << need_bottom) - i);
} else {
vpx_memset16(left_col, base + 1, bs << need_bottom);
}
}
// NEED_ABOVE
if (need_above) {
#if CONFIG_EXT_INTRA
int need_right;
if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) {
need_right = 1;
} else if (mode != DC_PRED && mode != TM_PRED &&
xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) {
need_right = p_angle < 90;
} else {
need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT);
}
#else
const int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT);
#endif // CONFIG_EXT_INTRA
if (n_top_px > 0) {
memcpy(above_row, above_ref, n_top_px * 2);
i = n_top_px;
if (need_right && n_topright_px > 0) {
assert(n_top_px == bs);
memcpy(above_row + bs, above_ref + bs, n_topright_px * 2);
i += n_topright_px;
}
if (i < (bs << need_right))
vpx_memset16(&above_row[i], above_row[i - 1], (bs << need_right) - i);
} else {
vpx_memset16(above_row, base - 1, bs << need_right);
}
}
#if CONFIG_EXT_INTRA
if (ext_intra_mode_info->use_ext_intra_mode[plane != 0] ||
(extend_modes[mode] & NEED_ABOVELEFT) ||
(mode != DC_PRED && mode != TM_PRED &&
xd->mi[0]->mbmi.sb_type >= BLOCK_8X8)) {
above_row[-1] =
n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : base + 1) : base - 1;
}
#else
if ((extend_modes[mode] & NEED_ABOVELEFT)) {
above_row[-1] =
n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : base + 1) : base - 1;
}
#endif // CONFIG_EXT_INTRA
#if CONFIG_EXT_INTRA
if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) {
highbd_filter_intra_predictors(ext_intra_mode, dst, dst_stride, bs,
const_above_row, left_col, xd->bd);
return;
}
if (mode != DC_PRED && mode != TM_PRED &&
xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) {
INTRA_FILTER filter = INTRA_FILTER_LINEAR;
if (plane == 0 && vp10_is_intra_filter_switchable(p_angle))
filter = xd->mi[0]->mbmi.intra_filter;
highbd_dr_predictor(dst, dst_stride, bs, const_above_row, left_col, p_angle,
xd->bd, filter);
return;
}
#endif // CONFIG_EXT_INTRA
// predict
if (mode == DC_PRED) {
dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size](
dst, dst_stride, const_above_row, left_col, xd->bd);
} else {
pred_high[mode][tx_size](dst, dst_stride, const_above_row, left_col,
xd->bd);
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref,
int ref_stride, uint8_t *dst, int dst_stride,
PREDICTION_MODE mode, TX_SIZE tx_size,
int n_top_px, int n_topright_px,
int n_left_px, int n_bottomleft_px,
int plane) {
int i;
DECLARE_ALIGNED(16, uint8_t, left_col[MAX_SB_SIZE]);
const uint8_t *above_ref = ref - ref_stride;
DECLARE_ALIGNED(16, uint8_t, above_data[MAX_SB_SIZE + 16]);
uint8_t *above_row = above_data + 16;
const uint8_t *const_above_row = above_row;
const int bs = 4 * num_4x4_blocks_wide_txsize_lookup[tx_size];
int need_left = extend_modes[mode] & NEED_LEFT;
int need_above = extend_modes[mode] & NEED_ABOVE;
#if CONFIG_EXT_INTRA
const EXT_INTRA_MODE_INFO *ext_intra_mode_info =
&xd->mi[0]->mbmi.ext_intra_mode_info;
const EXT_INTRA_MODE ext_intra_mode =
ext_intra_mode_info->ext_intra_mode[plane != 0];
int p_angle = 0;
if (mode != DC_PRED && mode != TM_PRED &&
xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) {
p_angle = mode_to_angle_map[mode] +
xd->mi[0]->mbmi.angle_delta[plane != 0] * ANGLE_STEP;
if (p_angle <= 90)
need_above = 1, need_left = 0;
else if (p_angle < 180)
need_above = 1, need_left = 1;
else
need_above = 0, need_left = 1;
}
if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) {
EXT_INTRA_MODE ext_intra_mode =
ext_intra_mode_info->ext_intra_mode[plane != 0];
need_left = ext_intra_extend_modes[ext_intra_mode] & NEED_LEFT;
need_above = ext_intra_extend_modes[ext_intra_mode] & NEED_ABOVE;
}
#endif // CONFIG_EXT_INTRA
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// ..
(void)xd;
(void)plane;
assert(n_top_px >= 0);
assert(n_topright_px >= 0);
assert(n_left_px >= 0);
assert(n_bottomleft_px >= 0);
if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) {
int i;
const int val = (n_left_px == 0) ? 129 : 127;
for (i = 0; i < bs; ++i) {
memset(dst, val, bs);
dst += dst_stride;
}
return;
}
// NEED_LEFT
if (need_left) {
#if CONFIG_EXT_INTRA
int need_bottom;
if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) {
need_bottom = 0;
} else if (mode != DC_PRED && mode != TM_PRED &&
xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) {
need_bottom = p_angle > 180;
} else {
need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT);
}
#else
const int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT);
#endif // CONFIG_EXT_INTRA
i = 0;
if (n_left_px > 0) {
for (; i < n_left_px; i++) left_col[i] = ref[i * ref_stride - 1];
if (need_bottom && n_bottomleft_px > 0) {
assert(i == bs);
for (; i < bs + n_bottomleft_px; i++)
left_col[i] = ref[i * ref_stride - 1];
}
if (i < (bs << need_bottom))
memset(&left_col[i], left_col[i - 1], (bs << need_bottom) - i);
} else {
memset(left_col, 129, bs << need_bottom);
}
}
// NEED_ABOVE
if (need_above) {
#if CONFIG_EXT_INTRA
int need_right;
if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) {
need_right = 1;
} else if (mode != DC_PRED && mode != TM_PRED &&
xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) {
need_right = p_angle < 90;
} else {
need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT);
}
#else
const int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT);
#endif // CONFIG_EXT_INTRA
if (n_top_px > 0) {
memcpy(above_row, above_ref, n_top_px);
i = n_top_px;
if (need_right && n_topright_px > 0) {
assert(n_top_px == bs);
memcpy(above_row + bs, above_ref + bs, n_topright_px);
i += n_topright_px;
}
if (i < (bs << need_right))
memset(&above_row[i], above_row[i - 1], (bs << need_right) - i);
} else {
memset(above_row, 127, bs << need_right);
}
}
#if CONFIG_EXT_INTRA
if (ext_intra_mode_info->use_ext_intra_mode[plane != 0] ||
(extend_modes[mode] & NEED_ABOVELEFT) ||
(mode != DC_PRED && mode != TM_PRED &&
xd->mi[0]->mbmi.sb_type >= BLOCK_8X8)) {
above_row[-1] = n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : 129) : 127;
}
#else
if ((extend_modes[mode] & NEED_ABOVELEFT)) {
above_row[-1] = n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : 129) : 127;
}
#endif // CONFIG_EXT_INTRA
#if CONFIG_EXT_INTRA
if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) {
filter_intra_predictors(ext_intra_mode, dst, dst_stride, bs,
const_above_row, left_col);
return;
}
if (mode != DC_PRED && mode != TM_PRED &&
xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) {
INTRA_FILTER filter = INTRA_FILTER_LINEAR;
if (plane == 0 && vp10_is_intra_filter_switchable(p_angle))
filter = xd->mi[0]->mbmi.intra_filter;
dr_predictor(dst, dst_stride, tx_size, const_above_row, left_col, p_angle,
filter);
return;
}
#endif // CONFIG_EXT_INTRA
// predict
if (mode == DC_PRED) {
dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride,
const_above_row, left_col);
} else {
pred[mode][tx_size](dst, dst_stride, const_above_row, left_col);
}
}
void vp10_predict_intra_block(const MACROBLOCKD *xd, int bwl_in, int bhl_in,
TX_SIZE tx_size, PREDICTION_MODE mode,
const uint8_t *ref, int ref_stride, uint8_t *dst,
int dst_stride, int col_off, int row_off,
int plane) {
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int txw = num_4x4_blocks_wide_txsize_lookup[tx_size];
const int txh = num_4x4_blocks_high_txsize_lookup[tx_size];
const int have_top = row_off || xd->up_available;
const int have_left = col_off || xd->left_available;
const int x = col_off * 4;
const int y = row_off * 4;
const int bw = pd->subsampling_x ? 1 << bwl_in : VPXMAX(2, 1 << bwl_in);
const int bh = pd->subsampling_y ? 1 << bhl_in : VPXMAX(2, 1 << bhl_in);
const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
const int wpx = 4 * bw;
const int hpx = 4 * bh;
const int txwpx = 4 * txw;
const int txhpx = 4 * txh;
// Distance between the right edge of this prediction block to
// the frame right edge
const int xr =
(xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + (wpx - x - txwpx);
// Distance between the bottom edge of this prediction block to
// the frame bottom edge
const int yd =
(xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + (hpx - y - txhpx);
const int right_available =
(mi_col + ((col_off + txw) >> (1 - pd->subsampling_x))) <
xd->tile.mi_col_end;
#if CONFIG_EXT_PARTITION_TYPES
const PARTITION_TYPE partition = xd->mi[0]->mbmi.partition;
#endif
const int have_right =
vp10_has_right(bsize, mi_row, mi_col, right_available,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
tx_size, row_off, col_off, pd->subsampling_x);
const int have_bottom =
vp10_has_bottom(bsize, mi_row, mi_col, yd > 0, tx_size, row_off, col_off,
pd->subsampling_y);
if (xd->mi[0]->mbmi.palette_mode_info.palette_size[plane != 0] > 0) {
const int bs = 4 * num_4x4_blocks_wide_txsize_lookup[tx_size];
const int stride = 4 * (1 << bwl_in);
int r, c;
uint8_t *map = NULL;
#if CONFIG_VP9_HIGHBITDEPTH
uint16_t *palette = xd->mi[0]->mbmi.palette_mode_info.palette_colors +
plane * PALETTE_MAX_SIZE;
#else
uint8_t *palette = xd->mi[0]->mbmi.palette_mode_info.palette_colors +
plane * PALETTE_MAX_SIZE;
#endif // CONFIG_VP9_HIGHBITDEPTH
map = xd->plane[plane != 0].color_index_map;
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
for (r = 0; r < bs; ++r)
for (c = 0; c < bs; ++c)
dst16[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]];
} else {
for (r = 0; r < bs; ++r)
for (c = 0; c < bs; ++c)
dst[r * dst_stride + c] =
(uint8_t)(palette[map[(r + y) * stride + c + x]]);
}
#else
for (r = 0; r < bs; ++r)
for (c = 0; c < bs; ++c)
dst[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]];
#endif // CONFIG_VP9_HIGHBITDEPTH
return;
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
build_intra_predictors_high(
xd, ref, ref_stride, dst, dst_stride, mode, tx_size,
have_top ? VPXMIN(txwpx, xr + txwpx) : 0,
have_top && have_right ? VPXMIN(txwpx, xr) : 0,
have_left ? VPXMIN(txhpx, yd + txhpx) : 0,
have_bottom && have_left ? VPXMIN(txhpx, yd) : 0, plane);
return;
}
#endif
build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size,
have_top ? VPXMIN(txwpx, xr + txwpx) : 0,
have_top && have_right ? VPXMIN(txwpx, xr) : 0,
have_left ? VPXMIN(txhpx, yd + txhpx) : 0,
have_bottom && have_left ? VPXMIN(txhpx, yd) : 0,
plane);
}
void vp10_init_intra_predictors(void) {
once(vp10_init_intra_predictors_internal);
}