blob: ddcf10ef01217cc0d3563bd379e6242dd2c164ed [file] [log] [blame]
/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vp10_rtcd.h"
#include "vp10/common/vp10_fwd_txfm.h"
void vp10_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
// as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
// We need an intermediate buffer between passes.
tran_low_t intermediate[4 * 4];
const int16_t *in_pass0 = input;
const tran_low_t *in = NULL;
tran_low_t *out = intermediate;
// Do the two transform/transpose passes
for (pass = 0; pass < 2; ++pass) {
tran_high_t input[4]; // canbe16
tran_high_t step[4]; // canbe16
tran_high_t temp1, temp2; // needs32
int i;
for (i = 0; i < 4; ++i) {
// Load inputs.
if (0 == pass) {
input[0] = in_pass0[0 * stride] * 16;
input[1] = in_pass0[1 * stride] * 16;
input[2] = in_pass0[2 * stride] * 16;
input[3] = in_pass0[3 * stride] * 16;
if (i == 0 && input[0]) {
input[0] += 1;
}
} else {
input[0] = in[0 * 4];
input[1] = in[1 * 4];
input[2] = in[2 * 4];
input[3] = in[3 * 4];
}
// Transform.
step[0] = input[0] + input[3];
step[1] = input[1] + input[2];
step[2] = input[1] - input[2];
step[3] = input[0] - input[3];
temp1 = (step[0] + step[1]) * cospi_16_64;
temp2 = (step[0] - step[1]) * cospi_16_64;
out[0] = (tran_low_t)fdct_round_shift(temp1);
out[2] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
out[1] = (tran_low_t)fdct_round_shift(temp1);
out[3] = (tran_low_t)fdct_round_shift(temp2);
// Do next column (which is a transposed row in second/horizontal pass)
in_pass0++;
in++;
out += 4;
}
// Setup in/out for next pass.
in = intermediate;
out = output;
}
{
int i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
}
}
}
void vp10_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) {
int r, c;
tran_low_t sum = 0;
for (r = 0; r < 4; ++r)
for (c = 0; c < 4; ++c) sum += input[r * stride + c];
output[0] = sum << 1;
output[1] = 0;
}
void vp10_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
int stride) {
int i, j;
tran_low_t intermediate[64];
int pass;
tran_low_t *output = intermediate;
const tran_low_t *in = NULL;
// Transform columns
for (pass = 0; pass < 2; ++pass) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
int i;
for (i = 0; i < 8; i++) {
// stage 1
if (pass == 0) {
s0 = (input[0 * stride] + input[7 * stride]) * 4;
s1 = (input[1 * stride] + input[6 * stride]) * 4;
s2 = (input[2 * stride] + input[5 * stride]) * 4;
s3 = (input[3 * stride] + input[4 * stride]) * 4;
s4 = (input[3 * stride] - input[4 * stride]) * 4;
s5 = (input[2 * stride] - input[5 * stride]) * 4;
s6 = (input[1 * stride] - input[6 * stride]) * 4;
s7 = (input[0 * stride] - input[7 * stride]) * 4;
++input;
} else {
s0 = in[0 * 8] + in[7 * 8];
s1 = in[1 * 8] + in[6 * 8];
s2 = in[2 * 8] + in[5 * 8];
s3 = in[3 * 8] + in[4 * 8];
s4 = in[3 * 8] - in[4 * 8];
s5 = in[2 * 8] - in[5 * 8];
s6 = in[1 * 8] - in[6 * 8];
s7 = in[0 * 8] - in[7 * 8];
++in;
}
// fdct4(step, step);
x0 = s0 + s3;
x1 = s1 + s2;
x2 = s1 - s2;
x3 = s0 - s3;
t0 = (x0 + x1) * cospi_16_64;
t1 = (x0 - x1) * cospi_16_64;
t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
output[0] = (tran_low_t)fdct_round_shift(t0);
output[2] = (tran_low_t)fdct_round_shift(t2);
output[4] = (tran_low_t)fdct_round_shift(t1);
output[6] = (tran_low_t)fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
t2 = fdct_round_shift(t0);
t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
x1 = s4 - t2;
x2 = s7 - t3;
x3 = s7 + t3;
// Stage 4
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
output[1] = (tran_low_t)fdct_round_shift(t0);
output[3] = (tran_low_t)fdct_round_shift(t2);
output[5] = (tran_low_t)fdct_round_shift(t1);
output[7] = (tran_low_t)fdct_round_shift(t3);
output += 8;
}
in = intermediate;
output = final_output;
}
// Rows
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2;
}
}
void vp10_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) {
int r, c;
tran_low_t sum = 0;
for (r = 0; r < 8; ++r)
for (c = 0; c < 8; ++c) sum += input[r * stride + c];
output[0] = sum;
output[1] = 0;
}
void vp10_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
// The 2D transform is done with two passes which are actually pretty
// similar. In the first one, we transform the columns and transpose
// the results. In the second one, we transform the rows. To achieve that,
// as the first pass results are transposed, we transpose the columns (that
// is the transposed rows) and transpose the results (so that it goes back
// in normal/row positions).
int pass;
// We need an intermediate buffer between passes.
tran_low_t intermediate[256];
const int16_t *in_pass0 = input;
const tran_low_t *in = NULL;
tran_low_t *out = intermediate;
// Do the two transform/transpose passes
for (pass = 0; pass < 2; ++pass) {
tran_high_t step1[8]; // canbe16
tran_high_t step2[8]; // canbe16
tran_high_t step3[8]; // canbe16
tran_high_t input[8]; // canbe16
tran_high_t temp1, temp2; // needs32
int i;
for (i = 0; i < 16; i++) {
if (0 == pass) {
// Calculate input for the first 8 results.
input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4;
input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4;
input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4;
input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4;
input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4;
input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4;
input[6] = (in_pass0[6 * stride] + in_pass0[9 * stride]) * 4;
input[7] = (in_pass0[7 * stride] + in_pass0[8 * stride]) * 4;
// Calculate input for the next 8 results.
step1[0] = (in_pass0[7 * stride] - in_pass0[8 * stride]) * 4;
step1[1] = (in_pass0[6 * stride] - in_pass0[9 * stride]) * 4;
step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4;
step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4;
step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4;
step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4;
step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4;
step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4;
} else {
// Calculate input for the first 8 results.
input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
input[6] = ((in[6 * 16] + 1) >> 2) + ((in[9 * 16] + 1) >> 2);
input[7] = ((in[7 * 16] + 1) >> 2) + ((in[8 * 16] + 1) >> 2);
// Calculate input for the next 8 results.
step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[8 * 16] + 1) >> 2);
step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[9 * 16] + 1) >> 2);
step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
}
// Work on the first eight values; fdct8(input, even_results);
{
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16
tran_high_t t0, t1, t2, t3; // needs32
tran_high_t x0, x1, x2, x3; // canbe16
// stage 1
s0 = input[0] + input[7];
s1 = input[1] + input[6];
s2 = input[2] + input[5];
s3 = input[3] + input[4];
s4 = input[3] - input[4];
s5 = input[2] - input[5];
s6 = input[1] - input[6];
s7 = input[0] - input[7];
// fdct4(step, step);
x0 = s0 + s3;
x1 = s1 + s2;
x2 = s1 - s2;
x3 = s0 - s3;
t0 = (x0 + x1) * cospi_16_64;
t1 = (x0 - x1) * cospi_16_64;
t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
out[0] = (tran_low_t)fdct_round_shift(t0);
out[4] = (tran_low_t)fdct_round_shift(t2);
out[8] = (tran_low_t)fdct_round_shift(t1);
out[12] = (tran_low_t)fdct_round_shift(t3);
// Stage 2
t0 = (s6 - s5) * cospi_16_64;
t1 = (s6 + s5) * cospi_16_64;
t2 = fdct_round_shift(t0);
t3 = fdct_round_shift(t1);
// Stage 3
x0 = s4 + t2;
x1 = s4 - t2;
x2 = s7 - t3;
x3 = s7 + t3;
// Stage 4
t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
out[2] = (tran_low_t)fdct_round_shift(t0);
out[6] = (tran_low_t)fdct_round_shift(t2);
out[10] = (tran_low_t)fdct_round_shift(t1);
out[14] = (tran_low_t)fdct_round_shift(t3);
}
// Work on the next eight values; step1 -> odd_results
{
// step 2
temp1 = (step1[5] - step1[2]) * cospi_16_64;
temp2 = (step1[4] - step1[3]) * cospi_16_64;
step2[2] = fdct_round_shift(temp1);
step2[3] = fdct_round_shift(temp2);
temp1 = (step1[4] + step1[3]) * cospi_16_64;
temp2 = (step1[5] + step1[2]) * cospi_16_64;
step2[4] = fdct_round_shift(temp1);
step2[5] = fdct_round_shift(temp2);
// step 3
step3[0] = step1[0] + step2[3];
step3[1] = step1[1] + step2[2];
step3[2] = step1[1] - step2[2];
step3[3] = step1[0] - step2[3];
step3[4] = step1[7] - step2[4];
step3[5] = step1[6] - step2[5];
step3[6] = step1[6] + step2[5];
step3[7] = step1[7] + step2[4];
// step 4
temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
step2[1] = fdct_round_shift(temp1);
step2[2] = fdct_round_shift(temp2);
temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
step2[5] = fdct_round_shift(temp1);
step2[6] = fdct_round_shift(temp2);
// step 5
step1[0] = step3[0] + step2[1];
step1[1] = step3[0] - step2[1];
step1[2] = step3[3] + step2[2];
step1[3] = step3[3] - step2[2];
step1[4] = step3[4] - step2[5];
step1[5] = step3[4] + step2[5];
step1[6] = step3[7] - step2[6];
step1[7] = step3[7] + step2[6];
// step 6
temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
out[1] = (tran_low_t)fdct_round_shift(temp1);
out[9] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
out[5] = (tran_low_t)fdct_round_shift(temp1);
out[13] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
out[3] = (tran_low_t)fdct_round_shift(temp1);
out[11] = (tran_low_t)fdct_round_shift(temp2);
temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
out[7] = (tran_low_t)fdct_round_shift(temp1);
out[15] = (tran_low_t)fdct_round_shift(temp2);
}
// Do next column (which is a transposed row in second/horizontal pass)
in++;
in_pass0++;
out += 16;
}
// Setup in/out for next pass.
in = intermediate;
out = output;
}
}
void vp10_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) {
int r, c;
tran_low_t sum = 0;
for (r = 0; r < 16; ++r)
for (c = 0; c < 16; ++c) sum += input[r * stride + c];
output[0] = sum >> 1;
output[1] = 0;
}
static INLINE tran_high_t dct_32_round(tran_high_t input) {
tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
// TODO(debargha, peter.derivaz): Find new bounds for this assert,
// and make the bounds consts.
// assert(-131072 <= rv && rv <= 131071);
return rv;
}
static INLINE tran_high_t half_round_shift(tran_high_t input) {
tran_high_t rv = (input + 1 + (input < 0)) >> 2;
return rv;
}
void vp10_fdct32(const tran_high_t *input, tran_high_t *output, int round) {
tran_high_t step[32];
// Stage 1
step[0] = input[0] + input[(32 - 1)];
step[1] = input[1] + input[(32 - 2)];
step[2] = input[2] + input[(32 - 3)];
step[3] = input[3] + input[(32 - 4)];
step[4] = input[4] + input[(32 - 5)];
step[5] = input[5] + input[(32 - 6)];
step[6] = input[6] + input[(32 - 7)];
step[7] = input[7] + input[(32 - 8)];
step[8] = input[8] + input[(32 - 9)];
step[9] = input[9] + input[(32 - 10)];
step[10] = input[10] + input[(32 - 11)];
step[11] = input[11] + input[(32 - 12)];
step[12] = input[12] + input[(32 - 13)];
step[13] = input[13] + input[(32 - 14)];
step[14] = input[14] + input[(32 - 15)];
step[15] = input[15] + input[(32 - 16)];
step[16] = -input[16] + input[(32 - 17)];
step[17] = -input[17] + input[(32 - 18)];
step[18] = -input[18] + input[(32 - 19)];
step[19] = -input[19] + input[(32 - 20)];
step[20] = -input[20] + input[(32 - 21)];
step[21] = -input[21] + input[(32 - 22)];
step[22] = -input[22] + input[(32 - 23)];
step[23] = -input[23] + input[(32 - 24)];
step[24] = -input[24] + input[(32 - 25)];
step[25] = -input[25] + input[(32 - 26)];
step[26] = -input[26] + input[(32 - 27)];
step[27] = -input[27] + input[(32 - 28)];
step[28] = -input[28] + input[(32 - 29)];
step[29] = -input[29] + input[(32 - 30)];
step[30] = -input[30] + input[(32 - 31)];
step[31] = -input[31] + input[(32 - 32)];
// Stage 2
output[0] = step[0] + step[16 - 1];
output[1] = step[1] + step[16 - 2];
output[2] = step[2] + step[16 - 3];
output[3] = step[3] + step[16 - 4];
output[4] = step[4] + step[16 - 5];
output[5] = step[5] + step[16 - 6];
output[6] = step[6] + step[16 - 7];
output[7] = step[7] + step[16 - 8];
output[8] = -step[8] + step[16 - 9];
output[9] = -step[9] + step[16 - 10];
output[10] = -step[10] + step[16 - 11];
output[11] = -step[11] + step[16 - 12];
output[12] = -step[12] + step[16 - 13];
output[13] = -step[13] + step[16 - 14];
output[14] = -step[14] + step[16 - 15];
output[15] = -step[15] + step[16 - 16];
output[16] = step[16];
output[17] = step[17];
output[18] = step[18];
output[19] = step[19];
output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
output[28] = step[28];
output[29] = step[29];
output[30] = step[30];
output[31] = step[31];
// dump the magnitude by 4, hence the intermediate values are within
// the range of 16 bits.
if (round) {
output[0] = half_round_shift(output[0]);
output[1] = half_round_shift(output[1]);
output[2] = half_round_shift(output[2]);
output[3] = half_round_shift(output[3]);
output[4] = half_round_shift(output[4]);
output[5] = half_round_shift(output[5]);
output[6] = half_round_shift(output[6]);
output[7] = half_round_shift(output[7]);
output[8] = half_round_shift(output[8]);
output[9] = half_round_shift(output[9]);
output[10] = half_round_shift(output[10]);
output[11] = half_round_shift(output[11]);
output[12] = half_round_shift(output[12]);
output[13] = half_round_shift(output[13]);
output[14] = half_round_shift(output[14]);
output[15] = half_round_shift(output[15]);
output[16] = half_round_shift(output[16]);
output[17] = half_round_shift(output[17]);
output[18] = half_round_shift(output[18]);
output[19] = half_round_shift(output[19]);
output[20] = half_round_shift(output[20]);
output[21] = half_round_shift(output[21]);
output[22] = half_round_shift(output[22]);
output[23] = half_round_shift(output[23]);
output[24] = half_round_shift(output[24]);
output[25] = half_round_shift(output[25]);
output[26] = half_round_shift(output[26]);
output[27] = half_round_shift(output[27]);
output[28] = half_round_shift(output[28]);
output[29] = half_round_shift(output[29]);
output[30] = half_round_shift(output[30]);
output[31] = half_round_shift(output[31]);
}
// Stage 3
step[0] = output[0] + output[(8 - 1)];
step[1] = output[1] + output[(8 - 2)];
step[2] = output[2] + output[(8 - 3)];
step[3] = output[3] + output[(8 - 4)];
step[4] = -output[4] + output[(8 - 5)];
step[5] = -output[5] + output[(8 - 6)];
step[6] = -output[6] + output[(8 - 7)];
step[7] = -output[7] + output[(8 - 8)];
step[8] = output[8];
step[9] = output[9];
step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
step[14] = output[14];
step[15] = output[15];
step[16] = output[16] + output[23];
step[17] = output[17] + output[22];
step[18] = output[18] + output[21];
step[19] = output[19] + output[20];
step[20] = -output[20] + output[19];
step[21] = -output[21] + output[18];
step[22] = -output[22] + output[17];
step[23] = -output[23] + output[16];
step[24] = -output[24] + output[31];
step[25] = -output[25] + output[30];
step[26] = -output[26] + output[29];
step[27] = -output[27] + output[28];
step[28] = output[28] + output[27];
step[29] = output[29] + output[26];
step[30] = output[30] + output[25];
step[31] = output[31] + output[24];
// Stage 4
output[0] = step[0] + step[3];
output[1] = step[1] + step[2];
output[2] = -step[2] + step[1];
output[3] = -step[3] + step[0];
output[4] = step[4];
output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
output[7] = step[7];
output[8] = step[8] + step[11];
output[9] = step[9] + step[10];
output[10] = -step[10] + step[9];
output[11] = -step[11] + step[8];
output[12] = -step[12] + step[15];
output[13] = -step[13] + step[14];
output[14] = step[14] + step[13];
output[15] = step[15] + step[12];
output[16] = step[16];
output[17] = step[17];
output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
output[22] = step[22];
output[23] = step[23];
output[24] = step[24];
output[25] = step[25];
output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
output[30] = step[30];
output[31] = step[31];
// Stage 5
step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
step[4] = output[4] + output[5];
step[5] = -output[5] + output[4];
step[6] = -output[6] + output[7];
step[7] = output[7] + output[6];
step[8] = output[8];
step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
step[11] = output[11];
step[12] = output[12];
step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
step[15] = output[15];
step[16] = output[16] + output[19];
step[17] = output[17] + output[18];
step[18] = -output[18] + output[17];
step[19] = -output[19] + output[16];
step[20] = -output[20] + output[23];
step[21] = -output[21] + output[22];
step[22] = output[22] + output[21];
step[23] = output[23] + output[20];
step[24] = output[24] + output[27];
step[25] = output[25] + output[26];
step[26] = -output[26] + output[25];
step[27] = -output[27] + output[24];
step[28] = -output[28] + output[31];
step[29] = -output[29] + output[30];
step[30] = output[30] + output[29];
step[31] = output[31] + output[28];
// Stage 6
output[0] = step[0];
output[1] = step[1];
output[2] = step[2];
output[3] = step[3];
output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
output[8] = step[8] + step[9];
output[9] = -step[9] + step[8];
output[10] = -step[10] + step[11];
output[11] = step[11] + step[10];
output[12] = step[12] + step[13];
output[13] = -step[13] + step[12];
output[14] = -step[14] + step[15];
output[15] = step[15] + step[14];
output[16] = step[16];
output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
output[19] = step[19];
output[20] = step[20];
output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
output[23] = step[23];
output[24] = step[24];
output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
output[27] = step[27];
output[28] = step[28];
output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
output[31] = step[31];
// Stage 7
step[0] = output[0];
step[1] = output[1];
step[2] = output[2];
step[3] = output[3];
step[4] = output[4];
step[5] = output[5];
step[6] = output[6];
step[7] = output[7];
step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
step[16] = output[16] + output[17];
step[17] = -output[17] + output[16];
step[18] = -output[18] + output[19];
step[19] = output[19] + output[18];
step[20] = output[20] + output[21];
step[21] = -output[21] + output[20];
step[22] = -output[22] + output[23];
step[23] = output[23] + output[22];
step[24] = output[24] + output[25];
step[25] = -output[25] + output[24];
step[26] = -output[26] + output[27];
step[27] = output[27] + output[26];
step[28] = output[28] + output[29];
step[29] = -output[29] + output[28];
step[30] = -output[30] + output[31];
step[31] = output[31] + output[30];
// Final stage --- outputs indices are bit-reversed.
output[0] = step[0];
output[16] = step[1];
output[8] = step[2];
output[24] = step[3];
output[4] = step[4];
output[20] = step[5];
output[12] = step[6];
output[28] = step[7];
output[2] = step[8];
output[18] = step[9];
output[10] = step[10];
output[26] = step[11];
output[6] = step[12];
output[22] = step[13];
output[14] = step[14];
output[30] = step[15];
output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
}
void vp10_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
int i, j;
tran_high_t output[32 * 32];
// Columns
for (i = 0; i < 32; ++i) {
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4;
vp10_fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
}
// Rows
for (i = 0; i < 32; ++i) {
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32];
vp10_fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
out[j + i * 32] =
(tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2);
}
}
// Note that although we use dct_32_round in dct32 computation flow,
// this 2d fdct32x32 for rate-distortion optimization loop is operating
// within 16 bits precision.
void vp10_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) {
int i, j;
tran_high_t output[32 * 32];
// Columns
for (i = 0; i < 32; ++i) {
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4;
vp10_fdct32(temp_in, temp_out, 0);
for (j = 0; j < 32; ++j)
// TODO(cd): see quality impact of only doing
// output[j * 32 + i] = (temp_out[j] + 1) >> 2;
// PS: also change code in vp10_dsp/x86/vp10_dct_sse2.c
output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
}
// Rows
for (i = 0; i < 32; ++i) {
tran_high_t temp_in[32], temp_out[32];
for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32];
vp10_fdct32(temp_in, temp_out, 1);
for (j = 0; j < 32; ++j) out[j + i * 32] = (tran_low_t)temp_out[j];
}
}
void vp10_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) {
int r, c;
tran_low_t sum = 0;
for (r = 0; r < 32; ++r)
for (c = 0; c < 32; ++c) sum += input[r * stride + c];
output[0] = sum >> 3;
output[1] = 0;
}
#if CONFIG_VP9_HIGHBITDEPTH
void vp10_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
int stride) {
vp10_fdct4x4_c(input, output, stride);
}
void vp10_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
int stride) {
vp10_fdct8x8_c(input, final_output, stride);
}
void vp10_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output,
int stride) {
vp10_fdct8x8_1_c(input, final_output, stride);
}
void vp10_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
int stride) {
vp10_fdct16x16_c(input, output, stride);
}
void vp10_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output,
int stride) {
vp10_fdct16x16_1_c(input, output, stride);
}
void vp10_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out,
int stride) {
vp10_fdct32x32_c(input, out, stride);
}
void vp10_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out,
int stride) {
vp10_fdct32x32_rd_c(input, out, stride);
}
void vp10_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out,
int stride) {
vp10_fdct32x32_1_c(input, out, stride);
}
#endif // CONFIG_VP9_HIGHBITDEPTH