blob: b8274511f078d8aec0dd78b2b02208031d36f281 [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
#include "vp10/common/ans.h"
#include "vp10/common/blockd.h"
#include "vp10/common/common.h"
#include "vp10/common/entropy.h"
#include "vp10/common/idct.h"
#include "vp10/decoder/detokenize.h"
#define EOB_CONTEXT_NODE 0
#define ZERO_CONTEXT_NODE 1
#define ONE_CONTEXT_NODE 2
#define LOW_VAL_CONTEXT_NODE 0
#define TWO_CONTEXT_NODE 1
#define THREE_CONTEXT_NODE 2
#define HIGH_LOW_CONTEXT_NODE 3
#define CAT_ONE_CONTEXT_NODE 4
#define CAT_THREEFOUR_CONTEXT_NODE 5
#define CAT_THREE_CONTEXT_NODE 6
#define CAT_FIVE_CONTEXT_NODE 7
#define INCREMENT_COUNT(token) \
do { \
if (counts) ++coef_counts[band][ctx][token]; \
} while (0)
#if !CONFIG_ANS
static INLINE int read_coeff(const vpx_prob *probs, int n, vp10_reader *r) {
int i, val = 0;
for (i = 0; i < n; ++i) val = (val << 1) | vp10_read(r, probs[i]);
return val;
}
#if CONFIG_AOM_QM
static int decode_coefs(const MACROBLOCKD *xd, PLANE_TYPE type,
tran_low_t *dqcoeff, TX_SIZE tx_size, TX_TYPE tx_type,
const int16_t *dq, int ctx, const int16_t *scan,
const int16_t *nb, vp10_reader *r,
const qm_val_t *iqm[2][TX_SIZES])
#else
static int decode_coefs(const MACROBLOCKD *xd, PLANE_TYPE type,
tran_low_t *dqcoeff, TX_SIZE tx_size, TX_TYPE tx_type,
const int16_t *dq,
#if CONFIG_NEW_QUANT
dequant_val_type_nuq *dq_val,
#endif // CONFIG_NEW_QUANT
int ctx, const int16_t *scan, const int16_t *nb,
vp10_reader *r)
#endif
{
FRAME_COUNTS *counts = xd->counts;
const int max_eob = get_tx2d_size(tx_size);
const FRAME_CONTEXT *const fc = xd->fc;
const int ref = is_inter_block(&xd->mi[0]->mbmi);
#if CONFIG_AOM_QM
const qm_val_t *iqmatrix = iqm[!ref][tx_size];
#endif
int band, c = 0;
const int tx_size_ctx = txsize_sqr_map[tx_size];
const vpx_prob(*coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] =
fc->coef_probs[tx_size_ctx][type][ref];
const vpx_prob *prob;
unsigned int(*coef_counts)[COEFF_CONTEXTS][UNCONSTRAINED_NODES + 1];
unsigned int(*eob_branch_count)[COEFF_CONTEXTS];
uint8_t token_cache[MAX_TX_SQUARE];
const uint8_t *band_translate = get_band_translate(tx_size);
int dq_shift;
int v, token;
int16_t dqv = dq[0];
#if CONFIG_NEW_QUANT
const tran_low_t *dqv_val = &dq_val[0][0];
#endif // CONFIG_NEW_QUANT
const uint8_t *cat1_prob;
const uint8_t *cat2_prob;
const uint8_t *cat3_prob;
const uint8_t *cat4_prob;
const uint8_t *cat5_prob;
const uint8_t *cat6_prob;
if (counts) {
coef_counts = counts->coef[tx_size_ctx][type][ref];
eob_branch_count = counts->eob_branch[tx_size_ctx][type][ref];
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->bd > VPX_BITS_8) {
if (xd->bd == VPX_BITS_10) {
cat1_prob = vp10_cat1_prob_high10;
cat2_prob = vp10_cat2_prob_high10;
cat3_prob = vp10_cat3_prob_high10;
cat4_prob = vp10_cat4_prob_high10;
cat5_prob = vp10_cat5_prob_high10;
cat6_prob = vp10_cat6_prob_high10;
} else {
cat1_prob = vp10_cat1_prob_high12;
cat2_prob = vp10_cat2_prob_high12;
cat3_prob = vp10_cat3_prob_high12;
cat4_prob = vp10_cat4_prob_high12;
cat5_prob = vp10_cat5_prob_high12;
cat6_prob = vp10_cat6_prob_high12;
}
} else {
cat1_prob = vp10_cat1_prob;
cat2_prob = vp10_cat2_prob;
cat3_prob = vp10_cat3_prob;
cat4_prob = vp10_cat4_prob;
cat5_prob = vp10_cat5_prob;
cat6_prob = vp10_cat6_prob;
}
#else
cat1_prob = vp10_cat1_prob;
cat2_prob = vp10_cat2_prob;
cat3_prob = vp10_cat3_prob;
cat4_prob = vp10_cat4_prob;
cat5_prob = vp10_cat5_prob;
cat6_prob = vp10_cat6_prob;
#endif
dq_shift = get_tx_scale(xd, tx_type, tx_size);
while (c < max_eob) {
int val = -1;
band = *band_translate++;
prob = coef_probs[band][ctx];
if (counts) ++eob_branch_count[band][ctx];
if (!vp10_read(r, prob[EOB_CONTEXT_NODE])) {
INCREMENT_COUNT(EOB_MODEL_TOKEN);
break;
}
#if CONFIG_NEW_QUANT
dqv_val = &dq_val[band][0];
#endif // CONFIG_NEW_QUANT
while (!vp10_read(r, prob[ZERO_CONTEXT_NODE])) {
INCREMENT_COUNT(ZERO_TOKEN);
dqv = dq[1];
token_cache[scan[c]] = 0;
++c;
if (c >= max_eob) return c; // zero tokens at the end (no eob token)
ctx = get_coef_context(nb, token_cache, c);
band = *band_translate++;
prob = coef_probs[band][ctx];
#if CONFIG_NEW_QUANT
dqv_val = &dq_val[band][0];
#endif // CONFIG_NEW_QUANT
}
if (!vp10_read(r, prob[ONE_CONTEXT_NODE])) {
INCREMENT_COUNT(ONE_TOKEN);
token = ONE_TOKEN;
val = 1;
} else {
INCREMENT_COUNT(TWO_TOKEN);
token = vp10_read_tree(r, vp10_coef_con_tree,
vp10_pareto8_full[prob[PIVOT_NODE] - 1]);
switch (token) {
case TWO_TOKEN:
case THREE_TOKEN:
case FOUR_TOKEN: val = token; break;
case CATEGORY1_TOKEN:
val = CAT1_MIN_VAL + read_coeff(cat1_prob, 1, r);
break;
case CATEGORY2_TOKEN:
val = CAT2_MIN_VAL + read_coeff(cat2_prob, 2, r);
break;
case CATEGORY3_TOKEN:
val = CAT3_MIN_VAL + read_coeff(cat3_prob, 3, r);
break;
case CATEGORY4_TOKEN:
val = CAT4_MIN_VAL + read_coeff(cat4_prob, 4, r);
break;
case CATEGORY5_TOKEN:
val = CAT5_MIN_VAL + read_coeff(cat5_prob, 5, r);
break;
case CATEGORY6_TOKEN: {
const int skip_bits = TX_SIZES - 1 - txsize_sqr_up_map[tx_size];
const uint8_t *cat6p = cat6_prob + skip_bits;
#if CONFIG_VP9_HIGHBITDEPTH
switch (xd->bd) {
case VPX_BITS_8:
val = CAT6_MIN_VAL + read_coeff(cat6p, 14 - skip_bits, r);
break;
case VPX_BITS_10:
val = CAT6_MIN_VAL + read_coeff(cat6p, 16 - skip_bits, r);
break;
case VPX_BITS_12:
val = CAT6_MIN_VAL + read_coeff(cat6p, 18 - skip_bits, r);
break;
default: assert(0); return -1;
}
#else
val = CAT6_MIN_VAL + read_coeff(cat6p, 14 - skip_bits, r);
#endif
break;
}
}
}
#if CONFIG_NEW_QUANT
v = vp10_dequant_abscoeff_nuq(val, dqv, dqv_val);
v = dq_shift ? ROUND_POWER_OF_TWO(v, dq_shift) : v;
#else
#if CONFIG_AOM_QM
dqv = ((iqmatrix[scan[c]] * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
#endif
v = (val * dqv) >> dq_shift;
#endif // CONFIG_NEW_QUANT
#if CONFIG_COEFFICIENT_RANGE_CHECKING
#if CONFIG_VP9_HIGHBITDEPTH
dqcoeff[scan[c]] = highbd_check_range((vp10_read_bit(r) ? -v : v), xd->bd);
#else
dqcoeff[scan[c]] = check_range(vp10_read_bit(r) ? -v : v);
#endif // CONFIG_VP9_HIGHBITDEPTH
#else
dqcoeff[scan[c]] = vp10_read_bit(r) ? -v : v;
#endif // CONFIG_COEFFICIENT_RANGE_CHECKING
token_cache[scan[c]] = vp10_pt_energy_class[token];
++c;
ctx = get_coef_context(nb, token_cache, c);
dqv = dq[1];
}
return c;
}
#else // !CONFIG_ANS
static INLINE int read_coeff(const vpx_prob *const probs, int n,
struct AnsDecoder *const ans) {
int i, val = 0;
for (i = 0; i < n; ++i) val = (val << 1) | uabs_read(ans, probs[i]);
return val;
}
static int decode_coefs_ans(const MACROBLOCKD *const xd, PLANE_TYPE type,
tran_low_t *dqcoeff, TX_SIZE tx_size,
TX_TYPE tx_type, const int16_t *dq,
#if CONFIG_NEW_QUANT
dequant_val_type_nuq *dq_val,
#endif // CONFIG_NEW_QUANT
int ctx, const int16_t *scan, const int16_t *nb,
struct AnsDecoder *const ans) {
FRAME_COUNTS *counts = xd->counts;
const int max_eob = get_tx2d_size(tx_size);
const FRAME_CONTEXT *const fc = xd->fc;
const int ref = is_inter_block(&xd->mi[0]->mbmi);
int band, c = 0;
int skip_eob = 0;
const int tx_size_ctx = txsize_sqr_map[tx_size];
const vpx_prob(*coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] =
fc->coef_probs[tx_size_ctx][type][ref];
const rans_dec_lut(*coef_cdfs)[COEFF_CONTEXTS] =
fc->coef_cdfs[tx_size_ctx][type][ref];
const vpx_prob *prob;
const rans_dec_lut *cdf;
unsigned int(*coef_counts)[COEFF_CONTEXTS][UNCONSTRAINED_NODES + 1];
unsigned int(*eob_branch_count)[COEFF_CONTEXTS];
uint8_t token_cache[MAX_TX_SQUARE];
const uint8_t *band_translate = get_band_translate(tx_size);
int dq_shift;
int v, token;
int16_t dqv = dq[0];
#if CONFIG_NEW_QUANT
const tran_low_t *dqv_val = &dq_val[0][0];
#endif // CONFIG_NEW_QUANT
const uint8_t *cat1_prob;
const uint8_t *cat2_prob;
const uint8_t *cat3_prob;
const uint8_t *cat4_prob;
const uint8_t *cat5_prob;
const uint8_t *cat6_prob;
dq_shift = get_tx_scale(xd, tx_type, tx_size);
if (counts) {
coef_counts = counts->coef[tx_size_ctx][type][ref];
eob_branch_count = counts->eob_branch[tx_size_ctx][type][ref];
}
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->bd > VPX_BITS_8) {
if (xd->bd == VPX_BITS_10) {
cat1_prob = vp10_cat1_prob_high10;
cat2_prob = vp10_cat2_prob_high10;
cat3_prob = vp10_cat3_prob_high10;
cat4_prob = vp10_cat4_prob_high10;
cat5_prob = vp10_cat5_prob_high10;
cat6_prob = vp10_cat6_prob_high10;
} else {
cat1_prob = vp10_cat1_prob_high12;
cat2_prob = vp10_cat2_prob_high12;
cat3_prob = vp10_cat3_prob_high12;
cat4_prob = vp10_cat4_prob_high12;
cat5_prob = vp10_cat5_prob_high12;
cat6_prob = vp10_cat6_prob_high12;
}
} else {
cat1_prob = vp10_cat1_prob;
cat2_prob = vp10_cat2_prob;
cat3_prob = vp10_cat3_prob;
cat4_prob = vp10_cat4_prob;
cat5_prob = vp10_cat5_prob;
cat6_prob = vp10_cat6_prob;
}
#else
cat1_prob = vp10_cat1_prob;
cat2_prob = vp10_cat2_prob;
cat3_prob = vp10_cat3_prob;
cat4_prob = vp10_cat4_prob;
cat5_prob = vp10_cat5_prob;
cat6_prob = vp10_cat6_prob;
#endif
while (c < max_eob) {
int val = -1;
band = *band_translate++;
prob = coef_probs[band][ctx];
if (!skip_eob) {
if (counts) ++eob_branch_count[band][ctx];
if (!uabs_read(ans, prob[EOB_CONTEXT_NODE])) {
INCREMENT_COUNT(EOB_MODEL_TOKEN);
break;
}
}
#if CONFIG_NEW_QUANT
dqv_val = &dq_val[band][0];
#endif // CONFIG_NEW_QUANT
cdf = &coef_cdfs[band][ctx];
token = ZERO_TOKEN + rans_read(ans, *cdf);
if (token == ZERO_TOKEN) {
INCREMENT_COUNT(ZERO_TOKEN);
token_cache[scan[c]] = 0;
skip_eob = 1;
} else {
INCREMENT_COUNT(ONE_TOKEN + (token > ONE_TOKEN));
switch (token) {
case ONE_TOKEN:
case TWO_TOKEN:
case THREE_TOKEN:
case FOUR_TOKEN: val = token; break;
case CATEGORY1_TOKEN:
val = CAT1_MIN_VAL + read_coeff(cat1_prob, 1, ans);
break;
case CATEGORY2_TOKEN:
val = CAT2_MIN_VAL + read_coeff(cat2_prob, 2, ans);
break;
case CATEGORY3_TOKEN:
val = CAT3_MIN_VAL + read_coeff(cat3_prob, 3, ans);
break;
case CATEGORY4_TOKEN:
val = CAT4_MIN_VAL + read_coeff(cat4_prob, 4, ans);
break;
case CATEGORY5_TOKEN:
val = CAT5_MIN_VAL + read_coeff(cat5_prob, 5, ans);
break;
case CATEGORY6_TOKEN: {
const int skip_bits = TX_SIZES - 1 - txsize_sqr_up_map[tx_size];
const uint8_t *cat6p = cat6_prob + skip_bits;
#if CONFIG_VP9_HIGHBITDEPTH
switch (xd->bd) {
case VPX_BITS_8:
val = CAT6_MIN_VAL + read_coeff(cat6p, 14 - skip_bits, ans);
break;
case VPX_BITS_10:
val = CAT6_MIN_VAL + read_coeff(cat6p, 16 - skip_bits, ans);
break;
case VPX_BITS_12:
val = CAT6_MIN_VAL + read_coeff(cat6p, 18 - skip_bits, ans);
break;
default: assert(0); return -1;
}
#else
val = CAT6_MIN_VAL + read_coeff(cat6p, 14 - skip_bits, ans);
#endif
} break;
}
#if CONFIG_NEW_QUANT
v = vp10_dequant_abscoeff_nuq(val, dqv, dqv_val);
v = dq_shift ? ROUND_POWER_OF_TWO(v, dq_shift) : v;
#else
v = (val * dqv) >> dq_shift;
#endif // CONFIG_NEW_QUANT
#if CONFIG_COEFFICIENT_RANGE_CHECKING
#if CONFIG_VP9_HIGHBITDEPTH
dqcoeff[scan[c]] =
highbd_check_range((uabs_read_bit(ans) ? -v : v), xd->bd);
#else
dqcoeff[scan[c]] = check_range(uabs_read_bit(ans) ? -v : v);
#endif // CONFIG_VP9_HIGHBITDEPTH
#else
dqcoeff[scan[c]] = uabs_read_bit(ans) ? -v : v;
#endif // CONFIG_COEFFICIENT_RANGE_CHECKING
token_cache[scan[c]] = vp10_pt_energy_class[token];
skip_eob = 0;
}
++c;
ctx = get_coef_context(nb, token_cache, c);
dqv = dq[1];
}
return c;
}
#endif // !CONFIG_ANS
// TODO(slavarnway): Decode version of vp10_set_context. Modify
// vp10_set_context
// after testing is complete, then delete this version.
static void dec_set_contexts(const MACROBLOCKD *xd,
struct macroblockd_plane *pd, TX_SIZE tx_size,
int has_eob, int aoff, int loff) {
ENTROPY_CONTEXT *const a = pd->above_context + aoff;
ENTROPY_CONTEXT *const l = pd->left_context + loff;
const int tx_w_in_blocks = num_4x4_blocks_wide_txsize_lookup[tx_size];
const int tx_h_in_blocks = num_4x4_blocks_high_txsize_lookup[tx_size];
// above
if (has_eob && xd->mb_to_right_edge < 0) {
int i;
const int blocks_wide =
pd->n4_w + (xd->mb_to_right_edge >> (5 + pd->subsampling_x));
int above_contexts = tx_w_in_blocks;
if (above_contexts + aoff > blocks_wide)
above_contexts = blocks_wide - aoff;
for (i = 0; i < above_contexts; ++i) a[i] = has_eob;
for (i = above_contexts; i < tx_w_in_blocks; ++i) a[i] = 0;
} else {
memset(a, has_eob, sizeof(ENTROPY_CONTEXT) * tx_w_in_blocks);
}
// left
if (has_eob && xd->mb_to_bottom_edge < 0) {
int i;
const int blocks_high =
pd->n4_h + (xd->mb_to_bottom_edge >> (5 + pd->subsampling_y));
int left_contexts = tx_h_in_blocks;
if (left_contexts + loff > blocks_high) left_contexts = blocks_high - loff;
for (i = 0; i < left_contexts; ++i) l[i] = has_eob;
for (i = left_contexts; i < tx_h_in_blocks; ++i) l[i] = 0;
} else {
memset(l, has_eob, sizeof(ENTROPY_CONTEXT) * tx_h_in_blocks);
}
}
void vp10_decode_palette_tokens(MACROBLOCKD *const xd, int plane,
vp10_reader *r) {
MODE_INFO *const mi = xd->mi[0];
MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int rows = (4 * num_4x4_blocks_high_lookup[bsize]) >>
(xd->plane[plane != 0].subsampling_y);
const int cols = (4 * num_4x4_blocks_wide_lookup[bsize]) >>
(xd->plane[plane != 0].subsampling_x);
int color_idx, color_ctx, color_order[PALETTE_MAX_SIZE];
int n = mbmi->palette_mode_info.palette_size[plane != 0];
int i, j;
uint8_t *color_map = xd->plane[plane != 0].color_index_map;
const vpx_prob (*const prob)[PALETTE_COLOR_CONTEXTS][PALETTE_COLORS - 1] =
plane ? vp10_default_palette_uv_color_prob
: vp10_default_palette_y_color_prob;
for (i = 0; i < rows; ++i) {
for (j = (i == 0 ? 1 : 0); j < cols; ++j) {
color_ctx =
vp10_get_palette_color_context(color_map, cols, i, j, n, color_order);
color_idx = vp10_read_tree(r, vp10_palette_color_tree[n - 2],
prob[n - 2][color_ctx]);
assert(color_idx >= 0 && color_idx < n);
color_map[i * cols + j] = color_order[color_idx];
}
}
}
int vp10_decode_block_tokens(MACROBLOCKD *const xd, int plane,
const scan_order *sc, int x, int y,
TX_SIZE tx_size, TX_TYPE tx_type,
#if CONFIG_ANS
struct AnsDecoder *const r,
#else
vp10_reader *r,
#endif // CONFIG_ANS
int seg_id) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const int16_t *const dequant = pd->seg_dequant[seg_id];
const int ctx =
get_entropy_context(tx_size, pd->above_context + x, pd->left_context + y);
#if CONFIG_NEW_QUANT
int dq = get_dq_profile_from_ctx(ctx);
#endif // CONFIG_NEW_QUANT
#if !CONFIG_ANS
#if CONFIG_AOM_QM
const int eob =
decode_coefs(xd, pd->plane_type, pd->dqcoeff, tx_size, tx_type, dequant,
ctx, sc->scan, sc->neighbors, r, pd->seg_iqmatrix[seg_id]);
#else
const int eob =
decode_coefs(xd, pd->plane_type, pd->dqcoeff, tx_size, tx_type, dequant,
#if CONFIG_NEW_QUANT
pd->seg_dequant_nuq[seg_id][dq],
#endif // CONFIG_NEW_QUANT
ctx, sc->scan, sc->neighbors, r);
#endif // CONFIG_AOM_QM
#else
const int eob = decode_coefs_ans(xd, pd->plane_type, pd->dqcoeff, tx_size,
tx_type, dequant,
#if CONFIG_NEW_QUANT
pd->seg_dequant_nuq[seg_id][dq],
#endif // CONFIG_NEW_QUANT
ctx, sc->scan, sc->neighbors, r);
#endif // !CONFIG_ANS
dec_set_contexts(xd, pd, tx_size, eob > 0, x, y);
/*
vp10_set_contexts(xd, pd,
get_plane_block_size(xd->mi[0]->mbmi.sb_type, pd),
tx_size, eob > 0, x, y);
*/
return eob;
}