| /* |
| * Copyright (c) 2015 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef VPX_DSP_MIPS_MACROS_MSA_H_ |
| #define VPX_DSP_MIPS_MACROS_MSA_H_ |
| |
| #include <msa.h> |
| |
| #include "./vpx_config.h" |
| #include "vpx/vpx_integer.h" |
| |
| #define LD_B(RTYPE, psrc) *((const RTYPE *)(psrc)) |
| #define LD_UB(...) LD_B(v16u8, __VA_ARGS__) |
| #define LD_SB(...) LD_B(v16i8, __VA_ARGS__) |
| |
| #define LD_H(RTYPE, psrc) *((const RTYPE *)(psrc)) |
| #define LD_UH(...) LD_H(v8u16, __VA_ARGS__) |
| #define LD_SH(...) LD_H(v8i16, __VA_ARGS__) |
| |
| #define LD_W(RTYPE, psrc) *((const RTYPE *)(psrc)) |
| #define LD_SW(...) LD_W(v4i32, __VA_ARGS__) |
| |
| #define ST_B(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) |
| #define ST_UB(...) ST_B(v16u8, __VA_ARGS__) |
| #define ST_SB(...) ST_B(v16i8, __VA_ARGS__) |
| |
| #define ST_H(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) |
| #define ST_SH(...) ST_H(v8i16, __VA_ARGS__) |
| |
| #define ST_W(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in) |
| #define ST_SW(...) ST_W(v4i32, __VA_ARGS__) |
| |
| #if (__mips_isa_rev >= 6) |
| #define LH(psrc) \ |
| ({ \ |
| const uint8_t *psrc_m = (const uint8_t *)(psrc); \ |
| uint16_t val_m; \ |
| \ |
| __asm__ __volatile__("lh %[val_m], %[psrc_m] \n\t" \ |
| \ |
| : [val_m] "=r"(val_m) \ |
| : [psrc_m] "m"(*psrc_m)); \ |
| \ |
| val_m; \ |
| }) |
| |
| #define LW(psrc) \ |
| ({ \ |
| const uint8_t *psrc_m = (const uint8_t *)(psrc); \ |
| uint32_t val_m; \ |
| \ |
| __asm__ __volatile__("lw %[val_m], %[psrc_m] \n\t" \ |
| \ |
| : [val_m] "=r"(val_m) \ |
| : [psrc_m] "m"(*psrc_m)); \ |
| \ |
| val_m; \ |
| }) |
| |
| #if (__mips == 64) |
| #define LD(psrc) \ |
| ({ \ |
| const uint8_t *psrc_m = (const uint8_t *)(psrc); \ |
| uint64_t val_m = 0; \ |
| \ |
| __asm__ __volatile__("ld %[val_m], %[psrc_m] \n\t" \ |
| \ |
| : [val_m] "=r"(val_m) \ |
| : [psrc_m] "m"(*psrc_m)); \ |
| \ |
| val_m; \ |
| }) |
| #else // !(__mips == 64) |
| #define LD(psrc) \ |
| ({ \ |
| const uint8_t *psrc_m = (const uint8_t *)(psrc); \ |
| uint32_t val0_m, val1_m; \ |
| uint64_t val_m = 0; \ |
| \ |
| val0_m = LW(psrc_m); \ |
| val1_m = LW(psrc_m + 4); \ |
| \ |
| val_m = (uint64_t)(val1_m); \ |
| val_m = (uint64_t)((val_m << 32) & 0xFFFFFFFF00000000); \ |
| val_m = (uint64_t)(val_m | (uint64_t)val0_m); \ |
| \ |
| val_m; \ |
| }) |
| #endif // (__mips == 64) |
| |
| #define SH(val, pdst) \ |
| { \ |
| uint8_t *pdst_m = (uint8_t *)(pdst); \ |
| const uint16_t val_m = (val); \ |
| \ |
| __asm__ __volatile__("sh %[val_m], %[pdst_m] \n\t" \ |
| \ |
| : [pdst_m] "=m"(*pdst_m) \ |
| : [val_m] "r"(val_m)); \ |
| } |
| |
| #define SW(val, pdst) \ |
| { \ |
| uint8_t *pdst_m = (uint8_t *)(pdst); \ |
| const uint32_t val_m = (val); \ |
| \ |
| __asm__ __volatile__("sw %[val_m], %[pdst_m] \n\t" \ |
| \ |
| : [pdst_m] "=m"(*pdst_m) \ |
| : [val_m] "r"(val_m)); \ |
| } |
| |
| #define SD(val, pdst) \ |
| { \ |
| uint8_t *pdst_m = (uint8_t *)(pdst); \ |
| const uint64_t val_m = (val); \ |
| \ |
| __asm__ __volatile__("sd %[val_m], %[pdst_m] \n\t" \ |
| \ |
| : [pdst_m] "=m"(*pdst_m) \ |
| : [val_m] "r"(val_m)); \ |
| } |
| #else // !(__mips_isa_rev >= 6) |
| #define LH(psrc) \ |
| ({ \ |
| const uint8_t *psrc_m = (const uint8_t *)(psrc); \ |
| uint16_t val_m; \ |
| \ |
| __asm__ __volatile__("ulh %[val_m], %[psrc_m] \n\t" \ |
| \ |
| : [val_m] "=r"(val_m) \ |
| : [psrc_m] "m"(*psrc_m)); \ |
| \ |
| val_m; \ |
| }) |
| |
| #define LW(psrc) \ |
| ({ \ |
| const uint8_t *psrc_m = (const uint8_t *)(psrc); \ |
| uint32_t val_m; \ |
| \ |
| __asm__ __volatile__("ulw %[val_m], %[psrc_m] \n\t" \ |
| \ |
| : [val_m] "=r"(val_m) \ |
| : [psrc_m] "m"(*psrc_m)); \ |
| \ |
| val_m; \ |
| }) |
| |
| #if (__mips == 64) |
| #define LD(psrc) \ |
| ({ \ |
| const uint8_t *psrc_m = (const uint8_t *)(psrc); \ |
| uint64_t val_m = 0; \ |
| \ |
| __asm__ __volatile__("uld %[val_m], %[psrc_m] \n\t" \ |
| \ |
| : [val_m] "=r"(val_m) \ |
| : [psrc_m] "m"(*psrc_m)); \ |
| \ |
| val_m; \ |
| }) |
| #else // !(__mips == 64) |
| #define LD(psrc) \ |
| ({ \ |
| const uint8_t *psrc_m1 = (const uint8_t *)(psrc); \ |
| uint32_t val0_m, val1_m; \ |
| uint64_t val_m = 0; \ |
| \ |
| val0_m = LW(psrc_m1); \ |
| val1_m = LW(psrc_m1 + 4); \ |
| \ |
| val_m = (uint64_t)(val1_m); \ |
| val_m = (uint64_t)((val_m << 32) & 0xFFFFFFFF00000000); \ |
| val_m = (uint64_t)(val_m | (uint64_t)val0_m); \ |
| \ |
| val_m; \ |
| }) |
| #endif // (__mips == 64) |
| |
| #define SH(val, pdst) \ |
| { \ |
| uint8_t *pdst_m = (uint8_t *)(pdst); \ |
| const uint16_t val_m = (val); \ |
| \ |
| __asm__ __volatile__("ush %[val_m], %[pdst_m] \n\t" \ |
| \ |
| : [pdst_m] "=m"(*pdst_m) \ |
| : [val_m] "r"(val_m)); \ |
| } |
| |
| #define SW(val, pdst) \ |
| { \ |
| uint8_t *pdst_m = (uint8_t *)(pdst); \ |
| const uint32_t val_m = (val); \ |
| \ |
| __asm__ __volatile__("usw %[val_m], %[pdst_m] \n\t" \ |
| \ |
| : [pdst_m] "=m"(*pdst_m) \ |
| : [val_m] "r"(val_m)); \ |
| } |
| |
| #define SD(val, pdst) \ |
| { \ |
| uint8_t *pdst_m1 = (uint8_t *)(pdst); \ |
| uint32_t val0_m, val1_m; \ |
| \ |
| val0_m = (uint32_t)((val)&0x00000000FFFFFFFF); \ |
| val1_m = (uint32_t)(((val) >> 32) & 0x00000000FFFFFFFF); \ |
| \ |
| SW(val0_m, pdst_m1); \ |
| SW(val1_m, pdst_m1 + 4); \ |
| } |
| #endif // (__mips_isa_rev >= 6) |
| |
| /* Description : Load 4 words with stride |
| Arguments : Inputs - psrc, stride |
| Outputs - out0, out1, out2, out3 |
| Details : Load word in 'out0' from (psrc) |
| Load word in 'out1' from (psrc + stride) |
| Load word in 'out2' from (psrc + 2 * stride) |
| Load word in 'out3' from (psrc + 3 * stride) |
| */ |
| #define LW4(psrc, stride, out0, out1, out2, out3) \ |
| { \ |
| out0 = LW((psrc)); \ |
| out1 = LW((psrc) + stride); \ |
| out2 = LW((psrc) + 2 * stride); \ |
| out3 = LW((psrc) + 3 * stride); \ |
| } |
| |
| /* Description : Load double words with stride |
| Arguments : Inputs - psrc, stride |
| Outputs - out0, out1 |
| Details : Load double word in 'out0' from (psrc) |
| Load double word in 'out1' from (psrc + stride) |
| */ |
| #define LD2(psrc, stride, out0, out1) \ |
| { \ |
| out0 = LD((psrc)); \ |
| out1 = LD((psrc) + stride); \ |
| } |
| #define LD4(psrc, stride, out0, out1, out2, out3) \ |
| { \ |
| LD2((psrc), stride, out0, out1); \ |
| LD2((psrc) + 2 * stride, stride, out2, out3); \ |
| } |
| |
| /* Description : Store 4 words with stride |
| Arguments : Inputs - in0, in1, in2, in3, pdst, stride |
| Details : Store word from 'in0' to (pdst) |
| Store word from 'in1' to (pdst + stride) |
| Store word from 'in2' to (pdst + 2 * stride) |
| Store word from 'in3' to (pdst + 3 * stride) |
| */ |
| #define SW4(in0, in1, in2, in3, pdst, stride) \ |
| { \ |
| SW(in0, (pdst)) \ |
| SW(in1, (pdst) + stride); \ |
| SW(in2, (pdst) + 2 * stride); \ |
| SW(in3, (pdst) + 3 * stride); \ |
| } |
| |
| /* Description : Store 4 double words with stride |
| Arguments : Inputs - in0, in1, in2, in3, pdst, stride |
| Details : Store double word from 'in0' to (pdst) |
| Store double word from 'in1' to (pdst + stride) |
| Store double word from 'in2' to (pdst + 2 * stride) |
| Store double word from 'in3' to (pdst + 3 * stride) |
| */ |
| #define SD4(in0, in1, in2, in3, pdst, stride) \ |
| { \ |
| SD(in0, (pdst)) \ |
| SD(in1, (pdst) + stride); \ |
| SD(in2, (pdst) + 2 * stride); \ |
| SD(in3, (pdst) + 3 * stride); \ |
| } |
| |
| /* Description : Load vectors with 16 byte elements with stride |
| Arguments : Inputs - psrc, stride |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Load 16 byte elements in 'out0' from (psrc) |
| Load 16 byte elements in 'out1' from (psrc + stride) |
| */ |
| #define LD_B2(RTYPE, psrc, stride, out0, out1) \ |
| { \ |
| out0 = LD_B(RTYPE, (psrc)); \ |
| out1 = LD_B(RTYPE, (psrc) + stride); \ |
| } |
| #define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__) |
| #define LD_SB2(...) LD_B2(v16i8, __VA_ARGS__) |
| |
| #define LD_B3(RTYPE, psrc, stride, out0, out1, out2) \ |
| { \ |
| LD_B2(RTYPE, (psrc), stride, out0, out1); \ |
| out2 = LD_B(RTYPE, (psrc) + 2 * stride); \ |
| } |
| #define LD_UB3(...) LD_B3(v16u8, __VA_ARGS__) |
| |
| #define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) \ |
| { \ |
| LD_B2(RTYPE, (psrc), stride, out0, out1); \ |
| LD_B2(RTYPE, (psrc) + 2 * stride, stride, out2, out3); \ |
| } |
| #define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__) |
| #define LD_SB4(...) LD_B4(v16i8, __VA_ARGS__) |
| |
| #define LD_B5(RTYPE, psrc, stride, out0, out1, out2, out3, out4) \ |
| { \ |
| LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ |
| out4 = LD_B(RTYPE, (psrc) + 4 * stride); \ |
| } |
| #define LD_UB5(...) LD_B5(v16u8, __VA_ARGS__) |
| #define LD_SB5(...) LD_B5(v16i8, __VA_ARGS__) |
| |
| #define LD_B7(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6) \ |
| { \ |
| LD_B5(RTYPE, (psrc), stride, out0, out1, out2, out3, out4); \ |
| LD_B2(RTYPE, (psrc) + 5 * stride, stride, out5, out6); \ |
| } |
| #define LD_SB7(...) LD_B7(v16i8, __VA_ARGS__) |
| |
| #define LD_B8(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6, \ |
| out7) \ |
| { \ |
| LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ |
| LD_B4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \ |
| } |
| #define LD_UB8(...) LD_B8(v16u8, __VA_ARGS__) |
| #define LD_SB8(...) LD_B8(v16i8, __VA_ARGS__) |
| |
| /* Description : Load vectors with 8 halfword elements with stride |
| Arguments : Inputs - psrc, stride |
| Outputs - out0, out1 |
| Details : Load 8 halfword elements in 'out0' from (psrc) |
| Load 8 halfword elements in 'out1' from (psrc + stride) |
| */ |
| #define LD_H2(RTYPE, psrc, stride, out0, out1) \ |
| { \ |
| out0 = LD_H(RTYPE, (psrc)); \ |
| out1 = LD_H(RTYPE, (psrc) + (stride)); \ |
| } |
| #define LD_SH2(...) LD_H2(v8i16, __VA_ARGS__) |
| |
| #define LD_H4(RTYPE, psrc, stride, out0, out1, out2, out3) \ |
| { \ |
| LD_H2(RTYPE, (psrc), stride, out0, out1); \ |
| LD_H2(RTYPE, (psrc) + 2 * stride, stride, out2, out3); \ |
| } |
| #define LD_SH4(...) LD_H4(v8i16, __VA_ARGS__) |
| |
| #define LD_H8(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6, \ |
| out7) \ |
| { \ |
| LD_H4(RTYPE, (psrc), stride, out0, out1, out2, out3); \ |
| LD_H4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7); \ |
| } |
| #define LD_SH8(...) LD_H8(v8i16, __VA_ARGS__) |
| |
| #define LD_H16(RTYPE, psrc, stride, out0, out1, out2, out3, out4, out5, out6, \ |
| out7, out8, out9, out10, out11, out12, out13, out14, out15) \ |
| { \ |
| LD_H8(RTYPE, (psrc), stride, out0, out1, out2, out3, out4, out5, out6, \ |
| out7); \ |
| LD_H8(RTYPE, (psrc) + 8 * stride, stride, out8, out9, out10, out11, out12, \ |
| out13, out14, out15); \ |
| } |
| #define LD_SH16(...) LD_H16(v8i16, __VA_ARGS__) |
| |
| /* Description : Load 4x4 block of signed halfword elements from 1D source |
| data into 4 vectors (Each vector with 4 signed halfwords) |
| Arguments : Input - psrc |
| Outputs - out0, out1, out2, out3 |
| */ |
| #define LD4x4_SH(psrc, out0, out1, out2, out3) \ |
| { \ |
| out0 = LD_SH(psrc); \ |
| out2 = LD_SH(psrc + 8); \ |
| out1 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out0); \ |
| out3 = (v8i16)__msa_ilvl_d((v2i64)out2, (v2i64)out2); \ |
| } |
| |
| /* Description : Load 2 vectors of signed word elements with stride |
| Arguments : Inputs - psrc, stride |
| Outputs - out0, out1 |
| Return Type - signed word |
| */ |
| #define LD_SW2(psrc, stride, out0, out1) \ |
| { \ |
| out0 = LD_SW((psrc)); \ |
| out1 = LD_SW((psrc) + stride); \ |
| } |
| |
| /* Description : Store vectors of 16 byte elements with stride |
| Arguments : Inputs - in0, in1, pdst, stride |
| Details : Store 16 byte elements from 'in0' to (pdst) |
| Store 16 byte elements from 'in1' to (pdst + stride) |
| */ |
| #define ST_B2(RTYPE, in0, in1, pdst, stride) \ |
| { \ |
| ST_B(RTYPE, in0, (pdst)); \ |
| ST_B(RTYPE, in1, (pdst) + stride); \ |
| } |
| #define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__) |
| |
| #define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride) \ |
| { \ |
| ST_B2(RTYPE, in0, in1, (pdst), stride); \ |
| ST_B2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \ |
| } |
| #define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__) |
| |
| #define ST_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \ |
| { \ |
| ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride); \ |
| ST_B4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \ |
| } |
| #define ST_UB8(...) ST_B8(v16u8, __VA_ARGS__) |
| |
| /* Description : Store vectors of 8 halfword elements with stride |
| Arguments : Inputs - in0, in1, pdst, stride |
| Details : Store 8 halfword elements from 'in0' to (pdst) |
| Store 8 halfword elements from 'in1' to (pdst + stride) |
| */ |
| #define ST_H2(RTYPE, in0, in1, pdst, stride) \ |
| { \ |
| ST_H(RTYPE, in0, (pdst)); \ |
| ST_H(RTYPE, in1, (pdst) + stride); \ |
| } |
| #define ST_SH2(...) ST_H2(v8i16, __VA_ARGS__) |
| |
| #define ST_H4(RTYPE, in0, in1, in2, in3, pdst, stride) \ |
| { \ |
| ST_H2(RTYPE, in0, in1, (pdst), stride); \ |
| ST_H2(RTYPE, in2, in3, (pdst) + 2 * stride, stride); \ |
| } |
| #define ST_SH4(...) ST_H4(v8i16, __VA_ARGS__) |
| |
| #define ST_H8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, pdst, stride) \ |
| { \ |
| ST_H4(RTYPE, in0, in1, in2, in3, (pdst), stride); \ |
| ST_H4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride); \ |
| } |
| #define ST_SH8(...) ST_H8(v8i16, __VA_ARGS__) |
| |
| /* Description : Store vectors of word elements with stride |
| Arguments : Inputs - in0, in1, pdst, stride |
| Details : Store 4 word elements from 'in0' to (pdst) |
| Store 4 word elements from 'in1' to (pdst + stride) |
| */ |
| #define ST_SW2(in0, in1, pdst, stride) \ |
| { \ |
| ST_SW(in0, (pdst)); \ |
| ST_SW(in1, (pdst) + stride); \ |
| } |
| |
| /* Description : Store 2x4 byte block to destination memory from input vector |
| Arguments : Inputs - in, stidx, pdst, stride |
| Details : Index 'stidx' halfword element from 'in' vector is copied to |
| the GP register and stored to (pdst) |
| Index 'stidx+1' halfword element from 'in' vector is copied to |
| the GP register and stored to (pdst + stride) |
| Index 'stidx+2' halfword element from 'in' vector is copied to |
| the GP register and stored to (pdst + 2 * stride) |
| Index 'stidx+3' halfword element from 'in' vector is copied to |
| the GP register and stored to (pdst + 3 * stride) |
| */ |
| #define ST2x4_UB(in, stidx, pdst, stride) \ |
| { \ |
| uint16_t out0_m, out1_m, out2_m, out3_m; \ |
| uint8_t *pblk_2x4_m = (uint8_t *)(pdst); \ |
| \ |
| out0_m = __msa_copy_u_h((v8i16)in, (stidx)); \ |
| out1_m = __msa_copy_u_h((v8i16)in, (stidx + 1)); \ |
| out2_m = __msa_copy_u_h((v8i16)in, (stidx + 2)); \ |
| out3_m = __msa_copy_u_h((v8i16)in, (stidx + 3)); \ |
| \ |
| SH(out0_m, pblk_2x4_m); \ |
| SH(out1_m, pblk_2x4_m + stride); \ |
| SH(out2_m, pblk_2x4_m + 2 * stride); \ |
| SH(out3_m, pblk_2x4_m + 3 * stride); \ |
| } |
| |
| /* Description : Store 4x2 byte block to destination memory from input vector |
| Arguments : Inputs - in, pdst, stride |
| Details : Index 0 word element from 'in' vector is copied to the GP |
| register and stored to (pdst) |
| Index 1 word element from 'in' vector is copied to the GP |
| register and stored to (pdst + stride) |
| */ |
| #define ST4x2_UB(in, pdst, stride) \ |
| { \ |
| uint32_t out0_m, out1_m; \ |
| uint8_t *pblk_4x2_m = (uint8_t *)(pdst); \ |
| \ |
| out0_m = __msa_copy_u_w((v4i32)in, 0); \ |
| out1_m = __msa_copy_u_w((v4i32)in, 1); \ |
| \ |
| SW(out0_m, pblk_4x2_m); \ |
| SW(out1_m, pblk_4x2_m + stride); \ |
| } |
| |
| /* Description : Store 4x4 byte block to destination memory from input vector |
| Arguments : Inputs - in0, in1, pdst, stride |
| Details : 'Idx0' word element from input vector 'in0' is copied to the |
| GP register and stored to (pdst) |
| 'Idx1' word element from input vector 'in0' is copied to the |
| GP register and stored to (pdst + stride) |
| 'Idx2' word element from input vector 'in0' is copied to the |
| GP register and stored to (pdst + 2 * stride) |
| 'Idx3' word element from input vector 'in0' is copied to the |
| GP register and stored to (pdst + 3 * stride) |
| */ |
| #define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) \ |
| { \ |
| uint32_t out0_m, out1_m, out2_m, out3_m; \ |
| uint8_t *pblk_4x4_m = (uint8_t *)(pdst); \ |
| \ |
| out0_m = __msa_copy_u_w((v4i32)in0, idx0); \ |
| out1_m = __msa_copy_u_w((v4i32)in0, idx1); \ |
| out2_m = __msa_copy_u_w((v4i32)in1, idx2); \ |
| out3_m = __msa_copy_u_w((v4i32)in1, idx3); \ |
| \ |
| SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride); \ |
| } |
| #define ST4x8_UB(in0, in1, pdst, stride) \ |
| { \ |
| uint8_t *pblk_4x8 = (uint8_t *)(pdst); \ |
| \ |
| ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride); \ |
| ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride); \ |
| } |
| |
| /* Description : Store 8x1 byte block to destination memory from input vector |
| Arguments : Inputs - in, pdst |
| Details : Index 0 double word element from 'in' vector is copied to the |
| GP register and stored to (pdst) |
| */ |
| #define ST8x1_UB(in, pdst) \ |
| { \ |
| uint64_t out0_m; \ |
| \ |
| out0_m = __msa_copy_u_d((v2i64)in, 0); \ |
| SD(out0_m, pdst); \ |
| } |
| |
| /* Description : Store 8x2 byte block to destination memory from input vector |
| Arguments : Inputs - in, pdst, stride |
| Details : Index 0 double word element from 'in' vector is copied to the |
| GP register and stored to (pdst) |
| Index 1 double word element from 'in' vector is copied to the |
| GP register and stored to (pdst + stride) |
| */ |
| #define ST8x2_UB(in, pdst, stride) \ |
| { \ |
| uint64_t out0_m, out1_m; \ |
| uint8_t *pblk_8x2_m = (uint8_t *)(pdst); \ |
| \ |
| out0_m = __msa_copy_u_d((v2i64)in, 0); \ |
| out1_m = __msa_copy_u_d((v2i64)in, 1); \ |
| \ |
| SD(out0_m, pblk_8x2_m); \ |
| SD(out1_m, pblk_8x2_m + stride); \ |
| } |
| |
| /* Description : Store 8x4 byte block to destination memory from input |
| vectors |
| Arguments : Inputs - in0, in1, pdst, stride |
| Details : Index 0 double word element from 'in0' vector is copied to the |
| GP register and stored to (pdst) |
| Index 1 double word element from 'in0' vector is copied to the |
| GP register and stored to (pdst + stride) |
| Index 0 double word element from 'in1' vector is copied to the |
| GP register and stored to (pdst + 2 * stride) |
| Index 1 double word element from 'in1' vector is copied to the |
| GP register and stored to (pdst + 3 * stride) |
| */ |
| #define ST8x4_UB(in0, in1, pdst, stride) \ |
| { \ |
| uint64_t out0_m, out1_m, out2_m, out3_m; \ |
| uint8_t *pblk_8x4_m = (uint8_t *)(pdst); \ |
| \ |
| out0_m = __msa_copy_u_d((v2i64)in0, 0); \ |
| out1_m = __msa_copy_u_d((v2i64)in0, 1); \ |
| out2_m = __msa_copy_u_d((v2i64)in1, 0); \ |
| out3_m = __msa_copy_u_d((v2i64)in1, 1); \ |
| \ |
| SD4(out0_m, out1_m, out2_m, out3_m, pblk_8x4_m, stride); \ |
| } |
| |
| /* Description : average with rounding (in0 + in1 + 1) / 2. |
| Arguments : Inputs - in0, in1, in2, in3, |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Each unsigned byte element from 'in0' vector is added with |
| each unsigned byte element from 'in1' vector. Then the average |
| with rounding is calculated and written to 'out0' |
| */ |
| #define AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_aver_u_b((v16u8)in0, (v16u8)in1); \ |
| out1 = (RTYPE)__msa_aver_u_b((v16u8)in2, (v16u8)in3); \ |
| } |
| #define AVER_UB2_UB(...) AVER_UB2(v16u8, __VA_ARGS__) |
| |
| #define AVER_UB4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| AVER_UB2(RTYPE, in4, in5, in6, in7, out2, out3) \ |
| } |
| #define AVER_UB4_UB(...) AVER_UB4(v16u8, __VA_ARGS__) |
| |
| /* Description : Immediate number of elements to slide with zero |
| Arguments : Inputs - in0, in1, slide_val |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Byte elements from 'zero_m' vector are slid into 'in0' by |
| value specified in the 'slide_val' |
| */ |
| #define SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val) \ |
| { \ |
| v16i8 zero_m = { 0 }; \ |
| out0 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in0, slide_val); \ |
| out1 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in1, slide_val); \ |
| } |
| #define SLDI_B2_0_SW(...) SLDI_B2_0(v4i32, __VA_ARGS__) |
| |
| #define SLDI_B4_0(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3, \ |
| slide_val) \ |
| { \ |
| SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val); \ |
| SLDI_B2_0(RTYPE, in2, in3, out2, out3, slide_val); \ |
| } |
| #define SLDI_B4_0_UB(...) SLDI_B4_0(v16u8, __VA_ARGS__) |
| |
| /* Description : Immediate number of elements to slide |
| Arguments : Inputs - in0_0, in0_1, in1_0, in1_1, slide_val |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Byte elements from 'in0_0' vector are slid into 'in1_0' by |
| value specified in the 'slide_val' |
| */ |
| #define SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) \ |
| { \ |
| out0 = (RTYPE)__msa_sldi_b((v16i8)in0_0, (v16i8)in1_0, slide_val); \ |
| out1 = (RTYPE)__msa_sldi_b((v16i8)in0_1, (v16i8)in1_1, slide_val); \ |
| } |
| #define SLDI_B2_UB(...) SLDI_B2(v16u8, __VA_ARGS__) |
| #define SLDI_B2_SH(...) SLDI_B2(v8i16, __VA_ARGS__) |
| |
| #define SLDI_B3(RTYPE, in0_0, in0_1, in0_2, in1_0, in1_1, in1_2, out0, out1, \ |
| out2, slide_val) \ |
| { \ |
| SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val) \ |
| out2 = (RTYPE)__msa_sldi_b((v16i8)in0_2, (v16i8)in1_2, slide_val); \ |
| } |
| #define SLDI_B3_SB(...) SLDI_B3(v16i8, __VA_ARGS__) |
| #define SLDI_B3_UH(...) SLDI_B3(v8u16, __VA_ARGS__) |
| |
| /* Description : Shuffle byte vector elements as per mask vector |
| Arguments : Inputs - in0, in1, in2, in3, mask0, mask1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Byte elements from 'in0' & 'in1' are copied selectively to |
| 'out0' as per control vector 'mask0' |
| */ |
| #define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_vshf_b((v16i8)mask0, (v16i8)in1, (v16i8)in0); \ |
| out1 = (RTYPE)__msa_vshf_b((v16i8)mask1, (v16i8)in3, (v16i8)in2); \ |
| } |
| #define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__) |
| #define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__) |
| #define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__) |
| |
| #define VSHF_B4(RTYPE, in0, in1, mask0, mask1, mask2, mask3, out0, out1, out2, \ |
| out3) \ |
| { \ |
| VSHF_B2(RTYPE, in0, in1, in0, in1, mask0, mask1, out0, out1); \ |
| VSHF_B2(RTYPE, in0, in1, in0, in1, mask2, mask3, out2, out3); \ |
| } |
| #define VSHF_B4_SB(...) VSHF_B4(v16i8, __VA_ARGS__) |
| #define VSHF_B4_SH(...) VSHF_B4(v8i16, __VA_ARGS__) |
| |
| /* Description : Dot product of byte vector elements |
| Arguments : Inputs - mult0, mult1, cnst0, cnst1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Unsigned byte elements from 'mult0' are multiplied with |
| unsigned byte elements from 'cnst0' producing a result |
| twice the size of input i.e. unsigned halfword. |
| The multiplication result of adjacent odd-even elements |
| are added together and written to the 'out0' vector |
| */ |
| #define DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_dotp_u_h((v16u8)mult0, (v16u8)cnst0); \ |
| out1 = (RTYPE)__msa_dotp_u_h((v16u8)mult1, (v16u8)cnst1); \ |
| } |
| #define DOTP_UB2_UH(...) DOTP_UB2(v8u16, __VA_ARGS__) |
| |
| #define DOTP_UB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ |
| cnst3, out0, out1, out2, out3) \ |
| { \ |
| DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ |
| DOTP_UB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ |
| } |
| #define DOTP_UB4_UH(...) DOTP_UB4(v8u16, __VA_ARGS__) |
| |
| /* Description : Dot product of byte vector elements |
| Arguments : Inputs - mult0, mult1, cnst0, cnst1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Signed byte elements from 'mult0' are multiplied with |
| signed byte elements from 'cnst0' producing a result |
| twice the size of input i.e. signed halfword. |
| The multiplication result of adjacent odd-even elements |
| are added together and written to the 'out0' vector |
| */ |
| #define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0); \ |
| out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1); \ |
| } |
| #define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__) |
| |
| #define DOTP_SB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ |
| cnst3, out0, out1, out2, out3) \ |
| { \ |
| DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ |
| DOTP_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ |
| } |
| #define DOTP_SB4_SH(...) DOTP_SB4(v8i16, __VA_ARGS__) |
| |
| /* Description : Dot product of halfword vector elements |
| Arguments : Inputs - mult0, mult1, cnst0, cnst1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Signed halfword elements from 'mult0' are multiplied with |
| signed halfword elements from 'cnst0' producing a result |
| twice the size of input i.e. signed word. |
| The multiplication result of adjacent odd-even elements |
| are added together and written to the 'out0' vector |
| */ |
| #define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_dotp_s_w((v8i16)mult0, (v8i16)cnst0); \ |
| out1 = (RTYPE)__msa_dotp_s_w((v8i16)mult1, (v8i16)cnst1); \ |
| } |
| #define DOTP_SH2_SW(...) DOTP_SH2(v4i32, __VA_ARGS__) |
| |
| #define DOTP_SH4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ |
| cnst3, out0, out1, out2, out3) \ |
| { \ |
| DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ |
| DOTP_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ |
| } |
| #define DOTP_SH4_SW(...) DOTP_SH4(v4i32, __VA_ARGS__) |
| |
| /* Description : Dot product of word vector elements |
| Arguments : Inputs - mult0, mult1, cnst0, cnst1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Signed word elements from 'mult0' are multiplied with |
| signed word elements from 'cnst0' producing a result |
| twice the size of input i.e. signed double word. |
| The multiplication result of adjacent odd-even elements |
| are added together and written to the 'out0' vector |
| */ |
| #define DOTP_SW2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_dotp_s_d((v4i32)mult0, (v4i32)cnst0); \ |
| out1 = (RTYPE)__msa_dotp_s_d((v4i32)mult1, (v4i32)cnst1); \ |
| } |
| #define DOTP_SW2_SD(...) DOTP_SW2(v2i64, __VA_ARGS__) |
| |
| /* Description : Dot product & addition of byte vector elements |
| Arguments : Inputs - mult0, mult1, cnst0, cnst1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Signed byte elements from 'mult0' are multiplied with |
| signed byte elements from 'cnst0' producing a result |
| twice the size of input i.e. signed halfword. |
| The multiplication result of adjacent odd-even elements |
| are added to the 'out0' vector |
| */ |
| #define DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_dpadd_s_h((v8i16)out0, (v16i8)mult0, (v16i8)cnst0); \ |
| out1 = (RTYPE)__msa_dpadd_s_h((v8i16)out1, (v16i8)mult1, (v16i8)cnst1); \ |
| } |
| #define DPADD_SB2_SH(...) DPADD_SB2(v8i16, __VA_ARGS__) |
| |
| #define DPADD_SB4(RTYPE, mult0, mult1, mult2, mult3, cnst0, cnst1, cnst2, \ |
| cnst3, out0, out1, out2, out3) \ |
| { \ |
| DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1); \ |
| DPADD_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3); \ |
| } |
| #define DPADD_SB4_SH(...) DPADD_SB4(v8i16, __VA_ARGS__) |
| |
| /* Description : Dot product & addition of halfword vector elements |
| Arguments : Inputs - mult0, mult1, cnst0, cnst1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Signed halfword elements from 'mult0' are multiplied with |
| signed halfword elements from 'cnst0' producing a result |
| twice the size of input i.e. signed word. |
| The multiplication result of adjacent odd-even elements |
| are added to the 'out0' vector |
| */ |
| #define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_dpadd_s_w((v4i32)out0, (v8i16)mult0, (v8i16)cnst0); \ |
| out1 = (RTYPE)__msa_dpadd_s_w((v4i32)out1, (v8i16)mult1, (v8i16)cnst1); \ |
| } |
| #define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__) |
| |
| /* Description : Dot product & addition of double word vector elements |
| Arguments : Inputs - mult0, mult1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Each signed word element from 'mult0' is multiplied with itself |
| producing an intermediate result twice the size of input |
| i.e. signed double word |
| The multiplication result of adjacent odd-even elements |
| are added to the 'out0' vector |
| */ |
| #define DPADD_SD2(RTYPE, mult0, mult1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_dpadd_s_d((v2i64)out0, (v4i32)mult0, (v4i32)mult0); \ |
| out1 = (RTYPE)__msa_dpadd_s_d((v2i64)out1, (v4i32)mult1, (v4i32)mult1); \ |
| } |
| #define DPADD_SD2_SD(...) DPADD_SD2(v2i64, __VA_ARGS__) |
| |
| /* Description : Minimum values between unsigned elements of |
| either vector are copied to the output vector |
| Arguments : Inputs - in0, in1, min_vec |
| Outputs - in place operation |
| Return Type - as per RTYPE |
| Details : Minimum of unsigned halfword element values from 'in0' and |
| 'min_vec' are written to output vector 'in0' |
| */ |
| #define MIN_UH2(RTYPE, in0, in1, min_vec) \ |
| { \ |
| in0 = (RTYPE)__msa_min_u_h((v8u16)in0, min_vec); \ |
| in1 = (RTYPE)__msa_min_u_h((v8u16)in1, min_vec); \ |
| } |
| #define MIN_UH2_UH(...) MIN_UH2(v8u16, __VA_ARGS__) |
| |
| #define MIN_UH4(RTYPE, in0, in1, in2, in3, min_vec) \ |
| { \ |
| MIN_UH2(RTYPE, in0, in1, min_vec); \ |
| MIN_UH2(RTYPE, in2, in3, min_vec); \ |
| } |
| #define MIN_UH4_UH(...) MIN_UH4(v8u16, __VA_ARGS__) |
| |
| /* Description : Clips all signed halfword elements of input vector |
| between 0 & 255 |
| Arguments : Input - in |
| Output - out_m |
| Return Type - signed halfword |
| */ |
| #define CLIP_SH_0_255(in) \ |
| ({ \ |
| v8i16 max_m = __msa_ldi_h(255); \ |
| v8i16 out_m; \ |
| \ |
| out_m = __msa_maxi_s_h((v8i16)in, 0); \ |
| out_m = __msa_min_s_h((v8i16)max_m, (v8i16)out_m); \ |
| out_m; \ |
| }) |
| #define CLIP_SH2_0_255(in0, in1) \ |
| { \ |
| in0 = CLIP_SH_0_255(in0); \ |
| in1 = CLIP_SH_0_255(in1); \ |
| } |
| #define CLIP_SH4_0_255(in0, in1, in2, in3) \ |
| { \ |
| CLIP_SH2_0_255(in0, in1); \ |
| CLIP_SH2_0_255(in2, in3); \ |
| } |
| |
| /* Description : Horizontal addition of 4 signed word elements of input vector |
| Arguments : Input - in (signed word vector) |
| Output - sum_m (i32 sum) |
| Return Type - signed word (GP) |
| Details : 4 signed word elements of 'in' vector are added together and |
| the resulting integer sum is returned |
| */ |
| #define HADD_SW_S32(in) \ |
| ({ \ |
| v2i64 res0_m, res1_m; \ |
| int32_t sum_m; \ |
| \ |
| res0_m = __msa_hadd_s_d((v4i32)in, (v4i32)in); \ |
| res1_m = __msa_splati_d(res0_m, 1); \ |
| res0_m = res0_m + res1_m; \ |
| sum_m = __msa_copy_s_w((v4i32)res0_m, 0); \ |
| sum_m; \ |
| }) |
| |
| /* Description : Horizontal addition of 8 unsigned halfword elements |
| Arguments : Inputs - in (unsigned halfword vector) |
| Outputs - sum_m (u32 sum) |
| Return Type - unsigned word |
| Details : 8 unsigned halfword elements of input vector are added |
| together and the resulting integer sum is returned |
| */ |
| #define HADD_UH_U32(in) \ |
| ({ \ |
| v4u32 res_m; \ |
| v2u64 res0_m, res1_m; \ |
| uint32_t sum_m; \ |
| \ |
| res_m = __msa_hadd_u_w((v8u16)in, (v8u16)in); \ |
| res0_m = __msa_hadd_u_d(res_m, res_m); \ |
| res1_m = (v2u64)__msa_splati_d((v2i64)res0_m, 1); \ |
| res0_m = res0_m + res1_m; \ |
| sum_m = __msa_copy_u_w((v4i32)res0_m, 0); \ |
| sum_m; \ |
| }) |
| |
| /* Description : Horizontal addition of unsigned byte vector elements |
| Arguments : Inputs - in0, in1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Each unsigned odd byte element from 'in0' is added to |
| even unsigned byte element from 'in0' (pairwise) and the |
| halfword result is written to 'out0' |
| */ |
| #define HADD_UB2(RTYPE, in0, in1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_hadd_u_h((v16u8)in0, (v16u8)in0); \ |
| out1 = (RTYPE)__msa_hadd_u_h((v16u8)in1, (v16u8)in1); \ |
| } |
| #define HADD_UB2_UH(...) HADD_UB2(v8u16, __VA_ARGS__) |
| |
| #define HADD_UB4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) \ |
| { \ |
| HADD_UB2(RTYPE, in0, in1, out0, out1); \ |
| HADD_UB2(RTYPE, in2, in3, out2, out3); \ |
| } |
| #define HADD_UB4_UH(...) HADD_UB4(v8u16, __VA_ARGS__) |
| |
| /* Description : Horizontal subtraction of unsigned byte vector elements |
| Arguments : Inputs - in0, in1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Each unsigned odd byte element from 'in0' is subtracted from |
| even unsigned byte element from 'in0' (pairwise) and the |
| halfword result is written to 'out0' |
| */ |
| #define HSUB_UB2(RTYPE, in0, in1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_hsub_u_h((v16u8)in0, (v16u8)in0); \ |
| out1 = (RTYPE)__msa_hsub_u_h((v16u8)in1, (v16u8)in1); \ |
| } |
| #define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__) |
| |
| /* Description : SAD (Sum of Absolute Difference) |
| Arguments : Inputs - in0, in1, ref0, ref1 |
| Outputs - sad_m (halfword vector) |
| Return Type - unsigned halfword |
| Details : Absolute difference of all the byte elements from 'in0' with |
| 'ref0' is calculated and preserved in 'diff0'. Then even-odd |
| pairs are added together to generate 8 halfword results. |
| */ |
| #define SAD_UB2_UH(in0, in1, ref0, ref1) \ |
| ({ \ |
| v16u8 diff0_m, diff1_m; \ |
| v8u16 sad_m = { 0 }; \ |
| \ |
| diff0_m = __msa_asub_u_b((v16u8)in0, (v16u8)ref0); \ |
| diff1_m = __msa_asub_u_b((v16u8)in1, (v16u8)ref1); \ |
| \ |
| sad_m += __msa_hadd_u_h((v16u8)diff0_m, (v16u8)diff0_m); \ |
| sad_m += __msa_hadd_u_h((v16u8)diff1_m, (v16u8)diff1_m); \ |
| \ |
| sad_m; \ |
| }) |
| |
| /* Description : Horizontal subtraction of signed halfword vector elements |
| Arguments : Inputs - in0, in1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Each signed odd halfword element from 'in0' is subtracted from |
| even signed halfword element from 'in0' (pairwise) and the |
| word result is written to 'out0' |
| */ |
| #define HSUB_UH2(RTYPE, in0, in1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_hsub_s_w((v8i16)in0, (v8i16)in0); \ |
| out1 = (RTYPE)__msa_hsub_s_w((v8i16)in1, (v8i16)in1); \ |
| } |
| #define HSUB_UH2_SW(...) HSUB_UH2(v4i32, __VA_ARGS__) |
| |
| /* Description : Set element n input vector to GPR value |
| Arguments : Inputs - in0, in1, in2, in3 |
| Output - out |
| Return Type - as per RTYPE |
| Details : Set element 0 in vector 'out' to value specified in 'in0' |
| */ |
| #define INSERT_W2(RTYPE, in0, in1, out) \ |
| { \ |
| out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ |
| out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ |
| } |
| #define INSERT_W2_SB(...) INSERT_W2(v16i8, __VA_ARGS__) |
| |
| #define INSERT_W4(RTYPE, in0, in1, in2, in3, out) \ |
| { \ |
| out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0); \ |
| out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1); \ |
| out = (RTYPE)__msa_insert_w((v4i32)out, 2, in2); \ |
| out = (RTYPE)__msa_insert_w((v4i32)out, 3, in3); \ |
| } |
| #define INSERT_W4_UB(...) INSERT_W4(v16u8, __VA_ARGS__) |
| #define INSERT_W4_SB(...) INSERT_W4(v16i8, __VA_ARGS__) |
| |
| #define INSERT_D2(RTYPE, in0, in1, out) \ |
| { \ |
| out = (RTYPE)__msa_insert_d((v2i64)out, 0, in0); \ |
| out = (RTYPE)__msa_insert_d((v2i64)out, 1, in1); \ |
| } |
| #define INSERT_D2_UB(...) INSERT_D2(v16u8, __VA_ARGS__) |
| #define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__) |
| |
| /* Description : Interleave even byte elements from vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Even byte elements of 'in0' and 'in1' are interleaved |
| and written to 'out0' |
| */ |
| #define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0); \ |
| out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2); \ |
| } |
| #define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__) |
| #define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__) |
| |
| /* Description : Interleave even halfword elements from vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Even halfword elements of 'in0' and 'in1' are interleaved |
| and written to 'out0' |
| */ |
| #define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0); \ |
| out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2); \ |
| } |
| #define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__) |
| #define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__) |
| #define ILVEV_H2_SW(...) ILVEV_H2(v4i32, __VA_ARGS__) |
| |
| /* Description : Interleave even word elements from vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Even word elements of 'in0' and 'in1' are interleaved |
| and written to 'out0' |
| */ |
| #define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0); \ |
| out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2); \ |
| } |
| #define ILVEV_W2_SB(...) ILVEV_W2(v16i8, __VA_ARGS__) |
| |
| /* Description : Interleave even double word elements from vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Even double word elements of 'in0' and 'in1' are interleaved |
| and written to 'out0' |
| */ |
| #define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0); \ |
| out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2); \ |
| } |
| #define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__) |
| |
| /* Description : Interleave left half of byte elements from vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Left half of byte elements of 'in0' and 'in1' are interleaved |
| and written to 'out0'. |
| */ |
| #define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ |
| out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3); \ |
| } |
| #define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__) |
| #define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__) |
| #define ILVL_B2_UH(...) ILVL_B2(v8u16, __VA_ARGS__) |
| #define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__) |
| |
| #define ILVL_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ |
| ILVL_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ |
| } |
| #define ILVL_B4_SB(...) ILVL_B4(v16i8, __VA_ARGS__) |
| #define ILVL_B4_SH(...) ILVL_B4(v8i16, __VA_ARGS__) |
| #define ILVL_B4_UH(...) ILVL_B4(v8u16, __VA_ARGS__) |
| |
| /* Description : Interleave left half of halfword elements from vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Left half of halfword elements of 'in0' and 'in1' are |
| interleaved and written to 'out0'. |
| */ |
| #define ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ |
| out1 = (RTYPE)__msa_ilvl_h((v8i16)in2, (v8i16)in3); \ |
| } |
| #define ILVL_H2_SH(...) ILVL_H2(v8i16, __VA_ARGS__) |
| #define ILVL_H2_SW(...) ILVL_H2(v4i32, __VA_ARGS__) |
| |
| /* Description : Interleave left half of word elements from vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Left half of word elements of 'in0' and 'in1' are interleaved |
| and written to 'out0'. |
| */ |
| #define ILVL_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ |
| out1 = (RTYPE)__msa_ilvl_w((v4i32)in2, (v4i32)in3); \ |
| } |
| #define ILVL_W2_UB(...) ILVL_W2(v16u8, __VA_ARGS__) |
| #define ILVL_W2_SH(...) ILVL_W2(v8i16, __VA_ARGS__) |
| |
| /* Description : Interleave right half of byte elements from vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Right half of byte elements of 'in0' and 'in1' are interleaved |
| and written to out0. |
| */ |
| #define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ |
| out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3); \ |
| } |
| #define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__) |
| #define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__) |
| #define ILVR_B2_UH(...) ILVR_B2(v8u16, __VA_ARGS__) |
| #define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__) |
| |
| #define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ |
| ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ |
| } |
| #define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__) |
| #define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__) |
| #define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__) |
| #define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__) |
| |
| #define ILVR_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, \ |
| in11, in12, in13, in14, in15, out0, out1, out2, out3, out4, \ |
| out5, out6, out7) \ |
| { \ |
| ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, \ |
| out3); \ |
| ILVR_B4(RTYPE, in8, in9, in10, in11, in12, in13, in14, in15, out4, out5, \ |
| out6, out7); \ |
| } |
| #define ILVR_B8_UH(...) ILVR_B8(v8u16, __VA_ARGS__) |
| |
| /* Description : Interleave right half of halfword elements from vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Right half of halfword elements of 'in0' and 'in1' are |
| interleaved and written to 'out0'. |
| */ |
| #define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ |
| out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3); \ |
| } |
| #define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__) |
| #define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__) |
| |
| #define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ |
| ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ |
| } |
| #define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__) |
| |
| #define ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ |
| out1 = (RTYPE)__msa_ilvr_w((v4i32)in2, (v4i32)in3); \ |
| } |
| #define ILVR_W2_UB(...) ILVR_W2(v16u8, __VA_ARGS__) |
| #define ILVR_W2_SH(...) ILVR_W2(v8i16, __VA_ARGS__) |
| |
| #define ILVR_W4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1); \ |
| ILVR_W2(RTYPE, in4, in5, in6, in7, out2, out3); \ |
| } |
| #define ILVR_W4_UB(...) ILVR_W4(v16u8, __VA_ARGS__) |
| |
| /* Description : Interleave right half of double word elements from vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Right half of double word elements of 'in0' and 'in1' are |
| interleaved and written to 'out0'. |
| */ |
| #define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvr_d((v2i64)(in0), (v2i64)(in1)); \ |
| out1 = (RTYPE)__msa_ilvr_d((v2i64)(in2), (v2i64)(in3)); \ |
| } |
| #define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__) |
| #define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__) |
| #define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__) |
| |
| #define ILVR_D3(RTYPE, in0, in1, in2, in3, in4, in5, out0, out1, out2) \ |
| { \ |
| ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ |
| out2 = (RTYPE)__msa_ilvr_d((v2i64)(in4), (v2i64)(in5)); \ |
| } |
| #define ILVR_D3_SB(...) ILVR_D3(v16i8, __VA_ARGS__) |
| |
| #define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ |
| ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ |
| } |
| #define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__) |
| #define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__) |
| |
| /* Description : Interleave both left and right half of input vectors |
| Arguments : Inputs - in0, in1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Right half of byte elements from 'in0' and 'in1' are |
| interleaved and written to 'out0' |
| */ |
| #define ILVRL_B2(RTYPE, in0, in1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1); \ |
| out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1); \ |
| } |
| #define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__) |
| #define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__) |
| #define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__) |
| #define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__) |
| |
| #define ILVRL_H2(RTYPE, in0, in1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1); \ |
| out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1); \ |
| } |
| #define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__) |
| #define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__) |
| |
| #define ILVRL_W2(RTYPE, in0, in1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1); \ |
| out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1); \ |
| } |
| #define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__) |
| #define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__) |
| #define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__) |
| |
| /* Description : Saturate the halfword element values to the max |
| unsigned value of (sat_val + 1) bits |
| The element data width remains unchanged |
| Arguments : Inputs - in0, in1, sat_val |
| Outputs - in place operation |
| Return Type - as per RTYPE |
| Details : Each unsigned halfword element from 'in0' is saturated to the |
| value generated with (sat_val + 1) bit range. |
| The results are written in place |
| */ |
| #define SAT_UH2(RTYPE, in0, in1, sat_val) \ |
| { \ |
| in0 = (RTYPE)__msa_sat_u_h((v8u16)in0, sat_val); \ |
| in1 = (RTYPE)__msa_sat_u_h((v8u16)in1, sat_val); \ |
| } |
| #define SAT_UH2_UH(...) SAT_UH2(v8u16, __VA_ARGS__) |
| |
| #define SAT_UH4(RTYPE, in0, in1, in2, in3, sat_val) \ |
| { \ |
| SAT_UH2(RTYPE, in0, in1, sat_val); \ |
| SAT_UH2(RTYPE, in2, in3, sat_val) \ |
| } |
| #define SAT_UH4_UH(...) SAT_UH4(v8u16, __VA_ARGS__) |
| |
| /* Description : Saturate the halfword element values to the max |
| unsigned value of (sat_val + 1) bits |
| The element data width remains unchanged |
| Arguments : Inputs - in0, in1, sat_val |
| Outputs - in place operation |
| Return Type - as per RTYPE |
| Details : Each unsigned halfword element from 'in0' is saturated to the |
| value generated with (sat_val + 1) bit range |
| The results are written in place |
| */ |
| #define SAT_SH2(RTYPE, in0, in1, sat_val) \ |
| { \ |
| in0 = (RTYPE)__msa_sat_s_h((v8i16)in0, sat_val); \ |
| in1 = (RTYPE)__msa_sat_s_h((v8i16)in1, sat_val); \ |
| } |
| #define SAT_SH2_SH(...) SAT_SH2(v8i16, __VA_ARGS__) |
| |
| #define SAT_SH4(RTYPE, in0, in1, in2, in3, sat_val) \ |
| { \ |
| SAT_SH2(RTYPE, in0, in1, sat_val); \ |
| SAT_SH2(RTYPE, in2, in3, sat_val); \ |
| } |
| #define SAT_SH4_SH(...) SAT_SH4(v8i16, __VA_ARGS__) |
| |
| /* Description : Indexed halfword element values are replicated to all |
| elements in output vector |
| Arguments : Inputs - in, idx0, idx1 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : 'idx0' element value from 'in' vector is replicated to all |
| elements in 'out0' vector |
| Valid index range for halfword operation is 0-7 |
| */ |
| #define SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_splati_h((v8i16)in, idx0); \ |
| out1 = (RTYPE)__msa_splati_h((v8i16)in, idx1); \ |
| } |
| #define SPLATI_H2_SH(...) SPLATI_H2(v8i16, __VA_ARGS__) |
| |
| #define SPLATI_H4(RTYPE, in, idx0, idx1, idx2, idx3, out0, out1, out2, out3) \ |
| { \ |
| SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1); \ |
| SPLATI_H2(RTYPE, in, idx2, idx3, out2, out3); \ |
| } |
| #define SPLATI_H4_SB(...) SPLATI_H4(v16i8, __VA_ARGS__) |
| #define SPLATI_H4_SH(...) SPLATI_H4(v8i16, __VA_ARGS__) |
| |
| /* Description : Pack even byte elements of vector pairs |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Even byte elements of 'in0' are copied to the left half of |
| 'out0' & even byte elements of 'in1' are copied to the right |
| half of 'out0'. |
| */ |
| #define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1); \ |
| out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3); \ |
| } |
| #define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__) |
| #define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__) |
| #define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__) |
| |
| #define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1); \ |
| PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3); \ |
| } |
| #define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__) |
| #define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__) |
| #define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__) |
| |
| /* Description : Pack even halfword elements of vector pairs |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Even halfword elements of 'in0' are copied to the left half of |
| 'out0' & even halfword elements of 'in1' are copied to the |
| right half of 'out0'. |
| */ |
| #define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1); \ |
| out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3); \ |
| } |
| #define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__) |
| #define PCKEV_H2_SW(...) PCKEV_H2(v4i32, __VA_ARGS__) |
| |
| #define PCKEV_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1); \ |
| PCKEV_H2(RTYPE, in4, in5, in6, in7, out2, out3); \ |
| } |
| #define PCKEV_H4_SH(...) PCKEV_H4(v8i16, __VA_ARGS__) |
| |
| /* Description : Pack even double word elements of vector pairs |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Even double elements of 'in0' are copied to the left half of |
| 'out0' & even double elements of 'in1' are copied to the right |
| half of 'out0'. |
| */ |
| #define PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_pckev_d((v2i64)in0, (v2i64)in1); \ |
| out1 = (RTYPE)__msa_pckev_d((v2i64)in2, (v2i64)in3); \ |
| } |
| #define PCKEV_D2_UB(...) PCKEV_D2(v16u8, __VA_ARGS__) |
| #define PCKEV_D2_SH(...) PCKEV_D2(v8i16, __VA_ARGS__) |
| |
| #define PCKEV_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1); \ |
| PCKEV_D2(RTYPE, in4, in5, in6, in7, out2, out3); \ |
| } |
| #define PCKEV_D4_UB(...) PCKEV_D4(v16u8, __VA_ARGS__) |
| |
| /* Description : Each byte element is logically xor'ed with immediate 128 |
| Arguments : Inputs - in0, in1 |
| Outputs - in place operation |
| Return Type - as per RTYPE |
| Details : Each unsigned byte element from input vector 'in0' is |
| logically xor'ed with 128 and the result is stored in-place. |
| */ |
| #define XORI_B2_128(RTYPE, in0, in1) \ |
| { \ |
| in0 = (RTYPE)__msa_xori_b((v16u8)in0, 128); \ |
| in1 = (RTYPE)__msa_xori_b((v16u8)in1, 128); \ |
| } |
| #define XORI_B2_128_UB(...) XORI_B2_128(v16u8, __VA_ARGS__) |
| #define XORI_B2_128_SB(...) XORI_B2_128(v16i8, __VA_ARGS__) |
| |
| #define XORI_B3_128(RTYPE, in0, in1, in2) \ |
| { \ |
| XORI_B2_128(RTYPE, in0, in1); \ |
| in2 = (RTYPE)__msa_xori_b((v16u8)in2, 128); \ |
| } |
| #define XORI_B3_128_SB(...) XORI_B3_128(v16i8, __VA_ARGS__) |
| |
| #define XORI_B4_128(RTYPE, in0, in1, in2, in3) \ |
| { \ |
| XORI_B2_128(RTYPE, in0, in1); \ |
| XORI_B2_128(RTYPE, in2, in3); \ |
| } |
| #define XORI_B4_128_UB(...) XORI_B4_128(v16u8, __VA_ARGS__) |
| #define XORI_B4_128_SB(...) XORI_B4_128(v16i8, __VA_ARGS__) |
| |
| #define XORI_B7_128(RTYPE, in0, in1, in2, in3, in4, in5, in6) \ |
| { \ |
| XORI_B4_128(RTYPE, in0, in1, in2, in3); \ |
| XORI_B3_128(RTYPE, in4, in5, in6); \ |
| } |
| #define XORI_B7_128_SB(...) XORI_B7_128(v16i8, __VA_ARGS__) |
| |
| /* Description : Average of signed halfword elements -> (a + b) / 2 |
| Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 |
| Outputs - out0, out1, out2, out3 |
| Return Type - as per RTYPE |
| Details : Each signed halfword element from 'in0' is added to each |
| signed halfword element of 'in1' with full precision resulting |
| in one extra bit in the result. The result is then divided by |
| 2 and written to 'out0' |
| */ |
| #define AVE_SH4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| out0 = (RTYPE)__msa_ave_s_h((v8i16)in0, (v8i16)in1); \ |
| out1 = (RTYPE)__msa_ave_s_h((v8i16)in2, (v8i16)in3); \ |
| out2 = (RTYPE)__msa_ave_s_h((v8i16)in4, (v8i16)in5); \ |
| out3 = (RTYPE)__msa_ave_s_h((v8i16)in6, (v8i16)in7); \ |
| } |
| #define AVE_SH4_SH(...) AVE_SH4(v8i16, __VA_ARGS__) |
| |
| /* Description : Addition of signed halfword elements and signed saturation |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Return Type - as per RTYPE |
| Details : Signed halfword elements from 'in0' are added to signed |
| halfword elements of 'in1'. The result is then signed saturated |
| between halfword data type range |
| */ |
| #define ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = (RTYPE)__msa_adds_s_h((v8i16)in0, (v8i16)in1); \ |
| out1 = (RTYPE)__msa_adds_s_h((v8i16)in2, (v8i16)in3); \ |
| } |
| #define ADDS_SH2_SH(...) ADDS_SH2(v8i16, __VA_ARGS__) |
| |
| #define ADDS_SH4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3) \ |
| { \ |
| ADDS_SH2(RTYPE, in0, in1, in2, in3, out0, out1); \ |
| ADDS_SH2(RTYPE, in4, in5, in6, in7, out2, out3); \ |
| } |
| #define ADDS_SH4_SH(...) ADDS_SH4(v8i16, __VA_ARGS__) |
| |
| /* Description : Shift left all elements of vector (generic for all data types) |
| Arguments : Inputs - in0, in1, in2, in3, shift |
| Outputs - in place operation |
| Return Type - as per input vector RTYPE |
| Details : Each element of vector 'in0' is left shifted by 'shift' and |
| the result is written in-place. |
| */ |
| #define SLLI_4V(in0, in1, in2, in3, shift) \ |
| { \ |
| in0 = in0 << shift; \ |
| in1 = in1 << shift; \ |
| in2 = in2 << shift; \ |
| in3 = in3 << shift; \ |
| } |
| |
| /* Description : Arithmetic shift right all elements of vector |
| (generic for all data types) |
| Arguments : Inputs - in0, in1, in2, in3, shift |
| Outputs - in place operation |
| Return Type - as per input vector RTYPE |
| Details : Each element of vector 'in0' is right shifted by 'shift' and |
| the result is written in-place. 'shift' is a GP variable. |
| */ |
| #define SRA_4V(in0, in1, in2, in3, shift) \ |
| { \ |
| in0 = in0 >> shift; \ |
| in1 = in1 >> shift; \ |
| in2 = in2 >> shift; \ |
| in3 = in3 >> shift; \ |
| } |
| |
| /* Description : Shift right arithmetic rounded words |
| Arguments : Inputs - in0, in1, shift |
| Outputs - in place operation |
| Return Type - as per RTYPE |
| Details : Each element of vector 'in0' is shifted right arithmetically by |
| the number of bits in the corresponding element in the vector |
| 'shift'. The last discarded bit is added to shifted value for |
| rounding and the result is written in-place. |
| 'shift' is a vector. |
| */ |
| #define SRAR_W2(RTYPE, in0, in1, shift) \ |
| { \ |
| in0 = (RTYPE)__msa_srar_w((v4i32)in0, (v4i32)shift); \ |
| in1 = (RTYPE)__msa_srar_w((v4i32)in1, (v4i32)shift); \ |
| } |
| |
| #define SRAR_W4(RTYPE, in0, in1, in2, in3, shift) \ |
| { \ |
| SRAR_W2(RTYPE, in0, in1, shift) \ |
| SRAR_W2(RTYPE, in2, in3, shift) \ |
| } |
| #define SRAR_W4_SW(...) SRAR_W4(v4i32, __VA_ARGS__) |
| |
| /* Description : Shift right arithmetic rounded (immediate) |
| Arguments : Inputs - in0, in1, shift |
| Outputs - in place operation |
| Return Type - as per RTYPE |
| Details : Each element of vector 'in0' is shifted right arithmetically by |
| the value in 'shift'. The last discarded bit is added to the |
| shifted value for rounding and the result is written in-place. |
| 'shift' is an immediate value. |
| */ |
| #define SRARI_H2(RTYPE, in0, in1, shift) \ |
| { \ |
| in0 = (RTYPE)__msa_srari_h((v8i16)in0, shift); \ |
| in1 = (RTYPE)__msa_srari_h((v8i16)in1, shift); \ |
| } |
| #define SRARI_H2_UH(...) SRARI_H2(v8u16, __VA_ARGS__) |
| #define SRARI_H2_SH(...) SRARI_H2(v8i16, __VA_ARGS__) |
| |
| #define SRARI_H4(RTYPE, in0, in1, in2, in3, shift) \ |
| { \ |
| SRARI_H2(RTYPE, in0, in1, shift); \ |
| SRARI_H2(RTYPE, in2, in3, shift); \ |
| } |
| #define SRARI_H4_UH(...) SRARI_H4(v8u16, __VA_ARGS__) |
| #define SRARI_H4_SH(...) SRARI_H4(v8i16, __VA_ARGS__) |
| |
| #define SRARI_W2(RTYPE, in0, in1, shift) \ |
| { \ |
| in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift); \ |
| in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift); \ |
| } |
| #define SRARI_W2_SW(...) SRARI_W2(v4i32, __VA_ARGS__) |
| |
| #define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) \ |
| { \ |
| SRARI_W2(RTYPE, in0, in1, shift); \ |
| SRARI_W2(RTYPE, in2, in3, shift); \ |
| } |
| #define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__) |
| |
| /* Description : Logical shift right all elements of vector (immediate) |
| Arguments : Inputs - in0, in1, in2, in3, shift |
| Outputs - out0, out1, out2, out3 |
| Return Type - as per RTYPE |
| Details : Each element of vector 'in0' is right shifted by 'shift' and |
| the result is written in-place. 'shift' is an immediate value. |
| */ |
| #define SRLI_H4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3, shift) \ |
| { \ |
| out0 = (RTYPE)__msa_srli_h((v8i16)in0, shift); \ |
| out1 = (RTYPE)__msa_srli_h((v8i16)in1, shift); \ |
| out2 = (RTYPE)__msa_srli_h((v8i16)in2, shift); \ |
| out3 = (RTYPE)__msa_srli_h((v8i16)in3, shift); \ |
| } |
| #define SRLI_H4_SH(...) SRLI_H4(v8i16, __VA_ARGS__) |
| |
| /* Description : Multiplication of pairs of vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Details : Each element from 'in0' is multiplied with elements from 'in1' |
| and the result is written to 'out0' |
| */ |
| #define MUL2(in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = in0 * in1; \ |
| out1 = in2 * in3; \ |
| } |
| #define MUL4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ |
| { \ |
| MUL2(in0, in1, in2, in3, out0, out1); \ |
| MUL2(in4, in5, in6, in7, out2, out3); \ |
| } |
| |
| /* Description : Addition of 2 pairs of vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Details : Each element in 'in0' is added to 'in1' and result is written |
| to 'out0'. |
| */ |
| #define ADD2(in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = in0 + in1; \ |
| out1 = in2 + in3; \ |
| } |
| #define ADD4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ |
| { \ |
| ADD2(in0, in1, in2, in3, out0, out1); \ |
| ADD2(in4, in5, in6, in7, out2, out3); \ |
| } |
| |
| /* Description : Subtraction of 2 pairs of vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1 |
| Details : Each element in 'in1' is subtracted from 'in0' and result is |
| written to 'out0'. |
| */ |
| #define SUB2(in0, in1, in2, in3, out0, out1) \ |
| { \ |
| out0 = in0 - in1; \ |
| out1 = in2 - in3; \ |
| } |
| #define SUB4(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, out3) \ |
| { \ |
| out0 = in0 - in1; \ |
| out1 = in2 - in3; \ |
| out2 = in4 - in5; \ |
| out3 = in6 - in7; \ |
| } |
| |
| /* Description : Sign extend halfword elements from right half of the vector |
| Arguments : Input - in (halfword vector) |
| Output - out (sign extended word vector) |
| Return Type - signed word |
| Details : Sign bit of halfword elements from input vector 'in' is |
| extracted and interleaved with same vector 'in0' to generate |
| 4 word elements keeping sign intact |
| */ |
| #define UNPCK_R_SH_SW(in, out) \ |
| { \ |
| v8i16 sign_m; \ |
| \ |
| sign_m = __msa_clti_s_h((v8i16)in, 0); \ |
| out = (v4i32)__msa_ilvr_h(sign_m, (v8i16)in); \ |
| } |
| |
| /* Description : Zero extend unsigned byte elements to halfword elements |
| Arguments : Input - in (unsigned byte vector) |
| Outputs - out0, out1 (unsigned halfword vectors) |
| Return Type - signed halfword |
| Details : Zero extended right half of vector is returned in 'out0' |
| Zero extended left half of vector is returned in 'out1' |
| */ |
| #define UNPCK_UB_SH(in, out0, out1) \ |
| { \ |
| v16i8 zero_m = { 0 }; \ |
| \ |
| ILVRL_B2_SH(zero_m, in, out0, out1); \ |
| } |
| |
| /* Description : Sign extend halfword elements from input vector and return |
| the result in pair of vectors |
| Arguments : Input - in (halfword vector) |
| Outputs - out0, out1 (sign extended word vectors) |
| Return Type - signed word |
| Details : Sign bit of halfword elements from input vector 'in' is |
| extracted and interleaved right with same vector 'in0' to |
| generate 4 signed word elements in 'out0' |
| Then interleaved left with same vector 'in0' to |
| generate 4 signed word elements in 'out1' |
| */ |
| #define UNPCK_SH_SW(in, out0, out1) \ |
| { \ |
| v8i16 tmp_m; \ |
| \ |
| tmp_m = __msa_clti_s_h((v8i16)in, 0); \ |
| ILVRL_H2_SW(tmp_m, in, out0, out1); \ |
| } |
| |
| /* Description : Butterfly of 4 input vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1, out2, out3 |
| Details : Butterfly operation |
| */ |
| #define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) \ |
| { \ |
| out0 = in0 + in3; \ |
| out1 = in1 + in2; \ |
| \ |
| out2 = in1 - in2; \ |
| out3 = in0 - in3; \ |
| } |
| |
| /* Description : Butterfly of 8 input vectors |
| Arguments : Inputs - in0 ... in7 |
| Outputs - out0 .. out7 |
| Details : Butterfly operation |
| */ |
| #define BUTTERFLY_8(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, out2, \ |
| out3, out4, out5, out6, out7) \ |
| { \ |
| out0 = in0 + in7; \ |
| out1 = in1 + in6; \ |
| out2 = in2 + in5; \ |
| out3 = in3 + in4; \ |
| \ |
| out4 = in3 - in4; \ |
| out5 = in2 - in5; \ |
| out6 = in1 - in6; \ |
| out7 = in0 - in7; \ |
| } |
| |
| /* Description : Butterfly of 16 input vectors |
| Arguments : Inputs - in0 ... in15 |
| Outputs - out0 .. out15 |
| Details : Butterfly operation |
| */ |
| #define BUTTERFLY_16(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, in10, \ |
| in11, in12, in13, in14, in15, out0, out1, out2, out3, \ |
| out4, out5, out6, out7, out8, out9, out10, out11, out12, \ |
| out13, out14, out15) \ |
| { \ |
| out0 = in0 + in15; \ |
| out1 = in1 + in14; \ |
| out2 = in2 + in13; \ |
| out3 = in3 + in12; \ |
| out4 = in4 + in11; \ |
| out5 = in5 + in10; \ |
| out6 = in6 + in9; \ |
| out7 = in7 + in8; \ |
| \ |
| out8 = in7 - in8; \ |
| out9 = in6 - in9; \ |
| out10 = in5 - in10; \ |
| out11 = in4 - in11; \ |
| out12 = in3 - in12; \ |
| out13 = in2 - in13; \ |
| out14 = in1 - in14; \ |
| out15 = in0 - in15; \ |
| } |
| |
| /* Description : Transpose input 8x8 byte block |
| Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 |
| Outputs - out0, out1, out2, out3, out4, out5, out6, out7 |
| Return Type - as per RTYPE |
| */ |
| #define TRANSPOSE8x8_UB(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, \ |
| out1, out2, out3, out4, out5, out6, out7) \ |
| { \ |
| v16i8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ |
| v16i8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ |
| \ |
| ILVR_B4_SB(in2, in0, in3, in1, in6, in4, in7, in5, tmp0_m, tmp1_m, tmp2_m, \ |
| tmp3_m); \ |
| ILVRL_B2_SB(tmp1_m, tmp0_m, tmp4_m, tmp5_m); \ |
| ILVRL_B2_SB(tmp3_m, tmp2_m, tmp6_m, tmp7_m); \ |
| ILVRL_W2(RTYPE, tmp6_m, tmp4_m, out0, out2); \ |
| ILVRL_W2(RTYPE, tmp7_m, tmp5_m, out4, out6); \ |
| SLDI_B2_0(RTYPE, out0, out2, out1, out3, 8); \ |
| SLDI_B2_0(RTYPE, out4, out6, out5, out7, 8); \ |
| } |
| #define TRANSPOSE8x8_UB_UB(...) TRANSPOSE8x8_UB(v16u8, __VA_ARGS__) |
| |
| /* Description : Transpose 16x8 block into 8x16 with byte elements in vectors |
| Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7, |
| in8, in9, in10, in11, in12, in13, in14, in15 |
| Outputs - out0, out1, out2, out3, out4, out5, out6, out7 |
| Return Type - unsigned byte |
| */ |
| #define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7, in8, in9, \ |
| in10, in11, in12, in13, in14, in15, out0, out1, \ |
| out2, out3, out4, out5, out6, out7) \ |
| { \ |
| v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ |
| v16u8 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ |
| \ |
| ILVEV_D2_UB(in0, in8, in1, in9, out7, out6); \ |
| ILVEV_D2_UB(in2, in10, in3, in11, out5, out4); \ |
| ILVEV_D2_UB(in4, in12, in5, in13, out3, out2); \ |
| ILVEV_D2_UB(in6, in14, in7, in15, out1, out0); \ |
| \ |
| tmp0_m = (v16u8)__msa_ilvev_b((v16i8)out6, (v16i8)out7); \ |
| tmp4_m = (v16u8)__msa_ilvod_b((v16i8)out6, (v16i8)out7); \ |
| tmp1_m = (v16u8)__msa_ilvev_b((v16i8)out4, (v16i8)out5); \ |
| tmp5_m = (v16u8)__msa_ilvod_b((v16i8)out4, (v16i8)out5); \ |
| out5 = (v16u8)__msa_ilvev_b((v16i8)out2, (v16i8)out3); \ |
| tmp6_m = (v16u8)__msa_ilvod_b((v16i8)out2, (v16i8)out3); \ |
| out7 = (v16u8)__msa_ilvev_b((v16i8)out0, (v16i8)out1); \ |
| tmp7_m = (v16u8)__msa_ilvod_b((v16i8)out0, (v16i8)out1); \ |
| \ |
| ILVEV_H2_UB(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m); \ |
| out0 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ |
| out4 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ |
| \ |
| tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m); \ |
| tmp3_m = (v16u8)__msa_ilvod_h((v8i16)out7, (v8i16)out5); \ |
| out2 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ |
| out6 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ |
| \ |
| ILVEV_H2_UB(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m); \ |
| out1 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ |
| out5 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ |
| \ |
| tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m); \ |
| tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m); \ |
| tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m); \ |
| tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m); \ |
| out3 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ |
| out7 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m); \ |
| } |
| |
| /* Description : Transpose 4x4 block with half word elements in vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1, out2, out3 |
| Return Type - signed halfword |
| */ |
| #define TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) \ |
| { \ |
| v8i16 s0_m, s1_m; \ |
| \ |
| ILVR_H2_SH(in1, in0, in3, in2, s0_m, s1_m); \ |
| ILVRL_W2_SH(s1_m, s0_m, out0, out2); \ |
| out1 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out0); \ |
| out3 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out2); \ |
| } |
| |
| /* Description : Transpose 4x8 block with half word elements in vectors |
| Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 |
| Outputs - out0, out1, out2, out3, out4, out5, out6, out7 |
| Return Type - signed halfword |
| */ |
| #define TRANSPOSE4X8_SH_SH(in0, in1, in2, in3, in4, in5, in6, in7, out0, out1, \ |
| out2, out3, out4, out5, out6, out7) \ |
| { \ |
| v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ |
| v8i16 tmp0_n, tmp1_n, tmp2_n, tmp3_n; \ |
| v8i16 zero_m = { 0 }; \ |
| \ |
| ILVR_H4_SH(in1, in0, in3, in2, in5, in4, in7, in6, tmp0_n, tmp1_n, tmp2_n, \ |
| tmp3_n); \ |
| ILVRL_W2_SH(tmp1_n, tmp0_n, tmp0_m, tmp2_m); \ |
| ILVRL_W2_SH(tmp3_n, tmp2_n, tmp1_m, tmp3_m); \ |
| \ |
| out0 = (v8i16)__msa_ilvr_d((v2i64)tmp1_m, (v2i64)tmp0_m); \ |
| out1 = (v8i16)__msa_ilvl_d((v2i64)tmp1_m, (v2i64)tmp0_m); \ |
| out2 = (v8i16)__msa_ilvr_d((v2i64)tmp3_m, (v2i64)tmp2_m); \ |
| out3 = (v8i16)__msa_ilvl_d((v2i64)tmp3_m, (v2i64)tmp2_m); \ |
| \ |
| out4 = zero_m; \ |
| out5 = zero_m; \ |
| out6 = zero_m; \ |
| out7 = zero_m; \ |
| } |
| |
| /* Description : Transpose 8x4 block with half word elements in vectors |
| Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 |
| Outputs - out0, out1, out2, out3, out4, out5, out6, out7 |
| Return Type - signed halfword |
| */ |
| #define TRANSPOSE8X4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3) \ |
| { \ |
| v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ |
| \ |
| ILVR_H2_SH(in1, in0, in3, in2, tmp0_m, tmp1_m); \ |
| ILVL_H2_SH(in1, in0, in3, in2, tmp2_m, tmp3_m); \ |
| ILVR_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out0, out2); \ |
| ILVL_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out1, out3); \ |
| } |
| |
| /* Description : Transpose 8x8 block with half word elements in vectors |
| Arguments : Inputs - in0, in1, in2, in3, in4, in5, in6, in7 |
| Outputs - out0, out1, out2, out3, out4, out5, out6, out7 |
| Return Type - as per RTYPE |
| */ |
| #define TRANSPOSE8x8_H(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7, out0, \ |
| out1, out2, out3, out4, out5, out6, out7) \ |
| { \ |
| v8i16 s0_m, s1_m; \ |
| v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ |
| v8i16 tmp4_m, tmp5_m, tmp6_m, tmp7_m; \ |
| \ |
| ILVR_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \ |
| ILVRL_H2_SH(s1_m, s0_m, tmp0_m, tmp1_m); \ |
| ILVL_H2_SH(in6, in4, in7, in5, s0_m, s1_m); \ |
| ILVRL_H2_SH(s1_m, s0_m, tmp2_m, tmp3_m); \ |
| ILVR_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \ |
| ILVRL_H2_SH(s1_m, s0_m, tmp4_m, tmp5_m); \ |
| ILVL_H2_SH(in2, in0, in3, in1, s0_m, s1_m); \ |
| ILVRL_H2_SH(s1_m, s0_m, tmp6_m, tmp7_m); \ |
| PCKEV_D4(RTYPE, tmp0_m, tmp4_m, tmp1_m, tmp5_m, tmp2_m, tmp6_m, tmp3_m, \ |
| tmp7_m, out0, out2, out4, out6); \ |
| out1 = (RTYPE)__msa_pckod_d((v2i64)tmp0_m, (v2i64)tmp4_m); \ |
| out3 = (RTYPE)__msa_pckod_d((v2i64)tmp1_m, (v2i64)tmp5_m); \ |
| out5 = (RTYPE)__msa_pckod_d((v2i64)tmp2_m, (v2i64)tmp6_m); \ |
| out7 = (RTYPE)__msa_pckod_d((v2i64)tmp3_m, (v2i64)tmp7_m); \ |
| } |
| #define TRANSPOSE8x8_SH_SH(...) TRANSPOSE8x8_H(v8i16, __VA_ARGS__) |
| |
| /* Description : Transpose 4x4 block with word elements in vectors |
| Arguments : Inputs - in0, in1, in2, in3 |
| Outputs - out0, out1, out2, out3 |
| Return Type - signed word |
| */ |
| #define TRANSPOSE4x4_SW_SW(in0, in1, in2, in3, out0, out1, out2, out3) \ |
| { \ |
| v4i32 s0_m, s1_m, s2_m, s3_m; \ |
| \ |
| ILVRL_W2_SW(in1, in0, s0_m, s1_m); \ |
| ILVRL_W2_SW(in3, in2, s2_m, s3_m); \ |
| \ |
| out0 = (v4i32)__msa_ilvr_d((v2i64)s2_m, (v2i64)s0_m); \ |
| out1 = (v4i32)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m); \ |
| out2 = (v4i32)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m); \ |
| out3 = (v4i32)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m); \ |
| } |
| |
| /* Description : Add block 4x4 |
| Arguments : Inputs - in0, in1, in2, in3, pdst, stride |
| Details : Least significant 4 bytes from each input vector are added to |
| the destination bytes, clipped between 0-255 and stored. |
| */ |
| #define ADDBLK_ST4x4_UB(in0, in1, in2, in3, pdst, stride) \ |
| { \ |
| uint32_t src0_m, src1_m, src2_m, src3_m; \ |
| v8i16 inp0_m, inp1_m, res0_m, res1_m; \ |
| v16i8 dst0_m = { 0 }; \ |
| v16i8 dst1_m = { 0 }; \ |
| v16i8 zero_m = { 0 }; \ |
| \ |
| ILVR_D2_SH(in1, in0, in3, in2, inp0_m, inp1_m) \ |
| LW4(pdst, stride, src0_m, src1_m, src2_m, src3_m); \ |
| INSERT_W2_SB(src0_m, src1_m, dst0_m); \ |
| INSERT_W2_SB(src2_m, src3_m, dst1_m); \ |
| ILVR_B2_SH(zero_m, dst0_m, zero_m, dst1_m, res0_m, res1_m); \ |
| ADD2(res0_m, inp0_m, res1_m, inp1_m, res0_m, res1_m); \ |
| CLIP_SH2_0_255(res0_m, res1_m); \ |
| PCKEV_B2_SB(res0_m, res0_m, res1_m, res1_m, dst0_m, dst1_m); \ |
| ST4x4_UB(dst0_m, dst1_m, 0, 1, 0, 1, pdst, stride); \ |
| } |
| |
| /* Description : Pack even elements of input vectors & xor with 128 |
| Arguments : Inputs - in0, in1 |
| Output - out_m |
| Return Type - unsigned byte |
| Details : Signed byte even elements from 'in0' and 'in1' are packed |
| together in one vector and the resulting vector is xor'ed with |
| 128 to shift the range from signed to unsigned byte |
| */ |
| #define PCKEV_XORI128_UB(in0, in1) \ |
| ({ \ |
| v16u8 out_m; \ |
| \ |
| out_m = (v16u8)__msa_pckev_b((v16i8)in1, (v16i8)in0); \ |
| out_m = (v16u8)__msa_xori_b((v16u8)out_m, 128); \ |
| out_m; \ |
| }) |
| |
| /* Description : Converts inputs to unsigned bytes, interleave, average & store |
| as 8x4 unsigned byte block |
| Arguments : Inputs - in0, in1, in2, in3, dst0, dst1, dst2, dst3, |
| pdst, stride |
| */ |
| #define CONVERT_UB_AVG_ST8x4_UB(in0, in1, in2, in3, dst0, dst1, dst2, dst3, \ |
| pdst, stride) \ |
| { \ |
| v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m; \ |
| uint8_t *pdst_m = (uint8_t *)(pdst); \ |
| \ |
| tmp0_m = PCKEV_XORI128_UB(in0, in1); \ |
| tmp1_m = PCKEV_XORI128_UB(in2, in3); \ |
| ILVR_D2_UB(dst1, dst0, dst3, dst2, tmp2_m, tmp3_m); \ |
| AVER_UB2_UB(tmp0_m, tmp2_m, tmp1_m, tmp3_m, tmp0_m, tmp1_m); \ |
| ST8x4_UB(tmp0_m, tmp1_m, pdst_m, stride); \ |
| } |
| |
| /* Description : Pack even byte elements and store byte vector in destination |
| memory |
| Arguments : Inputs - in0, in1, pdst |
| */ |
| #define PCKEV_ST_SB(in0, in1, pdst) \ |
| { \ |
| v16i8 tmp_m; \ |
| \ |
| tmp_m = __msa_pckev_b((v16i8)in1, (v16i8)in0); \ |
| ST_SB(tmp_m, (pdst)); \ |
| } |
| |
| /* Description : Horizontal 2 tap filter kernel code |
| Arguments : Inputs - in0, in1, mask, coeff, shift |
| */ |
| #define HORIZ_2TAP_FILT_UH(in0, in1, mask, coeff, shift) \ |
| ({ \ |
| v16i8 tmp0_m; \ |
| v8u16 tmp1_m; \ |
| \ |
| tmp0_m = __msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0); \ |
| tmp1_m = __msa_dotp_u_h((v16u8)tmp0_m, (v16u8)coeff); \ |
| tmp1_m = (v8u16)__msa_srari_h((v8i16)tmp1_m, shift); \ |
| \ |
| tmp1_m; \ |
| }) |
| #endif /* VPX_DSP_MIPS_MACROS_MSA_H_ */ |