blob: 2c7e431c745a74bb914e8b6d1d33260f940cd76f [file] [log] [blame]
/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <emmintrin.h>
#include <xmmintrin.h>
#include "./vpx_dsp_rtcd.h"
#include "vpx/vpx_integer.h"
static INLINE __m128i load_coefficients(const tran_low_t *coeff_ptr) {
#if CONFIG_VP9_HIGHBITDEPTH
return _mm_setr_epi16((int16_t)coeff_ptr[0], (int16_t)coeff_ptr[1],
(int16_t)coeff_ptr[2], (int16_t)coeff_ptr[3],
(int16_t)coeff_ptr[4], (int16_t)coeff_ptr[5],
(int16_t)coeff_ptr[6], (int16_t)coeff_ptr[7]);
#else
return _mm_load_si128((const __m128i *)coeff_ptr);
#endif
}
static INLINE void store_coefficients(__m128i coeff_vals,
tran_low_t *coeff_ptr) {
#if CONFIG_VP9_HIGHBITDEPTH
__m128i one = _mm_set1_epi16(1);
__m128i coeff_vals_hi = _mm_mulhi_epi16(coeff_vals, one);
__m128i coeff_vals_lo = _mm_mullo_epi16(coeff_vals, one);
__m128i coeff_vals_1 = _mm_unpacklo_epi16(coeff_vals_lo, coeff_vals_hi);
__m128i coeff_vals_2 = _mm_unpackhi_epi16(coeff_vals_lo, coeff_vals_hi);
_mm_store_si128((__m128i *)(coeff_ptr), coeff_vals_1);
_mm_store_si128((__m128i *)(coeff_ptr + 4), coeff_vals_2);
#else
_mm_store_si128((__m128i *)(coeff_ptr), coeff_vals);
#endif
}
void vpx_quantize_b_sse2(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
uint16_t *eob_ptr, const int16_t *scan_ptr,
const int16_t *iscan_ptr) {
__m128i zero;
(void)scan_ptr;
coeff_ptr += n_coeffs;
iscan_ptr += n_coeffs;
qcoeff_ptr += n_coeffs;
dqcoeff_ptr += n_coeffs;
n_coeffs = -n_coeffs;
zero = _mm_setzero_si128();
if (!skip_block) {
__m128i eob;
__m128i zbin;
__m128i round, quant, dequant, shift;
{
__m128i coeff0, coeff1;
// Setup global values
{
__m128i pw_1;
zbin = _mm_load_si128((const __m128i *)zbin_ptr);
round = _mm_load_si128((const __m128i *)round_ptr);
quant = _mm_load_si128((const __m128i *)quant_ptr);
pw_1 = _mm_set1_epi16(1);
zbin = _mm_sub_epi16(zbin, pw_1);
dequant = _mm_load_si128((const __m128i *)dequant_ptr);
shift = _mm_load_si128((const __m128i *)quant_shift_ptr);
}
{
__m128i coeff0_sign, coeff1_sign;
__m128i qcoeff0, qcoeff1;
__m128i qtmp0, qtmp1;
__m128i cmp_mask0, cmp_mask1;
// Do DC and first 15 AC
coeff0 = load_coefficients(coeff_ptr + n_coeffs);
coeff1 = load_coefficients(coeff_ptr + n_coeffs + 8);
// Poor man's sign extract
coeff0_sign = _mm_srai_epi16(coeff0, 15);
coeff1_sign = _mm_srai_epi16(coeff1, 15);
qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
qcoeff0 = _mm_adds_epi16(qcoeff0, round);
round = _mm_unpackhi_epi64(round, round);
qcoeff1 = _mm_adds_epi16(qcoeff1, round);
qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
quant = _mm_unpackhi_epi64(quant, quant);
qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
qtmp0 = _mm_add_epi16(qtmp0, qcoeff0);
qtmp1 = _mm_add_epi16(qtmp1, qcoeff1);
qcoeff0 = _mm_mulhi_epi16(qtmp0, shift);
shift = _mm_unpackhi_epi64(shift, shift);
qcoeff1 = _mm_mulhi_epi16(qtmp1, shift);
// Reinsert signs
qcoeff0 = _mm_xor_si128(qcoeff0, coeff0_sign);
qcoeff1 = _mm_xor_si128(qcoeff1, coeff1_sign);
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
// Mask out zbin threshold coeffs
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_coefficients(qcoeff0, qcoeff_ptr + n_coeffs);
store_coefficients(qcoeff1, qcoeff_ptr + n_coeffs + 8);
coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
dequant = _mm_unpackhi_epi64(dequant, dequant);
coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
store_coefficients(coeff0, dqcoeff_ptr + n_coeffs);
store_coefficients(coeff1, dqcoeff_ptr + n_coeffs + 8);
}
{
// Scan for eob
__m128i zero_coeff0, zero_coeff1;
__m128i nzero_coeff0, nzero_coeff1;
__m128i iscan0, iscan1;
__m128i eob1;
zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs));
iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1);
// Add one to convert from indices to counts
iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
eob = _mm_and_si128(iscan0, nzero_coeff0);
eob1 = _mm_and_si128(iscan1, nzero_coeff1);
eob = _mm_max_epi16(eob, eob1);
}
n_coeffs += 8 * 2;
}
// AC only loop
while (n_coeffs < 0) {
__m128i coeff0, coeff1;
{
__m128i coeff0_sign, coeff1_sign;
__m128i qcoeff0, qcoeff1;
__m128i qtmp0, qtmp1;
__m128i cmp_mask0, cmp_mask1;
coeff0 = load_coefficients(coeff_ptr + n_coeffs);
coeff1 = load_coefficients(coeff_ptr + n_coeffs + 8);
// Poor man's sign extract
coeff0_sign = _mm_srai_epi16(coeff0, 15);
coeff1_sign = _mm_srai_epi16(coeff1, 15);
qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
qcoeff0 = _mm_adds_epi16(qcoeff0, round);
qcoeff1 = _mm_adds_epi16(qcoeff1, round);
qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
qtmp0 = _mm_add_epi16(qtmp0, qcoeff0);
qtmp1 = _mm_add_epi16(qtmp1, qcoeff1);
qcoeff0 = _mm_mulhi_epi16(qtmp0, shift);
qcoeff1 = _mm_mulhi_epi16(qtmp1, shift);
// Reinsert signs
qcoeff0 = _mm_xor_si128(qcoeff0, coeff0_sign);
qcoeff1 = _mm_xor_si128(qcoeff1, coeff1_sign);
qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
// Mask out zbin threshold coeffs
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_coefficients(qcoeff0, qcoeff_ptr + n_coeffs);
store_coefficients(qcoeff1, qcoeff_ptr + n_coeffs + 8);
coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
store_coefficients(coeff0, dqcoeff_ptr + n_coeffs);
store_coefficients(coeff1, dqcoeff_ptr + n_coeffs + 8);
}
{
// Scan for eob
__m128i zero_coeff0, zero_coeff1;
__m128i nzero_coeff0, nzero_coeff1;
__m128i iscan0, iscan1;
__m128i eob0, eob1;
zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs));
iscan1 = _mm_load_si128((const __m128i *)(iscan_ptr + n_coeffs) + 1);
// Add one to convert from indices to counts
iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
eob0 = _mm_and_si128(iscan0, nzero_coeff0);
eob1 = _mm_and_si128(iscan1, nzero_coeff1);
eob0 = _mm_max_epi16(eob0, eob1);
eob = _mm_max_epi16(eob, eob0);
}
n_coeffs += 8 * 2;
}
// Accumulate EOB
{
__m128i eob_shuffled;
eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
eob = _mm_max_epi16(eob, eob_shuffled);
eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
eob = _mm_max_epi16(eob, eob_shuffled);
eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
eob = _mm_max_epi16(eob, eob_shuffled);
*eob_ptr = _mm_extract_epi16(eob, 1);
}
} else {
do {
store_coefficients(zero, dqcoeff_ptr + n_coeffs);
store_coefficients(zero, dqcoeff_ptr + n_coeffs + 8);
store_coefficients(zero, qcoeff_ptr + n_coeffs);
store_coefficients(zero, qcoeff_ptr + n_coeffs + 8);
n_coeffs += 8 * 2;
} while (n_coeffs < 0);
*eob_ptr = 0;
}
}