| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <immintrin.h> |
| |
| #include "config/aom_dsp_rtcd.h" |
| #include "aom_dsp/x86/intrapred_x86.h" |
| #include "aom_dsp/x86/lpf_common_sse2.h" |
| #include "aom_dsp/x86/synonyms.h" |
| #if CONFIG_IDIF |
| #include "av1/common/reconintra.h" |
| #endif // CONFIG_IDIF |
| |
| static DECLARE_ALIGNED(16, uint8_t, HighbdLoadMaskx[8][16]) = { |
| { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
| { 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, |
| { 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }, |
| { 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }, |
| { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7 }, |
| { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 4, 5 }, |
| { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3 }, |
| { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 }, |
| }; |
| |
| static DECLARE_ALIGNED(16, uint8_t, HighbdEvenOddMaskx4[4][16]) = { |
| { 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15 }, |
| { 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 4, 5, 8, 9, 12, 13 }, |
| { 0, 1, 0, 1, 4, 5, 8, 9, 12, 13, 0, 1, 6, 7, 10, 11 }, |
| { 0, 1, 0, 1, 0, 1, 6, 7, 10, 11, 14, 15, 0, 1, 8, 9 } |
| }; |
| |
| static DECLARE_ALIGNED(16, uint8_t, HighbdEvenOddMaskx[8][32]) = { |
| { 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, |
| 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 }, |
| { 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, |
| 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29 }, |
| { 0, 1, 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, |
| 0, 1, 0, 1, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27 }, |
| { 0, 1, 0, 1, 0, 1, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, |
| 0, 1, 0, 1, 0, 1, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25 }, |
| { 0, 1, 0, 1, 0, 1, 0, 1, 8, 9, 12, 13, 16, 17, 20, 21, |
| 0, 1, 0, 1, 0, 1, 0, 1, 10, 11, 14, 15, 18, 19, 22, 23 }, |
| { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 10, 11, 14, 15, 18, 19, |
| 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 12, 13, 16, 17, 20, 21 }, |
| { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 12, 13, 16, 17, |
| 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 14, 15, 18, 19 }, |
| { 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 14, 15, |
| 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 16, 17 } |
| }; |
| |
| static DECLARE_ALIGNED(32, uint16_t, HighbdBaseMask[17][16]) = { |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
| { 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0, 0, |
| 0, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, |
| 0, 0, 0, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0, 0, 0, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0xffff, 0, 0, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0xffff, 0xffff, 0, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0xffff, 0xffff, 0xffff, 0, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0 }, |
| { 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, |
| 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff } |
| }; |
| |
| static INLINE void highbd_transpose4x16_avx2(__m256i *x0, __m256i *x1, |
| __m256i *x2, __m256i *x3, |
| __m256i *d0, __m256i *d1, |
| __m256i *d2, __m256i *d3) { |
| __m256i w0, w1, w2, w3, ww0, ww1; |
| |
| w0 = _mm256_unpacklo_epi16(*x0, *x1); // 00 10 01 11 02 12 03 13 |
| w1 = _mm256_unpacklo_epi16(*x2, *x3); // 20 30 21 31 22 32 23 33 |
| w2 = _mm256_unpackhi_epi16(*x0, *x1); // 40 50 41 51 42 52 43 53 |
| w3 = _mm256_unpackhi_epi16(*x2, *x3); // 60 70 61 71 62 72 63 73 |
| |
| ww0 = _mm256_unpacklo_epi32(w0, w1); // 00 10 20 30 01 11 21 31 |
| ww1 = _mm256_unpacklo_epi32(w2, w3); // 40 50 60 70 41 51 61 71 |
| |
| *d0 = _mm256_unpacklo_epi64(ww0, ww1); // 00 10 20 30 40 50 60 70 |
| *d1 = _mm256_unpackhi_epi64(ww0, ww1); // 01 11 21 31 41 51 61 71 |
| |
| ww0 = _mm256_unpackhi_epi32(w0, w1); // 02 12 22 32 03 13 23 33 |
| ww1 = _mm256_unpackhi_epi32(w2, w3); // 42 52 62 72 43 53 63 73 |
| |
| *d2 = _mm256_unpacklo_epi64(ww0, ww1); // 02 12 22 32 42 52 62 72 |
| *d3 = _mm256_unpackhi_epi64(ww0, ww1); // 03 13 23 33 43 53 63 73 |
| } |
| |
| static INLINE void highbd_transpose8x16_16x8_avx2( |
| __m256i *x0, __m256i *x1, __m256i *x2, __m256i *x3, __m256i *x4, |
| __m256i *x5, __m256i *x6, __m256i *x7, __m256i *d0, __m256i *d1, |
| __m256i *d2, __m256i *d3, __m256i *d4, __m256i *d5, __m256i *d6, |
| __m256i *d7) { |
| __m256i w0, w1, w2, w3, ww0, ww1; |
| |
| w0 = _mm256_unpacklo_epi16(*x0, *x1); // 00 10 01 11 02 12 03 13 |
| w1 = _mm256_unpacklo_epi16(*x2, *x3); // 20 30 21 31 22 32 23 33 |
| w2 = _mm256_unpacklo_epi16(*x4, *x5); // 40 50 41 51 42 52 43 53 |
| w3 = _mm256_unpacklo_epi16(*x6, *x7); // 60 70 61 71 62 72 63 73 |
| |
| ww0 = _mm256_unpacklo_epi32(w0, w1); // 00 10 20 30 01 11 21 31 |
| ww1 = _mm256_unpacklo_epi32(w2, w3); // 40 50 60 70 41 51 61 71 |
| |
| *d0 = _mm256_unpacklo_epi64(ww0, ww1); // 00 10 20 30 40 50 60 70 |
| *d1 = _mm256_unpackhi_epi64(ww0, ww1); // 01 11 21 31 41 51 61 71 |
| |
| ww0 = _mm256_unpackhi_epi32(w0, w1); // 02 12 22 32 03 13 23 33 |
| ww1 = _mm256_unpackhi_epi32(w2, w3); // 42 52 62 72 43 53 63 73 |
| |
| *d2 = _mm256_unpacklo_epi64(ww0, ww1); // 02 12 22 32 42 52 62 72 |
| *d3 = _mm256_unpackhi_epi64(ww0, ww1); // 03 13 23 33 43 53 63 73 |
| |
| w0 = _mm256_unpackhi_epi16(*x0, *x1); // 04 14 05 15 06 16 07 17 |
| w1 = _mm256_unpackhi_epi16(*x2, *x3); // 24 34 25 35 26 36 27 37 |
| w2 = _mm256_unpackhi_epi16(*x4, *x5); // 44 54 45 55 46 56 47 57 |
| w3 = _mm256_unpackhi_epi16(*x6, *x7); // 64 74 65 75 66 76 67 77 |
| |
| ww0 = _mm256_unpacklo_epi32(w0, w1); // 04 14 24 34 05 15 25 35 |
| ww1 = _mm256_unpacklo_epi32(w2, w3); // 44 54 64 74 45 55 65 75 |
| |
| *d4 = _mm256_unpacklo_epi64(ww0, ww1); // 04 14 24 34 44 54 64 74 |
| *d5 = _mm256_unpackhi_epi64(ww0, ww1); // 05 15 25 35 45 55 65 75 |
| |
| ww0 = _mm256_unpackhi_epi32(w0, w1); // 06 16 26 36 07 17 27 37 |
| ww1 = _mm256_unpackhi_epi32(w2, w3); // 46 56 66 76 47 57 67 77 |
| |
| *d6 = _mm256_unpacklo_epi64(ww0, ww1); // 06 16 26 36 46 56 66 76 |
| *d7 = _mm256_unpackhi_epi64(ww0, ww1); // 07 17 27 37 47 57 67 77 |
| } |
| |
| static INLINE void highbd_transpose16x16_avx2(__m256i *x, __m256i *d) { |
| __m256i w0, w1, w2, w3, ww0, ww1; |
| __m256i dd[16]; |
| w0 = _mm256_unpacklo_epi16(x[0], x[1]); |
| w1 = _mm256_unpacklo_epi16(x[2], x[3]); |
| w2 = _mm256_unpacklo_epi16(x[4], x[5]); |
| w3 = _mm256_unpacklo_epi16(x[6], x[7]); |
| |
| ww0 = _mm256_unpacklo_epi32(w0, w1); // |
| ww1 = _mm256_unpacklo_epi32(w2, w3); // |
| |
| dd[0] = _mm256_unpacklo_epi64(ww0, ww1); |
| dd[1] = _mm256_unpackhi_epi64(ww0, ww1); |
| |
| ww0 = _mm256_unpackhi_epi32(w0, w1); // |
| ww1 = _mm256_unpackhi_epi32(w2, w3); // |
| |
| dd[2] = _mm256_unpacklo_epi64(ww0, ww1); |
| dd[3] = _mm256_unpackhi_epi64(ww0, ww1); |
| |
| w0 = _mm256_unpackhi_epi16(x[0], x[1]); |
| w1 = _mm256_unpackhi_epi16(x[2], x[3]); |
| w2 = _mm256_unpackhi_epi16(x[4], x[5]); |
| w3 = _mm256_unpackhi_epi16(x[6], x[7]); |
| |
| ww0 = _mm256_unpacklo_epi32(w0, w1); // |
| ww1 = _mm256_unpacklo_epi32(w2, w3); // |
| |
| dd[4] = _mm256_unpacklo_epi64(ww0, ww1); |
| dd[5] = _mm256_unpackhi_epi64(ww0, ww1); |
| |
| ww0 = _mm256_unpackhi_epi32(w0, w1); // |
| ww1 = _mm256_unpackhi_epi32(w2, w3); // |
| |
| dd[6] = _mm256_unpacklo_epi64(ww0, ww1); |
| dd[7] = _mm256_unpackhi_epi64(ww0, ww1); |
| |
| w0 = _mm256_unpacklo_epi16(x[8], x[9]); |
| w1 = _mm256_unpacklo_epi16(x[10], x[11]); |
| w2 = _mm256_unpacklo_epi16(x[12], x[13]); |
| w3 = _mm256_unpacklo_epi16(x[14], x[15]); |
| |
| ww0 = _mm256_unpacklo_epi32(w0, w1); |
| ww1 = _mm256_unpacklo_epi32(w2, w3); |
| |
| dd[8] = _mm256_unpacklo_epi64(ww0, ww1); |
| dd[9] = _mm256_unpackhi_epi64(ww0, ww1); |
| |
| ww0 = _mm256_unpackhi_epi32(w0, w1); |
| ww1 = _mm256_unpackhi_epi32(w2, w3); |
| |
| dd[10] = _mm256_unpacklo_epi64(ww0, ww1); |
| dd[11] = _mm256_unpackhi_epi64(ww0, ww1); |
| |
| w0 = _mm256_unpackhi_epi16(x[8], x[9]); |
| w1 = _mm256_unpackhi_epi16(x[10], x[11]); |
| w2 = _mm256_unpackhi_epi16(x[12], x[13]); |
| w3 = _mm256_unpackhi_epi16(x[14], x[15]); |
| |
| ww0 = _mm256_unpacklo_epi32(w0, w1); |
| ww1 = _mm256_unpacklo_epi32(w2, w3); |
| |
| dd[12] = _mm256_unpacklo_epi64(ww0, ww1); |
| dd[13] = _mm256_unpackhi_epi64(ww0, ww1); |
| |
| ww0 = _mm256_unpackhi_epi32(w0, w1); |
| ww1 = _mm256_unpackhi_epi32(w2, w3); |
| |
| dd[14] = _mm256_unpacklo_epi64(ww0, ww1); |
| dd[15] = _mm256_unpackhi_epi64(ww0, ww1); |
| |
| for (int i = 0; i < 8; i++) { |
| d[i] = _mm256_insertf128_si256(dd[i], _mm256_castsi256_si128(dd[i + 8]), 1); |
| d[i + 8] = _mm256_insertf128_si256(dd[i + 8], |
| _mm256_extracti128_si256(dd[i], 1), 0); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_transpose16x4_8x8_avx2(__m128i *dstvec, |
| __m256i *d) { |
| // r0 = 00 10 01 11 02 12 03 13 |
| const __m128i r0 = _mm_unpacklo_epi16(dstvec[0], dstvec[1]); |
| // r1 = 20 30 21 31 22 32 23 33 |
| const __m128i r1 = _mm_unpacklo_epi16(dstvec[2], dstvec[3]); |
| // r2 = 40 50 41 51 42 52 43 53 |
| const __m128i r2 = _mm_unpacklo_epi16(dstvec[4], dstvec[5]); |
| // r3 = 60 70 61 71 62 72 63 73 |
| const __m128i r3 = _mm_unpacklo_epi16(dstvec[6], dstvec[7]); |
| // r4 = 80 90 81 91 82 92 83 93 |
| const __m128i r4 = _mm_unpacklo_epi16(dstvec[8], dstvec[9]); |
| // r5 = 100 110 101 111 102 112 103 113 |
| const __m128i r5 = _mm_unpacklo_epi16(dstvec[10], dstvec[11]); |
| // r6 = 120 130 121 131 122 132 123 133 |
| const __m128i r6 = _mm_unpacklo_epi16(dstvec[12], dstvec[13]); |
| // r7 = 140 150 141 151 142 152 143 153 |
| const __m128i r7 = _mm_unpacklo_epi16(dstvec[14], dstvec[15]); |
| |
| // 00 10 01 11 02 12 03 13 | 80 90 81 91 82 92 83 93 |
| const __m256i dstvec256_0 = |
| _mm256_insertf128_si256(_mm256_castsi128_si256(r0), r4, 0x1); |
| // 20 30 21 31 22 32 23 33 | 100 110 101 111 102 112 103 113 |
| const __m256i dstvec256_1 = |
| _mm256_insertf128_si256(_mm256_castsi128_si256(r1), r5, 0x1); |
| // 40 50 41 51 42 52 43 53 | 120 130 121 131 122 132 123 133 |
| const __m256i dstvec256_2 = |
| _mm256_insertf128_si256(_mm256_castsi128_si256(r2), r6, 0x1); |
| // 60 70 61 71 62 72 63 73 | 140 150 141 151 142 152 143 153 |
| const __m256i dstvec256_3 = |
| _mm256_insertf128_si256(_mm256_castsi128_si256(r3), r7, 0x1); |
| |
| // 00 10 20 30 01 11 21 31 | 80 90 100 110 81 91 101 111 |
| const __m256i r8 = _mm256_unpacklo_epi32(dstvec256_0, dstvec256_1); |
| // 02 12 22 32 03 13 23 33 | 82 92 102 112 83 93 103 113 |
| const __m256i r9 = _mm256_unpackhi_epi32(dstvec256_0, dstvec256_1); |
| // 40 50 60 70 41 51 61 71 | 120 130 140 150 121 131 141 151 |
| const __m256i r10 = _mm256_unpacklo_epi32(dstvec256_2, dstvec256_3); |
| // 42 52 62 72 43 53 63 73 | 122 132 142 152 123 133 143 153 |
| const __m256i r11 = _mm256_unpackhi_epi32(dstvec256_2, dstvec256_3); |
| |
| // 00 10 20 30 40 50 60 70 | 80 90 100 110 120 130 140 150 |
| d[0] = _mm256_unpacklo_epi64(r8, r10); |
| // 01 11 21 31 41 51 61 71 | 81 91 101 111 121 131 141 151 |
| d[1] = _mm256_unpackhi_epi64(r8, r10); |
| // 02 12 22 32 42 52 62 72 | 82 92 102 112 122 132 142 152 |
| d[2] = _mm256_unpacklo_epi64(r9, r11); |
| // 03 13 23 33 43 53 63 73 | 83 93 103 113 123 133 143 153 |
| d[3] = _mm256_unpackhi_epi64(r9, r11); |
| } |
| |
| #define PERM4x64(c0, c1, c2, c3) c0 + (c1 << 2) + (c2 << 4) + (c3 << 6) |
| #define PERM2x128(c0, c1) c0 + (c1 << 4) |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_z1_4xN_internal_avx2( |
| int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx, |
| int mrl_index) { |
| const int frac_bits = 6 - upsample_above; |
| const int max_base_x = ((N + 4) - 1 + (mrl_index << 1)) << upsample_above; |
| |
| assert(dx > 0); |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0, a1, a32, a16; |
| __m256i diff, c3f; |
| __m128i a_mbase_x, max_base_x128, base_inc128, mask128; |
| __m128i a0_128, a1_128; |
| a16 = _mm256_set1_epi16(16); |
| a_mbase_x = _mm_set1_epi16(above[max_base_x]); |
| max_base_x128 = _mm_set1_epi16(max_base_x); |
| c3f = _mm256_set1_epi16(0x3f); |
| |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i b, res, shift; |
| __m128i res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dst[i] = a_mbase_x; // save 4 values |
| } |
| return; |
| } |
| |
| a0_128 = _mm_loadu_si128((__m128i *)(above + base)); |
| a1_128 = _mm_loadu_si128((__m128i *)(above + base + 1)); |
| |
| if (upsample_above) { |
| a0_128 = _mm_shuffle_epi8(a0_128, *(__m128i *)HighbdEvenOddMaskx4[0]); |
| a1_128 = _mm_srli_si128(a0_128, 8); |
| |
| base_inc128 = _mm_setr_epi16(base, base + 2, base + 4, base + 6, base + 8, |
| base + 10, base + 12, base + 14); |
| shift = _mm256_srli_epi16( |
| _mm256_and_si256( |
| _mm256_slli_epi16(_mm256_set1_epi16(x), upsample_above), |
| _mm256_set1_epi16(0x3f)), |
| 1); |
| } else { |
| base_inc128 = _mm_setr_epi16(base, base + 1, base + 2, base + 3, base + 4, |
| base + 5, base + 6, base + 7); |
| shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); |
| } |
| a0 = _mm256_castsi128_si256(a0_128); |
| a1 = _mm256_castsi128_si256(a1_128); |
| diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 |
| a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi16(diff, shift); |
| res = _mm256_add_epi16(a32, b); |
| res = _mm256_srli_epi16(res, 5); |
| res1 = _mm256_castsi256_si128(res); |
| |
| mask128 = _mm_cmpgt_epi16(max_base_x128, base_inc128); |
| dst[r] = _mm_blendv_epi8(a_mbase_x, res1, mask128); |
| x += dx; |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_4xN_internal_avx2( |
| int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx, |
| int mrl_index) { |
| const int frac_bits = 6 - upsample_above; |
| const int max_base_x = ((N + 4) - 1 + (mrl_index << 1)) << upsample_above; |
| |
| assert(dx > 0); |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0, a1, a32, a16; |
| __m256i diff; |
| __m128i a_mbase_x, max_base_x128, base_inc128, mask128; |
| |
| a16 = _mm256_set1_epi32(16); |
| a_mbase_x = _mm_set1_epi16(above[max_base_x]); |
| max_base_x128 = _mm_set1_epi32(max_base_x); |
| |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i b, res, shift; |
| __m128i res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dst[i] = a_mbase_x; // save 4 values |
| } |
| return; |
| } |
| |
| a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base))); |
| a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1))); |
| |
| if (upsample_above) { |
| a0 = _mm256_permutevar8x32_epi32( |
| a0, _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0)); |
| a1 = _mm256_castsi128_si256(_mm256_extracti128_si256(a0, 1)); |
| base_inc128 = _mm_setr_epi32(base, base + 2, base + 4, base + 6); |
| shift = _mm256_srli_epi32( |
| _mm256_and_si256( |
| _mm256_slli_epi32(_mm256_set1_epi32(x), upsample_above), |
| _mm256_set1_epi32(0x3f)), |
| 1); |
| } else { |
| base_inc128 = _mm_setr_epi32(base, base + 1, base + 2, base + 3); |
| shift = _mm256_srli_epi32( |
| _mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1); |
| } |
| |
| diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi32(diff, shift); |
| res = _mm256_add_epi32(a32, b); |
| res = _mm256_srli_epi32(res, 5); |
| |
| res1 = _mm256_castsi256_si128(res); |
| res1 = _mm_packus_epi32(res1, res1); |
| |
| mask128 = _mm_cmpgt_epi32(max_base_x128, base_inc128); |
| mask128 = _mm_packs_epi32(mask128, mask128); // goto 16 bit |
| dst[r] = _mm_blendv_epi8(a_mbase_x, res1, mask128); |
| x += dx; |
| } |
| } |
| |
| static void highbd_dr_prediction_z1_4xN_avx2(int N, uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *above, |
| int upsample_above, int dx, int bd, |
| int mrl_index) { |
| #if CONFIG_FLEX_PARTITION |
| __m128i dstvec[64]; |
| #else |
| __m128i dstvec[16]; |
| #endif // CONFIG_FLEX_PARTITION |
| if (bd < 12) { |
| highbd_dr_prediction_z1_4xN_internal_avx2(N, dstvec, above, upsample_above, |
| dx, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_avx2( |
| N, dstvec, above, upsample_above, dx, mrl_index); |
| } |
| for (int i = 0; i < N; i++) { |
| _mm_storel_epi64((__m128i *)(dst + stride * i), dstvec[i]); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_8xN_internal_avx2( |
| int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx, |
| int mrl_index) { |
| const int frac_bits = 6 - upsample_above; |
| const int max_base_x = ((8 + N) - 1 + (mrl_index << 1)) << upsample_above; |
| |
| assert(dx > 0); |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0, a1, a0_1, a1_1, a32, a16; |
| __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; |
| |
| a16 = _mm256_set1_epi32(16); |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi32(max_base_x); |
| |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i b, res, res1, shift; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dst[i] = _mm256_castsi256_si128(a_mbase_x); // save 8 values |
| } |
| return; |
| } |
| |
| a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base))); |
| a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1))); |
| |
| if (upsample_above) { |
| a0 = _mm256_permutevar8x32_epi32( |
| a0, _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0)); |
| a1 = _mm256_castsi128_si256(_mm256_extracti128_si256(a0, 1)); |
| |
| a0_1 = |
| _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 8))); |
| a0_1 = _mm256_permutevar8x32_epi32( |
| a0_1, _mm256_set_epi32(7, 5, 3, 1, 6, 4, 2, 0)); |
| a1_1 = _mm256_castsi128_si256(_mm256_extracti128_si256(a0_1, 1)); |
| |
| a0 = _mm256_inserti128_si256(a0, _mm256_castsi256_si128(a0_1), 1); |
| a1 = _mm256_inserti128_si256(a1, _mm256_castsi256_si128(a1_1), 1); |
| base_inc256 = |
| _mm256_setr_epi32(base, base + 2, base + 4, base + 6, base + 8, |
| base + 10, base + 12, base + 14); |
| shift = _mm256_srli_epi32( |
| _mm256_and_si256( |
| _mm256_slli_epi32(_mm256_set1_epi32(x), upsample_above), |
| _mm256_set1_epi32(0x3f)), |
| 1); |
| } else { |
| base_inc256 = _mm256_setr_epi32(base, base + 1, base + 2, base + 3, |
| base + 4, base + 5, base + 6, base + 7); |
| shift = _mm256_srli_epi32( |
| _mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1); |
| } |
| |
| diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi32(diff, shift); |
| res = _mm256_add_epi32(a32, b); |
| res = _mm256_srli_epi32(res, 5); |
| |
| res1 = _mm256_packus_epi32( |
| res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))); |
| |
| mask256 = _mm256_cmpgt_epi32(max_base_x256, base_inc256); |
| mask256 = _mm256_packs_epi32( |
| mask256, _mm256_castsi128_si256( |
| _mm256_extracti128_si256(mask256, 1))); // goto 16 bit |
| res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256); |
| dst[r] = _mm256_castsi256_si128(res1); |
| x += dx; |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_z1_8xN_internal_avx2( |
| int N, __m128i *dst, const uint16_t *above, int upsample_above, int dx, |
| int mrl_index) { |
| const int frac_bits = 6 - upsample_above; |
| const int max_base_x = ((8 + N) - 1 + (mrl_index << 1)) << upsample_above; |
| |
| assert(dx > 0); |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0, a1, a32, a16, c3f; |
| __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; |
| __m128i a0_x128, a1_x128; |
| |
| a16 = _mm256_set1_epi16(16); |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| c3f = _mm256_set1_epi16(0x3f); |
| |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i b, res, res1, shift; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dst[i] = _mm256_castsi256_si128(a_mbase_x); // save 8 values |
| } |
| return; |
| } |
| |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base)); |
| if (upsample_above) { |
| __m128i mask, atmp0, atmp1, atmp2, atmp3; |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base + 8)); |
| atmp0 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdEvenOddMaskx[0]); |
| atmp1 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdEvenOddMaskx[0]); |
| atmp2 = |
| _mm_shuffle_epi8(a0_x128, *(__m128i *)(HighbdEvenOddMaskx[0] + 16)); |
| atmp3 = |
| _mm_shuffle_epi8(a1_x128, *(__m128i *)(HighbdEvenOddMaskx[0] + 16)); |
| mask = |
| _mm_cmpgt_epi8(*(__m128i *)HighbdEvenOddMaskx[0], _mm_set1_epi8(15)); |
| a0_x128 = _mm_blendv_epi8(atmp0, atmp1, mask); |
| mask = _mm_cmpgt_epi8(*(__m128i *)(HighbdEvenOddMaskx[0] + 16), |
| _mm_set1_epi8(15)); |
| a1_x128 = _mm_blendv_epi8(atmp2, atmp3, mask); |
| |
| base_inc256 = _mm256_setr_epi16(base, base + 2, base + 4, base + 6, |
| base + 8, base + 10, base + 12, base + 14, |
| 0, 0, 0, 0, 0, 0, 0, 0); |
| shift = _mm256_srli_epi16( |
| _mm256_and_si256( |
| _mm256_slli_epi16(_mm256_set1_epi16(x), upsample_above), c3f), |
| 1); |
| } else { |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base + 1)); |
| base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3, |
| base + 4, base + 5, base + 6, base + 7, 0, |
| 0, 0, 0, 0, 0, 0, 0); |
| shift = _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); |
| } |
| a0 = _mm256_castsi128_si256(a0_x128); |
| a1 = _mm256_castsi128_si256(a1_x128); |
| |
| diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 |
| a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi16(diff, shift); |
| res = _mm256_add_epi16(a32, b); |
| res = _mm256_srli_epi16(res, 5); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| res1 = _mm256_blendv_epi8(a_mbase_x, res, mask256); |
| dst[r] = _mm256_castsi256_si128(res1); |
| x += dx; |
| } |
| } |
| |
| static void highbd_dr_prediction_z1_8xN_avx2(int N, uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *above, |
| int upsample_above, int dx, int bd, |
| int mrl_index) { |
| #if CONFIG_FLEX_PARTITION |
| __m128i dstvec[64]; |
| #else |
| __m128i dstvec[32]; |
| #endif // CONFIG_FLEX_PARTITION |
| if (bd < 12) { |
| highbd_dr_prediction_z1_8xN_internal_avx2(N, dstvec, above, upsample_above, |
| dx, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_avx2( |
| N, dstvec, above, upsample_above, dx, mrl_index); |
| } |
| for (int i = 0; i < N; i++) { |
| _mm_storeu_si128((__m128i *)(dst + stride * i), dstvec[i]); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_16xN_internal_avx2( |
| int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx, |
| int mrl_index) { |
| // here upsample_above is 0 by design of av1_use_intra_edge_upsample |
| (void)upsample_above; |
| const int frac_bits = 6; |
| const int max_base_x = ((16 + N) - 1 + (mrl_index << 1)); |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0, a0_1, a1, a1_1, a32, a16; |
| __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; |
| |
| a16 = _mm256_set1_epi32(16); |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i b, res[2], res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dstvec[i] = a_mbase_x; // save 16 values |
| } |
| return; |
| } |
| __m256i shift = _mm256_srli_epi32( |
| _mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1); |
| |
| a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base))); |
| a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1))); |
| |
| diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| b = _mm256_mullo_epi32(diff, shift); |
| |
| res[0] = _mm256_add_epi32(a32, b); |
| res[0] = _mm256_srli_epi32(res[0], 5); |
| res[0] = _mm256_packus_epi32( |
| res[0], _mm256_castsi128_si256(_mm256_extracti128_si256(res[0], 1))); |
| |
| int mdif = max_base_x - base; |
| if (mdif > 8) { |
| a0_1 = |
| _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 8))); |
| a1_1 = |
| _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 9))); |
| |
| diff = _mm256_sub_epi32(a1_1, a0_1); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0_1, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| b = _mm256_mullo_epi32(diff, shift); |
| |
| res[1] = _mm256_add_epi32(a32, b); |
| res[1] = _mm256_srli_epi32(res[1], 5); |
| res[1] = _mm256_packus_epi32( |
| res[1], _mm256_castsi128_si256(_mm256_extracti128_si256(res[1], 1))); |
| } else { |
| res[1] = a_mbase_x; |
| } |
| res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]), |
| 1); // 16 16bit values |
| |
| base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3, |
| base + 4, base + 5, base + 6, base + 7, |
| base + 8, base + 9, base + 10, base + 11, |
| base + 12, base + 13, base + 14, base + 15); |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| dstvec[r] = _mm256_blendv_epi8(a_mbase_x, res1, mask256); |
| x += dx; |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_z1_16xN_internal_avx2( |
| int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx, |
| int mrl_index) { |
| // here upsample_above is 0 by design of av1_use_intra_edge_upsample |
| (void)upsample_above; |
| const int frac_bits = 6; |
| const int max_base_x = ((16 + N) - 1 + (mrl_index << 1)); |
| |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0, a1, a32, a16, c3f; |
| __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; |
| |
| a16 = _mm256_set1_epi16(16); |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| c3f = _mm256_set1_epi16(0x3f); |
| |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i b, res; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dstvec[i] = a_mbase_x; // save 16 values |
| } |
| return; |
| } |
| __m256i shift = |
| _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); |
| |
| a0 = _mm256_loadu_si256((__m256i *)(above + base)); |
| a1 = _mm256_loadu_si256((__m256i *)(above + base + 1)); |
| |
| diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 |
| a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 |
| b = _mm256_mullo_epi16(diff, shift); |
| |
| res = _mm256_add_epi16(a32, b); |
| res = _mm256_srli_epi16(res, 5); // 16 16bit values |
| |
| base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3, |
| base + 4, base + 5, base + 6, base + 7, |
| base + 8, base + 9, base + 10, base + 11, |
| base + 12, base + 13, base + 14, base + 15); |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| dstvec[r] = _mm256_blendv_epi8(a_mbase_x, res, mask256); |
| x += dx; |
| } |
| } |
| |
| static void highbd_dr_prediction_z1_16xN_avx2(int N, uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *above, |
| int upsample_above, int dx, |
| int bd, int mrl_index) { |
| __m256i dstvec[64]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_16xN_internal_avx2(N, dstvec, above, upsample_above, |
| dx, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_avx2( |
| N, dstvec, above, upsample_above, dx, mrl_index); |
| } |
| for (int i = 0; i < N; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + stride * i), dstvec[i]); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_32bit_z1_32xN_internal_avx2( |
| int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx, |
| int mrl_index) { |
| // here upsample_above is 0 by design of av1_use_intra_edge_upsample |
| (void)upsample_above; |
| const int frac_bits = 6; |
| const int max_base_x = ((32 + N) - 1 + (mrl_index << 1)); |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0, a0_1, a1, a1_1, a32, a16, c3f; |
| __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; |
| |
| a16 = _mm256_set1_epi32(16); |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| c3f = _mm256_set1_epi16(0x3f); |
| |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i b, res[2], res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dstvec[i] = a_mbase_x; // save 32 values |
| dstvec[i + N] = a_mbase_x; |
| } |
| return; |
| } |
| |
| __m256i shift = |
| _mm256_srli_epi32(_mm256_and_si256(_mm256_set1_epi32(x), c3f), 1); |
| |
| for (int j = 0; j < 32; j += 16) { |
| int mdif = max_base_x - (base + j); |
| if (mdif <= 0) { |
| res1 = a_mbase_x; |
| } else { |
| a0 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + j))); |
| a1 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 1 + j))); |
| |
| diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| b = _mm256_mullo_epi32(diff, shift); |
| |
| res[0] = _mm256_add_epi32(a32, b); |
| res[0] = _mm256_srli_epi32(res[0], 5); |
| res[0] = _mm256_packus_epi32( |
| res[0], |
| _mm256_castsi128_si256(_mm256_extracti128_si256(res[0], 1))); |
| if (mdif > 8) { |
| a0_1 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 8 + j))); |
| a1_1 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 9 + j))); |
| |
| diff = _mm256_sub_epi32(a1_1, a0_1); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0_1, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| b = _mm256_mullo_epi32(diff, shift); |
| |
| res[1] = _mm256_add_epi32(a32, b); |
| res[1] = _mm256_srli_epi32(res[1], 5); |
| res[1] = _mm256_packus_epi32( |
| res[1], |
| _mm256_castsi128_si256(_mm256_extracti128_si256(res[1], 1))); |
| } else { |
| res[1] = a_mbase_x; |
| } |
| res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]), |
| 1); // 16 16bit values |
| base_inc256 = _mm256_setr_epi16( |
| base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, |
| base + j + 5, base + j + 6, base + j + 7, base + j + 8, |
| base + j + 9, base + j + 10, base + j + 11, base + j + 12, |
| base + j + 13, base + j + 14, base + j + 15); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256); |
| } |
| if (!j) { |
| dstvec[r] = res1; |
| } else { |
| dstvec[r + N] = res1; |
| } |
| } |
| x += dx; |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_z1_32xN_internal_avx2( |
| int N, __m256i *dstvec, const uint16_t *above, int upsample_above, int dx, |
| int mrl_index) { |
| // here upsample_above is 0 by design of av1_use_intra_edge_upsample |
| (void)upsample_above; |
| const int frac_bits = 6; |
| const int max_base_x = ((32 + N) - 1 + (mrl_index << 1)); |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0, a1, a32, a16, c3f; |
| __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; |
| |
| a16 = _mm256_set1_epi16(16); |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| c3f = _mm256_set1_epi16(0x3f); |
| |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i b, res; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dstvec[i] = a_mbase_x; // save 32 values |
| dstvec[i + N] = a_mbase_x; |
| } |
| return; |
| } |
| |
| __m256i shift = |
| _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); |
| |
| for (int j = 0; j < 32; j += 16) { |
| int mdif = max_base_x - (base + j); |
| if (mdif <= 0) { |
| res = a_mbase_x; |
| } else { |
| a0 = _mm256_loadu_si256((__m256i *)(above + base + j)); |
| a1 = _mm256_loadu_si256((__m256i *)(above + base + 1 + j)); |
| |
| diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 |
| a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 |
| b = _mm256_mullo_epi16(diff, shift); |
| |
| res = _mm256_add_epi16(a32, b); |
| res = _mm256_srli_epi16(res, 5); |
| |
| base_inc256 = _mm256_setr_epi16( |
| base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, |
| base + j + 5, base + j + 6, base + j + 7, base + j + 8, |
| base + j + 9, base + j + 10, base + j + 11, base + j + 12, |
| base + j + 13, base + j + 14, base + j + 15); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| res = _mm256_blendv_epi8(a_mbase_x, res, mask256); |
| } |
| if (!j) { |
| dstvec[r] = res; |
| } else { |
| dstvec[r + N] = res; |
| } |
| } |
| x += dx; |
| } |
| } |
| |
| static void highbd_dr_prediction_z1_32xN_avx2(int N, uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *above, |
| int upsample_above, int dx, |
| int bd, int mrl_index) { |
| __m256i dstvec[128]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_32xN_internal_avx2(N, dstvec, above, upsample_above, |
| dx, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_32xN_internal_avx2( |
| N, dstvec, above, upsample_above, dx, mrl_index); |
| } |
| for (int i = 0; i < N; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + stride * i), dstvec[i]); |
| _mm256_storeu_si256((__m256i *)(dst + stride * i + 16), dstvec[i + N]); |
| } |
| } |
| |
| static void highbd_dr_prediction_32bit_z1_64xN_avx2(int N, uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *above, |
| int upsample_above, int dx, |
| int mrl_index) { |
| // here upsample_above is 0 by design of av1_use_intra_edge_upsample |
| (void)upsample_above; |
| const int frac_bits = 6; |
| const int max_base_x = ((64 + N) - 1 + (mrl_index << 1)); |
| |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0, a0_1, a1, a1_1, a32, a16; |
| __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; |
| |
| a16 = _mm256_set1_epi32(16); |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++, dst += stride) { |
| __m256i b, res[2], res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| _mm256_storeu_si256((__m256i *)dst, a_mbase_x); // save 32 values |
| _mm256_storeu_si256((__m256i *)(dst + 16), a_mbase_x); |
| _mm256_storeu_si256((__m256i *)(dst + 32), a_mbase_x); |
| _mm256_storeu_si256((__m256i *)(dst + 48), a_mbase_x); |
| dst += stride; |
| } |
| return; |
| } |
| |
| __m256i shift = _mm256_srli_epi32( |
| _mm256_and_si256(_mm256_set1_epi32(x), _mm256_set1_epi32(0x3f)), 1); |
| |
| __m128i a0_128, a0_1_128, a1_128, a1_1_128; |
| for (int j = 0; j < 64; j += 16) { |
| int mdif = max_base_x - (base + j); |
| if (mdif <= 0) { |
| _mm256_storeu_si256((__m256i *)(dst + j), a_mbase_x); |
| } else { |
| a0_128 = _mm_loadu_si128((__m128i *)(above + base + j)); |
| a1_128 = _mm_loadu_si128((__m128i *)(above + base + 1 + j)); |
| a0 = _mm256_cvtepu16_epi32(a0_128); |
| a1 = _mm256_cvtepu16_epi32(a1_128); |
| |
| diff = _mm256_sub_epi32(a1, a0); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| b = _mm256_mullo_epi32(diff, shift); |
| |
| res[0] = _mm256_add_epi32(a32, b); |
| res[0] = _mm256_srli_epi32(res[0], 5); |
| res[0] = _mm256_packus_epi32( |
| res[0], |
| _mm256_castsi128_si256(_mm256_extracti128_si256(res[0], 1))); |
| if (mdif > 8) { |
| a0_1_128 = _mm_loadu_si128((__m128i *)(above + base + 8 + j)); |
| a1_1_128 = _mm_loadu_si128((__m128i *)(above + base + 9 + j)); |
| a0_1 = _mm256_cvtepu16_epi32(a0_1_128); |
| a1_1 = _mm256_cvtepu16_epi32(a1_1_128); |
| |
| diff = _mm256_sub_epi32(a1_1, a0_1); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0_1, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| b = _mm256_mullo_epi32(diff, shift); |
| |
| res[1] = _mm256_add_epi32(a32, b); |
| res[1] = _mm256_srli_epi32(res[1], 5); |
| res[1] = _mm256_packus_epi32( |
| res[1], |
| _mm256_castsi128_si256(_mm256_extracti128_si256(res[1], 1))); |
| } else { |
| res[1] = a_mbase_x; |
| } |
| res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]), |
| 1); // 16 16bit values |
| base_inc256 = _mm256_setr_epi16( |
| base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, |
| base + j + 5, base + j + 6, base + j + 7, base + j + 8, |
| base + j + 9, base + j + 10, base + j + 11, base + j + 12, |
| base + j + 13, base + j + 14, base + j + 15); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256); |
| _mm256_storeu_si256((__m256i *)(dst + j), res1); |
| } |
| } |
| x += dx; |
| } |
| } |
| |
| static void highbd_dr_prediction_z1_64xN_avx2(int N, uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *above, |
| int upsample_above, int dx, |
| int mrl_index) { |
| // here upsample_above is 0 by design of av1_use_intra_edge_upsample |
| (void)upsample_above; |
| const int frac_bits = 6; |
| const int max_base_x = ((64 + N) - 1 + (mrl_index << 1)); |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0, a1, a32, a16, c3f; |
| __m256i a_mbase_x, diff, max_base_x256, base_inc256, mask256; |
| |
| a16 = _mm256_set1_epi16(16); |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| c3f = _mm256_set1_epi16(0x3f); |
| |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++, dst += stride) { |
| __m256i b, res; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| _mm256_storeu_si256((__m256i *)dst, a_mbase_x); // save 32 values |
| _mm256_storeu_si256((__m256i *)(dst + 16), a_mbase_x); |
| _mm256_storeu_si256((__m256i *)(dst + 32), a_mbase_x); |
| _mm256_storeu_si256((__m256i *)(dst + 48), a_mbase_x); |
| dst += stride; |
| } |
| return; |
| } |
| |
| __m256i shift = |
| _mm256_srli_epi16(_mm256_and_si256(_mm256_set1_epi16(x), c3f), 1); |
| |
| for (int j = 0; j < 64; j += 16) { |
| int mdif = max_base_x - (base + j); |
| if (mdif <= 0) { |
| _mm256_storeu_si256((__m256i *)(dst + j), a_mbase_x); |
| } else { |
| a0 = _mm256_loadu_si256((__m256i *)(above + base + j)); |
| a1 = _mm256_loadu_si256((__m256i *)(above + base + 1 + j)); |
| |
| diff = _mm256_sub_epi16(a1, a0); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi16(a0, 5); // a[x] * 32 |
| a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 |
| b = _mm256_mullo_epi16(diff, shift); |
| |
| res = _mm256_add_epi16(a32, b); |
| res = _mm256_srli_epi16(res, 5); |
| |
| base_inc256 = _mm256_setr_epi16( |
| base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, |
| base + j + 5, base + j + 6, base + j + 7, base + j + 8, |
| base + j + 9, base + j + 10, base + j + 11, base + j + 12, |
| base + j + 13, base + j + 14, base + j + 15); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| res = _mm256_blendv_epi8(a_mbase_x, res, mask256); |
| _mm256_storeu_si256((__m256i *)(dst + j), res); // 16 16bit values |
| } |
| } |
| x += dx; |
| } |
| } |
| |
| // Directional prediction, zone 1: 0 < angle < 90 |
| void av1_highbd_dr_prediction_z1_avx2(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int dx, int dy, int bd, int mrl_index) { |
| (void)left; |
| (void)dy; |
| |
| switch (bw) { |
| case 4: |
| highbd_dr_prediction_z1_4xN_avx2(bh, dst, stride, above, upsample_above, |
| dx, bd, mrl_index); |
| break; |
| case 8: |
| highbd_dr_prediction_z1_8xN_avx2(bh, dst, stride, above, upsample_above, |
| dx, bd, mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z1_16xN_avx2(bh, dst, stride, above, upsample_above, |
| dx, bd, mrl_index); |
| break; |
| case 32: |
| highbd_dr_prediction_z1_32xN_avx2(bh, dst, stride, above, upsample_above, |
| dx, bd, mrl_index); |
| break; |
| case 64: |
| if (bd < 12) { |
| highbd_dr_prediction_z1_64xN_avx2(bh, dst, stride, above, |
| upsample_above, dx, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_avx2(bh, dst, stride, above, |
| upsample_above, dx, mrl_index); |
| } |
| break; |
| default: break; |
| } |
| return; |
| } |
| |
| static void highbd_transpose_TX_16X16(const uint16_t *src, ptrdiff_t pitchSrc, |
| uint16_t *dst, ptrdiff_t pitchDst) { |
| __m256i r[16]; |
| __m256i d[16]; |
| for (int j = 0; j < 16; j++) { |
| r[j] = _mm256_loadu_si256((__m256i *)(src + j * pitchSrc)); |
| } |
| highbd_transpose16x16_avx2(r, d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + j * pitchDst), d[j]); |
| } |
| } |
| |
| static void highbd_transpose(const uint16_t *src, ptrdiff_t pitchSrc, |
| uint16_t *dst, ptrdiff_t pitchDst, int width, |
| int height) { |
| for (int j = 0; j < height; j += 16) |
| for (int i = 0; i < width; i += 16) |
| highbd_transpose_TX_16X16(src + i * pitchSrc + j, pitchSrc, |
| dst + j * pitchDst + i, pitchDst); |
| } |
| |
| static void highbd_dr_prediction_32bit_z2_Nx4_avx2( |
| int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, |
| const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, |
| int mrl_index) { |
| const int min_base_x = -((1 + mrl_index) << upsample_above); |
| const int min_base_y = -((1 + mrl_index) << upsample_left); |
| const int frac_bits_x = 6 - upsample_above; |
| const int frac_bits_y = 6 - upsample_left; |
| |
| assert(dx > 0); |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0_x, a1_x, a32, a16; |
| __m256i diff; |
| __m128i c3f, min_base_y128; |
| |
| a16 = _mm256_set1_epi32(16); |
| c3f = _mm_set1_epi32(0x3f); |
| min_base_y128 = _mm_set1_epi32(min_base_y); |
| __m128i cmrlIdx = _mm_set1_epi32(mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i b, res, shift; |
| __m128i resx, resy, resxy; |
| __m128i a0_x128, a1_x128; |
| int y = r + 1; |
| int base_x = (-(y + mrl_index) * dx) >> frac_bits_x; |
| int base_shift = 0; |
| if (base_x < (min_base_x - 1)) { |
| base_shift = (min_base_x - base_x - 1) >> upsample_above; |
| } |
| int base_min_diff = |
| (min_base_x - base_x + upsample_above) >> upsample_above; |
| if (base_min_diff > 4) { |
| base_min_diff = 4; |
| } else { |
| if (base_min_diff < 0) base_min_diff = 0; |
| } |
| |
| if (base_shift > 3) { |
| a0_x = _mm256_setzero_si256(); |
| a1_x = _mm256_setzero_si256(); |
| shift = _mm256_setzero_si256(); |
| } else { |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); |
| if (upsample_above) { |
| a0_x128 = _mm_shuffle_epi8(a0_x128, |
| *(__m128i *)HighbdEvenOddMaskx4[base_shift]); |
| a1_x128 = _mm_srli_si128(a0_x128, 8); |
| |
| shift = _mm256_castsi128_si256(_mm_srli_epi32( |
| _mm_and_si128( |
| _mm_slli_epi32(_mm_setr_epi32(-(y + mrl_index) * dx, |
| (1 << 6) - (y + mrl_index) * dx, |
| (2 << 6) - (y + mrl_index) * dx, |
| (3 << 6) - (y + mrl_index) * dx), |
| upsample_above), |
| c3f), |
| 1)); |
| } else { |
| a0_x128 = |
| _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a1_x128 = _mm_srli_si128(a0_x128, 2); |
| |
| shift = _mm256_castsi128_si256(_mm_srli_epi32( |
| _mm_and_si128(_mm_setr_epi32(-(y + mrl_index) * dx, |
| (1 << 6) - (y + mrl_index) * dx, |
| (2 << 6) - (y + mrl_index) * dx, |
| (3 << 6) - (y + mrl_index) * dx), |
| c3f), |
| 1)); |
| } |
| a0_x = _mm256_cvtepu16_epi32(a0_x128); |
| a1_x = _mm256_cvtepu16_epi32(a1_x128); |
| } |
| // y calc |
| __m128i a0_y, a1_y, shifty; |
| if (base_x < min_base_x) { |
| __m128i r6, c1234, dy128, y_c128, base_y_c128, mask128; |
| DECLARE_ALIGNED(32, int, base_y_c[4]); |
| r6 = _mm_set1_epi32(r << 6); |
| dy128 = _mm_set1_epi32(dy); |
| c1234 = _mm_setr_epi32(1, 2, 3, 4); |
| __m128i c1234_ = _mm_add_epi32(c1234, cmrlIdx); |
| y_c128 = _mm_sub_epi32(r6, _mm_mullo_epi32(c1234_, dy128)); |
| base_y_c128 = _mm_srai_epi32(y_c128, frac_bits_y); |
| mask128 = _mm_cmpgt_epi32(min_base_y128, base_y_c128); |
| base_y_c128 = _mm_andnot_si128(mask128, base_y_c128); |
| _mm_store_si128((__m128i *)base_y_c, base_y_c128); |
| |
| a0_y = _mm_setr_epi32(left[base_y_c[0]], left[base_y_c[1]], |
| left[base_y_c[2]], left[base_y_c[3]]); |
| a1_y = _mm_setr_epi32(left[base_y_c[0] + 1], left[base_y_c[1] + 1], |
| left[base_y_c[2] + 1], left[base_y_c[3] + 1]); |
| |
| if (upsample_left) { |
| shifty = _mm_srli_epi32( |
| _mm_and_si128(_mm_slli_epi32(y_c128, upsample_left), c3f), 1); |
| } else { |
| shifty = _mm_srli_epi32(_mm_and_si128(y_c128, c3f), 1); |
| } |
| a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1); |
| a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1); |
| shift = _mm256_inserti128_si256(shift, shifty, 1); |
| } |
| |
| diff = _mm256_sub_epi32(a1_x, a0_x); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0_x, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi32(diff, shift); |
| res = _mm256_add_epi32(a32, b); |
| res = _mm256_srli_epi32(res, 5); |
| |
| resx = _mm256_castsi256_si128(res); |
| resx = _mm_packus_epi32(resx, resx); |
| |
| resy = _mm256_extracti128_si256(res, 1); |
| resy = _mm_packus_epi32(resy, resy); |
| |
| resxy = |
| _mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]); |
| _mm_storel_epi64((__m128i *)(dst), resxy); |
| dst += stride; |
| } |
| } |
| |
| static void highbd_dr_prediction_z2_Nx4_avx2( |
| int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, |
| const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, |
| int mrl_index) { |
| const int min_base_x = -((1 + mrl_index) << upsample_above); |
| const int min_base_y = -((1 + mrl_index) << upsample_left); |
| const int frac_bits_x = 6 - upsample_above; |
| const int frac_bits_y = 6 - upsample_left; |
| |
| assert(dx > 0); |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0_x, a1_x, a32, a16; |
| __m256i diff; |
| __m128i c3f, min_base_y128; |
| |
| a16 = _mm256_set1_epi16(16); |
| c3f = _mm_set1_epi16(0x3f); |
| min_base_y128 = _mm_set1_epi16(min_base_y); |
| __m128i cmrlIdx = _mm_set1_epi16(mrl_index); |
| |
| for (int r = 0; r < N; r++) { |
| __m256i b, res, shift; |
| __m128i resx, resy, resxy; |
| __m128i a0_x128, a1_x128; |
| int y = r + 1; |
| int base_x = (-(y + mrl_index) * dx) >> frac_bits_x; |
| int base_shift = 0; |
| if (base_x < (min_base_x - 1)) { |
| base_shift = (min_base_x - base_x - 1) >> upsample_above; |
| } |
| int base_min_diff = |
| (min_base_x - base_x + upsample_above) >> upsample_above; |
| if (base_min_diff > 4) { |
| base_min_diff = 4; |
| } else { |
| if (base_min_diff < 0) base_min_diff = 0; |
| } |
| |
| if (base_shift > 3) { |
| a0_x = _mm256_setzero_si256(); |
| a1_x = _mm256_setzero_si256(); |
| shift = _mm256_setzero_si256(); |
| } else { |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); |
| if (upsample_above) { |
| a0_x128 = _mm_shuffle_epi8(a0_x128, |
| *(__m128i *)HighbdEvenOddMaskx4[base_shift]); |
| a1_x128 = _mm_srli_si128(a0_x128, 8); |
| |
| shift = _mm256_castsi128_si256(_mm_srli_epi16( |
| _mm_and_si128( |
| _mm_slli_epi16( |
| _mm_setr_epi16(-(y + mrl_index) * dx, |
| (1 << 6) - (y + mrl_index) * dx, |
| (2 << 6) - (y + mrl_index) * dx, |
| (3 << 6) - (y + mrl_index) * dx, 0, 0, 0, 0), |
| upsample_above), |
| c3f), |
| 1)); |
| } else { |
| a0_x128 = |
| _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a1_x128 = _mm_srli_si128(a0_x128, 2); |
| |
| shift = _mm256_castsi128_si256(_mm_srli_epi16( |
| _mm_and_si128( |
| _mm_setr_epi16(-(y + mrl_index) * dx, |
| (1 << 6) - (y + mrl_index) * dx, |
| (2 << 6) - (y + mrl_index) * dx, |
| (3 << 6) - (y + mrl_index) * dx, 0, 0, 0, 0), |
| c3f), |
| 1)); |
| } |
| a0_x = _mm256_castsi128_si256(a0_x128); |
| a1_x = _mm256_castsi128_si256(a1_x128); |
| } |
| // y calc |
| __m128i a0_y, a1_y, shifty; |
| if (base_x < min_base_x) { |
| __m128i r6, c1234, dy128, y_c128, base_y_c128, mask128; |
| DECLARE_ALIGNED(32, int16_t, base_y_c[8]); |
| r6 = _mm_set1_epi16(r << 6); |
| dy128 = _mm_set1_epi16(dy); |
| c1234 = _mm_setr_epi16(1, 2, 3, 4, 0, 0, 0, 0); |
| __m128i c1234_ = _mm_add_epi16(c1234, cmrlIdx); |
| y_c128 = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234_, dy128)); |
| base_y_c128 = _mm_srai_epi16(y_c128, frac_bits_y); |
| mask128 = _mm_cmpgt_epi16(min_base_y128, base_y_c128); |
| base_y_c128 = _mm_andnot_si128(mask128, base_y_c128); |
| _mm_store_si128((__m128i *)base_y_c, base_y_c128); |
| |
| a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], |
| left[base_y_c[2]], left[base_y_c[3]], 0, 0, 0, 0); |
| a1_y = _mm_setr_epi16(left[base_y_c[0] + 1], left[base_y_c[1] + 1], |
| left[base_y_c[2] + 1], left[base_y_c[3] + 1], 0, 0, |
| 0, 0); |
| |
| if (upsample_left) { |
| shifty = _mm_srli_epi16( |
| _mm_and_si128(_mm_slli_epi16(y_c128, upsample_left), c3f), 1); |
| } else { |
| shifty = _mm_srli_epi16(_mm_and_si128(y_c128, c3f), 1); |
| } |
| a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1); |
| a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1); |
| shift = _mm256_inserti128_si256(shift, shifty, 1); |
| } |
| |
| diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32 |
| a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi16(diff, shift); |
| res = _mm256_add_epi16(a32, b); |
| res = _mm256_srli_epi16(res, 5); |
| |
| resx = _mm256_castsi256_si128(res); |
| resy = _mm256_extracti128_si256(res, 1); |
| resxy = |
| _mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]); |
| _mm_storel_epi64((__m128i *)(dst), resxy); |
| dst += stride; |
| } |
| } |
| |
| static void highbd_dr_prediction_32bit_z2_Nx8_avx2( |
| int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, |
| const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, |
| int mrl_index) { |
| const int min_base_x = -((1 + mrl_index) << upsample_above); |
| const int min_base_y = -((1 + mrl_index) << upsample_left); |
| const int frac_bits_x = 6 - upsample_above; |
| const int frac_bits_y = 6 - upsample_left; |
| |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0_x, a1_x, a0_y, a1_y, a32, a16, c3f, min_base_y256; |
| __m256i diff; |
| __m128i a0_x128, a1_x128; |
| |
| a16 = _mm256_set1_epi32(16); |
| c3f = _mm256_set1_epi32(0x3f); |
| min_base_y256 = _mm256_set1_epi32(min_base_y); |
| __m256i cmrlIdx = _mm256_set1_epi32(mrl_index); |
| |
| for (int r = 0; r < N; r++) { |
| __m256i b, res, shift; |
| __m128i resx, resy, resxy; |
| int y = r + 1; |
| int base_x = (-(y + mrl_index) * dx) >> frac_bits_x; |
| int base_shift = 0; |
| if (base_x < (min_base_x - 1)) { |
| base_shift = (min_base_x - base_x - 1) >> upsample_above; |
| } |
| int base_min_diff = |
| (min_base_x - base_x + upsample_above) >> upsample_above; |
| if (base_min_diff > 8) { |
| base_min_diff = 8; |
| } else { |
| if (base_min_diff < 0) base_min_diff = 0; |
| } |
| |
| if (base_shift > 7) { |
| resx = _mm_setzero_si128(); |
| } else { |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); |
| if (upsample_above) { |
| __m128i mask, atmp0, atmp1, atmp2, atmp3; |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 8 + base_shift)); |
| atmp0 = _mm_shuffle_epi8(a0_x128, |
| *(__m128i *)HighbdEvenOddMaskx[base_shift]); |
| atmp1 = _mm_shuffle_epi8(a1_x128, |
| *(__m128i *)HighbdEvenOddMaskx[base_shift]); |
| atmp2 = _mm_shuffle_epi8( |
| a0_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16)); |
| atmp3 = _mm_shuffle_epi8( |
| a1_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16)); |
| mask = _mm_cmpgt_epi8(*(__m128i *)HighbdEvenOddMaskx[base_shift], |
| _mm_set1_epi8(15)); |
| a0_x128 = _mm_blendv_epi8(atmp0, atmp1, mask); |
| mask = _mm_cmpgt_epi8(*(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16), |
| _mm_set1_epi8(15)); |
| a1_x128 = _mm_blendv_epi8(atmp2, atmp3, mask); |
| shift = _mm256_srli_epi32( |
| _mm256_and_si256( |
| _mm256_slli_epi32( |
| _mm256_setr_epi32(-(y + mrl_index) * dx, |
| (1 << 6) - (y + mrl_index) * dx, |
| (2 << 6) - (y + mrl_index) * dx, |
| (3 << 6) - (y + mrl_index) * dx, |
| (4 << 6) - (y + mrl_index) * dx, |
| (5 << 6) - (y + mrl_index) * dx, |
| (6 << 6) - (y + mrl_index) * dx, |
| (7 << 6) - (y + mrl_index) * dx), |
| upsample_above), |
| c3f), |
| 1); |
| } else { |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 1 + base_shift)); |
| a0_x128 = |
| _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a1_x128 = |
| _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| |
| shift = _mm256_srli_epi32( |
| _mm256_and_si256(_mm256_setr_epi32(-(y + mrl_index) * dx, |
| (1 << 6) - (y + mrl_index) * dx, |
| (2 << 6) - (y + mrl_index) * dx, |
| (3 << 6) - (y + mrl_index) * dx, |
| (4 << 6) - (y + mrl_index) * dx, |
| (5 << 6) - (y + mrl_index) * dx, |
| (6 << 6) - (y + mrl_index) * dx, |
| (7 << 6) - (y + mrl_index) * dx), |
| c3f), |
| 1); |
| } |
| a0_x = _mm256_cvtepu16_epi32(a0_x128); |
| a1_x = _mm256_cvtepu16_epi32(a1_x128); |
| |
| diff = _mm256_sub_epi32(a1_x, a0_x); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0_x, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi32(diff, shift); |
| res = _mm256_add_epi32(a32, b); |
| res = _mm256_srli_epi32(res, 5); |
| |
| resx = _mm256_castsi256_si128(_mm256_packus_epi32( |
| res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1)))); |
| } |
| // y calc |
| if (base_x < min_base_x) { |
| DECLARE_ALIGNED(32, int, base_y_c[8]); |
| __m256i r6, c256, dy256, y_c256, base_y_c256, mask256; |
| r6 = _mm256_set1_epi32(r << 6); |
| dy256 = _mm256_set1_epi32(dy); |
| c256 = _mm256_setr_epi32(1, 2, 3, 4, 5, 6, 7, 8); |
| __m256i c256_ = _mm256_add_epi32(c256, cmrlIdx); |
| y_c256 = _mm256_sub_epi32(r6, _mm256_mullo_epi32(c256_, dy256)); |
| base_y_c256 = _mm256_srai_epi32(y_c256, frac_bits_y); |
| mask256 = _mm256_cmpgt_epi32(min_base_y256, base_y_c256); |
| base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256); |
| _mm256_store_si256((__m256i *)base_y_c, base_y_c256); |
| |
| a0_y = _mm256_cvtepu16_epi32(_mm_setr_epi16( |
| left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], |
| left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], |
| left[base_y_c[6]], left[base_y_c[7]])); |
| a1_y = _mm256_cvtepu16_epi32(_mm_setr_epi16( |
| left[base_y_c[0] + 1], left[base_y_c[1] + 1], left[base_y_c[2] + 1], |
| left[base_y_c[3] + 1], left[base_y_c[4] + 1], left[base_y_c[5] + 1], |
| left[base_y_c[6] + 1], left[base_y_c[7] + 1])); |
| |
| if (upsample_left) { |
| shift = _mm256_srli_epi32( |
| _mm256_and_si256(_mm256_slli_epi32((y_c256), upsample_left), c3f), |
| 1); |
| } else { |
| shift = _mm256_srli_epi32(_mm256_and_si256(y_c256, c3f), 1); |
| } |
| diff = _mm256_sub_epi32(a1_y, a0_y); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0_y, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi32(diff, shift); |
| res = _mm256_add_epi32(a32, b); |
| res = _mm256_srli_epi32(res, 5); |
| |
| resy = _mm256_castsi256_si128(_mm256_packus_epi32( |
| res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1)))); |
| } else { |
| resy = resx; |
| } |
| resxy = |
| _mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]); |
| _mm_storeu_si128((__m128i *)(dst), resxy); |
| dst += stride; |
| } |
| } |
| |
| static void highbd_dr_prediction_z2_Nx8_avx2( |
| int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, |
| const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, |
| int mrl_index) { |
| const int min_base_x = -((1 + mrl_index) << upsample_above); |
| const int min_base_y = -((1 + mrl_index) << upsample_left); |
| const int frac_bits_x = 6 - upsample_above; |
| const int frac_bits_y = 6 - upsample_left; |
| |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m128i c3f, min_base_y128; |
| __m256i a0_x, a1_x, diff, a32, a16; |
| __m128i a0_x128, a1_x128; |
| |
| a16 = _mm256_set1_epi16(16); |
| c3f = _mm_set1_epi16(0x3f); |
| min_base_y128 = _mm_set1_epi16(min_base_y); |
| __m128i cmrlIdx = _mm_set1_epi16(mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i b, res, shift; |
| __m128i resx, resy, resxy; |
| int y = r + 1; |
| int base_x = (-(y + mrl_index) * dx) >> frac_bits_x; |
| int base_shift = 0; |
| if (base_x < (min_base_x - 1)) { |
| base_shift = (min_base_x - base_x - 1) >> upsample_above; |
| } |
| int base_min_diff = |
| (min_base_x - base_x + upsample_above) >> upsample_above; |
| if (base_min_diff > 8) { |
| base_min_diff = 8; |
| } else { |
| if (base_min_diff < 0) base_min_diff = 0; |
| } |
| |
| if (base_shift > 7) { |
| a0_x = _mm256_setzero_si256(); |
| a1_x = _mm256_setzero_si256(); |
| shift = _mm256_setzero_si256(); |
| } else { |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); |
| if (upsample_above) { |
| __m128i mask, atmp0, atmp1, atmp2, atmp3; |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 8 + base_shift)); |
| atmp0 = _mm_shuffle_epi8(a0_x128, |
| *(__m128i *)HighbdEvenOddMaskx[base_shift]); |
| atmp1 = _mm_shuffle_epi8(a1_x128, |
| *(__m128i *)HighbdEvenOddMaskx[base_shift]); |
| atmp2 = _mm_shuffle_epi8( |
| a0_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16)); |
| atmp3 = _mm_shuffle_epi8( |
| a1_x128, *(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16)); |
| mask = _mm_cmpgt_epi8(*(__m128i *)HighbdEvenOddMaskx[base_shift], |
| _mm_set1_epi8(15)); |
| a0_x128 = _mm_blendv_epi8(atmp0, atmp1, mask); |
| mask = _mm_cmpgt_epi8(*(__m128i *)(HighbdEvenOddMaskx[base_shift] + 16), |
| _mm_set1_epi8(15)); |
| a1_x128 = _mm_blendv_epi8(atmp2, atmp3, mask); |
| |
| shift = _mm256_castsi128_si256(_mm_srli_epi16( |
| _mm_and_si128( |
| _mm_slli_epi16(_mm_setr_epi16(-(y + mrl_index) * dx, |
| (1 << 6) - (y + mrl_index) * dx, |
| (2 << 6) - (y + mrl_index) * dx, |
| (3 << 6) - (y + mrl_index) * dx, |
| (4 << 6) - (y + mrl_index) * dx, |
| (5 << 6) - (y + mrl_index) * dx, |
| (6 << 6) - (y + mrl_index) * dx, |
| (7 << 6) - (y + mrl_index) * dx), |
| upsample_above), |
| c3f), |
| 1)); |
| } else { |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + 1 + base_shift)); |
| a0_x128 = |
| _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a1_x128 = |
| _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| |
| shift = _mm256_castsi128_si256(_mm_srli_epi16( |
| _mm_and_si128(_mm_setr_epi16(-(y + mrl_index) * dx, |
| (1 << 6) - (y + mrl_index) * dx, |
| (2 << 6) - (y + mrl_index) * dx, |
| (3 << 6) - (y + mrl_index) * dx, |
| (4 << 6) - (y + mrl_index) * dx, |
| (5 << 6) - (y + mrl_index) * dx, |
| (6 << 6) - (y + mrl_index) * dx, |
| (7 << 6) - (y + mrl_index) * dx), |
| c3f), |
| 1)); |
| } |
| a0_x = _mm256_castsi128_si256(a0_x128); |
| a1_x = _mm256_castsi128_si256(a1_x128); |
| } |
| |
| // y calc |
| __m128i a0_y, a1_y, shifty; |
| if (base_x < min_base_x) { |
| DECLARE_ALIGNED(32, int16_t, base_y_c[8]); |
| __m128i r6, c1234, dy128, y_c128, base_y_c128, mask128; |
| r6 = _mm_set1_epi16(r << 6); |
| dy128 = _mm_set1_epi16(dy); |
| c1234 = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8); |
| __m128i c1234_ = _mm_add_epi16(c1234, cmrlIdx); |
| y_c128 = _mm_sub_epi16(r6, _mm_mullo_epi16(c1234_, dy128)); |
| base_y_c128 = _mm_srai_epi16(y_c128, frac_bits_y); |
| mask128 = _mm_cmpgt_epi16(min_base_y128, base_y_c128); |
| base_y_c128 = _mm_andnot_si128(mask128, base_y_c128); |
| _mm_store_si128((__m128i *)base_y_c, base_y_c128); |
| |
| a0_y = _mm_setr_epi16(left[base_y_c[0]], left[base_y_c[1]], |
| left[base_y_c[2]], left[base_y_c[3]], |
| left[base_y_c[4]], left[base_y_c[5]], |
| left[base_y_c[6]], left[base_y_c[7]]); |
| a1_y = _mm_setr_epi16(left[base_y_c[0] + 1], left[base_y_c[1] + 1], |
| left[base_y_c[2] + 1], left[base_y_c[3] + 1], |
| left[base_y_c[4] + 1], left[base_y_c[5] + 1], |
| left[base_y_c[6] + 1], left[base_y_c[7] + 1]); |
| |
| if (upsample_left) { |
| shifty = _mm_srli_epi16( |
| _mm_and_si128(_mm_slli_epi16((y_c128), upsample_left), c3f), 1); |
| } else { |
| shifty = _mm_srli_epi16(_mm_and_si128(y_c128, c3f), 1); |
| } |
| a0_x = _mm256_inserti128_si256(a0_x, a0_y, 1); |
| a1_x = _mm256_inserti128_si256(a1_x, a1_y, 1); |
| shift = _mm256_inserti128_si256(shift, shifty, 1); |
| } |
| |
| diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32 |
| a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi16(diff, shift); |
| res = _mm256_add_epi16(a32, b); |
| res = _mm256_srli_epi16(res, 5); |
| |
| resx = _mm256_castsi256_si128(res); |
| resy = _mm256_extracti128_si256(res, 1); |
| |
| resxy = |
| _mm_blendv_epi8(resx, resy, *(__m128i *)HighbdBaseMask[base_min_diff]); |
| _mm_storeu_si128((__m128i *)(dst), resxy); |
| dst += stride; |
| } |
| } |
| |
| static void highbd_dr_prediction_32bit_z2_HxW_avx2( |
| int H, int W, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, |
| const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, |
| int mrl_index) { |
| // here upsample_above and upsample_left are 0 by design of |
| // av1_use_intra_edge_upsample |
| const int min_base_x = -(1 + mrl_index); |
| const int min_base_y = -(1 + mrl_index); |
| (void)upsample_above; |
| (void)upsample_left; |
| const int frac_bits_x = 6; |
| const int frac_bits_y = 6; |
| |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0_x, a1_x, a0_y, a1_y, a32, a0_1_x, a1_1_x, a16, c1; |
| __m256i diff, min_base_y256, c3f, dy256, c1234, c0123, c8; |
| __m128i a0_x128, a1_x128, a0_1_x128, a1_1_x128; |
| DECLARE_ALIGNED(32, int, base_y_c[16]); |
| |
| a16 = _mm256_set1_epi32(16); |
| c1 = _mm256_srli_epi32(a16, 4); |
| c8 = _mm256_srli_epi32(a16, 1); |
| min_base_y256 = _mm256_set1_epi32(min_base_y); |
| c3f = _mm256_set1_epi32(0x3f); |
| dy256 = _mm256_set1_epi32(dy); |
| c0123 = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7); |
| c1234 = _mm256_add_epi32(c0123, c1); |
| __m256i cmrlIdx = _mm256_set1_epi32(mrl_index); |
| for (int r = 0; r < H; r++) { |
| __m256i b, res, shift, ydx; |
| __m256i resx[2], resy[2]; |
| __m256i resxy, j256, r6; |
| for (int j = 0; j < W; j += 16) { |
| j256 = _mm256_set1_epi32(j); |
| int y = r + 1; |
| ydx = _mm256_set1_epi32((y + mrl_index) * dx); |
| |
| int base_x = ((j << 6) - (y + mrl_index) * dx) >> frac_bits_x; |
| int base_shift = 0; |
| if ((base_x) < (min_base_x - 1)) { |
| base_shift = (min_base_x - base_x - 1); |
| } |
| int base_min_diff = (min_base_x - base_x); |
| if (base_min_diff > 16) { |
| base_min_diff = 16; |
| } else { |
| if (base_min_diff < 0) base_min_diff = 0; |
| } |
| |
| if (base_shift > 7) { |
| resx[0] = _mm256_setzero_si256(); |
| } else { |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1)); |
| a0_x128 = |
| _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a1_x128 = |
| _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| |
| a0_x = _mm256_cvtepu16_epi32(a0_x128); |
| a1_x = _mm256_cvtepu16_epi32(a1_x128); |
| |
| r6 = _mm256_slli_epi32(_mm256_add_epi32(c0123, j256), 6); |
| shift = _mm256_srli_epi32( |
| _mm256_and_si256(_mm256_sub_epi32(r6, ydx), c3f), 1); |
| |
| diff = _mm256_sub_epi32(a1_x, a0_x); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0_x, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi32(diff, shift); |
| res = _mm256_add_epi32(a32, b); |
| res = _mm256_srli_epi32(res, 5); |
| |
| resx[0] = _mm256_packus_epi32( |
| res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))); |
| } |
| int base_shift8 = 0; |
| if ((base_x + 8) < (min_base_x - 1)) { |
| base_shift8 = (min_base_x - (base_x + 8) - 1); |
| } |
| if (base_shift8 > 7) { |
| resx[1] = _mm256_setzero_si256(); |
| } else { |
| a0_1_x128 = |
| _mm_loadu_si128((__m128i *)(above + base_x + base_shift8 + 8)); |
| a1_1_x128 = |
| _mm_loadu_si128((__m128i *)(above + base_x + base_shift8 + 9)); |
| a0_1_x128 = _mm_shuffle_epi8(a0_1_x128, |
| *(__m128i *)HighbdLoadMaskx[base_shift8]); |
| a1_1_x128 = _mm_shuffle_epi8(a1_1_x128, |
| *(__m128i *)HighbdLoadMaskx[base_shift8]); |
| |
| a0_1_x = _mm256_cvtepu16_epi32(a0_1_x128); |
| a1_1_x = _mm256_cvtepu16_epi32(a1_1_x128); |
| |
| r6 = _mm256_slli_epi32( |
| _mm256_add_epi32(c0123, _mm256_add_epi32(j256, c8)), 6); |
| shift = _mm256_srli_epi32( |
| _mm256_and_si256(_mm256_sub_epi32(r6, ydx), c3f), 1); |
| |
| diff = _mm256_sub_epi32(a1_1_x, a0_1_x); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0_1_x, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| b = _mm256_mullo_epi32(diff, shift); |
| |
| resx[1] = _mm256_add_epi32(a32, b); |
| resx[1] = _mm256_srli_epi32(resx[1], 5); |
| resx[1] = _mm256_packus_epi32( |
| resx[1], |
| _mm256_castsi128_si256(_mm256_extracti128_si256(resx[1], 1))); |
| } |
| resx[0] = |
| _mm256_inserti128_si256(resx[0], _mm256_castsi256_si128(resx[1]), |
| 1); // 16 16bit values |
| |
| // y calc |
| resy[0] = _mm256_setzero_si256(); |
| if ((base_x < min_base_x)) { |
| __m256i c256, y_c256, y_c_1_256, base_y_c256, mask256; |
| r6 = _mm256_set1_epi32(r << 6); |
| c256 = _mm256_add_epi32(j256, c1234); |
| __m256i c256_ = _mm256_add_epi32(c256, cmrlIdx); |
| y_c256 = _mm256_sub_epi32(r6, _mm256_mullo_epi32(c256_, dy256)); |
| base_y_c256 = _mm256_srai_epi32(y_c256, frac_bits_y); |
| mask256 = _mm256_cmpgt_epi32(min_base_y256, base_y_c256); |
| base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256); |
| _mm256_store_si256((__m256i *)base_y_c, base_y_c256); |
| c256 = _mm256_add_epi32(c256_, c8); |
| y_c_1_256 = _mm256_sub_epi32(r6, _mm256_mullo_epi32(c256, dy256)); |
| base_y_c256 = _mm256_srai_epi32(y_c_1_256, frac_bits_y); |
| mask256 = _mm256_cmpgt_epi32(min_base_y256, base_y_c256); |
| base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256); |
| _mm256_store_si256((__m256i *)(base_y_c + 8), base_y_c256); |
| |
| a0_y = _mm256_cvtepu16_epi32(_mm_setr_epi16( |
| left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], |
| left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], |
| left[base_y_c[6]], left[base_y_c[7]])); |
| a1_y = _mm256_cvtepu16_epi32(_mm_setr_epi16( |
| left[base_y_c[0] + 1], left[base_y_c[1] + 1], left[base_y_c[2] + 1], |
| left[base_y_c[3] + 1], left[base_y_c[4] + 1], left[base_y_c[5] + 1], |
| left[base_y_c[6] + 1], left[base_y_c[7] + 1])); |
| |
| shift = _mm256_srli_epi32(_mm256_and_si256(y_c256, c3f), 1); |
| |
| diff = _mm256_sub_epi32(a1_y, a0_y); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0_y, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi32(diff, shift); |
| res = _mm256_add_epi32(a32, b); |
| res = _mm256_srli_epi32(res, 5); |
| |
| resy[0] = _mm256_packus_epi32( |
| res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))); |
| |
| a0_y = _mm256_cvtepu16_epi32(_mm_setr_epi16( |
| left[base_y_c[8]], left[base_y_c[9]], left[base_y_c[10]], |
| left[base_y_c[11]], left[base_y_c[12]], left[base_y_c[13]], |
| left[base_y_c[14]], left[base_y_c[15]])); |
| a1_y = _mm256_cvtepu16_epi32( |
| _mm_setr_epi16(left[base_y_c[8] + 1], left[base_y_c[9] + 1], |
| left[base_y_c[10] + 1], left[base_y_c[11] + 1], |
| left[base_y_c[12] + 1], left[base_y_c[13] + 1], |
| left[base_y_c[14] + 1], left[base_y_c[15] + 1])); |
| shift = _mm256_srli_epi32(_mm256_and_si256(y_c_1_256, c3f), 1); |
| |
| diff = _mm256_sub_epi32(a1_y, a0_y); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi32(a0_y, 5); // a[x] * 32 |
| a32 = _mm256_add_epi32(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi32(diff, shift); |
| res = _mm256_add_epi32(a32, b); |
| res = _mm256_srli_epi32(res, 5); |
| |
| resy[1] = _mm256_packus_epi32( |
| res, _mm256_castsi128_si256(_mm256_extracti128_si256(res, 1))); |
| |
| resy[0] = |
| _mm256_inserti128_si256(resy[0], _mm256_castsi256_si128(resy[1]), |
| 1); // 16 16bit values |
| } |
| |
| resxy = _mm256_blendv_epi8(resx[0], resy[0], |
| *(__m256i *)HighbdBaseMask[base_min_diff]); |
| _mm256_storeu_si256((__m256i *)(dst + j), resxy); |
| } // for j |
| dst += stride; |
| } |
| } |
| |
| static void highbd_dr_prediction_z2_HxW_avx2( |
| int H, int W, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, |
| const uint16_t *left, int upsample_above, int upsample_left, int dx, int dy, |
| int mrl_index) { |
| // here upsample_above and upsample_left are 0 by design of |
| // av1_use_intra_edge_upsample |
| const int min_base_x = -(1 + mrl_index); |
| const int min_base_y = -(1 + mrl_index); |
| (void)upsample_above; |
| (void)upsample_left; |
| const int frac_bits_x = 6; |
| const int frac_bits_y = 6; |
| |
| // pre-filter above pixels |
| // store in temp buffers: |
| // above[x] * 32 + 16 |
| // above[x+1] - above[x] |
| // final pixels will be calculated as: |
| // (above[x] * 32 + 16 + (above[x+1] - above[x]) * shift) >> 5 |
| __m256i a0_x, a1_x, a32, a16, c3f, c1; |
| __m256i diff, min_base_y256, dy256, c1234, c0123; |
| DECLARE_ALIGNED(32, int16_t, base_y_c[16]); |
| |
| a16 = _mm256_set1_epi16(16); |
| c1 = _mm256_srli_epi16(a16, 4); |
| min_base_y256 = _mm256_set1_epi16(min_base_y); |
| c3f = _mm256_set1_epi16(0x3f); |
| dy256 = _mm256_set1_epi16(dy); |
| c0123 = |
| _mm256_setr_epi16(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); |
| c1234 = _mm256_add_epi16(c0123, c1); |
| __m256i cmrlIdx = _mm256_set1_epi16(mrl_index); |
| |
| for (int r = 0; r < H; r++) { |
| __m256i b, res, shift; |
| __m256i resx, resy, ydx; |
| __m256i resxy, j256, r6; |
| __m128i a0_x128, a1_x128, a0_1_x128, a1_1_x128; |
| int y = r + 1; |
| ydx = _mm256_set1_epi16((short)((y + mrl_index) * dx)); |
| |
| for (int j = 0; j < W; j += 16) { |
| j256 = _mm256_set1_epi16(j); |
| int base_x = ((j << 6) - (y + mrl_index) * dx) >> frac_bits_x; |
| int base_shift = 0; |
| if ((base_x) < (min_base_x - 1)) { |
| base_shift = (min_base_x - (base_x)-1); |
| } |
| int base_min_diff = (min_base_x - base_x); |
| if (base_min_diff > 16) { |
| base_min_diff = 16; |
| } else { |
| if (base_min_diff < 0) base_min_diff = 0; |
| } |
| |
| if (base_shift < 8) { |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1)); |
| a0_x128 = |
| _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a1_x128 = |
| _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| |
| a0_x = _mm256_castsi128_si256(a0_x128); |
| a1_x = _mm256_castsi128_si256(a1_x128); |
| } else { |
| a0_x = _mm256_setzero_si256(); |
| a1_x = _mm256_setzero_si256(); |
| } |
| |
| int base_shift1 = 0; |
| if (base_shift > 8) { |
| base_shift1 = base_shift - 8; |
| } |
| if (base_shift1 < 8) { |
| a0_1_x128 = |
| _mm_loadu_si128((__m128i *)(above + base_x + base_shift1 + 8)); |
| a1_1_x128 = |
| _mm_loadu_si128((__m128i *)(above + base_x + base_shift1 + 9)); |
| a0_1_x128 = _mm_shuffle_epi8(a0_1_x128, |
| *(__m128i *)HighbdLoadMaskx[base_shift1]); |
| a1_1_x128 = _mm_shuffle_epi8(a1_1_x128, |
| *(__m128i *)HighbdLoadMaskx[base_shift1]); |
| |
| a0_x = _mm256_inserti128_si256(a0_x, a0_1_x128, 1); |
| a1_x = _mm256_inserti128_si256(a1_x, a1_1_x128, 1); |
| } |
| r6 = _mm256_slli_epi16(_mm256_add_epi16(c0123, j256), 6); |
| shift = _mm256_srli_epi16( |
| _mm256_and_si256(_mm256_sub_epi16(r6, ydx), c3f), 1); |
| |
| diff = _mm256_sub_epi16(a1_x, a0_x); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi16(a0_x, 5); // a[x] * 32 |
| a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi16(diff, shift); |
| res = _mm256_add_epi16(a32, b); |
| resx = _mm256_srli_epi16(res, 5); // 16 16-bit values |
| |
| // y calc |
| resy = _mm256_setzero_si256(); |
| __m256i a0_y, a1_y, shifty; |
| if ((base_x < min_base_x)) { |
| __m256i c256, y_c256, base_y_c256, mask256, mul16; |
| r6 = _mm256_set1_epi16(r << 6); |
| c256 = _mm256_add_epi16(j256, c1234); |
| __m256i c256_ = _mm256_add_epi16(c256, cmrlIdx); |
| mul16 = _mm256_min_epu16(_mm256_mullo_epi16(c256_, dy256), |
| _mm256_srli_epi16(min_base_y256, 1)); |
| y_c256 = _mm256_sub_epi16(r6, mul16); |
| base_y_c256 = _mm256_srai_epi16(y_c256, frac_bits_y); |
| mask256 = _mm256_cmpgt_epi16(min_base_y256, base_y_c256); |
| base_y_c256 = _mm256_andnot_si256(mask256, base_y_c256); |
| _mm256_store_si256((__m256i *)base_y_c, base_y_c256); |
| |
| a0_y = _mm256_setr_epi16( |
| left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], |
| left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], |
| left[base_y_c[6]], left[base_y_c[7]], left[base_y_c[8]], |
| left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]], |
| left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]], |
| left[base_y_c[15]]); |
| base_y_c256 = _mm256_add_epi16(base_y_c256, c1); |
| _mm256_store_si256((__m256i *)base_y_c, base_y_c256); |
| |
| a1_y = _mm256_setr_epi16( |
| left[base_y_c[0]], left[base_y_c[1]], left[base_y_c[2]], |
| left[base_y_c[3]], left[base_y_c[4]], left[base_y_c[5]], |
| left[base_y_c[6]], left[base_y_c[7]], left[base_y_c[8]], |
| left[base_y_c[9]], left[base_y_c[10]], left[base_y_c[11]], |
| left[base_y_c[12]], left[base_y_c[13]], left[base_y_c[14]], |
| left[base_y_c[15]]); |
| |
| shifty = _mm256_srli_epi16(_mm256_and_si256(y_c256, c3f), 1); |
| |
| diff = _mm256_sub_epi16(a1_y, a0_y); // a[x+1] - a[x] |
| a32 = _mm256_slli_epi16(a0_y, 5); // a[x] * 32 |
| a32 = _mm256_add_epi16(a32, a16); // a[x] * 32 + 16 |
| |
| b = _mm256_mullo_epi16(diff, shifty); |
| res = _mm256_add_epi16(a32, b); |
| resy = _mm256_srli_epi16(res, 5); |
| } |
| |
| resxy = _mm256_blendv_epi8(resx, resy, |
| *(__m256i *)HighbdBaseMask[base_min_diff]); |
| _mm256_storeu_si256((__m256i *)(dst + j), resxy); |
| } // for j |
| dst += stride; |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 |
| void av1_highbd_dr_prediction_z2_avx2(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_above, |
| int upsample_left, int dx, int dy, int bd, |
| int mrl_index) { |
| (void)bd; |
| assert(dx > 0); |
| assert(dy > 0); |
| switch (bw) { |
| case 4: |
| if (bd < 12) { |
| highbd_dr_prediction_z2_Nx4_avx2(bh, dst, stride, above, left, |
| upsample_above, upsample_left, dx, dy, |
| mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z2_Nx4_avx2(bh, dst, stride, above, left, |
| upsample_above, upsample_left, |
| dx, dy, mrl_index); |
| } |
| break; |
| case 8: |
| if (bd < 12) { |
| highbd_dr_prediction_z2_Nx8_avx2(bh, dst, stride, above, left, |
| upsample_above, upsample_left, dx, dy, |
| mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z2_Nx8_avx2(bh, dst, stride, above, left, |
| upsample_above, upsample_left, |
| dx, dy, mrl_index); |
| } |
| break; |
| default: |
| if (bd < 12) { |
| highbd_dr_prediction_z2_HxW_avx2(bh, bw, dst, stride, above, left, |
| upsample_above, upsample_left, dx, dy, |
| mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z2_HxW_avx2(bh, bw, dst, stride, above, left, |
| upsample_above, upsample_left, |
| dx, dy, mrl_index); |
| } |
| break; |
| } |
| } |
| |
| // Directional prediction, zone 3 functions |
| static void highbd_dr_prediction_z3_4x4_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m128i dstvec[4], d[4]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_4xN_internal_avx2(4, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_avx2( |
| 4, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| highbd_transpose4x8_8x4_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], |
| &dstvec[3], &d[0], &d[1], &d[2], &d[3]); |
| _mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]); |
| _mm_storel_epi64((__m128i *)(dst + 1 * stride), d[1]); |
| _mm_storel_epi64((__m128i *)(dst + 2 * stride), d[2]); |
| _mm_storel_epi64((__m128i *)(dst + 3 * stride), d[3]); |
| return; |
| } |
| |
| static void highbd_dr_prediction_z3_8x8_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m128i dstvec[8], d[8]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_8xN_internal_avx2(8, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_avx2( |
| 8, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| highbd_transpose8x8_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], |
| &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], |
| &d[7]); |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_4x8_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m128i dstvec[4], d[8]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_8xN_internal_avx2(4, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_avx2( |
| 4, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| |
| highbd_transpose4x8_8x4_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], |
| &d[7]); |
| for (int i = 0; i < 8; i++) { |
| _mm_storel_epi64((__m128i *)(dst + i * stride), d[i]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_8x4_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m128i dstvec[8], d[4]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_4xN_internal_avx2(8, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_avx2( |
| 8, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| |
| highbd_transpose8x8_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], |
| &d[0], &d[1], &d[2], &d[3]); |
| _mm_storeu_si128((__m128i *)(dst + 0 * stride), d[0]); |
| _mm_storeu_si128((__m128i *)(dst + 1 * stride), d[1]); |
| _mm_storeu_si128((__m128i *)(dst + 2 * stride), d[2]); |
| _mm_storeu_si128((__m128i *)(dst + 3 * stride), d[3]); |
| } |
| |
| static void highbd_dr_prediction_z3_8x16_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[8], d[8]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_16xN_internal_avx2(8, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_avx2( |
| 8, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| highbd_transpose8x16_16x8_avx2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], |
| &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], |
| &d[6], &d[7]); |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + i * stride), |
| _mm256_castsi256_si128(d[i])); |
| } |
| for (int i = 8; i < 16; i++) { |
| _mm_storeu_si128((__m128i *)(dst + i * stride), |
| _mm256_extracti128_si256(d[i - 8], 1)); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_16x8_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m128i dstvec[16]; |
| __m256i dstvec256[8], d256[8]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_8xN_internal_avx2(16, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_avx2( |
| 16, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| for (int i = 0; i < 8; ++i) { |
| dstvec256[i] = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(dstvec[i + 0]), dstvec[i + 8], 0x1); |
| } |
| |
| highbd_transpose8x16_16x8_avx2( |
| &dstvec256[0], &dstvec256[1], &dstvec256[2], &dstvec256[3], &dstvec256[4], |
| &dstvec256[5], &dstvec256[6], &dstvec256[7], &d256[0], &d256[1], &d256[2], |
| &d256[3], &d256[4], &d256[5], &d256[6], &d256[7]); |
| |
| for (int i = 0; i < 8; ++i) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d256[i]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_4x16_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[4], d[4], d1; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_16xN_internal_avx2(4, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_avx2( |
| 4, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| highbd_transpose4x16_avx2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &d[0], &d[1], &d[2], &d[3]); |
| for (int i = 0; i < 4; i++) { |
| _mm_storel_epi64((__m128i *)(dst + i * stride), |
| _mm256_castsi256_si128(d[i])); |
| d1 = _mm256_bsrli_epi128(d[i], 8); |
| _mm_storel_epi64((__m128i *)(dst + (i + 4) * stride), |
| _mm256_castsi256_si128(d1)); |
| _mm_storel_epi64((__m128i *)(dst + (i + 8) * stride), |
| _mm256_extracti128_si256(d[i], 1)); |
| _mm_storel_epi64((__m128i *)(dst + (i + 12) * stride), |
| _mm256_extracti128_si256(d1, 1)); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_16x4_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m128i dstvec[16]; |
| __m256i d[4]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_4xN_internal_avx2(16, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_avx2( |
| 16, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| highbd_transpose16x4_8x8_avx2(dstvec, d); |
| |
| for (int i = 0; i < 4; ++i) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d[i]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_8x32_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[16], d[16]; |
| |
| if (bd < 12) { |
| highbd_dr_prediction_z1_32xN_internal_avx2(8, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_32xN_internal_avx2( |
| 8, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| |
| for (int i = 0; i < 16; i += 8) { |
| highbd_transpose8x16_16x8_avx2( |
| &dstvec[i], &dstvec[i + 1], &dstvec[i + 2], &dstvec[i + 3], |
| &dstvec[i + 4], &dstvec[i + 5], &dstvec[i + 6], &dstvec[i + 7], &d[i], |
| &d[i + 1], &d[i + 2], &d[i + 3], &d[i + 4], &d[i + 5], &d[i + 6], |
| &d[i + 7]); |
| } |
| |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + i * stride), |
| _mm256_castsi256_si128(d[i])); |
| } |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + (i + 8) * stride), |
| _mm256_extracti128_si256(d[i], 1)); |
| } |
| for (int i = 8; i < 16; i++) { |
| _mm_storeu_si128((__m128i *)(dst + (i + 8) * stride), |
| _mm256_castsi256_si128(d[i])); |
| } |
| for (int i = 8; i < 16; i++) { |
| _mm_storeu_si128((__m128i *)(dst + (i + 16) * stride), |
| _mm256_extracti128_si256(d[i], 1)); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_32x8_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m128i dstvec[32], d[32]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_8xN_internal_avx2(32, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_avx2( |
| 32, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| |
| for (int i = 0; i < 32; i += 8) { |
| highbd_transpose8x8_sse2(&dstvec[0 + i], &dstvec[1 + i], &dstvec[2 + i], |
| &dstvec[3 + i], &dstvec[4 + i], &dstvec[5 + i], |
| &dstvec[6 + i], &dstvec[7 + i], &d[0 + i], |
| &d[1 + i], &d[2 + i], &d[3 + i], &d[4 + i], |
| &d[5 + i], &d[6 + i], &d[7 + i]); |
| } |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); |
| _mm_storeu_si128((__m128i *)(dst + i * stride + 8), d[i + 8]); |
| _mm_storeu_si128((__m128i *)(dst + i * stride + 16), d[i + 16]); |
| _mm_storeu_si128((__m128i *)(dst + i * stride + 24), d[i + 24]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_16x16_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[16], d[16]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_16xN_internal_avx2(16, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_avx2( |
| 16, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| |
| highbd_transpose16x16_avx2(dstvec, d); |
| |
| for (int i = 0; i < 16; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d[i]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_32x32_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[64], d[16]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_32xN_internal_avx2(32, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_32xN_internal_avx2( |
| 32, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| highbd_transpose16x16_avx2(dstvec, d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + j * stride), d[j]); |
| } |
| highbd_transpose16x16_avx2(dstvec + 16, d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + j * stride + 16), d[j]); |
| } |
| highbd_transpose16x16_avx2(dstvec + 32, d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + (j + 16) * stride), d[j]); |
| } |
| highbd_transpose16x16_avx2(dstvec + 48, d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + (j + 16) * stride + 16), d[j]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_64x64_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, |
| int bd, int mrl_index) { |
| DECLARE_ALIGNED(16, uint16_t, dstT[64 * 64]); |
| if (bd < 12) { |
| highbd_dr_prediction_z1_64xN_avx2(64, dstT, 64, left, upsample_left, dy, |
| mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_avx2(64, dstT, 64, left, upsample_left, |
| dy, mrl_index); |
| } |
| highbd_transpose(dstT, 64, dst, stride, 64, 64); |
| } |
| |
| static void highbd_dr_prediction_z3_16x32_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[32], d[32]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_32xN_internal_avx2(16, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_32xN_internal_avx2( |
| 16, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| for (int i = 0; i < 32; i += 8) { |
| highbd_transpose8x16_16x8_avx2( |
| &dstvec[i], &dstvec[i + 1], &dstvec[i + 2], &dstvec[i + 3], |
| &dstvec[i + 4], &dstvec[i + 5], &dstvec[i + 6], &dstvec[i + 7], &d[i], |
| &d[i + 1], &d[i + 2], &d[i + 3], &d[i + 4], &d[i + 5], &d[i + 6], |
| &d[i + 7]); |
| } |
| // store |
| for (int j = 0; j < 32; j += 16) { |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + (i + j) * stride), |
| _mm256_castsi256_si128(d[(i + j)])); |
| } |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + (i + j) * stride + 8), |
| _mm256_castsi256_si128(d[(i + j) + 8])); |
| } |
| for (int i = 8; i < 16; i++) { |
| _mm256_storeu_si256( |
| (__m256i *)(dst + (i + j) * stride), |
| _mm256_inserti128_si256( |
| d[(i + j)], _mm256_extracti128_si256(d[(i + j) - 8], 1), 0)); |
| } |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_32x16_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[32], d[16]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_16xN_internal_avx2(32, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_avx2( |
| 32, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| for (int i = 0; i < 32; i += 16) { |
| highbd_transpose16x16_avx2((dstvec + i), d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + j * stride + i), d[j]); |
| } |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_32x64_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, |
| int bd, int mrl_index) { |
| uint16_t dstT[64 * 32]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_64xN_avx2(32, dstT, 64, left, upsample_left, dy, |
| mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_avx2(32, dstT, 64, left, upsample_left, |
| dy, mrl_index); |
| } |
| highbd_transpose(dstT, 64, dst, stride, 32, 64); |
| } |
| |
| static void highbd_dr_prediction_z3_64x32_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, |
| int bd, int mrl_index) { |
| DECLARE_ALIGNED(16, uint16_t, dstT[32 * 64]); |
| highbd_dr_prediction_z1_32xN_avx2(64, dstT, 32, left, upsample_left, dy, bd, |
| mrl_index); |
| highbd_transpose(dstT, 32, dst, stride, 64, 32); |
| return; |
| } |
| |
| static void highbd_dr_prediction_z3_16x64_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, |
| int bd, int mrl_index) { |
| DECLARE_ALIGNED(16, uint16_t, dstT[64 * 16]); |
| if (bd < 12) { |
| highbd_dr_prediction_z1_64xN_avx2(16, dstT, 64, left, upsample_left, dy, |
| mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_avx2(16, dstT, 64, left, upsample_left, |
| dy, mrl_index); |
| } |
| highbd_transpose(dstT, 64, dst, stride, 16, 64); |
| } |
| |
| static void highbd_dr_prediction_z3_64x16_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[64], d[16]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_16xN_internal_avx2(64, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_avx2( |
| 64, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| for (int i = 0; i < 64; i += 16) { |
| highbd_transpose16x16_avx2((dstvec + i), d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + j * stride + i), d[j]); |
| } |
| } |
| } |
| |
| #if CONFIG_FLEX_PARTITION |
| static void highbd_dr_prediction_z3_32x4_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m128i dstvec[32]; |
| __m256i d[8]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_4xN_internal_avx2(32, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_avx2( |
| 32, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| highbd_transpose16x4_8x8_avx2(dstvec, d); |
| highbd_transpose16x4_8x8_avx2(dstvec + 16, d + 4); |
| |
| for (int i = 0; i < 4; ++i) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d[i]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 16), d[i + 4]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_64x4_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m128i dstvec[64]; |
| __m256i d[16]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_4xN_internal_avx2(64, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_avx2( |
| 64, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| highbd_transpose16x4_8x8_avx2(dstvec, d); |
| highbd_transpose16x4_8x8_avx2(dstvec + 16, d + 4); |
| highbd_transpose16x4_8x8_avx2(dstvec + 32, d + 8); |
| highbd_transpose16x4_8x8_avx2(dstvec + 48, d + 12); |
| |
| for (int i = 0; i < 4; ++i) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d[i]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 16), d[i + 4]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 32), d[i + 8]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 48), d[i + 12]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_4x32_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[8], d[8]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_32xN_internal_avx2(4, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_32xN_internal_avx2( |
| 4, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| |
| highbd_transpose8x16_16x8_avx2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], |
| &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], |
| &d[6], &d[7]); |
| |
| for (int i = 0; i < 8; i++) { |
| __m128i temp_lo = _mm256_castsi256_si128(d[i]); |
| __m128i temp_hi = _mm256_extracti128_si256(d[i], 1); |
| _mm_storel_epi64((__m128i *)(dst + i * stride), temp_lo); |
| _mm_storel_epi64((__m128i *)(dst + (i + 16) * stride), |
| _mm_srli_si128(temp_lo, 8)); |
| _mm_storel_epi64((__m128i *)(dst + (i + 8) * stride), temp_hi); |
| _mm_storel_epi64((__m128i *)(dst + (i + 24) * stride), |
| _mm_srli_si128(temp_hi, 8)); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_64x8_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m128i dstvec[64]; |
| __m256i dstvec256[32], d256[32]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_8xN_internal_avx2(64, dstvec, left, upsample_left, |
| dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_avx2( |
| 64, dstvec, left, upsample_left, dy, mrl_index); |
| } |
| |
| for (int i = 0; i < 8; ++i) { |
| dstvec256[i] = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(dstvec[i + 0]), dstvec[i + 8], 0x1); |
| dstvec256[i + 8] = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(dstvec[i + 16]), dstvec[i + 24], 0x1); |
| dstvec256[i + 16] = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(dstvec[i + 32]), dstvec[i + 40], 0x1); |
| dstvec256[i + 24] = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(dstvec[i + 48]), dstvec[i + 56], 0x1); |
| } |
| |
| for (int i = 0; i < 32; i += 8) { |
| highbd_transpose8x16_16x8_avx2( |
| &dstvec256[i + 0], &dstvec256[i + 1], &dstvec256[i + 2], |
| &dstvec256[i + 3], &dstvec256[i + 4], &dstvec256[i + 5], |
| &dstvec256[i + 6], &dstvec256[i + 7], &d256[i + 0], &d256[i + 1], |
| &d256[i + 2], &d256[i + 3], &d256[i + 4], &d256[i + 5], &d256[i + 6], |
| &d256[i + 7]); |
| } |
| for (int i = 0; i < 8; ++i) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d256[i]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 16), d256[i + 8]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 32), d256[i + 16]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 48), d256[i + 24]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_4x64_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[16], d[16]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_64xN_avx2(4, (uint16_t *)dstvec, 64, left, |
| upsample_left, dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_avx2(4, (uint16_t *)dstvec, 64, left, |
| upsample_left, dy, mrl_index); |
| } |
| |
| // At this point, each 4 entries of dstvec[] forms one full 64-pixel |
| // row (pre transposition) / col (post transposition) |
| for (int i = 0; i < 4; i++) { |
| highbd_transpose4x16_avx2(&dstvec[i], &dstvec[i + 4], &dstvec[i + 8], |
| &dstvec[i + 12], &d[4 * i], &d[4 * i + 1], |
| &d[4 * i + 2], &d[4 * i + 3]); |
| } |
| |
| // Now each 4 elements of d contains 16 rows of 4 output pixels, |
| // ordered like: |
| // {0, 4, 8, 12}, {1, 5, 9, 13}, ... |
| for (int i = 0; i < 4; i++) { |
| for (int j = 0; j < 4; j++) { |
| const __m128i temph = _mm256_extracti128_si256(d[4 * i + j], 1); |
| const __m128i templ = _mm256_castsi256_si128(d[4 * i + j]); |
| xx_storel_64(dst + (16 * i + j) * stride, templ); |
| xx_storel_64(dst + (16 * i + j + 4) * stride, _mm_srli_si128(templ, 8)); |
| xx_storel_64(dst + (16 * i + j + 8) * stride, temph); |
| xx_storel_64(dst + (16 * i + j + 12) * stride, _mm_srli_si128(temph, 8)); |
| } |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_8x64_avx2(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *left, |
| int upsample_left, int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[32], d[32]; |
| if (bd < 12) { |
| highbd_dr_prediction_z1_64xN_avx2(8, (uint16_t *)dstvec, 64, left, |
| upsample_left, dy, mrl_index); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_avx2(8, (uint16_t *)dstvec, 64, left, |
| upsample_left, dy, mrl_index); |
| } |
| |
| // At this point, each 4 entries of dstvec[] forms one full 64-pixel |
| // row (pre transposition) / col (post transposition) |
| for (int i = 0; i < 4; i++) { |
| highbd_transpose8x16_16x8_avx2( |
| &dstvec[i], &dstvec[i + 4], &dstvec[i + 8], &dstvec[i + 12], |
| &dstvec[i + 16], &dstvec[i + 20], &dstvec[i + 24], &dstvec[i + 28], |
| &d[8 * i], &d[8 * i + 1], &d[8 * i + 2], &d[8 * i + 3], &d[8 * i + 4], |
| &d[8 * i + 5], &d[8 * i + 6], &d[8 * i + 7]); |
| } |
| |
| // Now each 8 elements of d contains 16 rows of 8 output pixels, |
| // ordered like: |
| // {0, 8}, {1, 9}, {2, 10}, ... |
| for (int i = 0; i < 4; i++) { |
| for (int j = 0; j < 8; j++) { |
| __m128i temp_lo = _mm256_castsi256_si128(d[8 * i + j]); |
| __m128i temp_hi = _mm256_extracti128_si256(d[8 * i + j], 1); |
| _mm_storeu_si128((__m128i *)(dst + (16 * i + j) * stride), temp_lo); |
| _mm_storeu_si128((__m128i *)(dst + (16 * i + j + 8) * stride), temp_hi); |
| } |
| } |
| } |
| #endif // CONFIG_FLEX_PARTITION |
| |
| void av1_highbd_dr_prediction_z3_avx2(uint16_t *dst, ptrdiff_t stride, int bw, |
| int bh, const uint16_t *above, |
| const uint16_t *left, int upsample_left, |
| int dx, int dy, int bd, int mrl_index) { |
| (void)above; |
| (void)dx; |
| |
| assert(dx == 1); |
| assert(dy > 0); |
| |
| if (bw == bh) { |
| switch (bw) { |
| case 4: |
| highbd_dr_prediction_z3_4x4_avx2(dst, stride, left, upsample_left, dy, |
| bd, mrl_index); |
| break; |
| case 8: |
| highbd_dr_prediction_z3_8x8_avx2(dst, stride, left, upsample_left, dy, |
| bd, mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z3_16x16_avx2(dst, stride, left, upsample_left, dy, |
| bd, mrl_index); |
| break; |
| case 32: |
| highbd_dr_prediction_z3_32x32_avx2(dst, stride, left, upsample_left, dy, |
| bd, mrl_index); |
| break; |
| case 64: |
| highbd_dr_prediction_z3_64x64_avx2(dst, stride, left, upsample_left, dy, |
| bd, mrl_index); |
| break; |
| } |
| } else { |
| if (bw < bh) { |
| if (bw + bw == bh) { |
| switch (bw) { |
| case 4: |
| highbd_dr_prediction_z3_4x8_avx2(dst, stride, left, upsample_left, |
| dy, bd, mrl_index); |
| break; |
| case 8: |
| highbd_dr_prediction_z3_8x16_avx2(dst, stride, left, upsample_left, |
| dy, bd, mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z3_16x32_avx2(dst, stride, left, upsample_left, |
| dy, bd, mrl_index); |
| break; |
| case 32: |
| highbd_dr_prediction_z3_32x64_avx2(dst, stride, left, upsample_left, |
| dy, bd, mrl_index); |
| break; |
| } |
| } else { |
| switch (bw) { |
| case 4: |
| #if CONFIG_FLEX_PARTITION |
| if (bh == 32) |
| highbd_dr_prediction_z3_4x32_avx2( |
| dst, stride, left, upsample_left, dy, bd, mrl_index); |
| else if (bh == 64) |
| highbd_dr_prediction_z3_4x64_avx2( |
| dst, stride, left, upsample_left, dy, bd, mrl_index); |
| else |
| #endif // CONFIG_FLEX_PARTITION |
| highbd_dr_prediction_z3_4x16_avx2( |
| dst, stride, left, upsample_left, dy, bd, mrl_index); |
| break; |
| case 8: |
| #if CONFIG_FLEX_PARTITION |
| if (bh == 64) |
| highbd_dr_prediction_z3_8x64_avx2( |
| dst, stride, left, upsample_left, dy, bd, mrl_index); |
| else |
| #endif // CONFIG_FLEX_PARTITION |
| highbd_dr_prediction_z3_8x32_avx2( |
| dst, stride, left, upsample_left, dy, bd, mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z3_16x64_avx2(dst, stride, left, upsample_left, |
| dy, bd, mrl_index); |
| break; |
| } |
| } |
| } else { |
| if (bh + bh == bw) { |
| switch (bh) { |
| case 4: |
| highbd_dr_prediction_z3_8x4_avx2(dst, stride, left, upsample_left, |
| dy, bd, mrl_index); |
| break; |
| case 8: |
| highbd_dr_prediction_z3_16x8_avx2(dst, stride, left, upsample_left, |
| dy, bd, mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z3_32x16_avx2(dst, stride, left, upsample_left, |
| dy, bd, mrl_index); |
| break; |
| case 32: |
| highbd_dr_prediction_z3_64x32_avx2(dst, stride, left, upsample_left, |
| dy, bd, mrl_index); |
| break; |
| } |
| } else { |
| switch (bh) { |
| case 4: |
| #if CONFIG_FLEX_PARTITION |
| if (bw == 64) |
| highbd_dr_prediction_z3_64x4_avx2( |
| dst, stride, left, upsample_left, dy, bd, mrl_index); |
| else if (bw == 32) |
| highbd_dr_prediction_z3_32x4_avx2( |
| dst, stride, left, upsample_left, dy, bd, mrl_index); |
| else |
| #endif // CONFIG_FLEX_PARTITION |
| highbd_dr_prediction_z3_16x4_avx2( |
| dst, stride, left, upsample_left, dy, bd, mrl_index); |
| break; |
| case 8: |
| #if CONFIG_FLEX_PARTITION |
| if (bw == 64) |
| highbd_dr_prediction_z3_64x8_avx2( |
| dst, stride, left, upsample_left, dy, bd, mrl_index); |
| else |
| #endif // CONFIG_FLEX_PARTITION |
| highbd_dr_prediction_z3_32x8_avx2( |
| dst, stride, left, upsample_left, dy, bd, mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z3_64x16_avx2(dst, stride, left, upsample_left, |
| dy, bd, mrl_index); |
| break; |
| } |
| } |
| } |
| } |
| return; |
| } |
| |
| #if CONFIG_IDIF |
| |
| static INLINE __m256i highbd_clamp_epi16_avx2(__m256i u, int bd) { |
| const __m256i zero = _mm256_setzero_si256(); |
| const int max_i = ((1 << bd) - 1) << POWER_DR_INTERP_FILTER; |
| const __m256i max = _mm256_set1_epi16(max_i); |
| __m256i t, clamped; |
| |
| t = _mm256_max_epi16(u, zero); |
| clamped = _mm256_min_epi16(t, max); |
| |
| return clamped; |
| } |
| |
| static INLINE __m256i highbd_clamp_epi32_avx2(__m256i u, int bd) { |
| const __m256i zero = _mm256_setzero_si256(); |
| const int max_i = ((1 << bd) - 1) << POWER_DR_INTERP_FILTER; |
| const __m256i max = _mm256_set1_epi32(max_i); |
| __m256i t, clamped; |
| |
| t = _mm256_max_epi32(u, zero); |
| clamped = _mm256_min_epi32(t, max); |
| |
| return clamped; |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_z1_4xN_internal_idif_avx2( |
| int N, __m128i *dst, const uint16_t *above, int dx, int mrl_index, int bd) { |
| const int frac_bits = 6; |
| const int max_base_x = ((N + 4) - 1 + (mrl_index << 1)); |
| |
| assert(dx > 0); |
| __m256i a0, a1, a2, a3; |
| __m256i val0, val1; |
| __m128i a_mbase_x, max_base_x128, base_inc128, mask128; |
| __m256i f0, f1, f2, f3; |
| |
| __m256i rnding = _mm256_set1_epi16(1 << (POWER_DR_INTERP_FILTER - 1)); |
| |
| a_mbase_x = _mm_set1_epi16(above[max_base_x]); |
| max_base_x128 = _mm_set1_epi16(max_base_x); |
| |
| int shift_i; |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m128i res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dst[i] = a_mbase_x; // save 4 values |
| } |
| return; |
| } |
| |
| // load refs |
| a0 = _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)(above + base - 1))); |
| a1 = _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)(above + base))); |
| a2 = _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)(above + base + 1))); |
| a3 = _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)(above + base + 2))); |
| |
| // load filter |
| shift_i = (x & 0x3F) >> 1; |
| f0 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][0]); |
| f1 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][1]); |
| f2 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][2]); |
| f3 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][3]); |
| |
| // multiply and sum |
| val0 = _mm256_adds_epi16(_mm256_mullo_epi16(a0, f0), |
| _mm256_mullo_epi16(a1, f1)); |
| val1 = _mm256_adds_epi16(_mm256_mullo_epi16(a2, f2), |
| _mm256_mullo_epi16(a3, f3)); |
| val0 = _mm256_adds_epi16(val0, val1); |
| |
| val0 = highbd_clamp_epi16_avx2(val0, bd); |
| val0 = _mm256_adds_epi16(val0, rnding); |
| val0 = _mm256_srli_epi16(val0, POWER_DR_INTERP_FILTER); |
| |
| // discard values |
| res1 = _mm256_castsi256_si128(val0); |
| base_inc128 = _mm_setr_epi16(base, base + 1, base + 2, base + 3, base + 4, |
| base + 5, base + 6, base + 7); |
| mask128 = _mm_cmpgt_epi16(max_base_x128, base_inc128); |
| dst[r] = _mm_blendv_epi8(a_mbase_x, res1, mask128); |
| x += dx; |
| } |
| } |
| |
| static AOM_FORCE_INLINE void |
| highbd_dr_prediction_32bit_z1_4xN_internal_idif_avx2(int N, __m128i *dst, |
| const uint16_t *above, |
| int dx, int mrl_index, |
| int bd) { |
| const int frac_bits = 6; |
| const int max_base_x = ((N + 4) - 1 + (mrl_index << 1)); |
| |
| assert(dx > 0); |
| __m256i a0, a1, a2, a3; |
| __m256i val0, val1; |
| __m128i a_mbase_x, max_base_x128, base_inc128, mask128; |
| __m256i f0, f1, f2, f3; |
| |
| __m256i rnding = _mm256_set1_epi32(1 << (POWER_DR_INTERP_FILTER - 1)); |
| |
| a_mbase_x = _mm_set1_epi16(above[max_base_x]); |
| max_base_x128 = _mm_set1_epi32(max_base_x); |
| |
| int x = dx * (1 + mrl_index); |
| int shift_i; |
| for (int r = 0; r < N; r++) { |
| __m128i res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dst[i] = a_mbase_x; // save 4 values |
| } |
| return; |
| } |
| |
| // load refs |
| a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base - 1))); |
| a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base))); |
| a2 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1))); |
| a3 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 2))); |
| |
| // load filter |
| shift_i = (x & 0x3F) >> 1; |
| f0 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][0]); |
| f1 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][1]); |
| f2 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][2]); |
| f3 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][3]); |
| |
| // multiply and sum |
| val0 = _mm256_add_epi32(_mm256_mullo_epi32(a0, f0), |
| _mm256_mullo_epi32(a1, f1)); |
| val1 = _mm256_add_epi32(_mm256_mullo_epi32(a2, f2), |
| _mm256_mullo_epi32(a3, f3)); |
| val0 = _mm256_add_epi32(val0, val1); |
| |
| // round shift |
| val0 = highbd_clamp_epi32_avx2(val0, bd); |
| val0 = _mm256_add_epi32(val0, rnding); |
| val0 = _mm256_srli_epi32(val0, POWER_DR_INTERP_FILTER); |
| |
| // discard values |
| res1 = _mm256_castsi256_si128(val0); |
| res1 = _mm_packus_epi32(res1, res1); |
| |
| base_inc128 = _mm_setr_epi32(base, base + 1, base + 2, base + 3); |
| mask128 = _mm_cmpgt_epi32(max_base_x128, base_inc128); |
| mask128 = _mm_packs_epi32(mask128, mask128); // goto 16 bit |
| dst[r] = _mm_blendv_epi8(a_mbase_x, res1, mask128); |
| x += dx; |
| } |
| } |
| |
| static void highbd_dr_prediction_z1_4xN_idif_avx2( |
| uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, |
| const uint16_t *left, int dx, int dy, int bd, int mrl_index) { |
| (void)dy; |
| (void)left; |
| (void)bw; |
| assert(bw == 4); |
| int N = bh; |
| |
| #if CONFIG_FLEX_PARTITION |
| assert(bh <= 64); |
| __m128i dstvec[64]; |
| #else |
| assert(bh <= 16); |
| __m128i dstvec[16]; |
| #endif // CONFIG_FLEX_PARTITION |
| |
| if (bd < 10) { |
| highbd_dr_prediction_z1_4xN_internal_idif_avx2(N, dstvec, above, dx, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_idif_avx2(N, dstvec, above, dx, |
| mrl_index, bd); |
| } |
| for (int i = 0; i < N; i++) { |
| _mm_storel_epi64((__m128i *)(dst + stride * i), dstvec[i]); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_z1_8xN_internal_idif_avx2( |
| int N, __m128i *dst, const uint16_t *above, int dx, int mrl_index, int bd) { |
| const int frac_bits = 6; |
| const int max_base_x = ((N + 8) - 1 + (mrl_index << 1)); |
| |
| assert(dx > 0); |
| __m256i a0, a1, a2, a3; |
| __m256i val0, val1; |
| __m256i a_mbase_x, max_base_x256, base_inc256, mask256; |
| __m256i f0, f1, f2, f3; |
| |
| __m256i rnding = _mm256_set1_epi16(1 << (POWER_DR_INTERP_FILTER - 1)); |
| |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| |
| int shift_i; |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dst[i] = _mm256_castsi256_si128(a_mbase_x); // save 8 values |
| } |
| return; |
| } |
| |
| // load refs |
| a0 = _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)(above + base - 1))); |
| a1 = _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)(above + base))); |
| a2 = _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)(above + base + 1))); |
| a3 = _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)(above + base + 2))); |
| |
| // load filter |
| shift_i = (x & 0x3F) >> 1; |
| f0 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][0]); |
| f1 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][1]); |
| f2 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][2]); |
| f3 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][3]); |
| |
| val0 = _mm256_adds_epi16(_mm256_mullo_epi16(a0, f0), |
| _mm256_mullo_epi16(a1, f1)); |
| val1 = _mm256_adds_epi16(_mm256_mullo_epi16(a2, f2), |
| _mm256_mullo_epi16(a3, f3)); |
| val0 = _mm256_adds_epi16(val0, val1); |
| |
| // round-shift |
| val0 = highbd_clamp_epi16_avx2(val0, bd); |
| val0 = _mm256_adds_epi16(val0, rnding); |
| val0 = _mm256_srli_epi16(val0, POWER_DR_INTERP_FILTER); |
| |
| base_inc256 = |
| _mm256_setr_epi16(base, base + 1, base + 2, base + 3, base + 4, |
| base + 5, base + 6, base + 7, 0, 0, 0, 0, 0, 0, 0, 0); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| res1 = _mm256_blendv_epi8(a_mbase_x, val0, mask256); |
| dst[r] = _mm256_castsi256_si128(res1); |
| x += dx; |
| } |
| } |
| |
| static AOM_FORCE_INLINE void |
| highbd_dr_prediction_32bit_z1_8xN_internal_idif_avx2(int N, __m128i *dst, |
| const uint16_t *above, |
| int dx, int mrl_index, |
| int bd) { |
| const int frac_bits = 6; |
| const int max_base_x = ((N + 8) - 1 + (mrl_index << 1)); |
| |
| assert(dx > 0); |
| __m256i a0, a1, a2, a3; |
| __m256i val0, val1; |
| __m256i a_mbase_x, max_base_x256, base_inc256, mask256; |
| __m256i f0, f1, f2, f3; |
| |
| __m256i rnding = _mm256_set1_epi32(1 << (POWER_DR_INTERP_FILTER - 1)); |
| |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi32(max_base_x); |
| |
| int shift_i; |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dst[i] = _mm256_castsi256_si128(a_mbase_x); // save 8 values |
| } |
| return; |
| } |
| |
| // load refs |
| a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base - 1))); |
| a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base))); |
| a2 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1))); |
| a3 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 2))); |
| |
| // load filter |
| shift_i = (x & 0x3F) >> 1; |
| f0 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][0]); |
| f1 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][1]); |
| f2 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][2]); |
| f3 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][3]); |
| |
| // multiply and sum |
| val0 = _mm256_add_epi32(_mm256_mullo_epi32(a0, f0), |
| _mm256_mullo_epi32(a1, f1)); |
| val1 = _mm256_add_epi32(_mm256_mullo_epi32(a2, f2), |
| _mm256_mullo_epi32(a3, f3)); |
| val0 = _mm256_add_epi32(val0, val1); |
| |
| // round shift |
| val0 = highbd_clamp_epi32_avx2(val0, bd); |
| val0 = _mm256_add_epi32(val0, rnding); |
| val0 = _mm256_srli_epi32(val0, POWER_DR_INTERP_FILTER); |
| |
| res1 = _mm256_packus_epi32( |
| val0, _mm256_castsi128_si256(_mm256_extracti128_si256(val0, 1))); |
| |
| base_inc256 = _mm256_setr_epi32(base, base + 1, base + 2, base + 3, |
| base + 4, base + 5, base + 6, base + 7); |
| |
| mask256 = _mm256_cmpgt_epi32(max_base_x256, base_inc256); |
| mask256 = _mm256_packs_epi32( |
| mask256, _mm256_castsi128_si256( |
| _mm256_extracti128_si256(mask256, 1))); // go to 16 bit |
| res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256); |
| dst[r] = _mm256_castsi256_si128(res1); |
| x += dx; |
| } |
| } |
| |
| void highbd_dr_prediction_z1_8xN_idif_avx2(uint16_t *dst, ptrdiff_t stride, |
| int bw, int bh, |
| const uint16_t *above, |
| const uint16_t *left, int dx, int dy, |
| int bd, int mrl_index) { |
| (void)left; |
| (void)dy; |
| (void)bw; |
| assert(bw == 8); |
| int N = bh; |
| |
| #if CONFIG_FLEX_PARTITION |
| assert(bh <= 64); |
| __m128i dstvec[64]; |
| #else |
| assert(bh <= 32); |
| __m128i dstvec[32]; |
| #endif // CONFIG_FLEX_PARTITION |
| |
| if (bd < 10) { |
| highbd_dr_prediction_z1_8xN_internal_idif_avx2(N, dstvec, above, dx, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_idif_avx2(N, dstvec, above, dx, |
| mrl_index, bd); |
| } |
| for (int i = 0; i < N; i++) { |
| _mm_storeu_si128((__m128i *)(dst + stride * i), dstvec[i]); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_z1_16xN_internal_idif_avx2( |
| int N, __m256i *dstvec, const uint16_t *above, int dx, int mrl_index, |
| int bd) { |
| const int frac_bits = 6; |
| const int max_base_x = ((16 + N) - 1 + (mrl_index << 1)); |
| |
| __m256i a_mbase_x, max_base_x256, base_inc256, mask256; |
| |
| __m256i a0, a1, a2, a3; |
| __m256i val0, val1; |
| __m256i f0, f1, f2, f3; |
| |
| __m256i rnding = _mm256_set1_epi16(1 << (POWER_DR_INTERP_FILTER - 1)); |
| |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| |
| int shift_i; |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dstvec[i] = a_mbase_x; // save 16 values |
| } |
| return; |
| } |
| |
| // load refs |
| a0 = _mm256_loadu_si256((__m256i *)(above + base - 1)); |
| a1 = _mm256_loadu_si256((__m256i *)(above + base)); |
| a2 = _mm256_loadu_si256((__m256i *)(above + base + 1)); |
| a3 = _mm256_loadu_si256((__m256i *)(above + base + 2)); |
| |
| // load filter |
| shift_i = (x & 0x3F) >> 1; |
| f0 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][0]); |
| f1 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][1]); |
| f2 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][2]); |
| f3 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][3]); |
| |
| val0 = _mm256_adds_epi16(_mm256_mullo_epi16(a0, f0), |
| _mm256_mullo_epi16(a1, f1)); |
| val1 = _mm256_adds_epi16(_mm256_mullo_epi16(a2, f2), |
| _mm256_mullo_epi16(a3, f3)); |
| val0 = _mm256_adds_epi16(val0, val1); |
| |
| // clamp and round-shift |
| val0 = highbd_clamp_epi16_avx2(val0, bd); |
| val0 = _mm256_adds_epi16(val0, rnding); |
| val0 = _mm256_srli_epi16(val0, POWER_DR_INTERP_FILTER); |
| |
| base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3, |
| base + 4, base + 5, base + 6, base + 7, |
| base + 8, base + 9, base + 10, base + 11, |
| base + 12, base + 13, base + 14, base + 15); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| dstvec[r] = _mm256_blendv_epi8(a_mbase_x, val0, mask256); |
| x += dx; |
| } |
| } |
| |
| static AOM_FORCE_INLINE void |
| highbd_dr_prediction_32bit_z1_16xN_internal_idif_avx2(int N, __m256i *dstvec, |
| const uint16_t *above, |
| int dx, int mrl_index, |
| int bd) { |
| const int frac_bits = 6; |
| const int max_base_x = ((16 + N) - 1 + (mrl_index << 1)); |
| __m256i a0, a1, a2, a3; |
| __m256i val0, val1; |
| __m256i f0, f1, f2, f3; |
| __m256i a_mbase_x, max_base_x256, base_inc256, mask256; |
| |
| __m256i rnding = _mm256_set1_epi32(1 << (POWER_DR_INTERP_FILTER - 1)); |
| |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| |
| int shift_i; |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i res[2], res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dstvec[i] = a_mbase_x; // save 16 values |
| } |
| return; |
| } |
| |
| a0 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base - 1))); |
| a1 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base))); |
| a2 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 1))); |
| a3 = _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 2))); |
| |
| // load filter |
| shift_i = (x & 0x3F) >> 1; |
| f0 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][0]); |
| f1 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][1]); |
| f2 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][2]); |
| f3 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][3]); |
| |
| // multiply and sum |
| val0 = _mm256_add_epi32(_mm256_mullo_epi32(a0, f0), |
| _mm256_mullo_epi32(a1, f1)); |
| val1 = _mm256_add_epi32(_mm256_mullo_epi32(a2, f2), |
| _mm256_mullo_epi32(a3, f3)); |
| val0 = _mm256_add_epi32(val0, val1); |
| |
| // round shift |
| val0 = highbd_clamp_epi32_avx2(val0, bd); |
| val0 = _mm256_add_epi32(val0, rnding); |
| val0 = _mm256_srli_epi32(val0, POWER_DR_INTERP_FILTER); |
| |
| res[0] = _mm256_packus_epi32( |
| val0, _mm256_castsi128_si256(_mm256_extracti128_si256(val0, 1))); |
| |
| int mdif = max_base_x - base; |
| if (mdif > 8) { |
| a0 = |
| _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 7))); |
| a1 = |
| _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 8))); |
| a2 = |
| _mm256_cvtepu16_epi32(_mm_loadu_si128((__m128i *)(above + base + 9))); |
| a3 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 10))); |
| |
| // multiply and sum |
| val0 = _mm256_add_epi32(_mm256_mullo_epi32(a0, f0), |
| _mm256_mullo_epi32(a1, f1)); |
| val1 = _mm256_add_epi32(_mm256_mullo_epi32(a2, f2), |
| _mm256_mullo_epi32(a3, f3)); |
| val0 = _mm256_add_epi32(val0, val1); |
| |
| // round shift |
| val0 = highbd_clamp_epi32_avx2(val0, bd); |
| val0 = _mm256_add_epi32(val0, rnding); |
| val0 = _mm256_srli_epi32(val0, POWER_DR_INTERP_FILTER); |
| |
| res[1] = _mm256_packus_epi32( |
| val0, _mm256_castsi128_si256(_mm256_extracti128_si256(val0, 1))); |
| } else { |
| res[1] = a_mbase_x; |
| } |
| res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]), |
| 1); // 16 16bit values |
| |
| base_inc256 = _mm256_setr_epi16(base, base + 1, base + 2, base + 3, |
| base + 4, base + 5, base + 6, base + 7, |
| base + 8, base + 9, base + 10, base + 11, |
| base + 12, base + 13, base + 14, base + 15); |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| dstvec[r] = _mm256_blendv_epi8(a_mbase_x, res1, mask256); |
| x += dx; |
| } |
| } |
| |
| static void highbd_dr_prediction_z1_16xN_idif_avx2( |
| uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, |
| const uint16_t *left, int dx, int dy, int bd, int mrl_index) { |
| (void)left; |
| (void)dy; |
| (void)bw; |
| assert(bw == 16); |
| int N = bh; |
| __m256i dstvec[64]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_16xN_internal_idif_avx2(N, dstvec, above, dx, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_idif_avx2(N, dstvec, above, dx, |
| mrl_index, bd); |
| } |
| for (int i = 0; i < N; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + stride * i), dstvec[i]); |
| } |
| } |
| |
| static AOM_FORCE_INLINE void highbd_dr_prediction_z1_32xN_internal_idif_avx2( |
| int N, __m256i *dstvec, const uint16_t *above, int dx, int mrl_index, |
| int bd) { |
| const int frac_bits = 6; |
| const int max_base_x = ((32 + N) - 1 + (mrl_index << 1)); |
| |
| __m256i a_mbase_x, max_base_x256, base_inc256, mask256; |
| |
| __m256i a0, a1, a2, a3; |
| __m256i val0, val1; |
| __m256i f0, f1, f2, f3; |
| |
| __m256i rnding = _mm256_set1_epi16(1 << (POWER_DR_INTERP_FILTER - 1)); |
| |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| |
| int shift_i; |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i res; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dstvec[i] = a_mbase_x; // save 32 values |
| dstvec[i + N] = a_mbase_x; |
| } |
| return; |
| } |
| |
| // load filter |
| shift_i = (x & 0x3F) >> 1; |
| f0 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][0]); |
| f1 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][1]); |
| f2 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][2]); |
| f3 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][3]); |
| |
| for (int j = 0; j < 32; j += 16) { |
| int mdif = max_base_x - (base + j); |
| if (mdif <= 0) { |
| res = a_mbase_x; |
| } else { |
| // load refs |
| a0 = _mm256_loadu_si256((__m256i *)(above + base - 1 + j)); |
| a1 = _mm256_loadu_si256((__m256i *)(above + base + j)); |
| a2 = _mm256_loadu_si256((__m256i *)(above + base + 1 + j)); |
| a3 = _mm256_loadu_si256((__m256i *)(above + base + 2 + j)); |
| |
| val0 = _mm256_adds_epi16(_mm256_mullo_epi16(a0, f0), |
| _mm256_mullo_epi16(a1, f1)); |
| val1 = _mm256_adds_epi16(_mm256_mullo_epi16(a2, f2), |
| _mm256_mullo_epi16(a3, f3)); |
| val0 = _mm256_adds_epi16(val0, val1); |
| |
| // clamp and round-shift |
| val0 = highbd_clamp_epi16_avx2(val0, bd); |
| val0 = _mm256_adds_epi16(val0, rnding); |
| val0 = _mm256_srli_epi16(val0, POWER_DR_INTERP_FILTER); |
| |
| base_inc256 = _mm256_setr_epi16( |
| base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, |
| base + j + 5, base + j + 6, base + j + 7, base + j + 8, |
| base + j + 9, base + j + 10, base + j + 11, base + j + 12, |
| base + j + 13, base + j + 14, base + j + 15); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| res = _mm256_blendv_epi8(a_mbase_x, val0, mask256); |
| } |
| if (!j) { |
| dstvec[r] = res; |
| } else { |
| dstvec[r + N] = res; |
| } |
| } |
| x += dx; |
| } |
| } |
| |
| static AOM_FORCE_INLINE void |
| highbd_dr_prediction_32bit_z1_32xN_internal_idif_avx2(int N, __m256i *dstvec, |
| const uint16_t *above, |
| int dx, int mrl_index, |
| int bd) { |
| const int frac_bits = 6; |
| const int max_base_x = ((32 + N) - 1 + (mrl_index << 1)); |
| |
| __m256i a_mbase_x, max_base_x256, base_inc256, mask256; |
| |
| __m256i a0, a1, a2, a3; |
| __m256i val0, val1; |
| __m256i f0, f1, f2, f3; |
| |
| __m256i rnding = _mm256_set1_epi32(1 << (POWER_DR_INTERP_FILTER - 1)); |
| |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| |
| int shift_i; |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++) { |
| __m256i res[2], res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| dstvec[i] = a_mbase_x; // save 32 values |
| dstvec[i + N] = a_mbase_x; |
| } |
| return; |
| } |
| |
| // load filter |
| shift_i = (x & 0x3F) >> 1; |
| f0 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][0]); |
| f1 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][1]); |
| f2 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][2]); |
| f3 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][3]); |
| |
| for (int j = 0; j < 32; j += 16) { |
| int mdif = max_base_x - (base + j); |
| if (mdif <= 0) { |
| res1 = a_mbase_x; |
| } else { |
| a0 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base - 1 + j))); |
| a1 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + j))); |
| a2 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 1 + j))); |
| a3 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 2 + j))); |
| |
| // multiply and sum |
| val0 = _mm256_add_epi32(_mm256_mullo_epi32(a0, f0), |
| _mm256_mullo_epi32(a1, f1)); |
| val1 = _mm256_add_epi32(_mm256_mullo_epi32(a2, f2), |
| _mm256_mullo_epi32(a3, f3)); |
| val0 = _mm256_add_epi32(val0, val1); |
| |
| // round shift |
| val0 = highbd_clamp_epi32_avx2(val0, bd); |
| val0 = _mm256_add_epi32(val0, rnding); |
| val0 = _mm256_srli_epi32(val0, POWER_DR_INTERP_FILTER); |
| |
| res[0] = _mm256_packus_epi32( |
| val0, _mm256_castsi128_si256(_mm256_extracti128_si256(val0, 1))); |
| |
| if (mdif > 8) { |
| a0 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 7 + j))); |
| a1 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 8 + j))); |
| a2 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 9 + j))); |
| a3 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 10 + j))); |
| |
| // multiply and sum |
| val0 = _mm256_add_epi32(_mm256_mullo_epi32(a0, f0), |
| _mm256_mullo_epi32(a1, f1)); |
| val1 = _mm256_add_epi32(_mm256_mullo_epi32(a2, f2), |
| _mm256_mullo_epi32(a3, f3)); |
| val0 = _mm256_add_epi32(val0, val1); |
| |
| // round shift |
| val0 = highbd_clamp_epi32_avx2(val0, bd); |
| val0 = _mm256_add_epi32(val0, rnding); |
| val0 = _mm256_srli_epi32(val0, POWER_DR_INTERP_FILTER); |
| |
| res[1] = _mm256_packus_epi32( |
| val0, _mm256_castsi128_si256(_mm256_extracti128_si256(val0, 1))); |
| } else { |
| res[1] = a_mbase_x; |
| } |
| res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]), |
| 1); // 16 16bit values |
| base_inc256 = _mm256_setr_epi16( |
| base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, |
| base + j + 5, base + j + 6, base + j + 7, base + j + 8, |
| base + j + 9, base + j + 10, base + j + 11, base + j + 12, |
| base + j + 13, base + j + 14, base + j + 15); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256); |
| } |
| if (!j) { |
| dstvec[r] = res1; |
| } else { |
| dstvec[r + N] = res1; |
| } |
| } |
| x += dx; |
| } |
| } |
| |
| static void highbd_dr_prediction_z1_32xN_idif_avx2(int N, uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *above, |
| int dx, int bd, |
| int mrl_index) { |
| __m256i dstvec[128]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_32xN_internal_idif_avx2(N, dstvec, above, dx, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_32xN_internal_idif_avx2(N, dstvec, above, dx, |
| mrl_index, bd); |
| } |
| for (int i = 0; i < N; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + stride * i), dstvec[i]); |
| _mm256_storeu_si256((__m256i *)(dst + stride * i + 16), dstvec[i + N]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z1_64xN_internal_idif_avx2( |
| int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, int dx, |
| int mrl_index, int bd) { |
| const int frac_bits = 6; |
| const int max_base_x = ((64 + N) - 1 + (mrl_index << 1)); |
| |
| __m256i a_mbase_x, max_base_x256, base_inc256, mask256; |
| |
| __m256i a0, a1, a2, a3; |
| __m256i val0, val1; |
| __m256i f0, f1, f2, f3; |
| |
| __m256i rnding = _mm256_set1_epi16(1 << (POWER_DR_INTERP_FILTER - 1)); |
| |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| |
| int shift_i; |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++, dst += stride) { |
| __m256i res; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| _mm256_storeu_si256((__m256i *)dst, a_mbase_x); // save 32 values |
| _mm256_storeu_si256((__m256i *)(dst + 16), a_mbase_x); |
| _mm256_storeu_si256((__m256i *)(dst + 32), a_mbase_x); |
| _mm256_storeu_si256((__m256i *)(dst + 48), a_mbase_x); |
| dst += stride; |
| } |
| return; |
| } |
| |
| // load filter |
| shift_i = (x & 0x3F) >> 1; |
| f0 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][0]); |
| f1 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][1]); |
| f2 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][2]); |
| f3 = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][3]); |
| |
| for (int j = 0; j < 64; j += 16) { |
| int mdif = max_base_x - (base + j); |
| if (mdif <= 0) { |
| _mm256_storeu_si256((__m256i *)(dst + j), a_mbase_x); |
| } else { |
| // load refs |
| a0 = _mm256_loadu_si256((__m256i *)(above + base - 1 + j)); |
| a1 = _mm256_loadu_si256((__m256i *)(above + base + j)); |
| a2 = _mm256_loadu_si256((__m256i *)(above + base + 1 + j)); |
| a3 = _mm256_loadu_si256((__m256i *)(above + base + 2 + j)); |
| |
| val0 = _mm256_adds_epi16(_mm256_mullo_epi16(a0, f0), |
| _mm256_mullo_epi16(a1, f1)); |
| val1 = _mm256_adds_epi16(_mm256_mullo_epi16(a2, f2), |
| _mm256_mullo_epi16(a3, f3)); |
| val0 = _mm256_adds_epi16(val0, val1); |
| |
| // clamp and round-shift |
| val0 = highbd_clamp_epi16_avx2(val0, bd); |
| val0 = _mm256_adds_epi16(val0, rnding); |
| val0 = _mm256_srli_epi16(val0, POWER_DR_INTERP_FILTER); |
| |
| base_inc256 = _mm256_setr_epi16( |
| base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, |
| base + j + 5, base + j + 6, base + j + 7, base + j + 8, |
| base + j + 9, base + j + 10, base + j + 11, base + j + 12, |
| base + j + 13, base + j + 14, base + j + 15); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| res = _mm256_blendv_epi8(a_mbase_x, val0, mask256); |
| _mm256_storeu_si256((__m256i *)(dst + j), res); // 16 16bit values |
| } |
| } |
| x += dx; |
| } |
| } |
| |
| static void highbd_dr_prediction_32bit_z1_64xN_internal_idif_avx2( |
| int N, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, int dx, |
| int mrl_index, int bd) { |
| const int frac_bits = 6; |
| const int max_base_x = ((64 + N) - 1 + (mrl_index << 1)); |
| |
| __m256i a0, a1, a2, a3; |
| |
| __m256i a_mbase_x, max_base_x256, base_inc256, mask256; |
| |
| __m256i val0, val1; |
| __m256i f0, f1, f2, f3; |
| |
| __m256i rnding = _mm256_set1_epi32(1 << (POWER_DR_INTERP_FILTER - 1)); |
| |
| a_mbase_x = _mm256_set1_epi16(above[max_base_x]); |
| max_base_x256 = _mm256_set1_epi16(max_base_x); |
| |
| int shift_i; |
| int x = dx * (1 + mrl_index); |
| for (int r = 0; r < N; r++, dst += stride) { |
| __m256i res[2], res1; |
| |
| int base = x >> frac_bits; |
| if (base >= max_base_x) { |
| for (int i = r; i < N; ++i) { |
| _mm256_storeu_si256((__m256i *)dst, a_mbase_x); // save 32 values |
| _mm256_storeu_si256((__m256i *)(dst + 16), a_mbase_x); |
| _mm256_storeu_si256((__m256i *)(dst + 32), a_mbase_x); |
| _mm256_storeu_si256((__m256i *)(dst + 48), a_mbase_x); |
| dst += stride; |
| } |
| return; |
| } |
| |
| // load filter |
| shift_i = (x & 0x3F) >> 1; |
| f0 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][0]); |
| f1 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][1]); |
| f2 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][2]); |
| f3 = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][3]); |
| |
| for (int j = 0; j < 64; j += 16) { |
| int mdif = max_base_x - (base + j); |
| if (mdif <= 0) { |
| _mm256_storeu_si256((__m256i *)(dst + j), a_mbase_x); |
| } else { |
| a0 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base - 1 + j))); |
| a1 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + j))); |
| a2 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 1 + j))); |
| a3 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 2 + j))); |
| |
| // multiply and sum |
| val0 = _mm256_add_epi32(_mm256_mullo_epi32(a0, f0), |
| _mm256_mullo_epi32(a1, f1)); |
| val1 = _mm256_add_epi32(_mm256_mullo_epi32(a2, f2), |
| _mm256_mullo_epi32(a3, f3)); |
| val0 = _mm256_add_epi32(val0, val1); |
| |
| // round shift |
| val0 = highbd_clamp_epi32_avx2(val0, bd); |
| val0 = _mm256_add_epi32(val0, rnding); |
| val0 = _mm256_srli_epi32(val0, POWER_DR_INTERP_FILTER); |
| |
| res[0] = _mm256_packus_epi32( |
| val0, _mm256_castsi128_si256(_mm256_extracti128_si256(val0, 1))); |
| |
| if (mdif > 8) { |
| a0 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 7 + j))); |
| a1 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 8 + j))); |
| a2 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 9 + j))); |
| a3 = _mm256_cvtepu16_epi32( |
| _mm_loadu_si128((__m128i *)(above + base + 10 + j))); |
| |
| // multiply and sum |
| val0 = _mm256_add_epi32(_mm256_mullo_epi32(a0, f0), |
| _mm256_mullo_epi32(a1, f1)); |
| val1 = _mm256_add_epi32(_mm256_mullo_epi32(a2, f2), |
| _mm256_mullo_epi32(a3, f3)); |
| val0 = _mm256_add_epi32(val0, val1); |
| |
| // round shift |
| val0 = highbd_clamp_epi32_avx2(val0, bd); |
| val0 = _mm256_add_epi32(val0, rnding); |
| val0 = _mm256_srli_epi32(val0, POWER_DR_INTERP_FILTER); |
| |
| res[1] = _mm256_packus_epi32( |
| val0, _mm256_castsi128_si256(_mm256_extracti128_si256(val0, 1))); |
| } else { |
| res[1] = a_mbase_x; |
| } |
| res1 = _mm256_inserti128_si256(res[0], _mm256_castsi256_si128(res[1]), |
| 1); // 16 16bit values |
| base_inc256 = _mm256_setr_epi16( |
| base + j, base + j + 1, base + j + 2, base + j + 3, base + j + 4, |
| base + j + 5, base + j + 6, base + j + 7, base + j + 8, |
| base + j + 9, base + j + 10, base + j + 11, base + j + 12, |
| base + j + 13, base + j + 14, base + j + 15); |
| |
| mask256 = _mm256_cmpgt_epi16(max_base_x256, base_inc256); |
| res1 = _mm256_blendv_epi8(a_mbase_x, res1, mask256); |
| _mm256_storeu_si256((__m256i *)(dst + j), res1); |
| } |
| } |
| x += dx; |
| } |
| } |
| |
| static void highbd_dr_prediction_z1_64xN_idif_avx2( |
| uint16_t *dst, ptrdiff_t stride, int bw, int bh, const uint16_t *above, |
| const uint16_t *left, int dx, int dy, int bd, int mrl_index) { |
| (void)left; |
| (void)dy; |
| (void)bw; |
| assert(bw == 64); |
| if (bd < 10) { |
| highbd_dr_prediction_z1_64xN_internal_idif_avx2(bh, dst, stride, above, dx, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_internal_idif_avx2( |
| bh, dst, stride, above, dx, mrl_index, bd); |
| } |
| } |
| |
| void av1_highbd_dr_prediction_z1_idif_avx2(uint16_t *dst, ptrdiff_t stride, |
| int bw, int bh, |
| const uint16_t *above, |
| const uint16_t *left, int dx, int dy, |
| int bd, int mrl_index) { |
| switch (bw) { |
| case 4: |
| highbd_dr_prediction_z1_4xN_idif_avx2(dst, stride, bw, bh, above, left, |
| dx, dy, bd, mrl_index); |
| break; |
| case 8: |
| highbd_dr_prediction_z1_8xN_idif_avx2(dst, stride, bw, bh, above, left, |
| dx, dy, bd, mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z1_16xN_idif_avx2(dst, stride, bw, bh, above, left, |
| dx, dy, bd, mrl_index); |
| break; |
| case 32: |
| highbd_dr_prediction_z1_32xN_idif_avx2(bh, dst, stride, above, dx, bd, |
| mrl_index); |
| break; |
| case 64: |
| highbd_dr_prediction_z1_64xN_idif_avx2(dst, stride, bw, bh, above, left, |
| dx, dy, bd, mrl_index); |
| break; |
| default: break; |
| } |
| return; |
| } |
| |
| static AOM_FORCE_INLINE __m256i highbd_dr_row8_idif_avx2(const uint16_t *above, |
| const __m256i *filter, |
| int base_x, |
| int base_shift, |
| int bd) { |
| // load refs |
| __m128i a0_x128, a1_x128, a2_x128, a3_x128; |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift - 1)); |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); |
| a2_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1)); |
| a3_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 2)); |
| |
| // load mask |
| a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a1_x128 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a2_x128 = _mm_shuffle_epi8(a2_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a3_x128 = _mm_shuffle_epi8(a3_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| |
| __m256i a0_x, a1_x, a2_x, a3_x; |
| a0_x = _mm256_castsi128_si256(a0_x128); |
| a1_x = _mm256_castsi128_si256(a1_x128); |
| a2_x = _mm256_castsi128_si256(a2_x128); |
| a3_x = _mm256_castsi128_si256(a3_x128); |
| |
| // multiply and sum |
| __m256i val0, val1; |
| val0 = _mm256_adds_epi16(_mm256_mullo_epi16(a0_x, filter[0]), |
| _mm256_mullo_epi16(a1_x, filter[1])); |
| val1 = _mm256_adds_epi16(_mm256_mullo_epi16(a2_x, filter[2]), |
| _mm256_mullo_epi16(a3_x, filter[3])); |
| val0 = _mm256_adds_epi16(val0, val1); |
| |
| // round shift |
| val0 = highbd_clamp_epi16_avx2(val0, bd); |
| const __m256i rnding = _mm256_set1_epi16(1 << (POWER_DR_INTERP_FILTER - 1)); |
| val0 = _mm256_adds_epi16(val0, rnding); |
| val0 = _mm256_srli_epi16(val0, POWER_DR_INTERP_FILTER); |
| |
| return val0; |
| } |
| |
| static AOM_FORCE_INLINE __m256i |
| highbd_dr_row8_32bit_idif_avx2(const uint16_t *above, const __m256i *filter, |
| int base_x, int base_shift, int bd) { |
| // load refs |
| __m128i a0_x128, a1_x128, a2_x128, a3_x128; |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift - 1)); |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); |
| a2_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1)); |
| a3_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 2)); |
| |
| // load mask |
| a0_x128 = _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a1_x128 = _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a2_x128 = _mm_shuffle_epi8(a2_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a3_x128 = _mm_shuffle_epi8(a3_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| |
| __m256i a0_x, a1_x, a2_x, a3_x; |
| a0_x = _mm256_cvtepu16_epi32(a0_x128); |
| a1_x = _mm256_cvtepu16_epi32(a1_x128); |
| a2_x = _mm256_cvtepu16_epi32(a2_x128); |
| a3_x = _mm256_cvtepu16_epi32(a3_x128); |
| |
| // multiply and sum |
| __m256i val0, val1; |
| val0 = _mm256_add_epi32(_mm256_mullo_epi32(a0_x, filter[0]), |
| _mm256_mullo_epi32(a1_x, filter[1])); |
| val1 = _mm256_add_epi32(_mm256_mullo_epi32(a2_x, filter[2]), |
| _mm256_mullo_epi32(a3_x, filter[3])); |
| val0 = _mm256_add_epi32(val0, val1); |
| |
| // round shift |
| val0 = highbd_clamp_epi32_avx2(val0, bd); |
| __m256i rnding = _mm256_set1_epi32(1 << (POWER_DR_INTERP_FILTER - 1)); |
| val0 = _mm256_add_epi32(val0, rnding); |
| val0 = _mm256_srli_epi32(val0, POWER_DR_INTERP_FILTER); |
| |
| __m256i resx = _mm256_packus_epi32( |
| val0, _mm256_castsi128_si256(_mm256_extracti128_si256(val0, 1))); |
| return resx; |
| } |
| |
| static INLINE void highbd_dr_z2_8x8_idif_avx2(int H, int W, |
| const uint16_t *above, |
| __m128i *dest, int r, int j, |
| int dx, int mrl_index, int bd) { |
| const int min_base_x = -((1 + mrl_index)); |
| const int frac_bits_x = 6; |
| |
| __m256i res; |
| __m128i resx; |
| int min_h = (H == 4) ? 4 : 8; |
| int min_w = (W == 4) ? 4 : 8; |
| |
| for (int i = r; i < r + min_h; i++) { |
| assert(i < H); |
| assert(j < W); |
| |
| int y = i + 1; |
| int base_x = ((j << 6) - (y + mrl_index) * dx) >> frac_bits_x; |
| int base_shift = 0; |
| if (base_x < (min_base_x - 1)) { |
| base_shift = (min_base_x - base_x - 1); |
| } |
| |
| if (base_shift > min_w - 1) { |
| resx = _mm_setzero_si128(); |
| } else { |
| // load filter |
| int shift_i = ((-(y + mrl_index) * dx) & 0x3F) >> 1; |
| __m256i f[4]; |
| f[0] = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][0]); |
| f[1] = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][1]); |
| f[2] = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][2]); |
| f[3] = _mm256_set1_epi16(av1_dr_interp_filter[shift_i][3]); |
| |
| res = highbd_dr_row8_idif_avx2(above, f, base_x, base_shift, bd); |
| resx = _mm256_castsi256_si128(res); |
| } |
| dest[i - r] = resx; |
| } |
| } |
| |
| static INLINE void highbd_dr_z2_32bit_8x8_idif_avx2(int H, int W, |
| const uint16_t *above, |
| __m128i *dest, int r, int j, |
| int dx, int mrl_index, |
| int bd) { |
| const int min_base_x = -((1 + mrl_index)); |
| const int frac_bits_x = 6; |
| |
| __m256i res; |
| __m128i resx; |
| // adapt if size is 4 |
| int min_h = (H == 4) ? 4 : 8; |
| int min_w = (W == 4) ? 4 : 8; |
| |
| for (int i = r; i < r + min_h; i++) { |
| assert(i < H); |
| assert(j < W); |
| |
| int y = i + 1; |
| int base_x = ((j << 6) - (y + mrl_index) * dx) >> frac_bits_x; |
| int base_shift = 0; |
| if (base_x < (min_base_x - 1)) { |
| base_shift = (min_base_x - base_x - 1); |
| } |
| |
| if (base_shift > min_w - 1) { |
| resx = _mm_setzero_si128(); |
| } else { |
| // load filter |
| int shift_i = ((-(y + mrl_index) * dx) & 0x3F) >> 1; |
| __m256i f[4]; |
| f[0] = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][0]); |
| f[1] = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][1]); |
| f[2] = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][2]); |
| f[3] = _mm256_set1_epi32(av1_dr_interp_filter[shift_i][3]); |
| |
| res = highbd_dr_row8_32bit_idif_avx2(above, f, base_x, base_shift, bd); |
| resx = _mm256_castsi256_si128(res); |
| } |
| dest[i - r] = resx; |
| } |
| } |
| |
| static void highbd_dr_32bit_z2_8x8_tiling_idif_avx2( |
| int H, int W, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, |
| const uint16_t *left, int dx, int dy, int mrl_index, int bd) { |
| // Directional prediction in a 8x8 tile. |
| // Sizes of 4x4, 4x8 and 8x4 are supported as well. |
| // Step 1. Predict from above. |
| // Step 2. Predict from left and transpose. |
| // Step 3. Merge results. |
| |
| const int min_base_x = -((1 + mrl_index)); |
| const int frac_bits_x = 6; |
| |
| __m128i x_pred[8]; |
| __m128i y_pred[8]; |
| __m128i _y_pred[8]; |
| |
| for (int i = 0; i < 8; i++) { |
| x_pred[i] = _mm_setzero_si128(); |
| y_pred[i] = _mm_setzero_si128(); |
| _y_pred[i] = _mm_setzero_si128(); |
| } |
| |
| int min_h = (H == 4) ? 4 : 8; |
| int min_w = (W == 4) ? 4 : 8; |
| |
| for (int r = 0; r < H; r += 8) { |
| for (int j = 0; j < W; j += min_w) { |
| assert((W - j) >= min_w); |
| assert((H - r) >= min_h); |
| |
| if (bd < 10) { |
| highbd_dr_z2_8x8_idif_avx2(H, W, above, x_pred, r, j, dx, mrl_index, |
| bd); |
| highbd_dr_z2_8x8_idif_avx2(W, H, left, _y_pred, j, r, dy, mrl_index, |
| bd); |
| } else { |
| highbd_dr_z2_32bit_8x8_idif_avx2(H, W, above, x_pred, r, j, dx, |
| mrl_index, bd); |
| highbd_dr_z2_32bit_8x8_idif_avx2(W, H, left, _y_pred, j, r, dy, |
| mrl_index, bd); |
| } |
| highbd_transpose8x8_sse2(&_y_pred[0], &_y_pred[1], &_y_pred[2], |
| &_y_pred[3], &_y_pred[4], &_y_pred[5], |
| &_y_pred[6], &_y_pred[7], &y_pred[0], &y_pred[1], |
| &y_pred[2], &y_pred[3], &y_pred[4], &y_pred[5], |
| &y_pred[6], &y_pred[7]); |
| |
| for (int k = 0; k < min_h; ++k) { |
| int y = r + k + 1; |
| int base_x = ((j << 6) - (y + mrl_index) * dx) >> frac_bits_x; |
| int base_min_diff = (min_base_x - base_x); |
| if (base_min_diff > min_w) { |
| base_min_diff = min_w; |
| } else { |
| if (base_min_diff < 0) base_min_diff = 0; |
| } |
| |
| __m128i resx, resy, resxy; |
| resx = x_pred[k]; |
| resy = y_pred[k]; |
| |
| resxy = _mm_blendv_epi8(resx, resy, |
| *(__m128i *)HighbdBaseMask[base_min_diff]); |
| |
| if (min_w == 8) { |
| _mm_storeu_si128((__m128i *)(dst + k * stride + j), resxy); |
| } else { |
| _mm_storel_epi64((__m128i *)(dst + k * stride + j), resxy); |
| } |
| } |
| } |
| if (r + 8 < H) dst += 8 * stride; |
| } |
| } |
| |
| static void highbd_dr_z2_16x16_idif_avx2(int H, int W, const uint16_t *above, |
| __m256i *dest, int r, int j, int dx, |
| int mrl_index, int bd) { |
| (void)H; |
| (void)W; |
| |
| const int min_base_x = -(1 + mrl_index); |
| const int frac_bits_x = 6; |
| |
| __m128i a0_x128, a1_x128, a2_x128, a3_x128; |
| __m256i a0_x, a1_x, a2_x, a3_x; |
| __m256i f0_x, f1_x, f2_x, f3_x; |
| __m256i rnding = _mm256_set1_epi16(1 << (POWER_DR_INTERP_FILTER - 1)); |
| __m256i val0, val1; |
| |
| for (int i = r; i < r + 16; ++i) { |
| assert(i < H); |
| assert(j < W); |
| int y = i + 1; |
| |
| int base_x = ((j << 6) - (y + mrl_index) * dx) >> frac_bits_x; |
| int base_shift = 0; |
| if ((base_x) < (min_base_x - 1)) { |
| base_shift = (min_base_x - (base_x)-1); |
| } |
| |
| if (base_shift < 8) { |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift - 1)); |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift)); |
| a2_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 1)); |
| a3_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift + 2)); |
| |
| a0_x128 = |
| _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a1_x128 = |
| _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a2_x128 = |
| _mm_shuffle_epi8(a2_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| a3_x128 = |
| _mm_shuffle_epi8(a3_x128, *(__m128i *)HighbdLoadMaskx[base_shift]); |
| |
| a0_x = _mm256_castsi128_si256(a0_x128); |
| a1_x = _mm256_castsi128_si256(a1_x128); |
| a2_x = _mm256_castsi128_si256(a2_x128); |
| a3_x = _mm256_castsi128_si256(a3_x128); |
| } else { |
| a0_x = _mm256_setzero_si256(); |
| a1_x = _mm256_setzero_si256(); |
| a2_x = _mm256_setzero_si256(); |
| a3_x = _mm256_setzero_si256(); |
| } |
| |
| int base_shift1 = 0; |
| if (base_shift > 8) { |
| base_shift1 = base_shift - 8; |
| } |
| if (base_shift1 < 8) { |
| a0_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift1 + 7)); |
| a1_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift1 + 8)); |
| a2_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift1 + 9)); |
| a3_x128 = _mm_loadu_si128((__m128i *)(above + base_x + base_shift1 + 10)); |
| |
| a0_x128 = |
| _mm_shuffle_epi8(a0_x128, *(__m128i *)HighbdLoadMaskx[base_shift1]); |
| a1_x128 = |
| _mm_shuffle_epi8(a1_x128, *(__m128i *)HighbdLoadMaskx[base_shift1]); |
| a2_x128 = |
| _mm_shuffle_epi8(a2_x128, *(__m128i *)HighbdLoadMaskx[base_shift1]); |
| a3_x128 = |
| _mm_shuffle_epi8(a3_x128, *(__m128i *)HighbdLoadMaskx[base_shift1]); |
| |
| a0_x = _mm256_inserti128_si256(a0_x, a0_x128, 1); |
| a1_x = _mm256_inserti128_si256(a1_x, a1_x128, 1); |
| a2_x = _mm256_inserti128_si256(a2_x, a2_x128, 1); |
| a3_x = _mm256_inserti128_si256(a3_x, a3_x128, 1); |
| } |
| if ((base_shift < 8) || base_shift1 < 8) { |
| // load filter |
| int shift_x = ((-(i + 1 + mrl_index) * dx) & 0x3F) >> 1; |
| f0_x = _mm256_set1_epi16(av1_dr_interp_filter[shift_x][0]); |
| f1_x = _mm256_set1_epi16(av1_dr_interp_filter[shift_x][1]); |
| f2_x = _mm256_set1_epi16(av1_dr_interp_filter[shift_x][2]); |
| f3_x = _mm256_set1_epi16(av1_dr_interp_filter[shift_x][3]); |
| |
| val0 = _mm256_adds_epi16(_mm256_mullo_epi16(a0_x, f0_x), |
| _mm256_mullo_epi16(a1_x, f1_x)); |
| val1 = _mm256_adds_epi16(_mm256_mullo_epi16(a2_x, f2_x), |
| _mm256_mullo_epi16(a3_x, f3_x)); |
| val0 = _mm256_adds_epi16(val0, val1); |
| |
| val0 = highbd_clamp_epi16_avx2(val0, bd); |
| val0 = _mm256_adds_epi16(val0, rnding); |
| dest[i - r] = _mm256_srli_epi16(val0, POWER_DR_INTERP_FILTER); |
| } else { |
| dest[i - r] = _mm256_setzero_si256(); |
| } |
| } |
| } |
| |
| static void highbd_dr_prediction_z2_HxW_idif_avx2( |
| int H, int W, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, |
| const uint16_t *left, int dx, int dy, int mrl_index, int bd) { |
| // Directional prediction in 16x16 tiles. |
| // Step 1. Predict from above. |
| // Step 2. Predict from left and transpose. |
| // Step 3. Merge results. |
| |
| const int min_base_x = -(1 + mrl_index); |
| const int frac_bits_x = 6; |
| |
| __m256i x_pred[16]; |
| __m256i y_pred[16]; |
| |
| for (int r = 0; r < H; r += 16) { |
| for (int j = 0; j < W; j += 16) { |
| assert((W - j) >= 16); |
| assert((H - r) >= 16); |
| // x calc |
| highbd_dr_z2_16x16_idif_avx2(H, W, above, x_pred, r, j, dx, mrl_index, |
| bd); |
| |
| // y calc |
| highbd_dr_z2_16x16_idif_avx2(W, H, left, y_pred, j, r, dy, mrl_index, bd); |
| highbd_transpose16x16_avx2(y_pred, y_pred); |
| |
| // merge results |
| for (int k = 0; k < 16; ++k) { |
| int y = k + r + 1; |
| int base_x = ((j << 6) - (y + mrl_index) * dx) >> frac_bits_x; |
| int base_min_diff = (min_base_x - base_x); |
| if (base_min_diff > 16) { |
| base_min_diff = 16; |
| } else { |
| if (base_min_diff < 0) base_min_diff = 0; |
| } |
| |
| __m256i resx, resy, resxy; |
| resx = x_pred[k]; |
| resy = y_pred[k]; |
| |
| resxy = _mm256_blendv_epi8(resx, resy, |
| *(__m256i *)HighbdBaseMask[base_min_diff]); |
| _mm256_storeu_si256((__m256i *)(dst + k * stride + j), resxy); |
| } |
| } // for j |
| if (r + 16 < H) dst += 16 * stride; |
| } |
| } |
| |
| static void highbd_dr_z2_16x16_32bit_idif_avx2(int H, int W, |
| const uint16_t *above, |
| __m256i *dest, int r, int j, |
| int dx, int mrl_index, int bd) { |
| (void)H; |
| (void)W; |
| const int min_base_x = -(1 + mrl_index); |
| const int frac_bits_x = 6; |
| __m256i resx[2]; |
| |
| for (int i = r; i < r + 16; ++i) { |
| assert(i < H); |
| assert(j < W); |
| |
| int y = i + 1; |
| |
| int base_x = ((j << 6) - (y + mrl_index) * dx) >> frac_bits_x; |
| int base_shift = 0; |
| if ((base_x) < (min_base_x - 1)) { |
| base_shift = (min_base_x - (base_x)-1); |
| } |
| |
| // load filter |
| int shift_x = ((-(i + 1 + mrl_index) * dx) & 0x3F) >> 1; |
| __m256i f[4]; |
| f[0] = _mm256_set1_epi32(av1_dr_interp_filter[shift_x][0]); |
| f[1] = _mm256_set1_epi32(av1_dr_interp_filter[shift_x][1]); |
| f[2] = _mm256_set1_epi32(av1_dr_interp_filter[shift_x][2]); |
| f[3] = _mm256_set1_epi32(av1_dr_interp_filter[shift_x][3]); |
| |
| if (base_shift < 8) { |
| resx[0] = |
| highbd_dr_row8_32bit_idif_avx2(above, f, base_x, base_shift, bd); |
| |
| } else { |
| resx[0] = _mm256_setzero_si256(); |
| } |
| |
| int base_shift1 = 0; |
| if (base_shift > 8) { |
| base_shift1 = base_shift - 8; |
| } |
| if (base_shift1 < 8) { |
| resx[1] = |
| highbd_dr_row8_32bit_idif_avx2(above, f, base_x + 8, base_shift1, bd); |
| } |
| if ((base_shift < 8) || base_shift1 < 8) { |
| dest[i - r] = |
| _mm256_inserti128_si256(resx[0], _mm256_castsi256_si128(resx[1]), |
| 1); // 16 16bit values |
| } else { |
| dest[i - r] = _mm256_setzero_si256(); |
| } |
| } |
| } |
| |
| static void highbd_dr_prediction_32bit_z2_HxW_idif_avx2( |
| int H, int W, uint16_t *dst, ptrdiff_t stride, const uint16_t *above, |
| const uint16_t *left, int dx, int dy, int mrl_index, int bd) { |
| // Directional prediction in 16x16 tiles. |
| // Step 1. Predict from above. |
| // Step 2. Predict from left and transpose. |
| // Step 3. Merge results. |
| |
| const int min_base_x = -(1 + mrl_index); |
| const int frac_bits_x = 6; |
| |
| __m256i x_pred[16]; |
| __m256i y_pred[16]; |
| |
| for (int r = 0; r < H; r += 16) { |
| for (int j = 0; j < W; j += 16) { |
| assert((W - j) >= 16); |
| assert((H - r) >= 16); |
| |
| // x calc |
| highbd_dr_z2_16x16_32bit_idif_avx2(H, W, above, x_pred, r, j, dx, |
| mrl_index, bd); |
| |
| // y calc |
| highbd_dr_z2_16x16_32bit_idif_avx2(W, H, left, y_pred, j, r, dy, |
| mrl_index, bd); |
| highbd_transpose16x16_avx2(y_pred, y_pred); |
| // merge results |
| for (int k = 0; k < 16; ++k) { |
| int y = k + r + 1; |
| int base_x = ((j << 6) - (y + mrl_index) * dx) >> frac_bits_x; |
| int base_min_diff = (min_base_x - base_x); |
| if (base_min_diff > 16) { |
| base_min_diff = 16; |
| } else { |
| if (base_min_diff < 0) base_min_diff = 0; |
| } |
| |
| __m256i resx, resy, resxy; |
| resx = x_pred[k]; |
| resy = y_pred[k]; |
| |
| resxy = _mm256_blendv_epi8(resx, resy, |
| *(__m256i *)HighbdBaseMask[base_min_diff]); |
| _mm256_storeu_si256((__m256i *)(dst + k * stride + j), resxy); |
| } |
| } // for j |
| if (r + 16 < H) dst += 16 * stride; |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 using IDIF |
| void av1_highbd_dr_prediction_z2_idif_avx2(uint16_t *dst, ptrdiff_t stride, |
| int bw, int bh, |
| const uint16_t *above, |
| const uint16_t *left, int dx, int dy, |
| int bd, int mrl_index) { |
| assert(dx > 0); |
| assert(dy > 0); |
| switch (bw) { |
| case 4: |
| highbd_dr_32bit_z2_8x8_tiling_idif_avx2(bh, bw, dst, stride, above, left, |
| dx, dy, mrl_index, bd); |
| break; |
| case 8: |
| highbd_dr_32bit_z2_8x8_tiling_idif_avx2(bh, bw, dst, stride, above, left, |
| dx, dy, mrl_index, bd); |
| break; |
| default: |
| if (bh < 16) { |
| highbd_dr_32bit_z2_8x8_tiling_idif_avx2(bh, bw, dst, stride, above, |
| left, dx, dy, mrl_index, bd); |
| } else { |
| if (bd < 10) { |
| highbd_dr_prediction_z2_HxW_idif_avx2(bh, bw, dst, stride, above, |
| left, dx, dy, mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z2_HxW_idif_avx2( |
| bh, bw, dst, stride, above, left, dx, dy, mrl_index, bd); |
| } |
| } |
| break; |
| } |
| } |
| |
| // Directional prediction, zone 3 functions |
| static void highbd_dr_prediction_z3_4x4_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m128i dstvec[4], d[4]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_4xN_internal_idif_avx2(4, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_idif_avx2(4, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| highbd_transpose4x8_8x4_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], |
| &dstvec[3], &d[0], &d[1], &d[2], &d[3]); |
| _mm_storel_epi64((__m128i *)(dst + 0 * stride), d[0]); |
| _mm_storel_epi64((__m128i *)(dst + 1 * stride), d[1]); |
| _mm_storel_epi64((__m128i *)(dst + 2 * stride), d[2]); |
| _mm_storel_epi64((__m128i *)(dst + 3 * stride), d[3]); |
| return; |
| } |
| |
| static void highbd_dr_prediction_z3_8x8_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m128i dstvec[8], d[8]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_8xN_internal_idif_avx2(8, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_idif_avx2(8, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| highbd_transpose8x8_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], |
| &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], |
| &d[7]); |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_16x16_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, |
| int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[16], d[16]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_16xN_internal_idif_avx2(16, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_idif_avx2(16, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| highbd_transpose16x16_avx2(dstvec, d); |
| |
| for (int i = 0; i < 16; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d[i]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_32x32_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, |
| int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[64], d[16]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_32xN_internal_idif_avx2(32, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_32xN_internal_idif_avx2(32, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| highbd_transpose16x16_avx2(dstvec, d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + j * stride), d[j]); |
| } |
| highbd_transpose16x16_avx2(dstvec + 16, d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + j * stride + 16), d[j]); |
| } |
| highbd_transpose16x16_avx2(dstvec + 32, d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + (j + 16) * stride), d[j]); |
| } |
| highbd_transpose16x16_avx2(dstvec + 48, d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + (j + 16) * stride + 16), d[j]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_64x64_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, |
| int dy, int bd, |
| int mrl_index) { |
| DECLARE_ALIGNED(16, uint16_t, dstT[64 * 64]); |
| if (bd < 10) { |
| highbd_dr_prediction_z1_64xN_internal_idif_avx2(64, dstT, 64, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_internal_idif_avx2(64, dstT, 64, left, |
| dy, mrl_index, bd); |
| } |
| highbd_transpose(dstT, 64, dst, stride, 64, 64); |
| } |
| |
| static void highbd_dr_prediction_z3_4x8_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m128i dstvec[4], d[8]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_8xN_internal_idif_avx2(4, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_idif_avx2(4, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| highbd_transpose4x8_8x4_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], |
| &d[7]); |
| for (int i = 0; i < 8; i++) { |
| _mm_storel_epi64((__m128i *)(dst + i * stride), d[i]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_8x4_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m128i dstvec[8], d[4]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_4xN_internal_idif_avx2(8, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_idif_avx2(8, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| highbd_transpose8x8_low_sse2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], |
| &d[0], &d[1], &d[2], &d[3]); |
| _mm_storeu_si128((__m128i *)(dst + 0 * stride), d[0]); |
| _mm_storeu_si128((__m128i *)(dst + 1 * stride), d[1]); |
| _mm_storeu_si128((__m128i *)(dst + 2 * stride), d[2]); |
| _mm_storeu_si128((__m128i *)(dst + 3 * stride), d[3]); |
| } |
| |
| static void highbd_dr_prediction_z3_8x16_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[8], d[8]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_16xN_internal_idif_avx2(8, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_idif_avx2(8, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| highbd_transpose8x16_16x8_avx2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], |
| &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], |
| &d[6], &d[7]); |
| |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + i * stride), |
| _mm256_castsi256_si128(d[i])); |
| } |
| for (int i = 8; i < 16; i++) { |
| _mm_storeu_si128((__m128i *)(dst + i * stride), |
| _mm256_extracti128_si256(d[i - 8], 1)); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_16x8_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m128i dstvec[16]; |
| __m256i dstvec256[8], d256[8]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_8xN_internal_idif_avx2(16, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_idif_avx2(16, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| for (int i = 0; i < 8; i++) { |
| dstvec256[i] = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(dstvec[i + 0]), dstvec[i + 8], 0x1); |
| } |
| |
| highbd_transpose8x16_16x8_avx2( |
| &dstvec256[0], &dstvec256[1], &dstvec256[2], &dstvec256[3], &dstvec256[4], |
| &dstvec256[5], &dstvec256[6], &dstvec256[7], &d256[0], &d256[1], &d256[2], |
| &d256[3], &d256[4], &d256[5], &d256[6], &d256[7]); |
| |
| for (int i = 0; i < 8; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d256[i]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_4x16_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[4], d[4], d1; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_16xN_internal_idif_avx2(4, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_idif_avx2(4, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| highbd_transpose4x16_avx2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &d[0], &d[1], &d[2], &d[3]); |
| for (int i = 0; i < 4; i++) { |
| _mm_storel_epi64((__m128i *)(dst + i * stride), |
| _mm256_castsi256_si128(d[i])); |
| d1 = _mm256_bsrli_epi128(d[i], 8); |
| _mm_storel_epi64((__m128i *)(dst + (i + 4) * stride), |
| _mm256_castsi256_si128(d1)); |
| _mm_storel_epi64((__m128i *)(dst + (i + 8) * stride), |
| _mm256_extracti128_si256(d[i], 1)); |
| _mm_storel_epi64((__m128i *)(dst + (i + 12) * stride), |
| _mm256_extracti128_si256(d1, 1)); |
| } |
| } |
| |
| #if CONFIG_FLEX_PARTITION |
| |
| static void highbd_dr_prediction_z3_64x8_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m128i dstvec[64]; |
| __m256i dstvec256[32], d256[32]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_8xN_internal_idif_avx2(64, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_idif_avx2(64, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| for (int i = 0; i < 8; i++) { |
| dstvec256[i] = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(dstvec[i + 0]), dstvec[i + 8], 0x1); |
| dstvec256[i + 8] = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(dstvec[i + 16]), dstvec[i + 24], 0x1); |
| dstvec256[i + 16] = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(dstvec[i + 32]), dstvec[i + 40], 0x1); |
| dstvec256[i + 24] = _mm256_insertf128_si256( |
| _mm256_castsi128_si256(dstvec[i + 48]), dstvec[i + 56], 0x1); |
| } |
| |
| for (int i = 0; i < 32; i += 8) { |
| highbd_transpose8x16_16x8_avx2( |
| &dstvec256[i + 0], &dstvec256[i + 1], &dstvec256[i + 2], |
| &dstvec256[i + 3], &dstvec256[i + 4], &dstvec256[i + 5], |
| &dstvec256[i + 6], &dstvec256[i + 7], &d256[i + 0], &d256[i + 1], |
| &d256[i + 2], &d256[i + 3], &d256[i + 4], &d256[i + 5], &d256[i + 6], |
| &d256[i + 7]); |
| } |
| for (int i = 0; i < 8; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d256[i]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 16), d256[i + 8]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 32), d256[i + 16]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 48), d256[i + 24]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_64x4_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m128i dstvec[64]; |
| __m256i d[16]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_4xN_internal_idif_avx2(64, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_idif_avx2(64, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| highbd_transpose16x4_8x8_avx2(dstvec, d); |
| highbd_transpose16x4_8x8_avx2(dstvec + 16, d + 4); |
| highbd_transpose16x4_8x8_avx2(dstvec + 32, d + 8); |
| highbd_transpose16x4_8x8_avx2(dstvec + 48, d + 12); |
| |
| for (int i = 0; i < 4; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d[i]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 16), d[i + 4]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 32), d[i + 8]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 48), d[i + 12]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_4x64_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[16], d[16]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_64xN_internal_idif_avx2(4, (uint16_t *)dstvec, 64, |
| left, dy, mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_internal_idif_avx2( |
| 4, (uint16_t *)dstvec, 64, left, dy, mrl_index, bd); |
| } |
| |
| for (int i = 0; i < 4; i++) { |
| highbd_transpose4x16_avx2(&dstvec[i], &dstvec[i + 4], &dstvec[i + 8], |
| &dstvec[i + 12], &d[4 * i], &d[4 * i + 1], |
| &d[4 * i + 2], &d[4 * i + 3]); |
| } |
| |
| for (int i = 0; i < 4; i++) { |
| for (int j = 0; j < 4; j++) { |
| const __m128i temph = _mm256_extracti128_si256(d[4 * i + j], 1); |
| const __m128i templ = _mm256_castsi256_si128(d[4 * i + j]); |
| xx_storel_64(dst + (16 * i + j) * stride, templ); |
| xx_storel_64(dst + (16 * i + j + 4) * stride, _mm_srli_si128(templ, 8)); |
| xx_storel_64(dst + (16 * i + j + 8) * stride, temph); |
| xx_storel_64(dst + (16 * i + j + 12) * stride, _mm_srli_si128(temph, 8)); |
| } |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_8x64_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[32], d[32]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_64xN_internal_idif_avx2(8, (uint16_t *)dstvec, 64, |
| left, dy, mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_internal_idif_avx2( |
| 8, (uint16_t *)dstvec, 64, left, dy, mrl_index, bd); |
| } |
| |
| for (int i = 0; i < 4; i++) { |
| highbd_transpose8x16_16x8_avx2( |
| &dstvec[i], &dstvec[i + 4], &dstvec[i + 8], &dstvec[i + 12], |
| &dstvec[i + 16], &dstvec[i + 20], &dstvec[i + 24], &dstvec[i + 28], |
| &d[8 * i], &d[8 * i + 1], &d[8 * i + 2], &d[8 * i + 3], &d[8 * i + 4], |
| &d[8 * i + 5], &d[8 * i + 6], &d[8 * i + 7]); |
| } |
| |
| for (int i = 0; i < 4; i++) { |
| for (int j = 0; j < 8; j++) { |
| __m128i temp_lo = _mm256_castsi256_si128(d[8 * i + j]); |
| __m128i temp_hi = _mm256_extracti128_si256(d[8 * i + j], 1); |
| _mm_storeu_si128((__m128i *)(dst + (16 * i + j) * stride), temp_lo); |
| _mm_storeu_si128((__m128i *)(dst + (16 * i + j + 8) * stride), temp_hi); |
| } |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_4x32_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[8], d[8]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_32xN_internal_idif_avx2(4, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_32xN_internal_idif_avx2(4, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| highbd_transpose8x16_16x8_avx2(&dstvec[0], &dstvec[1], &dstvec[2], &dstvec[3], |
| &dstvec[4], &dstvec[5], &dstvec[6], &dstvec[7], |
| &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], |
| &d[6], &d[7]); |
| |
| for (int i = 0; i < 8; i++) { |
| __m128i temp_lo = _mm256_castsi256_si128(d[i]); |
| __m128i temp_hi = _mm256_extracti128_si256(d[i], 1); |
| _mm_storel_epi64((__m128i *)(dst + i * stride), temp_lo); |
| _mm_storel_epi64((__m128i *)(dst + (i + 16) * stride), |
| _mm_srli_si128(temp_lo, 8)); |
| _mm_storel_epi64((__m128i *)(dst + (i + 8) * stride), temp_hi); |
| _mm_storel_epi64((__m128i *)(dst + (i + 24) * stride), |
| _mm_srli_si128(temp_hi, 8)); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_32x4_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m128i dstvec[32]; |
| __m256i d[8]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_4xN_internal_idif_avx2(32, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_idif_avx2(32, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| highbd_transpose16x4_8x8_avx2(dstvec, d); |
| highbd_transpose16x4_8x8_avx2(dstvec + 16, d + 4); |
| |
| for (int i = 0; i < 4; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d[i]); |
| _mm256_storeu_si256((__m256i *)(dst + i * stride + 16), d[i + 4]); |
| } |
| } |
| |
| #endif // CONFIG_FLEX_PARTITION |
| |
| static void highbd_dr_prediction_z3_16x4_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m128i dstvec[16]; |
| __m256i d[4]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_4xN_internal_idif_avx2(16, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_4xN_internal_idif_avx2(16, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| highbd_transpose16x4_8x8_avx2(dstvec, d); |
| |
| for (int i = 0; i < 4; i++) { |
| _mm256_storeu_si256((__m256i *)(dst + i * stride), d[i]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_8x32_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m256i dstvec[16], d[16]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_32xN_internal_idif_avx2(8, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_32xN_internal_idif_avx2(8, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| for (int i = 0; i < 16; i += 8) { |
| highbd_transpose8x16_16x8_avx2( |
| &dstvec[i], &dstvec[i + 1], &dstvec[i + 2], &dstvec[i + 3], |
| &dstvec[i + 4], &dstvec[i + 5], &dstvec[i + 6], &dstvec[i + 7], &d[i], |
| &d[i + 1], &d[i + 2], &d[i + 3], &d[i + 4], &d[i + 5], &d[i + 6], |
| &d[i + 7]); |
| } |
| |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + i * stride), |
| _mm256_castsi256_si128(d[i])); |
| } |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + (i + 8) * stride), |
| _mm256_extracti128_si256(d[i], 1)); |
| } |
| for (int i = 8; i < 16; i++) { |
| _mm_storeu_si128((__m128i *)(dst + (i + 8) * stride), |
| _mm256_castsi256_si128(d[i])); |
| } |
| for (int i = 8; i < 16; i++) { |
| _mm_storeu_si128((__m128i *)(dst + (i + 16) * stride), |
| _mm256_extracti128_si256(d[i], 1)); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_32x8_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, int dy, |
| int bd, int mrl_index) { |
| __m128i dstvec[32], d[32]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_8xN_internal_idif_avx2(32, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_8xN_internal_idif_avx2(32, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| |
| for (int i = 0; i < 32; i += 8) { |
| highbd_transpose8x8_sse2(&dstvec[0 + i], &dstvec[1 + i], &dstvec[2 + i], |
| &dstvec[3 + i], &dstvec[4 + i], &dstvec[5 + i], |
| &dstvec[6 + i], &dstvec[7 + i], &d[0 + i], |
| &d[1 + i], &d[2 + i], &d[3 + i], &d[4 + i], |
| &d[5 + i], &d[6 + i], &d[7 + i]); |
| } |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + i * stride), d[i]); |
| _mm_storeu_si128((__m128i *)(dst + i * stride + 8), d[i + 8]); |
| _mm_storeu_si128((__m128i *)(dst + i * stride + 16), d[i + 16]); |
| _mm_storeu_si128((__m128i *)(dst + i * stride + 24), d[i + 24]); |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_16x32_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, |
| int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[32], d[32]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_32xN_internal_idif_avx2(16, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_32xN_internal_idif_avx2(16, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| for (int i = 0; i < 32; i += 8) { |
| highbd_transpose8x16_16x8_avx2( |
| &dstvec[i], &dstvec[i + 1], &dstvec[i + 2], &dstvec[i + 3], |
| &dstvec[i + 4], &dstvec[i + 5], &dstvec[i + 6], &dstvec[i + 7], &d[i], |
| &d[i + 1], &d[i + 2], &d[i + 3], &d[i + 4], &d[i + 5], &d[i + 6], |
| &d[i + 7]); |
| } |
| // store |
| for (int j = 0; j < 32; j += 16) { |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + (i + j) * stride), |
| _mm256_castsi256_si128(d[(i + j)])); |
| } |
| for (int i = 0; i < 8; i++) { |
| _mm_storeu_si128((__m128i *)(dst + (i + j) * stride + 8), |
| _mm256_castsi256_si128(d[(i + j) + 8])); |
| } |
| for (int i = 8; i < 16; i++) { |
| _mm256_storeu_si256( |
| (__m256i *)(dst + (i + j) * stride), |
| _mm256_inserti128_si256( |
| d[(i + j)], _mm256_extracti128_si256(d[(i + j) - 8], 1), 0)); |
| } |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_32x16_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, |
| int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[32], d[16]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_16xN_internal_idif_avx2(32, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_idif_avx2(32, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| for (int i = 0; i < 32; i += 16) { |
| highbd_transpose16x16_avx2((dstvec + i), d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + j * stride + i), d[j]); |
| } |
| } |
| } |
| |
| static void highbd_dr_prediction_z3_32x64_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, |
| int dy, int bd, |
| int mrl_index) { |
| uint16_t dstT[64 * 32]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_64xN_internal_idif_avx2(32, dstT, 64, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_internal_idif_avx2(32, dstT, 64, left, |
| dy, mrl_index, bd); |
| } |
| highbd_transpose(dstT, 64, dst, stride, 32, 64); |
| } |
| |
| static void highbd_dr_prediction_z3_64x32_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, |
| int dy, int bd, |
| int mrl_index) { |
| DECLARE_ALIGNED(16, uint16_t, dstT[32 * 64]); |
| highbd_dr_prediction_z1_32xN_idif_avx2(64, dstT, 32, left, dy, bd, mrl_index); |
| highbd_transpose(dstT, 32, dst, stride, 64, 32); |
| return; |
| } |
| |
| static void highbd_dr_prediction_z3_16x64_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, |
| int dy, int bd, |
| int mrl_index) { |
| DECLARE_ALIGNED(16, uint16_t, dstT[64 * 16]); |
| if (bd < 10) { |
| highbd_dr_prediction_z1_64xN_internal_idif_avx2(16, dstT, 64, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_64xN_internal_idif_avx2(16, dstT, 64, left, |
| dy, mrl_index, bd); |
| } |
| highbd_transpose(dstT, 64, dst, stride, 16, 64); |
| } |
| |
| static void highbd_dr_prediction_z3_64x16_idif_avx2(uint16_t *dst, |
| ptrdiff_t stride, |
| const uint16_t *left, |
| int dy, int bd, |
| int mrl_index) { |
| __m256i dstvec[64], d[16]; |
| if (bd < 10) { |
| highbd_dr_prediction_z1_16xN_internal_idif_avx2(64, dstvec, left, dy, |
| mrl_index, bd); |
| } else { |
| highbd_dr_prediction_32bit_z1_16xN_internal_idif_avx2(64, dstvec, left, dy, |
| mrl_index, bd); |
| } |
| for (int i = 0; i < 64; i += 16) { |
| highbd_transpose16x16_avx2((dstvec + i), d); |
| for (int j = 0; j < 16; j++) { |
| _mm256_storeu_si256((__m256i *)(dst + j * stride + i), d[j]); |
| } |
| } |
| } |
| |
| void av1_highbd_dr_prediction_z3_idif_avx2(uint16_t *dst, ptrdiff_t stride, |
| int bw, int bh, |
| const uint16_t *above, |
| const uint16_t *left, int dx, int dy, |
| int bd, int mrl_index) { |
| (void)above; |
| (void)dx; |
| |
| assert(dx == 1); |
| assert(dy > 0); |
| |
| if (bw == bh) { |
| switch (bw) { |
| case 4: |
| highbd_dr_prediction_z3_4x4_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 8: |
| highbd_dr_prediction_z3_8x8_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z3_16x16_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 32: |
| highbd_dr_prediction_z3_32x32_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 64: |
| highbd_dr_prediction_z3_64x64_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| } |
| } else { |
| if (bw < bh) { |
| if (bw + bw == bh) { |
| switch (bw) { |
| case 4: |
| highbd_dr_prediction_z3_4x8_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 8: |
| highbd_dr_prediction_z3_8x16_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z3_16x32_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 32: |
| highbd_dr_prediction_z3_32x64_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| } |
| } else { |
| switch (bw) { |
| case 4: |
| #if CONFIG_FLEX_PARTITION |
| if (bh == 32) |
| highbd_dr_prediction_z3_4x32_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| else if (bh == 64) |
| highbd_dr_prediction_z3_4x64_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| else |
| #endif // CONFIG_FLEX_PARTITION |
| highbd_dr_prediction_z3_4x16_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 8: |
| #if CONFIG_FLEX_PARTITION |
| if (bh == 64) |
| highbd_dr_prediction_z3_8x64_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| |
| else |
| #endif // CONFIG_FLEX_PARTITION |
| highbd_dr_prediction_z3_8x32_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z3_16x64_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| } |
| } |
| } else { |
| if (bh + bh == bw) { |
| switch (bh) { |
| case 4: |
| highbd_dr_prediction_z3_8x4_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 8: |
| highbd_dr_prediction_z3_16x8_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z3_32x16_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 32: |
| highbd_dr_prediction_z3_64x32_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| } |
| } else { |
| switch (bh) { |
| case 4: |
| #if CONFIG_FLEX_PARTITION |
| if (bw == 32) |
| |
| highbd_dr_prediction_z3_32x4_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| else if (bw == 64) |
| highbd_dr_prediction_z3_64x4_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| |
| else |
| #endif // CONFIG_FLEX_PARTITION |
| highbd_dr_prediction_z3_16x4_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| |
| break; |
| case 8: |
| #if CONFIG_FLEX_PARTITION |
| if (bw == 64) |
| highbd_dr_prediction_z3_64x8_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| else |
| #endif // CONFIG_FLEX_PARTITION |
| highbd_dr_prediction_z3_32x8_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| case 16: |
| highbd_dr_prediction_z3_64x16_idif_avx2(dst, stride, left, dy, bd, |
| mrl_index); |
| break; |
| } |
| } |
| } |
| } |
| return; |
| } |
| #endif // CONFIG_IDIF |