| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| |
| #include "./vpx_scale_rtcd.h" |
| #include "./vpx_config.h" |
| |
| #include "vpx/vpx_integer.h" |
| |
| #include "vp9/common/vp9_blockd.h" |
| #include "vp9/common/vp9_filter.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_reconintra.h" |
| |
| void vp9_setup_interp_filters(MACROBLOCKD *xd, |
| INTERPOLATION_TYPE mcomp_filter_type, |
| VP9_COMMON *cm) { |
| if (xd->mi_8x8 && xd->mi_8x8[0]) { |
| MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi; |
| |
| set_scale_factors(xd, mbmi->ref_frame[0] - LAST_FRAME, |
| mbmi->ref_frame[1] - LAST_FRAME, |
| cm->active_ref_scale); |
| } else { |
| set_scale_factors(xd, -1, -1, cm->active_ref_scale); |
| } |
| |
| xd->subpix.filter_x = xd->subpix.filter_y = |
| vp9_get_filter_kernel(mcomp_filter_type == SWITCHABLE ? |
| EIGHTTAP : mcomp_filter_type); |
| |
| assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0); |
| } |
| |
| static void inter_predictor(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, |
| const MV32 *mv, |
| const struct scale_factors *scale, |
| int w, int h, int ref, |
| const struct subpix_fn_table *subpix, |
| int xs, int ys) { |
| const int subpel_x = mv->col & SUBPEL_MASK; |
| const int subpel_y = mv->row & SUBPEL_MASK; |
| |
| src += (mv->row >> SUBPEL_BITS) * src_stride + (mv->col >> SUBPEL_BITS); |
| scale->sfc->predict[subpel_x != 0][subpel_y != 0][ref]( |
| src, src_stride, dst, dst_stride, |
| subpix->filter_x[subpel_x], xs, |
| subpix->filter_y[subpel_y], ys, |
| w, h); |
| } |
| |
| void vp9_build_inter_predictor(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, |
| const MV *src_mv, |
| const struct scale_factors *scale, |
| int w, int h, int ref, |
| const struct subpix_fn_table *subpix, |
| enum mv_precision precision) { |
| const int is_q4 = precision == MV_PRECISION_Q4; |
| const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, |
| is_q4 ? src_mv->col : src_mv->col * 2 }; |
| const struct scale_factors_common *sfc = scale->sfc; |
| const MV32 mv = sfc->scale_mv(&mv_q4, scale); |
| |
| inter_predictor(src, src_stride, dst, dst_stride, &mv, scale, |
| w, h, ref, subpix, sfc->x_step_q4, sfc->y_step_q4); |
| } |
| |
| static INLINE int round_mv_comp_q4(int value) { |
| return (value < 0 ? value - 2 : value + 2) / 4; |
| } |
| |
| static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { |
| MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row + |
| mi->bmi[1].as_mv[idx].as_mv.row + |
| mi->bmi[2].as_mv[idx].as_mv.row + |
| mi->bmi[3].as_mv[idx].as_mv.row), |
| round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col + |
| mi->bmi[1].as_mv[idx].as_mv.col + |
| mi->bmi[2].as_mv[idx].as_mv.col + |
| mi->bmi[3].as_mv[idx].as_mv.col) }; |
| return res; |
| } |
| |
| // TODO(jkoleszar): yet another mv clamping function :-( |
| MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, |
| int bw, int bh, int ss_x, int ss_y) { |
| // If the MV points so far into the UMV border that no visible pixels |
| // are used for reconstruction, the subpel part of the MV can be |
| // discarded and the MV limited to 16 pixels with equivalent results. |
| const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS; |
| const int spel_right = spel_left - SUBPEL_SHIFTS; |
| const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS; |
| const int spel_bottom = spel_top - SUBPEL_SHIFTS; |
| MV clamped_mv = { |
| src_mv->row * (1 << (1 - ss_y)), |
| src_mv->col * (1 << (1 - ss_x)) |
| }; |
| assert(ss_x <= 1); |
| assert(ss_y <= 1); |
| |
| clamp_mv(&clamped_mv, |
| xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, |
| xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, |
| xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, |
| xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom); |
| |
| return clamped_mv; |
| } |
| |
| |
| // TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could |
| // calculate the subsampled BLOCK_SIZE, but that type isn't defined for |
| // sizes smaller than 16x16 yet. |
| static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block, |
| BLOCK_SIZE bsize, int pred_w, int pred_h, |
| int mi_x, int mi_y) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int bwl = b_width_log2(bsize) - pd->subsampling_x; |
| const int bw = 4 << bwl; |
| const int bh = plane_block_height(bsize, pd); |
| const int x = 4 * (block & ((1 << bwl) - 1)); |
| const int y = 4 * (block >> bwl); |
| const MODE_INFO *mi = xd->mi_8x8[0]; |
| const int is_compound = has_second_ref(&mi->mbmi); |
| int ref; |
| |
| assert(x < bw); |
| assert(y < bh); |
| assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_w == bw); |
| assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_h == bh); |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| struct scale_factors *const scale = &xd->scale_factor[ref]; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; |
| |
| // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the |
| // same MV (the average of the 4 luma MVs) but we could do something |
| // smarter for non-4:2:0. Just punt for now, pending the changes to get |
| // rid of SPLITMV mode entirely. |
| const MV mv = mi->mbmi.sb_type < BLOCK_8X8 |
| ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv |
| : mi_mv_pred_q4(mi, ref)) |
| : mi->mbmi.mv[ref].as_mv; |
| |
| // TODO(jkoleszar): This clamping is done in the incorrect place for the |
| // scaling case. It needs to be done on the scaled MV, not the pre-scaling |
| // MV. Note however that it performs the subsampling aware scaling so |
| // that the result is always q4. |
| // mv_precision precision is MV_PRECISION_Q4. |
| const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, |
| pd->subsampling_x, |
| pd->subsampling_y); |
| |
| uint8_t *pre; |
| MV32 scaled_mv; |
| int xs, ys; |
| |
| if (vp9_is_scaled(scale->sfc)) { |
| pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, scale); |
| scale->sfc->set_scaled_offsets(scale, mi_y + y, mi_x + x); |
| scaled_mv = scale->sfc->scale_mv(&mv_q4, scale); |
| xs = scale->sfc->x_step_q4; |
| ys = scale->sfc->y_step_q4; |
| } else { |
| pre = pre_buf->buf + (y * pre_buf->stride + x); |
| scaled_mv.row = mv_q4.row; |
| scaled_mv.col = mv_q4.col; |
| xs = ys = 16; |
| } |
| |
| inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, |
| &scaled_mv, scale, |
| 4 << pred_w, 4 << pred_h, ref, |
| &xd->subpix, xs, ys); |
| } |
| } |
| |
| static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, |
| int plane_from, int plane_to) { |
| int plane; |
| for (plane = plane_from; plane <= plane_to; ++plane) { |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
| const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; |
| |
| if (xd->mi_8x8[0]->mbmi.sb_type < BLOCK_8X8) { |
| int i = 0, x, y; |
| assert(bsize == BLOCK_8X8); |
| for (y = 0; y < 1 << bhl; ++y) |
| for (x = 0; x < 1 << bwl; ++x) |
| build_inter_predictors(xd, plane, i++, bsize, 0, 0, mi_x, mi_y); |
| } else { |
| build_inter_predictors(xd, plane, 0, bsize, bwl, bhl, mi_x, mi_y); |
| } |
| } |
| } |
| |
| void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); |
| } |
| void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, |
| MAX_MB_PLANE - 1); |
| } |
| void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, |
| MAX_MB_PLANE - 1); |
| } |
| |
| // TODO(dkovalev: find better place for this function) |
| void vp9_setup_scale_factors(VP9_COMMON *cm, int i) { |
| const int ref = cm->active_ref_idx[i]; |
| struct scale_factors *const sf = &cm->active_ref_scale[i]; |
| struct scale_factors_common *const sfc = &cm->active_ref_scale_comm[i]; |
| if (ref >= NUM_YV12_BUFFERS) { |
| vp9_zero(*sf); |
| vp9_zero(*sfc); |
| } else { |
| YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref]; |
| vp9_setup_scale_factors_for_frame(sf, sfc, |
| fb->y_crop_width, fb->y_crop_height, |
| cm->width, cm->height); |
| |
| if (vp9_is_scaled(sfc)) |
| vp9_extend_frame_borders(fb, cm->subsampling_x, cm->subsampling_y); |
| } |
| } |
| |