| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "./av1_rtcd.h" |
| #include "aom_dsp/fwd_txfm.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/av1_fwd_txfm1d.h" |
| #include "av1/common/av1_fwd_txfm1d_cfg.h" |
| #include "av1/common/idct.h" |
| #if CONFIG_DAALA_DCT4 || CONFIG_DAALA_DCT8 || CONFIG_DAALA_DCT16 || \ |
| CONFIG_DAALA_DCT32 || CONFIG_DAALA_DCT64 |
| #include "av1/common/daala_tx.h" |
| #endif |
| |
| static INLINE void range_check(const tran_low_t *input, const int size, |
| const int bit) { |
| #if 0 // CONFIG_COEFFICIENT_RANGE_CHECKING |
| // TODO(angiebird): the range_check is not used because the bit range |
| // in fdct# is not correct. Since we are going to merge in a new version |
| // of fdct# from nextgenv2, we won't fix the incorrect bit range now. |
| int i; |
| for (i = 0; i < size; ++i) { |
| assert(abs(input[i]) < (1 << bit)); |
| } |
| #else |
| (void)input; |
| (void)size; |
| (void)bit; |
| #endif |
| } |
| |
| #if CONFIG_DAALA_DCT4 |
| static void fdct4(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| od_coeff x[4]; |
| od_coeff y[4]; |
| for (i = 0; i < 4; i++) x[i] = (od_coeff)input[i]; |
| od_bin_fdct4(y, x, 1); |
| for (i = 0; i < 4; i++) output[i] = (tran_low_t)y[i]; |
| } |
| |
| #else |
| |
| static void fdct4(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t temp; |
| tran_low_t step[4]; |
| |
| // stage 0 |
| range_check(input, 4, 14); |
| |
| // stage 1 |
| output[0] = input[0] + input[3]; |
| output[1] = input[1] + input[2]; |
| output[2] = input[1] - input[2]; |
| output[3] = input[0] - input[3]; |
| |
| range_check(output, 4, 15); |
| |
| // stage 2 |
| temp = output[0] * cospi_16_64 + output[1] * cospi_16_64; |
| step[0] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64; |
| step[1] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[2] * cospi_24_64 + output[3] * cospi_8_64; |
| step[2] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64; |
| step[3] = (tran_low_t)fdct_round_shift(temp); |
| |
| range_check(step, 4, 16); |
| |
| // stage 3 |
| output[0] = step[0]; |
| output[1] = step[2]; |
| output[2] = step[1]; |
| output[3] = step[3]; |
| |
| range_check(output, 4, 16); |
| } |
| #endif |
| |
| #if CONFIG_DAALA_DCT8 |
| static void fdct8(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| od_coeff x[8]; |
| od_coeff y[8]; |
| for (i = 0; i < 8; i++) x[i] = (od_coeff)input[i]; |
| od_bin_fdct8(y, x, 1); |
| for (i = 0; i < 8; i++) output[i] = (tran_low_t)y[i]; |
| } |
| |
| #else |
| |
| static void fdct8(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t temp; |
| tran_low_t step[8]; |
| |
| // stage 0 |
| range_check(input, 8, 13); |
| |
| // stage 1 |
| output[0] = input[0] + input[7]; |
| output[1] = input[1] + input[6]; |
| output[2] = input[2] + input[5]; |
| output[3] = input[3] + input[4]; |
| output[4] = input[3] - input[4]; |
| output[5] = input[2] - input[5]; |
| output[6] = input[1] - input[6]; |
| output[7] = input[0] - input[7]; |
| |
| range_check(output, 8, 14); |
| |
| // stage 2 |
| step[0] = output[0] + output[3]; |
| step[1] = output[1] + output[2]; |
| step[2] = output[1] - output[2]; |
| step[3] = output[0] - output[3]; |
| step[4] = output[4]; |
| temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64; |
| step[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[6] * cospi_16_64 + output[5] * cospi_16_64; |
| step[6] = (tran_low_t)fdct_round_shift(temp); |
| step[7] = output[7]; |
| |
| range_check(step, 8, 15); |
| |
| // stage 3 |
| temp = step[0] * cospi_16_64 + step[1] * cospi_16_64; |
| output[0] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64; |
| output[1] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[2] * cospi_24_64 + step[3] * cospi_8_64; |
| output[2] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64; |
| output[3] = (tran_low_t)fdct_round_shift(temp); |
| output[4] = step[4] + step[5]; |
| output[5] = step[4] - step[5]; |
| output[6] = step[7] - step[6]; |
| output[7] = step[7] + step[6]; |
| |
| range_check(output, 8, 16); |
| |
| // stage 4 |
| step[0] = output[0]; |
| step[1] = output[1]; |
| step[2] = output[2]; |
| step[3] = output[3]; |
| temp = output[4] * cospi_28_64 + output[7] * cospi_4_64; |
| step[4] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[5] * cospi_12_64 + output[6] * cospi_20_64; |
| step[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64; |
| step[6] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64; |
| step[7] = (tran_low_t)fdct_round_shift(temp); |
| |
| range_check(step, 8, 16); |
| |
| // stage 5 |
| output[0] = step[0]; |
| output[1] = step[4]; |
| output[2] = step[2]; |
| output[3] = step[6]; |
| output[4] = step[1]; |
| output[5] = step[5]; |
| output[6] = step[3]; |
| output[7] = step[7]; |
| |
| range_check(output, 8, 16); |
| } |
| #endif |
| |
| #if CONFIG_DAALA_DCT16 |
| static void fdct16(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| od_coeff x[16]; |
| od_coeff y[16]; |
| for (i = 0; i < 16; i++) x[i] = (od_coeff)input[i]; |
| od_bin_fdct16(y, x, 1); |
| for (i = 0; i < 16; i++) output[i] = (tran_low_t)y[i]; |
| } |
| |
| #else |
| |
| static void fdct16(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t temp; |
| tran_low_t step[16]; |
| |
| // stage 0 |
| range_check(input, 16, 13); |
| |
| // stage 1 |
| output[0] = input[0] + input[15]; |
| output[1] = input[1] + input[14]; |
| output[2] = input[2] + input[13]; |
| output[3] = input[3] + input[12]; |
| output[4] = input[4] + input[11]; |
| output[5] = input[5] + input[10]; |
| output[6] = input[6] + input[9]; |
| output[7] = input[7] + input[8]; |
| output[8] = input[7] - input[8]; |
| output[9] = input[6] - input[9]; |
| output[10] = input[5] - input[10]; |
| output[11] = input[4] - input[11]; |
| output[12] = input[3] - input[12]; |
| output[13] = input[2] - input[13]; |
| output[14] = input[1] - input[14]; |
| output[15] = input[0] - input[15]; |
| |
| range_check(output, 16, 14); |
| |
| // stage 2 |
| step[0] = output[0] + output[7]; |
| step[1] = output[1] + output[6]; |
| step[2] = output[2] + output[5]; |
| step[3] = output[3] + output[4]; |
| step[4] = output[3] - output[4]; |
| step[5] = output[2] - output[5]; |
| step[6] = output[1] - output[6]; |
| step[7] = output[0] - output[7]; |
| step[8] = output[8]; |
| step[9] = output[9]; |
| temp = output[10] * -cospi_16_64 + output[13] * cospi_16_64; |
| step[10] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[11] * -cospi_16_64 + output[12] * cospi_16_64; |
| step[11] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[12] * cospi_16_64 + output[11] * cospi_16_64; |
| step[12] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[13] * cospi_16_64 + output[10] * cospi_16_64; |
| step[13] = (tran_low_t)fdct_round_shift(temp); |
| step[14] = output[14]; |
| step[15] = output[15]; |
| |
| range_check(step, 16, 15); |
| |
| // stage 3 |
| output[0] = step[0] + step[3]; |
| output[1] = step[1] + step[2]; |
| output[2] = step[1] - step[2]; |
| output[3] = step[0] - step[3]; |
| output[4] = step[4]; |
| temp = step[5] * -cospi_16_64 + step[6] * cospi_16_64; |
| output[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[6] * cospi_16_64 + step[5] * cospi_16_64; |
| output[6] = (tran_low_t)fdct_round_shift(temp); |
| output[7] = step[7]; |
| output[8] = step[8] + step[11]; |
| output[9] = step[9] + step[10]; |
| output[10] = step[9] - step[10]; |
| output[11] = step[8] - step[11]; |
| output[12] = step[15] - step[12]; |
| output[13] = step[14] - step[13]; |
| output[14] = step[14] + step[13]; |
| output[15] = step[15] + step[12]; |
| |
| range_check(output, 16, 16); |
| |
| // stage 4 |
| temp = output[0] * cospi_16_64 + output[1] * cospi_16_64; |
| step[0] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[1] * -cospi_16_64 + output[0] * cospi_16_64; |
| step[1] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[2] * cospi_24_64 + output[3] * cospi_8_64; |
| step[2] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[3] * cospi_24_64 + output[2] * -cospi_8_64; |
| step[3] = (tran_low_t)fdct_round_shift(temp); |
| step[4] = output[4] + output[5]; |
| step[5] = output[4] - output[5]; |
| step[6] = output[7] - output[6]; |
| step[7] = output[7] + output[6]; |
| step[8] = output[8]; |
| temp = output[9] * -cospi_8_64 + output[14] * cospi_24_64; |
| step[9] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[10] * -cospi_24_64 + output[13] * -cospi_8_64; |
| step[10] = (tran_low_t)fdct_round_shift(temp); |
| step[11] = output[11]; |
| step[12] = output[12]; |
| temp = output[13] * cospi_24_64 + output[10] * -cospi_8_64; |
| step[13] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[14] * cospi_8_64 + output[9] * cospi_24_64; |
| step[14] = (tran_low_t)fdct_round_shift(temp); |
| step[15] = output[15]; |
| |
| range_check(step, 16, 16); |
| |
| // stage 5 |
| output[0] = step[0]; |
| output[1] = step[1]; |
| output[2] = step[2]; |
| output[3] = step[3]; |
| temp = step[4] * cospi_28_64 + step[7] * cospi_4_64; |
| output[4] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[5] * cospi_12_64 + step[6] * cospi_20_64; |
| output[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[6] * cospi_12_64 + step[5] * -cospi_20_64; |
| output[6] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[7] * cospi_28_64 + step[4] * -cospi_4_64; |
| output[7] = (tran_low_t)fdct_round_shift(temp); |
| output[8] = step[8] + step[9]; |
| output[9] = step[8] - step[9]; |
| output[10] = step[11] - step[10]; |
| output[11] = step[11] + step[10]; |
| output[12] = step[12] + step[13]; |
| output[13] = step[12] - step[13]; |
| output[14] = step[15] - step[14]; |
| output[15] = step[15] + step[14]; |
| |
| range_check(output, 16, 16); |
| |
| // stage 6 |
| step[0] = output[0]; |
| step[1] = output[1]; |
| step[2] = output[2]; |
| step[3] = output[3]; |
| step[4] = output[4]; |
| step[5] = output[5]; |
| step[6] = output[6]; |
| step[7] = output[7]; |
| temp = output[8] * cospi_30_64 + output[15] * cospi_2_64; |
| step[8] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[9] * cospi_14_64 + output[14] * cospi_18_64; |
| step[9] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[10] * cospi_22_64 + output[13] * cospi_10_64; |
| step[10] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[11] * cospi_6_64 + output[12] * cospi_26_64; |
| step[11] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[12] * cospi_6_64 + output[11] * -cospi_26_64; |
| step[12] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[13] * cospi_22_64 + output[10] * -cospi_10_64; |
| step[13] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[14] * cospi_14_64 + output[9] * -cospi_18_64; |
| step[14] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[15] * cospi_30_64 + output[8] * -cospi_2_64; |
| step[15] = (tran_low_t)fdct_round_shift(temp); |
| |
| range_check(step, 16, 16); |
| |
| // stage 7 |
| output[0] = step[0]; |
| output[1] = step[8]; |
| output[2] = step[4]; |
| output[3] = step[12]; |
| output[4] = step[2]; |
| output[5] = step[10]; |
| output[6] = step[6]; |
| output[7] = step[14]; |
| output[8] = step[1]; |
| output[9] = step[9]; |
| output[10] = step[5]; |
| output[11] = step[13]; |
| output[12] = step[3]; |
| output[13] = step[11]; |
| output[14] = step[7]; |
| output[15] = step[15]; |
| |
| range_check(output, 16, 16); |
| } |
| #endif |
| |
| #if CONFIG_DAALA_DCT32 |
| static void fdct32(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| od_coeff x[32]; |
| od_coeff y[32]; |
| for (i = 0; i < 32; i++) x[i] = (od_coeff)input[i]; |
| od_bin_fdct32(y, x, 1); |
| for (i = 0; i < 32; i++) output[i] = (tran_low_t)y[i]; |
| } |
| |
| #else |
| |
| static void fdct32(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t temp; |
| tran_low_t step[32]; |
| |
| // stage 0 |
| range_check(input, 32, 14); |
| |
| // stage 1 |
| output[0] = input[0] + input[31]; |
| output[1] = input[1] + input[30]; |
| output[2] = input[2] + input[29]; |
| output[3] = input[3] + input[28]; |
| output[4] = input[4] + input[27]; |
| output[5] = input[5] + input[26]; |
| output[6] = input[6] + input[25]; |
| output[7] = input[7] + input[24]; |
| output[8] = input[8] + input[23]; |
| output[9] = input[9] + input[22]; |
| output[10] = input[10] + input[21]; |
| output[11] = input[11] + input[20]; |
| output[12] = input[12] + input[19]; |
| output[13] = input[13] + input[18]; |
| output[14] = input[14] + input[17]; |
| output[15] = input[15] + input[16]; |
| output[16] = input[15] - input[16]; |
| output[17] = input[14] - input[17]; |
| output[18] = input[13] - input[18]; |
| output[19] = input[12] - input[19]; |
| output[20] = input[11] - input[20]; |
| output[21] = input[10] - input[21]; |
| output[22] = input[9] - input[22]; |
| output[23] = input[8] - input[23]; |
| output[24] = input[7] - input[24]; |
| output[25] = input[6] - input[25]; |
| output[26] = input[5] - input[26]; |
| output[27] = input[4] - input[27]; |
| output[28] = input[3] - input[28]; |
| output[29] = input[2] - input[29]; |
| output[30] = input[1] - input[30]; |
| output[31] = input[0] - input[31]; |
| |
| range_check(output, 32, 15); |
| |
| // stage 2 |
| step[0] = output[0] + output[15]; |
| step[1] = output[1] + output[14]; |
| step[2] = output[2] + output[13]; |
| step[3] = output[3] + output[12]; |
| step[4] = output[4] + output[11]; |
| step[5] = output[5] + output[10]; |
| step[6] = output[6] + output[9]; |
| step[7] = output[7] + output[8]; |
| step[8] = output[7] - output[8]; |
| step[9] = output[6] - output[9]; |
| step[10] = output[5] - output[10]; |
| step[11] = output[4] - output[11]; |
| step[12] = output[3] - output[12]; |
| step[13] = output[2] - output[13]; |
| step[14] = output[1] - output[14]; |
| step[15] = output[0] - output[15]; |
| step[16] = output[16]; |
| step[17] = output[17]; |
| step[18] = output[18]; |
| step[19] = output[19]; |
| temp = output[20] * -cospi_16_64 + output[27] * cospi_16_64; |
| step[20] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[21] * -cospi_16_64 + output[26] * cospi_16_64; |
| step[21] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[22] * -cospi_16_64 + output[25] * cospi_16_64; |
| step[22] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[23] * -cospi_16_64 + output[24] * cospi_16_64; |
| step[23] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[24] * cospi_16_64 + output[23] * cospi_16_64; |
| step[24] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[25] * cospi_16_64 + output[22] * cospi_16_64; |
| step[25] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[26] * cospi_16_64 + output[21] * cospi_16_64; |
| step[26] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[27] * cospi_16_64 + output[20] * cospi_16_64; |
| step[27] = (tran_low_t)fdct_round_shift(temp); |
| step[28] = output[28]; |
| step[29] = output[29]; |
| step[30] = output[30]; |
| step[31] = output[31]; |
| |
| range_check(step, 32, 16); |
| |
| // stage 3 |
| output[0] = step[0] + step[7]; |
| output[1] = step[1] + step[6]; |
| output[2] = step[2] + step[5]; |
| output[3] = step[3] + step[4]; |
| output[4] = step[3] - step[4]; |
| output[5] = step[2] - step[5]; |
| output[6] = step[1] - step[6]; |
| output[7] = step[0] - step[7]; |
| output[8] = step[8]; |
| output[9] = step[9]; |
| temp = step[10] * -cospi_16_64 + step[13] * cospi_16_64; |
| output[10] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[11] * -cospi_16_64 + step[12] * cospi_16_64; |
| output[11] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[12] * cospi_16_64 + step[11] * cospi_16_64; |
| output[12] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[13] * cospi_16_64 + step[10] * cospi_16_64; |
| output[13] = (tran_low_t)fdct_round_shift(temp); |
| output[14] = step[14]; |
| output[15] = step[15]; |
| output[16] = step[16] + step[23]; |
| output[17] = step[17] + step[22]; |
| output[18] = step[18] + step[21]; |
| output[19] = step[19] + step[20]; |
| output[20] = step[19] - step[20]; |
| output[21] = step[18] - step[21]; |
| output[22] = step[17] - step[22]; |
| output[23] = step[16] - step[23]; |
| output[24] = step[31] - step[24]; |
| output[25] = step[30] - step[25]; |
| output[26] = step[29] - step[26]; |
| output[27] = step[28] - step[27]; |
| output[28] = step[28] + step[27]; |
| output[29] = step[29] + step[26]; |
| output[30] = step[30] + step[25]; |
| output[31] = step[31] + step[24]; |
| |
| range_check(output, 32, 17); |
| |
| // stage 4 |
| step[0] = output[0] + output[3]; |
| step[1] = output[1] + output[2]; |
| step[2] = output[1] - output[2]; |
| step[3] = output[0] - output[3]; |
| step[4] = output[4]; |
| temp = output[5] * -cospi_16_64 + output[6] * cospi_16_64; |
| step[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[6] * cospi_16_64 + output[5] * cospi_16_64; |
| step[6] = (tran_low_t)fdct_round_shift(temp); |
| step[7] = output[7]; |
| step[8] = output[8] + output[11]; |
| step[9] = output[9] + output[10]; |
| step[10] = output[9] - output[10]; |
| step[11] = output[8] - output[11]; |
| step[12] = output[15] - output[12]; |
| step[13] = output[14] - output[13]; |
| step[14] = output[14] + output[13]; |
| step[15] = output[15] + output[12]; |
| step[16] = output[16]; |
| step[17] = output[17]; |
| temp = output[18] * -cospi_8_64 + output[29] * cospi_24_64; |
| step[18] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[19] * -cospi_8_64 + output[28] * cospi_24_64; |
| step[19] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[20] * -cospi_24_64 + output[27] * -cospi_8_64; |
| step[20] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[21] * -cospi_24_64 + output[26] * -cospi_8_64; |
| step[21] = (tran_low_t)fdct_round_shift(temp); |
| step[22] = output[22]; |
| step[23] = output[23]; |
| step[24] = output[24]; |
| step[25] = output[25]; |
| temp = output[26] * cospi_24_64 + output[21] * -cospi_8_64; |
| step[26] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[27] * cospi_24_64 + output[20] * -cospi_8_64; |
| step[27] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[28] * cospi_8_64 + output[19] * cospi_24_64; |
| step[28] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[29] * cospi_8_64 + output[18] * cospi_24_64; |
| step[29] = (tran_low_t)fdct_round_shift(temp); |
| step[30] = output[30]; |
| step[31] = output[31]; |
| |
| range_check(step, 32, 18); |
| |
| // stage 5 |
| temp = step[0] * cospi_16_64 + step[1] * cospi_16_64; |
| output[0] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[1] * -cospi_16_64 + step[0] * cospi_16_64; |
| output[1] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[2] * cospi_24_64 + step[3] * cospi_8_64; |
| output[2] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[3] * cospi_24_64 + step[2] * -cospi_8_64; |
| output[3] = (tran_low_t)fdct_round_shift(temp); |
| output[4] = step[4] + step[5]; |
| output[5] = step[4] - step[5]; |
| output[6] = step[7] - step[6]; |
| output[7] = step[7] + step[6]; |
| output[8] = step[8]; |
| temp = step[9] * -cospi_8_64 + step[14] * cospi_24_64; |
| output[9] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[10] * -cospi_24_64 + step[13] * -cospi_8_64; |
| output[10] = (tran_low_t)fdct_round_shift(temp); |
| output[11] = step[11]; |
| output[12] = step[12]; |
| temp = step[13] * cospi_24_64 + step[10] * -cospi_8_64; |
| output[13] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[14] * cospi_8_64 + step[9] * cospi_24_64; |
| output[14] = (tran_low_t)fdct_round_shift(temp); |
| output[15] = step[15]; |
| output[16] = step[16] + step[19]; |
| output[17] = step[17] + step[18]; |
| output[18] = step[17] - step[18]; |
| output[19] = step[16] - step[19]; |
| output[20] = step[23] - step[20]; |
| output[21] = step[22] - step[21]; |
| output[22] = step[22] + step[21]; |
| output[23] = step[23] + step[20]; |
| output[24] = step[24] + step[27]; |
| output[25] = step[25] + step[26]; |
| output[26] = step[25] - step[26]; |
| output[27] = step[24] - step[27]; |
| output[28] = step[31] - step[28]; |
| output[29] = step[30] - step[29]; |
| output[30] = step[30] + step[29]; |
| output[31] = step[31] + step[28]; |
| |
| range_check(output, 32, 18); |
| |
| // stage 6 |
| step[0] = output[0]; |
| step[1] = output[1]; |
| step[2] = output[2]; |
| step[3] = output[3]; |
| temp = output[4] * cospi_28_64 + output[7] * cospi_4_64; |
| step[4] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[5] * cospi_12_64 + output[6] * cospi_20_64; |
| step[5] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[6] * cospi_12_64 + output[5] * -cospi_20_64; |
| step[6] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[7] * cospi_28_64 + output[4] * -cospi_4_64; |
| step[7] = (tran_low_t)fdct_round_shift(temp); |
| step[8] = output[8] + output[9]; |
| step[9] = output[8] - output[9]; |
| step[10] = output[11] - output[10]; |
| step[11] = output[11] + output[10]; |
| step[12] = output[12] + output[13]; |
| step[13] = output[12] - output[13]; |
| step[14] = output[15] - output[14]; |
| step[15] = output[15] + output[14]; |
| step[16] = output[16]; |
| temp = output[17] * -cospi_4_64 + output[30] * cospi_28_64; |
| step[17] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[18] * -cospi_28_64 + output[29] * -cospi_4_64; |
| step[18] = (tran_low_t)fdct_round_shift(temp); |
| step[19] = output[19]; |
| step[20] = output[20]; |
| temp = output[21] * -cospi_20_64 + output[26] * cospi_12_64; |
| step[21] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[22] * -cospi_12_64 + output[25] * -cospi_20_64; |
| step[22] = (tran_low_t)fdct_round_shift(temp); |
| step[23] = output[23]; |
| step[24] = output[24]; |
| temp = output[25] * cospi_12_64 + output[22] * -cospi_20_64; |
| step[25] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[26] * cospi_20_64 + output[21] * cospi_12_64; |
| step[26] = (tran_low_t)fdct_round_shift(temp); |
| step[27] = output[27]; |
| step[28] = output[28]; |
| temp = output[29] * cospi_28_64 + output[18] * -cospi_4_64; |
| step[29] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[30] * cospi_4_64 + output[17] * cospi_28_64; |
| step[30] = (tran_low_t)fdct_round_shift(temp); |
| step[31] = output[31]; |
| |
| range_check(step, 32, 18); |
| |
| // stage 7 |
| output[0] = step[0]; |
| output[1] = step[1]; |
| output[2] = step[2]; |
| output[3] = step[3]; |
| output[4] = step[4]; |
| output[5] = step[5]; |
| output[6] = step[6]; |
| output[7] = step[7]; |
| temp = step[8] * cospi_30_64 + step[15] * cospi_2_64; |
| output[8] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[9] * cospi_14_64 + step[14] * cospi_18_64; |
| output[9] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[10] * cospi_22_64 + step[13] * cospi_10_64; |
| output[10] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[11] * cospi_6_64 + step[12] * cospi_26_64; |
| output[11] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[12] * cospi_6_64 + step[11] * -cospi_26_64; |
| output[12] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[13] * cospi_22_64 + step[10] * -cospi_10_64; |
| output[13] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[14] * cospi_14_64 + step[9] * -cospi_18_64; |
| output[14] = (tran_low_t)fdct_round_shift(temp); |
| temp = step[15] * cospi_30_64 + step[8] * -cospi_2_64; |
| output[15] = (tran_low_t)fdct_round_shift(temp); |
| output[16] = step[16] + step[17]; |
| output[17] = step[16] - step[17]; |
| output[18] = step[19] - step[18]; |
| output[19] = step[19] + step[18]; |
| output[20] = step[20] + step[21]; |
| output[21] = step[20] - step[21]; |
| output[22] = step[23] - step[22]; |
| output[23] = step[23] + step[22]; |
| output[24] = step[24] + step[25]; |
| output[25] = step[24] - step[25]; |
| output[26] = step[27] - step[26]; |
| output[27] = step[27] + step[26]; |
| output[28] = step[28] + step[29]; |
| output[29] = step[28] - step[29]; |
| output[30] = step[31] - step[30]; |
| output[31] = step[31] + step[30]; |
| |
| range_check(output, 32, 18); |
| |
| // stage 8 |
| step[0] = output[0]; |
| step[1] = output[1]; |
| step[2] = output[2]; |
| step[3] = output[3]; |
| step[4] = output[4]; |
| step[5] = output[5]; |
| step[6] = output[6]; |
| step[7] = output[7]; |
| step[8] = output[8]; |
| step[9] = output[9]; |
| step[10] = output[10]; |
| step[11] = output[11]; |
| step[12] = output[12]; |
| step[13] = output[13]; |
| step[14] = output[14]; |
| step[15] = output[15]; |
| temp = output[16] * cospi_31_64 + output[31] * cospi_1_64; |
| step[16] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[17] * cospi_15_64 + output[30] * cospi_17_64; |
| step[17] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[18] * cospi_23_64 + output[29] * cospi_9_64; |
| step[18] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[19] * cospi_7_64 + output[28] * cospi_25_64; |
| step[19] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[20] * cospi_27_64 + output[27] * cospi_5_64; |
| step[20] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[21] * cospi_11_64 + output[26] * cospi_21_64; |
| step[21] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[22] * cospi_19_64 + output[25] * cospi_13_64; |
| step[22] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[23] * cospi_3_64 + output[24] * cospi_29_64; |
| step[23] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[24] * cospi_3_64 + output[23] * -cospi_29_64; |
| step[24] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[25] * cospi_19_64 + output[22] * -cospi_13_64; |
| step[25] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[26] * cospi_11_64 + output[21] * -cospi_21_64; |
| step[26] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[27] * cospi_27_64 + output[20] * -cospi_5_64; |
| step[27] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[28] * cospi_7_64 + output[19] * -cospi_25_64; |
| step[28] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[29] * cospi_23_64 + output[18] * -cospi_9_64; |
| step[29] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[30] * cospi_15_64 + output[17] * -cospi_17_64; |
| step[30] = (tran_low_t)fdct_round_shift(temp); |
| temp = output[31] * cospi_31_64 + output[16] * -cospi_1_64; |
| step[31] = (tran_low_t)fdct_round_shift(temp); |
| |
| range_check(step, 32, 18); |
| |
| // stage 9 |
| output[0] = step[0]; |
| output[1] = step[16]; |
| output[2] = step[8]; |
| output[3] = step[24]; |
| output[4] = step[4]; |
| output[5] = step[20]; |
| output[6] = step[12]; |
| output[7] = step[28]; |
| output[8] = step[2]; |
| output[9] = step[18]; |
| output[10] = step[10]; |
| output[11] = step[26]; |
| output[12] = step[6]; |
| output[13] = step[22]; |
| output[14] = step[14]; |
| output[15] = step[30]; |
| output[16] = step[1]; |
| output[17] = step[17]; |
| output[18] = step[9]; |
| output[19] = step[25]; |
| output[20] = step[5]; |
| output[21] = step[21]; |
| output[22] = step[13]; |
| output[23] = step[29]; |
| output[24] = step[3]; |
| output[25] = step[19]; |
| output[26] = step[11]; |
| output[27] = step[27]; |
| output[28] = step[7]; |
| output[29] = step[23]; |
| output[30] = step[15]; |
| output[31] = step[31]; |
| |
| range_check(output, 32, 18); |
| } |
| #endif |
| |
| #ifndef AV1_DCT_GTEST |
| #if CONFIG_TX64X64 && CONFIG_DAALA_DCT64 |
| static void fdct64(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| od_coeff x[64]; |
| od_coeff y[64]; |
| for (i = 0; i < 64; i++) x[i] = (od_coeff)input[i]; |
| od_bin_fdct64(y, x, 1); |
| for (i = 0; i < 64; i++) output[i] = (tran_low_t)y[i]; |
| } |
| #endif |
| |
| #if CONFIG_DAALA_DCT4 |
| static void fadst4(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| od_coeff x[4]; |
| od_coeff y[4]; |
| for (i = 0; i < 4; i++) x[i] = (od_coeff)input[i]; |
| od_bin_fdst4(y, x, 1); |
| for (i = 0; i < 4; i++) output[i] = (tran_low_t)y[i]; |
| } |
| |
| #else |
| |
| static void fadst4(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t x0, x1, x2, x3; |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; |
| |
| x0 = input[0]; |
| x1 = input[1]; |
| x2 = input[2]; |
| x3 = input[3]; |
| |
| if (!(x0 | x1 | x2 | x3)) { |
| output[0] = output[1] = output[2] = output[3] = 0; |
| return; |
| } |
| |
| s0 = sinpi_1_9 * x0; |
| s1 = sinpi_4_9 * x0; |
| s2 = sinpi_2_9 * x1; |
| s3 = sinpi_1_9 * x1; |
| s4 = sinpi_3_9 * x2; |
| s5 = sinpi_4_9 * x3; |
| s6 = sinpi_2_9 * x3; |
| s7 = x0 + x1 - x3; |
| |
| x0 = s0 + s2 + s5; |
| x1 = sinpi_3_9 * s7; |
| x2 = s1 - s3 + s6; |
| x3 = s4; |
| |
| s0 = x0 + x3; |
| s1 = x1; |
| s2 = x2 - x3; |
| s3 = x2 - x0 + x3; |
| |
| // 1-D transform scaling factor is sqrt(2). |
| output[0] = (tran_low_t)fdct_round_shift(s0); |
| output[1] = (tran_low_t)fdct_round_shift(s1); |
| output[2] = (tran_low_t)fdct_round_shift(s2); |
| output[3] = (tran_low_t)fdct_round_shift(s3); |
| } |
| #endif |
| |
| #if CONFIG_DAALA_DCT8 |
| static void fadst8(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| od_coeff x[8]; |
| od_coeff y[8]; |
| for (i = 0; i < 8; i++) x[i] = (od_coeff)input[i]; |
| od_bin_fdst8(y, x, 1); |
| for (i = 0; i < 8; i++) output[i] = (tran_low_t)y[i]; |
| } |
| |
| #else |
| |
| static void fadst8(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; |
| |
| tran_high_t x0 = input[7]; |
| tran_high_t x1 = input[0]; |
| tran_high_t x2 = input[5]; |
| tran_high_t x3 = input[2]; |
| tran_high_t x4 = input[3]; |
| tran_high_t x5 = input[4]; |
| tran_high_t x6 = input[1]; |
| tran_high_t x7 = input[6]; |
| |
| // stage 1 |
| s0 = cospi_2_64 * x0 + cospi_30_64 * x1; |
| s1 = cospi_30_64 * x0 - cospi_2_64 * x1; |
| s2 = cospi_10_64 * x2 + cospi_22_64 * x3; |
| s3 = cospi_22_64 * x2 - cospi_10_64 * x3; |
| s4 = cospi_18_64 * x4 + cospi_14_64 * x5; |
| s5 = cospi_14_64 * x4 - cospi_18_64 * x5; |
| s6 = cospi_26_64 * x6 + cospi_6_64 * x7; |
| s7 = cospi_6_64 * x6 - cospi_26_64 * x7; |
| |
| x0 = s0 + s4; |
| x1 = s1 + s5; |
| x2 = s2 + s6; |
| x3 = s3 + s7; |
| x4 = fdct_round_shift(s0 - s4); |
| x5 = fdct_round_shift(s1 - s5); |
| x6 = fdct_round_shift(s2 - s6); |
| x7 = fdct_round_shift(s3 - s7); |
| |
| // stage 2 |
| s0 = x0; |
| s1 = x1; |
| s2 = x2; |
| s3 = x3; |
| s4 = cospi_8_64 * x4 + cospi_24_64 * x5; |
| s5 = cospi_24_64 * x4 - cospi_8_64 * x5; |
| s6 = -cospi_24_64 * x6 + cospi_8_64 * x7; |
| s7 = cospi_8_64 * x6 + cospi_24_64 * x7; |
| |
| x0 = fdct_round_shift(s0 + s2); |
| x1 = fdct_round_shift(s1 + s3); |
| x2 = fdct_round_shift(s0 - s2); |
| x3 = fdct_round_shift(s1 - s3); |
| x4 = fdct_round_shift(s4 + s6); |
| x5 = fdct_round_shift(s5 + s7); |
| x6 = fdct_round_shift(s4 - s6); |
| x7 = fdct_round_shift(s5 - s7); |
| |
| // stage 3 |
| s2 = cospi_16_64 * (x2 + x3); |
| s3 = cospi_16_64 * (x2 - x3); |
| s6 = cospi_16_64 * (x6 + x7); |
| s7 = cospi_16_64 * (x6 - x7); |
| |
| x2 = fdct_round_shift(s2); |
| x3 = fdct_round_shift(s3); |
| x6 = fdct_round_shift(s6); |
| x7 = fdct_round_shift(s7); |
| |
| output[0] = (tran_low_t)x0; |
| output[1] = (tran_low_t)-x4; |
| output[2] = (tran_low_t)x6; |
| output[3] = (tran_low_t)-x2; |
| output[4] = (tran_low_t)x3; |
| output[5] = (tran_low_t)-x7; |
| output[6] = (tran_low_t)x5; |
| output[7] = (tran_low_t)-x1; |
| } |
| #endif |
| |
| #if CONFIG_DAALA_DCT16 |
| static void fadst16(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| od_coeff x[16]; |
| od_coeff y[16]; |
| for (i = 0; i < 16; i++) x[i] = (od_coeff)input[i]; |
| od_bin_fdst16(y, x, 1); |
| for (i = 0; i < 16; i++) output[i] = (tran_low_t)y[i]; |
| } |
| |
| #else |
| |
| static void fadst16(const tran_low_t *input, tran_low_t *output) { |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; |
| tran_high_t s9, s10, s11, s12, s13, s14, s15; |
| |
| tran_high_t x0 = input[15]; |
| tran_high_t x1 = input[0]; |
| tran_high_t x2 = input[13]; |
| tran_high_t x3 = input[2]; |
| tran_high_t x4 = input[11]; |
| tran_high_t x5 = input[4]; |
| tran_high_t x6 = input[9]; |
| tran_high_t x7 = input[6]; |
| tran_high_t x8 = input[7]; |
| tran_high_t x9 = input[8]; |
| tran_high_t x10 = input[5]; |
| tran_high_t x11 = input[10]; |
| tran_high_t x12 = input[3]; |
| tran_high_t x13 = input[12]; |
| tran_high_t x14 = input[1]; |
| tran_high_t x15 = input[14]; |
| |
| // stage 1 |
| s0 = x0 * cospi_1_64 + x1 * cospi_31_64; |
| s1 = x0 * cospi_31_64 - x1 * cospi_1_64; |
| s2 = x2 * cospi_5_64 + x3 * cospi_27_64; |
| s3 = x2 * cospi_27_64 - x3 * cospi_5_64; |
| s4 = x4 * cospi_9_64 + x5 * cospi_23_64; |
| s5 = x4 * cospi_23_64 - x5 * cospi_9_64; |
| s6 = x6 * cospi_13_64 + x7 * cospi_19_64; |
| s7 = x6 * cospi_19_64 - x7 * cospi_13_64; |
| s8 = x8 * cospi_17_64 + x9 * cospi_15_64; |
| s9 = x8 * cospi_15_64 - x9 * cospi_17_64; |
| s10 = x10 * cospi_21_64 + x11 * cospi_11_64; |
| s11 = x10 * cospi_11_64 - x11 * cospi_21_64; |
| s12 = x12 * cospi_25_64 + x13 * cospi_7_64; |
| s13 = x12 * cospi_7_64 - x13 * cospi_25_64; |
| s14 = x14 * cospi_29_64 + x15 * cospi_3_64; |
| s15 = x14 * cospi_3_64 - x15 * cospi_29_64; |
| |
| x0 = s0 + s8; |
| x1 = s1 + s9; |
| x2 = s2 + s10; |
| x3 = s3 + s11; |
| x4 = s4 + s12; |
| x5 = s5 + s13; |
| x6 = s6 + s14; |
| x7 = s7 + s15; |
| |
| x8 = fdct_round_shift(s0 - s8); |
| x9 = fdct_round_shift(s1 - s9); |
| x10 = fdct_round_shift(s2 - s10); |
| x11 = fdct_round_shift(s3 - s11); |
| x12 = fdct_round_shift(s4 - s12); |
| x13 = fdct_round_shift(s5 - s13); |
| x14 = fdct_round_shift(s6 - s14); |
| x15 = fdct_round_shift(s7 - s15); |
| |
| // stage 2 |
| s0 = x0; |
| s1 = x1; |
| s2 = x2; |
| s3 = x3; |
| s4 = x4; |
| s5 = x5; |
| s6 = x6; |
| s7 = x7; |
| s8 = x8 * cospi_4_64 + x9 * cospi_28_64; |
| s9 = x8 * cospi_28_64 - x9 * cospi_4_64; |
| s10 = x10 * cospi_20_64 + x11 * cospi_12_64; |
| s11 = x10 * cospi_12_64 - x11 * cospi_20_64; |
| s12 = -x12 * cospi_28_64 + x13 * cospi_4_64; |
| s13 = x12 * cospi_4_64 + x13 * cospi_28_64; |
| s14 = -x14 * cospi_12_64 + x15 * cospi_20_64; |
| s15 = x14 * cospi_20_64 + x15 * cospi_12_64; |
| |
| x0 = s0 + s4; |
| x1 = s1 + s5; |
| x2 = s2 + s6; |
| x3 = s3 + s7; |
| x4 = fdct_round_shift(s0 - s4); |
| x5 = fdct_round_shift(s1 - s5); |
| x6 = fdct_round_shift(s2 - s6); |
| x7 = fdct_round_shift(s3 - s7); |
| |
| x8 = s8 + s12; |
| x9 = s9 + s13; |
| x10 = s10 + s14; |
| x11 = s11 + s15; |
| x12 = fdct_round_shift(s8 - s12); |
| x13 = fdct_round_shift(s9 - s13); |
| x14 = fdct_round_shift(s10 - s14); |
| x15 = fdct_round_shift(s11 - s15); |
| |
| // stage 3 |
| s0 = x0; |
| s1 = x1; |
| s2 = x2; |
| s3 = x3; |
| s4 = x4 * cospi_8_64 + x5 * cospi_24_64; |
| s5 = x4 * cospi_24_64 - x5 * cospi_8_64; |
| s6 = -x6 * cospi_24_64 + x7 * cospi_8_64; |
| s7 = x6 * cospi_8_64 + x7 * cospi_24_64; |
| s8 = x8; |
| s9 = x9; |
| s10 = x10; |
| s11 = x11; |
| s12 = x12 * cospi_8_64 + x13 * cospi_24_64; |
| s13 = x12 * cospi_24_64 - x13 * cospi_8_64; |
| s14 = -x14 * cospi_24_64 + x15 * cospi_8_64; |
| s15 = x14 * cospi_8_64 + x15 * cospi_24_64; |
| |
| x0 = fdct_round_shift(s0 + s2); |
| x1 = fdct_round_shift(s1 + s3); |
| x2 = fdct_round_shift(s0 - s2); |
| x3 = fdct_round_shift(s1 - s3); |
| |
| x4 = fdct_round_shift(s4 + s6); |
| x5 = fdct_round_shift(s5 + s7); |
| x6 = fdct_round_shift(s4 - s6); |
| x7 = fdct_round_shift(s5 - s7); |
| |
| x8 = fdct_round_shift(s8 + s10); |
| x9 = fdct_round_shift(s9 + s11); |
| x10 = fdct_round_shift(s8 - s10); |
| x11 = fdct_round_shift(s9 - s11); |
| |
| x12 = fdct_round_shift(s12 + s14); |
| x13 = fdct_round_shift(s13 + s15); |
| x14 = fdct_round_shift(s12 - s14); |
| x15 = fdct_round_shift(s13 - s15); |
| |
| // stage 4 |
| s2 = (-cospi_16_64) * (x2 + x3); |
| s3 = cospi_16_64 * (x2 - x3); |
| s6 = cospi_16_64 * (x6 + x7); |
| s7 = cospi_16_64 * (-x6 + x7); |
| s10 = cospi_16_64 * (x10 + x11); |
| s11 = cospi_16_64 * (-x10 + x11); |
| s14 = (-cospi_16_64) * (x14 + x15); |
| s15 = cospi_16_64 * (x14 - x15); |
| |
| x2 = fdct_round_shift(s2); |
| x3 = fdct_round_shift(s3); |
| x6 = fdct_round_shift(s6); |
| x7 = fdct_round_shift(s7); |
| x10 = fdct_round_shift(s10); |
| x11 = fdct_round_shift(s11); |
| x14 = fdct_round_shift(s14); |
| x15 = fdct_round_shift(s15); |
| |
| output[0] = (tran_low_t)x0; |
| output[1] = (tran_low_t)-x8; |
| output[2] = (tran_low_t)x12; |
| output[3] = (tran_low_t)-x4; |
| output[4] = (tran_low_t)x6; |
| output[5] = (tran_low_t)x14; |
| output[6] = (tran_low_t)x10; |
| output[7] = (tran_low_t)x2; |
| output[8] = (tran_low_t)x3; |
| output[9] = (tran_low_t)x11; |
| output[10] = (tran_low_t)x15; |
| output[11] = (tran_low_t)x7; |
| output[12] = (tran_low_t)x5; |
| output[13] = (tran_low_t)-x13; |
| output[14] = (tran_low_t)x9; |
| output[15] = (tran_low_t)-x1; |
| } |
| #endif |
| |
| // For use in lieu of ADST |
| #if CONFIG_DAALA_DCT32 |
| static void fhalfright32(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| tran_low_t inputhalf[16]; |
| // No scaling within; Daala transforms are all orthonormal |
| for (i = 0; i < 16; ++i) { |
| output[16 + i] = input[i]; |
| } |
| for (i = 0; i < 16; ++i) { |
| inputhalf[i] = input[i + 16]; |
| } |
| fdct16(inputhalf, output); |
| } |
| #else |
| static void fhalfright32(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| tran_low_t inputhalf[16]; |
| for (i = 0; i < 16; ++i) { |
| output[16 + i] = input[i] * 4; |
| } |
| // Multiply input by sqrt(2) |
| for (i = 0; i < 16; ++i) { |
| inputhalf[i] = (tran_low_t)fdct_round_shift(input[i + 16] * Sqrt2); |
| } |
| fdct16(inputhalf, output); |
| // Note overall scaling factor is 4 times orthogonal |
| } |
| #endif |
| |
| #if CONFIG_MRC_TX |
| static void get_masked_residual32(const int16_t **input, int *input_stride, |
| const uint8_t *pred, int pred_stride, |
| int16_t *masked_input, int *valid_mask, |
| int is_inter) { |
| int mrc_mask[32 * 32]; |
| int n_masked_vals = |
| get_mrc_mask(pred, pred_stride, mrc_mask, 32, 32, 32, is_inter); |
| // Do not use MRC_DCT if mask is invalid. DCT_DCT will be used instead. |
| if (!is_valid_mrc_mask(n_masked_vals, 32, 32)) { |
| *valid_mask = 0; |
| return; |
| } |
| int32_t sum = 0; |
| int16_t avg; |
| // Get the masked average of the prediction |
| for (int i = 0; i < 32; ++i) { |
| for (int j = 0; j < 32; ++j) { |
| sum += mrc_mask[i * 32 + j] * (*input)[i * (*input_stride) + j]; |
| } |
| } |
| avg = sum / n_masked_vals; |
| // Replace all of the unmasked pixels in the prediction with the average |
| // of the masked pixels |
| for (int i = 0; i < 32; ++i) { |
| for (int j = 0; j < 32; ++j) |
| masked_input[i * 32 + j] = |
| (mrc_mask[i * 32 + j]) ? (*input)[i * (*input_stride) + j] : avg; |
| } |
| *input = masked_input; |
| *input_stride = 32; |
| *valid_mask = 1; |
| } |
| #endif // CONFIG_MRC_TX |
| |
| #if CONFIG_LGT |
| static void flgt4(const tran_low_t *input, tran_low_t *output, |
| const tran_high_t *lgtmtx) { |
| if (!lgtmtx) assert(0); |
| |
| // evaluate s[j] = sum of all lgtmtx[j][i]*input[i] over i=1,...,4 |
| tran_high_t s[4] = { 0 }; |
| for (int i = 0; i < 4; ++i) |
| for (int j = 0; j < 4; ++j) s[j] += lgtmtx[j * 4 + i] * input[i]; |
| |
| for (int i = 0; i < 4; ++i) output[i] = (tran_low_t)fdct_round_shift(s[i]); |
| } |
| |
| static void flgt8(const tran_low_t *input, tran_low_t *output, |
| const tran_high_t *lgtmtx) { |
| if (!lgtmtx) assert(0); |
| |
| // evaluate s[j] = sum of all lgtmtx[j][i]*input[i] over i=1,...,8 |
| tran_high_t s[8] = { 0 }; |
| for (int i = 0; i < 8; ++i) |
| for (int j = 0; j < 8; ++j) s[j] += lgtmtx[j * 8 + i] * input[i]; |
| |
| for (int i = 0; i < 8; ++i) output[i] = (tran_low_t)fdct_round_shift(s[i]); |
| } |
| #endif // CONFIG_LGT |
| |
| #if CONFIG_EXT_TX |
| // TODO(sarahparker) these functions will be removed once the highbitdepth |
| // codepath works properly for rectangular transforms. They have almost |
| // identical versions in av1_fwd_txfm1d.c, but those are currently only |
| // being used for square transforms. |
| static void fidtx4(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 4; ++i) { |
| #if CONFIG_DAALA_DCT4 |
| output[i] = input[i]; |
| #else |
| output[i] = (tran_low_t)fdct_round_shift(input[i] * Sqrt2); |
| #endif |
| } |
| } |
| |
| static void fidtx8(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 8; ++i) { |
| #if CONFIG_DAALA_DCT8 |
| output[i] = input[i]; |
| #else |
| output[i] = input[i] * 2; |
| #endif |
| } |
| } |
| |
| static void fidtx16(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 16; ++i) { |
| #if CONFIG_DAALA_DCT16 |
| output[i] = input[i]; |
| #else |
| output[i] = (tran_low_t)fdct_round_shift(input[i] * 2 * Sqrt2); |
| #endif |
| } |
| } |
| |
| static void fidtx32(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 32; ++i) { |
| #if CONFIG_DAALA_DCT32 |
| output[i] = input[i]; |
| #else |
| output[i] = input[i] * 4; |
| #endif |
| } |
| } |
| |
| static void copy_block(const int16_t *src, int src_stride, int l, int w, |
| int16_t *dest, int dest_stride) { |
| int i; |
| for (i = 0; i < l; ++i) { |
| memcpy(dest + dest_stride * i, src + src_stride * i, w * sizeof(int16_t)); |
| } |
| } |
| |
| static void fliplr(int16_t *dest, int stride, int l, int w) { |
| int i, j; |
| for (i = 0; i < l; ++i) { |
| for (j = 0; j < w / 2; ++j) { |
| const int16_t tmp = dest[i * stride + j]; |
| dest[i * stride + j] = dest[i * stride + w - 1 - j]; |
| dest[i * stride + w - 1 - j] = tmp; |
| } |
| } |
| } |
| |
| static void flipud(int16_t *dest, int stride, int l, int w) { |
| int i, j; |
| for (j = 0; j < w; ++j) { |
| for (i = 0; i < l / 2; ++i) { |
| const int16_t tmp = dest[i * stride + j]; |
| dest[i * stride + j] = dest[(l - 1 - i) * stride + j]; |
| dest[(l - 1 - i) * stride + j] = tmp; |
| } |
| } |
| } |
| |
| static void fliplrud(int16_t *dest, int stride, int l, int w) { |
| int i, j; |
| for (i = 0; i < l / 2; ++i) { |
| for (j = 0; j < w; ++j) { |
| const int16_t tmp = dest[i * stride + j]; |
| dest[i * stride + j] = dest[(l - 1 - i) * stride + w - 1 - j]; |
| dest[(l - 1 - i) * stride + w - 1 - j] = tmp; |
| } |
| } |
| } |
| |
| static void copy_fliplr(const int16_t *src, int src_stride, int l, int w, |
| int16_t *dest, int dest_stride) { |
| copy_block(src, src_stride, l, w, dest, dest_stride); |
| fliplr(dest, dest_stride, l, w); |
| } |
| |
| static void copy_flipud(const int16_t *src, int src_stride, int l, int w, |
| int16_t *dest, int dest_stride) { |
| copy_block(src, src_stride, l, w, dest, dest_stride); |
| flipud(dest, dest_stride, l, w); |
| } |
| |
| static void copy_fliplrud(const int16_t *src, int src_stride, int l, int w, |
| int16_t *dest, int dest_stride) { |
| copy_block(src, src_stride, l, w, dest, dest_stride); |
| fliplrud(dest, dest_stride, l, w); |
| } |
| |
| static void maybe_flip_input(const int16_t **src, int *src_stride, int l, int w, |
| int16_t *buff, int tx_type) { |
| switch (tx_type) { |
| #if CONFIG_MRC_TX |
| case MRC_DCT: |
| #endif // CONFIG_MRC_TX |
| case DCT_DCT: |
| case ADST_DCT: |
| case DCT_ADST: |
| case ADST_ADST: |
| case IDTX: |
| case V_DCT: |
| case H_DCT: |
| case V_ADST: |
| case H_ADST: break; |
| case FLIPADST_DCT: |
| case FLIPADST_ADST: |
| case V_FLIPADST: |
| copy_flipud(*src, *src_stride, l, w, buff, w); |
| *src = buff; |
| *src_stride = w; |
| break; |
| case DCT_FLIPADST: |
| case ADST_FLIPADST: |
| case H_FLIPADST: |
| copy_fliplr(*src, *src_stride, l, w, buff, w); |
| *src = buff; |
| *src_stride = w; |
| break; |
| case FLIPADST_FLIPADST: |
| copy_fliplrud(*src, *src_stride, l, w, buff, w); |
| *src = buff; |
| *src_stride = w; |
| break; |
| default: assert(0); break; |
| } |
| } |
| #endif // CONFIG_EXT_TX |
| |
| void av1_fht4x4_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| #if !CONFIG_DAALA_DCT4 |
| if (tx_type == DCT_DCT) { |
| aom_fdct4x4_c(input, output, stride); |
| return; |
| } |
| #endif |
| { |
| static const transform_2d FHT[] = { |
| { fdct4, fdct4 }, // DCT_DCT |
| { fadst4, fdct4 }, // ADST_DCT |
| { fdct4, fadst4 }, // DCT_ADST |
| { fadst4, fadst4 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst4, fdct4 }, // FLIPADST_DCT |
| { fdct4, fadst4 }, // DCT_FLIPADST |
| { fadst4, fadst4 }, // FLIPADST_FLIPADST |
| { fadst4, fadst4 }, // ADST_FLIPADST |
| { fadst4, fadst4 }, // FLIPADST_ADST |
| { fidtx4, fidtx4 }, // IDTX |
| { fdct4, fidtx4 }, // V_DCT |
| { fidtx4, fdct4 }, // H_DCT |
| { fadst4, fidtx4 }, // V_ADST |
| { fidtx4, fadst4 }, // H_ADST |
| { fadst4, fidtx4 }, // V_FLIPADST |
| { fidtx4, fadst4 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[4 * 4]; |
| int i, j; |
| tran_low_t temp_in[4], temp_out[4]; |
| |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[4 * 4]; |
| maybe_flip_input(&input, &stride, 4, 4, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| // Choose LGT adaptive to the prediction. We may apply different LGTs for |
| // different rows/columns, indicated by the pointers to 2D arrays |
| const tran_high_t *lgtmtx_col[1]; |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); |
| int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Columns |
| for (i = 0; i < 4; ++i) { |
| /* A C99-safe upshift by 4 for both Daala and VPx TX. */ |
| for (j = 0; j < 4; ++j) temp_in[j] = input[j * stride + i] * 16; |
| #if !CONFIG_DAALA_DCT4 |
| if (i == 0 && temp_in[0]) temp_in[0] += 1; |
| #endif |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt4(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 4; ++j) out[j * 4 + i] = temp_out[j]; |
| } |
| |
| // Rows |
| for (i = 0; i < 4; ++i) { |
| for (j = 0; j < 4; ++j) temp_in[j] = out[j + i * 4]; |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt4(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| #if CONFIG_DAALA_DCT4 |
| /* Daala TX has orthonormal scaling; shift down by only 1 to achieve |
| the usual VPx coefficient left-shift of 3. */ |
| for (j = 0; j < 4; ++j) output[j + i * 4] = temp_out[j] >> 1; |
| #else |
| for (j = 0; j < 4; ++j) output[j + i * 4] = (temp_out[j] + 1) >> 2; |
| #endif |
| } |
| } |
| } |
| |
| void av1_fht4x8_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct8, fdct4 }, // DCT_DCT |
| { fadst8, fdct4 }, // ADST_DCT |
| { fdct8, fadst4 }, // DCT_ADST |
| { fadst8, fadst4 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst8, fdct4 }, // FLIPADST_DCT |
| { fdct8, fadst4 }, // DCT_FLIPADST |
| { fadst8, fadst4 }, // FLIPADST_FLIPADST |
| { fadst8, fadst4 }, // ADST_FLIPADST |
| { fadst8, fadst4 }, // FLIPADST_ADST |
| { fidtx8, fidtx4 }, // IDTX |
| { fdct8, fidtx4 }, // V_DCT |
| { fidtx8, fdct4 }, // H_DCT |
| { fadst8, fidtx4 }, // V_ADST |
| { fidtx8, fadst4 }, // H_ADST |
| { fadst8, fidtx4 }, // V_FLIPADST |
| { fidtx8, fadst4 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 4; |
| const int n2 = 8; |
| tran_low_t out[8 * 4]; |
| tran_low_t temp_in[8], temp_out[8]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[8 * 4]; |
| maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); |
| int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Rows |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2); |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt4(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n; ++j) out[j * n2 + i] = temp_out[j]; |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt8(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) |
| output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht8x4_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct4, fdct8 }, // DCT_DCT |
| { fadst4, fdct8 }, // ADST_DCT |
| { fdct4, fadst8 }, // DCT_ADST |
| { fadst4, fadst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst4, fdct8 }, // FLIPADST_DCT |
| { fdct4, fadst8 }, // DCT_FLIPADST |
| { fadst4, fadst8 }, // FLIPADST_FLIPADST |
| { fadst4, fadst8 }, // ADST_FLIPADST |
| { fadst4, fadst8 }, // FLIPADST_ADST |
| { fidtx4, fidtx8 }, // IDTX |
| { fdct4, fidtx8 }, // V_DCT |
| { fidtx4, fdct8 }, // H_DCT |
| { fadst4, fidtx8 }, // V_ADST |
| { fidtx4, fadst8 }, // H_ADST |
| { fadst4, fidtx8 }, // V_FLIPADST |
| { fidtx4, fadst8 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 4; |
| const int n2 = 8; |
| tran_low_t out[8 * 4]; |
| tran_low_t temp_in[8], temp_out[8]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[8 * 4]; |
| maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); |
| int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Columns |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2); |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt4(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n; ++j) out[j * n2 + i] = temp_out[j]; |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt8(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) |
| output[j + i * n2] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht4x16_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct16, fdct4 }, // DCT_DCT |
| { fadst16, fdct4 }, // ADST_DCT |
| { fdct16, fadst4 }, // DCT_ADST |
| { fadst16, fadst4 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst16, fdct4 }, // FLIPADST_DCT |
| { fdct16, fadst4 }, // DCT_FLIPADST |
| { fadst16, fadst4 }, // FLIPADST_FLIPADST |
| { fadst16, fadst4 }, // ADST_FLIPADST |
| { fadst16, fadst4 }, // FLIPADST_ADST |
| { fidtx16, fidtx4 }, // IDTX |
| { fdct16, fidtx4 }, // V_DCT |
| { fidtx16, fdct4 }, // H_DCT |
| { fadst16, fidtx4 }, // V_ADST |
| { fidtx16, fadst4 }, // H_ADST |
| { fadst16, fidtx4 }, // V_FLIPADST |
| { fidtx16, fadst4 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 4; |
| const int n4 = 16; |
| tran_low_t out[16 * 4]; |
| tran_low_t temp_in[16], temp_out[16]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[16 * 4]; |
| maybe_flip_input(&input, &stride, n4, n, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_row = get_lgt4(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Rows |
| for (i = 0; i < n4; ++i) { |
| for (j = 0; j < n; ++j) temp_in[j] = input[i * stride + j] * 4; |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt4(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n4; ++j) |
| output[i + j * n] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht16x4_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct4, fdct16 }, // DCT_DCT |
| { fadst4, fdct16 }, // ADST_DCT |
| { fdct4, fadst16 }, // DCT_ADST |
| { fadst4, fadst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst4, fdct16 }, // FLIPADST_DCT |
| { fdct4, fadst16 }, // DCT_FLIPADST |
| { fadst4, fadst16 }, // FLIPADST_FLIPADST |
| { fadst4, fadst16 }, // ADST_FLIPADST |
| { fadst4, fadst16 }, // FLIPADST_ADST |
| { fidtx4, fidtx16 }, // IDTX |
| { fdct4, fidtx16 }, // V_DCT |
| { fidtx4, fdct16 }, // H_DCT |
| { fadst4, fidtx16 }, // V_ADST |
| { fidtx4, fadst16 }, // H_ADST |
| { fadst4, fidtx16 }, // V_FLIPADST |
| { fidtx4, fadst16 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 4; |
| const int n4 = 16; |
| tran_low_t out[16 * 4]; |
| tran_low_t temp_in[16], temp_out[16]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[16 * 4]; |
| maybe_flip_input(&input, &stride, n, n4, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| int use_lgt_col = get_lgt4(txfm_param, 1, lgtmtx_col); |
| #endif |
| |
| // Columns |
| for (i = 0; i < n4; ++i) { |
| for (j = 0; j < n; ++j) temp_in[j] = input[j * stride + i] * 4; |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt4(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n4; ++j) |
| output[j + i * n4] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht8x16_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct16, fdct8 }, // DCT_DCT |
| { fadst16, fdct8 }, // ADST_DCT |
| { fdct16, fadst8 }, // DCT_ADST |
| { fadst16, fadst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst16, fdct8 }, // FLIPADST_DCT |
| { fdct16, fadst8 }, // DCT_FLIPADST |
| { fadst16, fadst8 }, // FLIPADST_FLIPADST |
| { fadst16, fadst8 }, // ADST_FLIPADST |
| { fadst16, fadst8 }, // FLIPADST_ADST |
| { fidtx16, fidtx8 }, // IDTX |
| { fdct16, fidtx8 }, // V_DCT |
| { fidtx16, fdct8 }, // H_DCT |
| { fadst16, fidtx8 }, // V_ADST |
| { fidtx16, fadst8 }, // H_ADST |
| { fadst16, fidtx8 }, // V_FLIPADST |
| { fidtx16, fadst8 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 8; |
| const int n2 = 16; |
| tran_low_t out[16 * 8]; |
| tran_low_t temp_in[16], temp_out[16]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[16 * 8]; |
| maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Rows |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2); |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt8(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n; ++j) |
| out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) output[i + j * n] = temp_out[j]; |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht16x8_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct8, fdct16 }, // DCT_DCT |
| { fadst8, fdct16 }, // ADST_DCT |
| { fdct8, fadst16 }, // DCT_ADST |
| { fadst8, fadst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst8, fdct16 }, // FLIPADST_DCT |
| { fdct8, fadst16 }, // DCT_FLIPADST |
| { fadst8, fadst16 }, // FLIPADST_FLIPADST |
| { fadst8, fadst16 }, // ADST_FLIPADST |
| { fadst8, fadst16 }, // FLIPADST_ADST |
| { fidtx8, fidtx16 }, // IDTX |
| { fdct8, fidtx16 }, // V_DCT |
| { fidtx8, fdct16 }, // H_DCT |
| { fadst8, fidtx16 }, // V_ADST |
| { fidtx8, fadst16 }, // H_ADST |
| { fadst8, fidtx16 }, // V_FLIPADST |
| { fidtx8, fadst16 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 8; |
| const int n2 = 16; |
| tran_low_t out[16 * 8]; |
| tran_low_t temp_in[16], temp_out[16]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[16 * 8]; |
| maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); |
| #endif |
| |
| // Columns |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2); |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt8(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n; ++j) |
| out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) output[j + i * n2] = temp_out[j]; |
| } |
| // Note: overall scale factor of transform is 8 times unitary |
| } |
| |
| void av1_fht8x32_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct32, fdct8 }, // DCT_DCT |
| { fhalfright32, fdct8 }, // ADST_DCT |
| { fdct32, fadst8 }, // DCT_ADST |
| { fhalfright32, fadst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fhalfright32, fdct8 }, // FLIPADST_DCT |
| { fdct32, fadst8 }, // DCT_FLIPADST |
| { fhalfright32, fadst8 }, // FLIPADST_FLIPADST |
| { fhalfright32, fadst8 }, // ADST_FLIPADST |
| { fhalfright32, fadst8 }, // FLIPADST_ADST |
| { fidtx32, fidtx8 }, // IDTX |
| { fdct32, fidtx8 }, // V_DCT |
| { fidtx32, fdct8 }, // H_DCT |
| { fhalfright32, fidtx8 }, // V_ADST |
| { fidtx32, fadst8 }, // H_ADST |
| { fhalfright32, fidtx8 }, // V_FLIPADST |
| { fidtx32, fadst8 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 8; |
| const int n4 = 32; |
| tran_low_t out[32 * 8]; |
| tran_low_t temp_in[32], temp_out[32]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 8]; |
| maybe_flip_input(&input, &stride, n4, n, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Rows |
| for (i = 0; i < n4; ++i) { |
| for (j = 0; j < n; ++j) temp_in[j] = input[i * stride + j] * 4; |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt8(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n4; ++j) |
| output[i + j * n] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| } |
| // Note: overall scale factor of transform is 4 times unitary |
| } |
| |
| void av1_fht32x8_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct8, fdct32 }, // DCT_DCT |
| { fadst8, fdct32 }, // ADST_DCT |
| { fdct8, fhalfright32 }, // DCT_ADST |
| { fadst8, fhalfright32 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst8, fdct32 }, // FLIPADST_DCT |
| { fdct8, fhalfright32 }, // DCT_FLIPADST |
| { fadst8, fhalfright32 }, // FLIPADST_FLIPADST |
| { fadst8, fhalfright32 }, // ADST_FLIPADST |
| { fadst8, fhalfright32 }, // FLIPADST_ADST |
| { fidtx8, fidtx32 }, // IDTX |
| { fdct8, fidtx32 }, // V_DCT |
| { fidtx8, fdct32 }, // H_DCT |
| { fadst8, fidtx32 }, // V_ADST |
| { fidtx8, fhalfright32 }, // H_ADST |
| { fadst8, fidtx32 }, // V_FLIPADST |
| { fidtx8, fhalfright32 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 8; |
| const int n4 = 32; |
| tran_low_t out[32 * 8]; |
| tran_low_t temp_in[32], temp_out[32]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 8]; |
| maybe_flip_input(&input, &stride, n, n4, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); |
| #endif |
| |
| // Columns |
| for (i = 0; i < n4; ++i) { |
| for (j = 0; j < n; ++j) temp_in[j] = input[j * stride + i] * 4; |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt8(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n; ++j) out[j * n4 + i] = temp_out[j]; |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n4; ++j) temp_in[j] = out[j + i * n4]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n4; ++j) |
| output[j + i * n4] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| } |
| // Note: overall scale factor of transform is 4 times unitary |
| } |
| |
| void av1_fht16x32_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct32, fdct16 }, // DCT_DCT |
| { fhalfright32, fdct16 }, // ADST_DCT |
| { fdct32, fadst16 }, // DCT_ADST |
| { fhalfright32, fadst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fhalfright32, fdct16 }, // FLIPADST_DCT |
| { fdct32, fadst16 }, // DCT_FLIPADST |
| { fhalfright32, fadst16 }, // FLIPADST_FLIPADST |
| { fhalfright32, fadst16 }, // ADST_FLIPADST |
| { fhalfright32, fadst16 }, // FLIPADST_ADST |
| { fidtx32, fidtx16 }, // IDTX |
| { fdct32, fidtx16 }, // V_DCT |
| { fidtx32, fdct16 }, // H_DCT |
| { fhalfright32, fidtx16 }, // V_ADST |
| { fidtx32, fadst16 }, // H_ADST |
| { fhalfright32, fidtx16 }, // V_FLIPADST |
| { fidtx32, fadst16 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 16; |
| const int n2 = 32; |
| tran_low_t out[32 * 16]; |
| tran_low_t temp_in[32], temp_out[32]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 16]; |
| maybe_flip_input(&input, &stride, n2, n, flipped_input, tx_type); |
| #endif |
| |
| // Rows |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[i * stride + j] * 4 * Sqrt2); |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n; ++j) |
| out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4); |
| } |
| |
| // Columns |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) output[i + j * n] = temp_out[j]; |
| } |
| // Note: overall scale factor of transform is 4 times unitary |
| } |
| |
| void av1_fht32x16_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct16, fdct32 }, // DCT_DCT |
| { fadst16, fdct32 }, // ADST_DCT |
| { fdct16, fhalfright32 }, // DCT_ADST |
| { fadst16, fhalfright32 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst16, fdct32 }, // FLIPADST_DCT |
| { fdct16, fhalfright32 }, // DCT_FLIPADST |
| { fadst16, fhalfright32 }, // FLIPADST_FLIPADST |
| { fadst16, fhalfright32 }, // ADST_FLIPADST |
| { fadst16, fhalfright32 }, // FLIPADST_ADST |
| { fidtx16, fidtx32 }, // IDTX |
| { fdct16, fidtx32 }, // V_DCT |
| { fidtx16, fdct32 }, // H_DCT |
| { fadst16, fidtx32 }, // V_ADST |
| { fidtx16, fhalfright32 }, // H_ADST |
| { fadst16, fidtx32 }, // V_FLIPADST |
| { fidtx16, fhalfright32 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| const int n = 16; |
| const int n2 = 32; |
| tran_low_t out[32 * 16]; |
| tran_low_t temp_in[32], temp_out[32]; |
| int i, j; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 16]; |
| maybe_flip_input(&input, &stride, n, n2, flipped_input, tx_type); |
| #endif |
| |
| // Columns |
| for (i = 0; i < n2; ++i) { |
| for (j = 0; j < n; ++j) |
| temp_in[j] = |
| (tran_low_t)fdct_round_shift(input[j * stride + i] * 4 * Sqrt2); |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < n; ++j) |
| out[j * n2 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4); |
| } |
| |
| // Rows |
| for (i = 0; i < n; ++i) { |
| for (j = 0; j < n2; ++j) temp_in[j] = out[j + i * n2]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < n2; ++j) output[j + i * n2] = temp_out[j]; |
| } |
| // Note: overall scale factor of transform is 4 times unitary |
| } |
| |
| void av1_fdct8x8_quant_c(const int16_t *input, int stride, |
| tran_low_t *coeff_ptr, intptr_t n_coeffs, |
| int skip_block, const int16_t *zbin_ptr, |
| const int16_t *round_ptr, const int16_t *quant_ptr, |
| const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, |
| tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, |
| uint16_t *eob_ptr, const int16_t *scan, |
| const int16_t *iscan, const qm_val_t *qm_ptr, |
| const qm_val_t *iqm_ptr) { |
| int eob = -1; |
| |
| int i, j; |
| tran_low_t intermediate[64]; |
| |
| // Transform columns |
| { |
| tran_low_t *output = intermediate; |
| tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 |
| tran_high_t t0, t1, t2, t3; // needs32 |
| tran_high_t x0, x1, x2, x3; // canbe16 |
| |
| for (i = 0; i < 8; i++) { |
| // stage 1 |
| s0 = (input[0 * stride] + input[7 * stride]) * 4; |
| s1 = (input[1 * stride] + input[6 * stride]) * 4; |
| s2 = (input[2 * stride] + input[5 * stride]) * 4; |
| s3 = (input[3 * stride] + input[4 * stride]) * 4; |
| s4 = (input[3 * stride] - input[4 * stride]) * 4; |
| s5 = (input[2 * stride] - input[5 * stride]) * 4; |
| s6 = (input[1 * stride] - input[6 * stride]) * 4; |
| s7 = (input[0 * stride] - input[7 * stride]) * 4; |
| |
| // fdct4(step, step); |
| x0 = s0 + s3; |
| x1 = s1 + s2; |
| x2 = s1 - s2; |
| x3 = s0 - s3; |
| t0 = (x0 + x1) * cospi_16_64; |
| t1 = (x0 - x1) * cospi_16_64; |
| t2 = x2 * cospi_24_64 + x3 * cospi_8_64; |
| t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; |
| output[0 * 8] = (tran_low_t)fdct_round_shift(t0); |
| output[2 * 8] = (tran_low_t)fdct_round_shift(t2); |
| output[4 * 8] = (tran_low_t)fdct_round_shift(t1); |
| output[6 * 8] = (tran_low_t)fdct_round_shift(t3); |
| |
| // stage 2 |
| t0 = (s6 - s5) * cospi_16_64; |
| t1 = (s6 + s5) * cospi_16_64; |
| t2 = fdct_round_shift(t0); |
| t3 = fdct_round_shift(t1); |
| |
| // stage 3 |
| x0 = s4 + t2; |
| x1 = s4 - t2; |
| x2 = s7 - t3; |
| x3 = s7 + t3; |
| |
| // stage 4 |
| t0 = x0 * cospi_28_64 + x3 * cospi_4_64; |
| t1 = x1 * cospi_12_64 + x2 * cospi_20_64; |
| t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; |
| t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; |
| output[1 * 8] = (tran_low_t)fdct_round_shift(t0); |
| output[3 * 8] = (tran_low_t)fdct_round_shift(t2); |
| output[5 * 8] = (tran_low_t)fdct_round_shift(t1); |
| output[7 * 8] = (tran_low_t)fdct_round_shift(t3); |
| input++; |
| output++; |
| } |
| } |
| |
| // Rows |
| for (i = 0; i < 8; ++i) { |
| fdct8(&intermediate[i * 8], &coeff_ptr[i * 8]); |
| for (j = 0; j < 8; ++j) coeff_ptr[j + i * 8] /= 2; |
| } |
| |
| // TODO(jingning) Decide the need of these arguments after the |
| // quantization process is completed. |
| (void)zbin_ptr; |
| (void)quant_shift_ptr; |
| (void)iscan; |
| |
| memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); |
| memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); |
| |
| if (!skip_block) { |
| // Quantization pass: All coefficients with index >= zero_flag are |
| // skippable. Note: zero_flag can be zero. |
| for (i = 0; i < n_coeffs; i++) { |
| const int rc = scan[i]; |
| const int coeff = coeff_ptr[rc]; |
| const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS); |
| const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS); |
| const int dequant = |
| (dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >> |
| AOM_QM_BITS; |
| const int coeff_sign = (coeff >> 31); |
| const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; |
| |
| int64_t tmp = clamp(abs_coeff + round_ptr[rc != 0], INT16_MIN, INT16_MAX); |
| int tmp32; |
| tmp32 = (int)((tmp * quant_ptr[rc != 0] * wt) >> (16 + AOM_QM_BITS)); |
| qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign; |
| dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant; |
| |
| if (tmp32) eob = i; |
| } |
| } |
| *eob_ptr = eob + 1; |
| } |
| |
| void av1_fht8x8_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| #if !CONFIG_DAALA_DCT8 |
| if (tx_type == DCT_DCT) { |
| aom_fdct8x8_c(input, output, stride); |
| return; |
| } |
| #endif |
| { |
| static const transform_2d FHT[] = { |
| { fdct8, fdct8 }, // DCT_DCT |
| { fadst8, fdct8 }, // ADST_DCT |
| { fdct8, fadst8 }, // DCT_ADST |
| { fadst8, fadst8 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst8, fdct8 }, // FLIPADST_DCT |
| { fdct8, fadst8 }, // DCT_FLIPADST |
| { fadst8, fadst8 }, // FLIPADST_FLIPADST |
| { fadst8, fadst8 }, // ADST_FLIPADST |
| { fadst8, fadst8 }, // FLIPADST_ADST |
| { fidtx8, fidtx8 }, // IDTX |
| { fdct8, fidtx8 }, // V_DCT |
| { fidtx8, fdct8 }, // H_DCT |
| { fadst8, fidtx8 }, // V_ADST |
| { fidtx8, fadst8 }, // H_ADST |
| { fadst8, fidtx8 }, // V_FLIPADST |
| { fidtx8, fadst8 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[64]; |
| int i, j; |
| tran_low_t temp_in[8], temp_out[8]; |
| |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[8 * 8]; |
| maybe_flip_input(&input, &stride, 8, 8, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_LGT |
| const tran_high_t *lgtmtx_col[1]; |
| const tran_high_t *lgtmtx_row[1]; |
| int use_lgt_col = get_lgt8(txfm_param, 1, lgtmtx_col); |
| int use_lgt_row = get_lgt8(txfm_param, 0, lgtmtx_row); |
| #endif |
| |
| // Columns |
| for (i = 0; i < 8; ++i) { |
| #if CONFIG_DAALA_DCT8 |
| for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 16; |
| #else |
| for (j = 0; j < 8; ++j) temp_in[j] = input[j * stride + i] * 4; |
| #endif |
| #if CONFIG_LGT |
| if (use_lgt_col) |
| flgt8(temp_in, temp_out, lgtmtx_col[0]); |
| else |
| #endif |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 8; ++j) out[j * 8 + i] = temp_out[j]; |
| } |
| |
| // Rows |
| for (i = 0; i < 8; ++i) { |
| for (j = 0; j < 8; ++j) temp_in[j] = out[j + i * 8]; |
| #if CONFIG_LGT |
| if (use_lgt_row) |
| flgt8(temp_in, temp_out, lgtmtx_row[0]); |
| else |
| #endif |
| ht.rows(temp_in, temp_out); |
| #if CONFIG_DAALA_DCT8 |
| for (j = 0; j < 8; ++j) |
| output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| #else |
| for (j = 0; j < 8; ++j) |
| output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| #endif |
| } |
| } |
| } |
| |
| /* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per |
| pixel. */ |
| void av1_fwht4x4_c(const int16_t *input, tran_low_t *output, int stride) { |
| int i; |
| tran_high_t a1, b1, c1, d1, e1; |
| const int16_t *ip_pass0 = input; |
| const tran_low_t *ip = NULL; |
| tran_low_t *op = output; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ip_pass0[0 * stride]; |
| b1 = ip_pass0[1 * stride]; |
| c1 = ip_pass0[2 * stride]; |
| d1 = ip_pass0[3 * stride]; |
| |
| a1 += b1; |
| d1 = d1 - c1; |
| e1 = (a1 - d1) >> 1; |
| b1 = e1 - b1; |
| c1 = e1 - c1; |
| a1 -= c1; |
| d1 += b1; |
| op[0] = (tran_low_t)a1; |
| op[4] = (tran_low_t)c1; |
| op[8] = (tran_low_t)d1; |
| op[12] = (tran_low_t)b1; |
| |
| ip_pass0++; |
| op++; |
| } |
| ip = output; |
| op = output; |
| |
| for (i = 0; i < 4; i++) { |
| a1 = ip[0]; |
| b1 = ip[1]; |
| c1 = ip[2]; |
| d1 = ip[3]; |
| |
| a1 += b1; |
| d1 -= c1; |
| e1 = (a1 - d1) >> 1; |
| b1 = e1 - b1; |
| c1 = e1 - c1; |
| a1 -= c1; |
| d1 += b1; |
| op[0] = (tran_low_t)(a1 * UNIT_QUANT_FACTOR); |
| op[1] = (tran_low_t)(c1 * UNIT_QUANT_FACTOR); |
| op[2] = (tran_low_t)(d1 * UNIT_QUANT_FACTOR); |
| op[3] = (tran_low_t)(b1 * UNIT_QUANT_FACTOR); |
| |
| ip += 4; |
| op += 4; |
| } |
| } |
| |
| void av1_fht16x16_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct16, fdct16 }, // DCT_DCT |
| { fadst16, fdct16 }, // ADST_DCT |
| { fdct16, fadst16 }, // DCT_ADST |
| { fadst16, fadst16 }, // ADST_ADST |
| #if CONFIG_EXT_TX |
| { fadst16, fdct16 }, // FLIPADST_DCT |
| { fdct16, fadst16 }, // DCT_FLIPADST |
| { fadst16, fadst16 }, // FLIPADST_FLIPADST |
| { fadst16, fadst16 }, // ADST_FLIPADST |
| { fadst16, fadst16 }, // FLIPADST_ADST |
| { fidtx16, fidtx16 }, // IDTX |
| { fdct16, fidtx16 }, // V_DCT |
| { fidtx16, fdct16 }, // H_DCT |
| { fadst16, fidtx16 }, // V_ADST |
| { fidtx16, fadst16 }, // H_ADST |
| { fadst16, fidtx16 }, // V_FLIPADST |
| { fidtx16, fadst16 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[256]; |
| int i, j; |
| tran_low_t temp_in[16], temp_out[16]; |
| |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[16 * 16]; |
| maybe_flip_input(&input, &stride, 16, 16, flipped_input, tx_type); |
| #endif |
| |
| // Columns |
| for (i = 0; i < 16; ++i) { |
| for (j = 0; j < 16; ++j) { |
| #if CONFIG_DAALA_DCT16 |
| temp_in[j] = input[j * stride + i] * 16; |
| #else |
| temp_in[j] = input[j * stride + i] * 4; |
| #endif |
| } |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 16; ++j) { |
| #if CONFIG_DAALA_DCT16 |
| out[j * 16 + i] = temp_out[j]; |
| #else |
| out[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2; |
| #endif |
| } |
| } |
| |
| // Rows |
| for (i = 0; i < 16; ++i) { |
| for (j = 0; j < 16; ++j) temp_in[j] = out[j + i * 16]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < 16; ++j) { |
| #if CONFIG_DAALA_DCT16 |
| output[j + i * 16] = (temp_out[j] + (temp_out[j] < 0)) >> 1; |
| #else |
| output[j + i * 16] = temp_out[j]; |
| #endif |
| } |
| } |
| } |
| |
| void av1_highbd_fwht4x4_c(const int16_t *input, tran_low_t *output, |
| int stride) { |
| av1_fwht4x4_c(input, output, stride); |
| } |
| |
| void av1_fht32x32_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct32, fdct32 }, // DCT_DCT |
| #if CONFIG_EXT_TX |
| { fhalfright32, fdct32 }, // ADST_DCT |
| { fdct32, fhalfright32 }, // DCT_ADST |
| { fhalfright32, fhalfright32 }, // ADST_ADST |
| { fhalfright32, fdct32 }, // FLIPADST_DCT |
| { fdct32, fhalfright32 }, // DCT_FLIPADST |
| { fhalfright32, fhalfright32 }, // FLIPADST_FLIPADST |
| { fhalfright32, fhalfright32 }, // ADST_FLIPADST |
| { fhalfright32, fhalfright32 }, // FLIPADST_ADST |
| { fidtx32, fidtx32 }, // IDTX |
| { fdct32, fidtx32 }, // V_DCT |
| { fidtx32, fdct32 }, // H_DCT |
| { fhalfright32, fidtx32 }, // V_ADST |
| { fidtx32, fhalfright32 }, // H_ADST |
| { fhalfright32, fidtx32 }, // V_FLIPADST |
| { fidtx32, fhalfright32 }, // H_FLIPADST |
| #endif |
| #if CONFIG_MRC_TX |
| { fdct32, fdct32 }, // MRC_TX |
| #endif // CONFIG_MRC_TX |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[1024]; |
| int i, j; |
| tran_low_t temp_in[32], temp_out[32]; |
| |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[32 * 32]; |
| maybe_flip_input(&input, &stride, 32, 32, flipped_input, tx_type); |
| #endif |
| |
| #if CONFIG_MRC_TX |
| if (tx_type == MRC_DCT) { |
| int16_t masked_input[32 * 32]; |
| get_masked_residual32(&input, &stride, txfm_param->dst, txfm_param->stride, |
| masked_input, txfm_param->valid_mask, |
| txfm_param->is_inter); |
| } |
| #endif // CONFIG_MRC_TX |
| |
| // Columns |
| for (i = 0; i < 32; ++i) { |
| for (j = 0; j < 32; ++j) { |
| #if CONFIG_DAALA_DCT32 |
| temp_in[j] = input[j * stride + i] * 16; |
| #else |
| temp_in[j] = input[j * stride + i] * 4; |
| #endif |
| } |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 32; ++j) { |
| #if CONFIG_DAALA_DCT32 |
| out[j * 32 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 2); |
| #else |
| out[j * 32 + i] = ROUND_POWER_OF_TWO_SIGNED(temp_out[j], 4); |
| #endif |
| } |
| } |
| |
| // Rows |
| for (i = 0; i < 32; ++i) { |
| for (j = 0; j < 32; ++j) temp_in[j] = out[j + i * 32]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < 32; ++j) { |
| output[j + i * 32] = temp_out[j]; |
| } |
| } |
| } |
| |
| #if CONFIG_TX64X64 |
| #if CONFIG_DAALA_DCT64 |
| #if CONFIG_EXT_TX |
| static void fidtx64(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 64; ++i) output[i] = input[i]; |
| } |
| |
| // For use in lieu of ADST |
| static void fhalfright64(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| tran_low_t inputhalf[32]; |
| // No scaling within; Daala transforms are all orthonormal |
| for (i = 0; i < 32; ++i) { |
| output[32 + i] = input[i]; |
| } |
| for (i = 0; i < 32; ++i) { |
| inputhalf[i] = input[i + 32]; |
| } |
| fdct32(inputhalf, output); |
| // Note overall scaling factor is 2 times unitary |
| } |
| #endif // CONFIG_EXT_TX |
| |
| static void fdct64_col(const tran_low_t *input, tran_low_t *output) { |
| fdct64(input, output); |
| } |
| |
| static void fdct64_row(const tran_low_t *input, tran_low_t *output) { |
| fdct64(input, output); |
| } |
| #else |
| #if CONFIG_EXT_TX |
| static void fidtx64(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| for (i = 0; i < 64; ++i) |
| output[i] = (tran_low_t)fdct_round_shift(input[i] * 4 * Sqrt2); |
| } |
| |
| // For use in lieu of ADST |
| static void fhalfright64(const tran_low_t *input, tran_low_t *output) { |
| int i; |
| tran_low_t inputhalf[32]; |
| for (i = 0; i < 32; ++i) { |
| output[32 + i] = (tran_low_t)fdct_round_shift(input[i] * 4 * Sqrt2); |
| } |
| // Multiply input by sqrt(2) |
| for (i = 0; i < 32; ++i) { |
| inputhalf[i] = (tran_low_t)fdct_round_shift(input[i + 32] * Sqrt2); |
| } |
| fdct32(inputhalf, output); |
| // Note overall scaling factor is 2 times unitary |
| } |
| #endif // CONFIG_EXT_TX |
| |
| static void fdct64_col(const tran_low_t *input, tran_low_t *output) { |
| int32_t in[64], out[64]; |
| int i; |
| for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i]; |
| av1_fdct64_new(in, out, fwd_cos_bit_col_dct_64, fwd_stage_range_col_dct_64); |
| for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i]; |
| } |
| |
| static void fdct64_row(const tran_low_t *input, tran_low_t *output) { |
| int32_t in[64], out[64]; |
| int i; |
| for (i = 0; i < 64; ++i) in[i] = (int32_t)input[i]; |
| av1_fdct64_new(in, out, fwd_cos_bit_row_dct_64, fwd_stage_range_row_dct_64); |
| for (i = 0; i < 64; ++i) output[i] = (tran_low_t)out[i]; |
| } |
| #endif |
| |
| void av1_fht64x64_c(const int16_t *input, tran_low_t *output, int stride, |
| TxfmParam *txfm_param) { |
| int tx_type = txfm_param->tx_type; |
| #if CONFIG_MRC_TX |
| assert(tx_type != MRC_DCT && "Invalid tx type for tx size"); |
| #endif // CONFIG_MRC_TX |
| #if CONFIG_DCT_ONLY |
| assert(tx_type == DCT_DCT); |
| #endif |
| static const transform_2d FHT[] = { |
| { fdct64_col, fdct64_row }, // DCT_DCT |
| #if CONFIG_EXT_TX |
| { fhalfright64, fdct64_row }, // ADST_DCT |
| { fdct64_col, fhalfright64 }, // DCT_ADST |
| { fhalfright64, fhalfright64 }, // ADST_ADST |
| { fhalfright64, fdct64_row }, // FLIPADST_DCT |
| { fdct64_col, fhalfright64 }, // DCT_FLIPADST |
| { fhalfright64, fhalfright64 }, // FLIPADST_FLIPADST |
| { fhalfright64, fhalfright64 }, // ADST_FLIPADST |
| { fhalfright64, fhalfright64 }, // FLIPADST_ADST |
| { fidtx64, fidtx64 }, // IDTX |
| { fdct64_col, fidtx64 }, // V_DCT |
| { fidtx64, fdct64_row }, // H_DCT |
| { fhalfright64, fidtx64 }, // V_ADST |
| { fidtx64, fhalfright64 }, // H_ADST |
| { fhalfright64, fidtx64 }, // V_FLIPADST |
| { fidtx64, fhalfright64 }, // H_FLIPADST |
| #endif |
| }; |
| const transform_2d ht = FHT[tx_type]; |
| tran_low_t out[4096]; |
| int i, j; |
| tran_low_t temp_in[64], temp_out[64]; |
| #if CONFIG_EXT_TX |
| int16_t flipped_input[64 * 64]; |
| maybe_flip_input(&input, &stride, 64, 64, flipped_input, tx_type); |
| #endif |
| |
| // Columns |
| for (i = 0; i < 64; ++i) { |
| #if CONFIG_DAALA_DCT64 |
| for (j = 0; j < 64; ++j) temp_in[j] = input[j * stride + i] * 16; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 64; ++j) |
| out[j * 64 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 3; |
| |
| #else |
| for (j = 0; j < 64; ++j) temp_in[j] = input[j * stride + i]; |
| ht.cols(temp_in, temp_out); |
| for (j = 0; j < 64; ++j) |
| out[j * 64 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; |
| #endif |
| } |
| |
| // Rows |
| for (i = 0; i < 64; ++i) { |
| for (j = 0; j < 64; ++j) temp_in[j] = out[j + i * 64]; |
| ht.rows(temp_in, temp_out); |
| for (j = 0; j < 64; ++j) |
| #if CONFIG_DAALA_DCT64 |
| output[j + i * 64] = temp_out[j]; |
| #else |
| output[j + i * 64] = |
| (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2); |
| #endif |
| } |
| } |
| #endif // CONFIG_TX64X64 |
| |
| #if CONFIG_EXT_TX |
| // Forward identity transform. |
| void av1_fwd_idtx_c(const int16_t *src_diff, tran_low_t *coeff, int stride, |
| int bs, int tx_type) { |
| int r, c; |
| const int shift = bs < 32 ? 3 : (bs < 64 ? 2 : 1); |
| if (tx_type == IDTX) { |
| for (r = 0; r < bs; ++r) { |
| for (c = 0; c < bs; ++c) coeff[c] = src_diff[c] * (1 << shift); |
| src_diff += stride; |
| coeff += bs; |
| } |
| } |
| } |
| #endif // CONFIG_EXT_TX |
| #endif // !AV1_DCT_GTEST |