| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| #include <stddef.h> |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/enums.h" |
| #include "av1/common/filter.h" |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/aom_scale_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom/aom_codec.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_reader.h" |
| #include "aom_dsp/bitreader.h" |
| #include "aom_dsp/bitreader_buffer.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/mem_ops.h" |
| #include "aom_scale/aom_scale.h" |
| #include "aom_util/aom_thread.h" |
| |
| #if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG |
| |
| #include "av1/common/alloccommon.h" |
| #include "av1/common/cdef.h" |
| #if CONFIG_CCSO |
| #include "av1/common/ccso.h" |
| #endif |
| #include "av1/common/cfl.h" |
| #if CONFIG_INSPECTION |
| #include "av1/decoder/inspection.h" |
| #endif |
| #include "av1/common/common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/entropymv.h" |
| #include "av1/common/frame_buffers.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/resize.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/thread_common.h" |
| #include "av1/common/tile_common.h" |
| #include "av1/common/tip.h" |
| #include "av1/common/warped_motion.h" |
| #include "av1/common/obmc.h" |
| #include "av1/decoder/decodeframe.h" |
| #include "av1/decoder/decodemv.h" |
| #include "av1/decoder/decoder.h" |
| #include "av1/decoder/decodetxb.h" |
| #include "av1/decoder/detokenize.h" |
| |
| #define AOM_MIN_THREADS_PER_TILE 1 |
| #define AOM_MAX_THREADS_PER_TILE 2 |
| |
| // This is needed by ext_tile related unit tests. |
| #define EXT_TILE_DEBUG 1 |
| #define MC_TEMP_BUF_PELS \ |
| (((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2) * \ |
| ((MAX_SB_SIZE)*2 + (AOM_INTERP_EXTEND)*2)) |
| |
| #if CONFIG_THROUGHPUT_ANALYSIS |
| int64_t tot_ctx_syms = { 0 }; |
| int64_t tot_bypass_syms = { 0 }; |
| int64_t max_ctx_syms = { 0 }; |
| int64_t max_bypass_syms = { 0 }; |
| int64_t max_bits = { 0 }; |
| int64_t tot_bits = { 0 }; |
| int64_t tot_frames = { 0 }; |
| int64_t total_context_switch = { 0 }; |
| int64_t total_total_hits = { 0 }; |
| #endif // CONFIG_THROUGHPUT_ANALYSIS |
| |
| // Checks that the remaining bits start with a 1 and ends with 0s. |
| // It consumes an additional byte, if already byte aligned before the check. |
| int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| // bit_offset is set to 0 (mod 8) when the reader is already byte aligned |
| int bits_before_alignment = 8 - rb->bit_offset % 8; |
| int trailing = aom_rb_read_literal(rb, bits_before_alignment); |
| if (trailing != (1 << (bits_before_alignment - 1))) { |
| cm->error.error_code = AOM_CODEC_CORRUPT_FRAME; |
| return -1; |
| } |
| return 0; |
| } |
| |
| // Use only_chroma = 1 to only set the chroma planes |
| static AOM_INLINE void set_planes_to_neutral_grey( |
| const SequenceHeader *const seq_params, const YV12_BUFFER_CONFIG *const buf, |
| int only_chroma) { |
| const int val = 1 << (seq_params->bit_depth - 1); |
| for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) { |
| const int is_uv = plane > 0; |
| uint16_t *const base = buf->buffers[plane]; |
| // Set the first row to neutral grey. Then copy the first row to all |
| // subsequent rows. |
| if (buf->crop_heights[is_uv] > 0) { |
| aom_memset16(base, val, buf->crop_widths[is_uv]); |
| for (int row_idx = 1; row_idx < buf->crop_heights[is_uv]; row_idx++) { |
| memcpy(&base[row_idx * buf->strides[is_uv]], base, |
| sizeof(*base) * buf->crop_widths[is_uv]); |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void loop_restoration_read_sb_coeffs( |
| const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_reader *const r, int plane, |
| int runit_idx); |
| |
| static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { |
| return len != 0 && len <= (size_t)(end - start); |
| } |
| |
| static TX_MODE read_tx_mode(struct aom_read_bit_buffer *rb, |
| int coded_lossless) { |
| if (coded_lossless) return ONLY_4X4; |
| return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST; |
| } |
| |
| static REFERENCE_MODE read_frame_reference_mode( |
| const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { |
| if (frame_is_intra_only(cm)) { |
| return SINGLE_REFERENCE; |
| } else { |
| return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE; |
| } |
| } |
| |
| static AOM_INLINE void inverse_transform_block(DecoderCodingBlock *dcb, |
| const AV1_COMMON *cm, int plane, |
| const TX_TYPE tx_type, |
| const TX_SIZE tx_size, |
| uint16_t *dst, int stride, |
| int reduced_tx_set) { |
| tran_low_t *dqcoeff = dcb->dqcoeff_block[plane] + dcb->cb_offset[plane]; |
| eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; |
| uint16_t scan_line = eob_data->max_scan_line; |
| uint16_t eob = eob_data->eob; |
| // Update eob and scan_line according to those of the other chroma plane |
| if (plane && is_cctx_allowed(cm, &dcb->xd)) { |
| eob_info *eob_data_c1 = |
| dcb->eob_data[AOM_PLANE_U] + dcb->txb_offset[AOM_PLANE_U]; |
| eob_info *eob_data_c2 = |
| dcb->eob_data[AOM_PLANE_V] + dcb->txb_offset[AOM_PLANE_V]; |
| scan_line = AOMMAX(eob_data_c1->max_scan_line, eob_data_c2->max_scan_line); |
| eob = AOMMAX(eob_data_c1->eob, eob_data_c2->eob); |
| } |
| av1_inverse_transform_block(&dcb->xd, dqcoeff, plane, tx_type, tx_size, dst, |
| stride, eob, reduced_tx_set); |
| const int width = tx_size_wide[tx_size] <= 32 ? tx_size_wide[tx_size] : 32; |
| const int height = tx_size_high[tx_size] <= 32 ? tx_size_high[tx_size] : 32; |
| const int sbSize = (width >= 8 && height >= 8) ? 8 : 4; |
| int32_t nz0 = (sbSize - 1) * tx_size_wide[tx_size] + sbSize; |
| int32_t nz1 = (scan_line + 1); |
| memset(dqcoeff, 0, AOMMAX(nz0, nz1) * sizeof(dqcoeff[0])); |
| } |
| |
| static AOM_INLINE void read_coeffs_tx_intra_block( |
| const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, |
| const int plane, const int row, const int col, const TX_SIZE tx_size) { |
| MB_MODE_INFO *mbmi = dcb->xd.mi[0]; |
| if (!mbmi->skip_txfm[dcb->xd.tree_type == CHROMA_PART]) { |
| #if TXCOEFF_TIMER |
| struct aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| #endif |
| av1_read_coeffs_txb_facade(cm, dcb, r, plane, row, col, tx_size); |
| #if TXCOEFF_TIMER |
| aom_usec_timer_mark(&timer); |
| const int64_t elapsed_time = aom_usec_timer_elapsed(&timer); |
| cm->txcoeff_timer += elapsed_time; |
| ++cm->txb_count; |
| #endif |
| } |
| #if CONFIG_LR_IMPROVEMENTS |
| else { |
| // all tx blocks are skipped. |
| av1_update_txk_skip_array(cm, dcb->xd.mi_row, dcb->xd.mi_col, |
| dcb->xd.tree_type, &mbmi->chroma_ref_info, plane, |
| row, col, tx_size); |
| } |
| #endif // CONFIG_LR_IMPROVEMENTS |
| } |
| |
| static AOM_INLINE void decode_block_void(const AV1_COMMON *const cm, |
| DecoderCodingBlock *dcb, |
| aom_reader *const r, const int plane, |
| const int row, const int col, |
| const TX_SIZE tx_size) { |
| (void)cm; |
| (void)dcb; |
| (void)r; |
| (void)plane; |
| (void)row; |
| (void)col; |
| (void)tx_size; |
| } |
| |
| static AOM_INLINE void predict_inter_block_void(AV1_COMMON *const cm, |
| DecoderCodingBlock *dcb, |
| BLOCK_SIZE bsize) { |
| (void)cm; |
| (void)dcb; |
| (void)bsize; |
| } |
| |
| static AOM_INLINE void cfl_store_inter_block_void(AV1_COMMON *const cm, |
| MACROBLOCKD *const xd) { |
| (void)cm; |
| (void)xd; |
| } |
| |
| static AOM_INLINE void predict_and_reconstruct_intra_block( |
| const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, |
| const int plane, const int row, const int col, const TX_SIZE tx_size) { |
| (void)r; |
| MACROBLOCKD *const xd = &dcb->xd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| PLANE_TYPE plane_type = get_plane_type(plane); |
| |
| av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size); |
| #if CONFIG_INSPECTION |
| { |
| const int txwpx = tx_size_wide[tx_size]; |
| const int txhpx = tx_size_high[tx_size]; |
| |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dst_stride = pd->dst.stride; |
| uint16_t *dst = &pd->dst.buf[(row * dst_stride + col) << MI_SIZE_LOG2]; |
| for (int i = 0; i < txhpx; i++) { |
| for (int j = 0; j < txwpx; j++) { |
| uint16_t pixel = dst[i * dst_stride + j]; |
| int stride = cm->predicted_pixels.strides[plane > 0]; |
| int pixel_c, pixel_r; |
| |
| if (plane) { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, |
| mbmi->chroma_ref_info.mi_col_chroma_base, |
| mbmi->chroma_ref_info.mi_row_chroma_base, col, row, |
| pd->subsampling_x, pd->subsampling_y); |
| } else { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, col, row, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| |
| pixel_c += j; |
| pixel_r += i; |
| cm->predicted_pixels.buffers[plane][pixel_r * stride + pixel_c] = pixel; |
| } |
| } |
| } |
| #endif // CONFIG_INSPECTION |
| |
| #if CONFIG_MISMATCH_DEBUG |
| const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); |
| const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); |
| int pixel_c, pixel_r; |
| BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; |
| int blk_w = block_size_wide[bsize]; |
| int blk_h = block_size_high[bsize]; |
| if (plane == 0 || xd->is_chroma_ref) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| if (plane) { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, |
| mbmi->chroma_ref_info.mi_col_chroma_base, |
| mbmi->chroma_ref_info.mi_row_chroma_base, col, row, |
| pd->subsampling_x, pd->subsampling_y); |
| } else { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, col, row, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| cm->current_frame.display_order_hint, |
| #else |
| cm->current_frame.order_hint, |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| plane, pixel_c, pixel_r, blk_w, blk_h); |
| } |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| if (!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) { |
| eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; |
| // In CCTX, when C2 eob = 0 but C1 eob > 0, plane V reconstruction is |
| // still needed |
| int recon_with_cctx = 0; |
| if (is_cctx_allowed(cm, xd) && plane == AOM_PLANE_V && |
| av1_get_cctx_type(xd, row, col) > CCTX_NONE) { |
| eob_info *eob_data_c1 = |
| dcb->eob_data[AOM_PLANE_U] + dcb->txb_offset[AOM_PLANE_U]; |
| recon_with_cctx = eob_data_c1->eob > 0; |
| } |
| if (eob_data->eob || recon_with_cctx) { |
| const bool reduced_tx_set_used = cm->features.reduced_tx_set_used; |
| // tx_type was read out in av1_read_coeffs_txb. |
| const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, row, col, tx_size, |
| reduced_tx_set_used); |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| uint16_t *dst = |
| &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; |
| inverse_transform_block(dcb, cm, plane, tx_type, tx_size, dst, |
| pd->dst.stride, reduced_tx_set_used); |
| } |
| } |
| |
| #if CONFIG_MISMATCH_DEBUG |
| { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| uint16_t *dst = &pd->dst.buf[(row * pd->dst.stride + col) << MI_SIZE_LOG2]; |
| if (plane) { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, |
| mbmi->chroma_ref_info.mi_col_chroma_base, |
| mbmi->chroma_ref_info.mi_row_chroma_base, col, row, |
| pd->subsampling_x, pd->subsampling_y); |
| } else { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, col, row, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| mismatch_check_block_tx(dst, pd->dst.stride, |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| cm->current_frame.display_order_hint, |
| #else |
| cm->current_frame.order_hint, |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| plane, pixel_c, pixel_r, blk_w, blk_h); |
| } |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| if (plane == AOM_PLANE_Y && store_cfl_required(cm, xd) && |
| xd->tree_type == SHARED_PART) { |
| #if CONFIG_IMPROVED_CFL |
| cfl_store_tx(xd, row, col, tx_size, cm->seq_params.enable_cfl_ds_filter); |
| #else |
| cfl_store_tx(xd, row, col, tx_size); |
| #endif // CONFIG_IMPROVED_CFL |
| } |
| } |
| |
| // Facade function for inverse cross chroma component transform |
| static AOM_INLINE void inverse_cross_chroma_transform_block( |
| const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, |
| const int plane, const int blk_row, const int blk_col, |
| const TX_SIZE tx_size) { |
| (void)cm; |
| (void)r; |
| (void)plane; |
| tran_low_t *dqcoeff_c1 = |
| dcb->dqcoeff_block[AOM_PLANE_U] + dcb->cb_offset[AOM_PLANE_U]; |
| tran_low_t *dqcoeff_c2 = |
| dcb->dqcoeff_block[AOM_PLANE_V] + dcb->cb_offset[AOM_PLANE_V]; |
| MACROBLOCKD *const xd = &dcb->xd; |
| const CctxType cctx_type = av1_get_cctx_type(xd, blk_row, blk_col); |
| av1_inv_cross_chroma_tx_block(dqcoeff_c1, dqcoeff_c2, tx_size, cctx_type); |
| } |
| |
| static AOM_INLINE void inverse_transform_inter_block( |
| const AV1_COMMON *const cm, DecoderCodingBlock *dcb, aom_reader *const r, |
| const int plane, const int blk_row, const int blk_col, |
| const TX_SIZE tx_size) { |
| (void)r; |
| MACROBLOCKD *const xd = &dcb->xd; |
| PLANE_TYPE plane_type = get_plane_type(plane); |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const bool reduced_tx_set_used = cm->features.reduced_tx_set_used; |
| // tx_type was read out in av1_read_coeffs_txb. |
| const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, |
| tx_size, reduced_tx_set_used); |
| |
| uint16_t *dst = |
| &pd->dst.buf[(blk_row * pd->dst.stride + blk_col) << MI_SIZE_LOG2]; |
| inverse_transform_block(dcb, cm, plane, tx_type, tx_size, dst, pd->dst.stride, |
| reduced_tx_set_used); |
| #if CONFIG_MISMATCH_DEBUG |
| int pixel_c, pixel_r; |
| BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; |
| int blk_w = block_size_wide[bsize]; |
| int blk_h = block_size_high[bsize]; |
| const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); |
| const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); |
| if (plane) { |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| mi_to_pixel_loc(&pixel_c, &pixel_r, |
| mbmi->chroma_ref_info.mi_col_chroma_base, |
| mbmi->chroma_ref_info.mi_row_chroma_base, blk_col, blk_row, |
| pd->subsampling_x, pd->subsampling_y); |
| } else { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| mismatch_check_block_tx(dst, pd->dst.stride, |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| cm->current_frame.display_order_hint, |
| #else |
| cm->current_frame.order_hint, |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| plane, pixel_c, pixel_r, blk_w, blk_h); |
| #endif // CONFIG_MISMATCH_DEBUG |
| } |
| |
| static AOM_INLINE void set_cb_buffer_offsets(DecoderCodingBlock *dcb, |
| TX_SIZE tx_size, int plane) { |
| dcb->cb_offset[plane] += tx_size_wide[tx_size] * tx_size_high[tx_size]; |
| dcb->txb_offset[plane] = |
| dcb->cb_offset[plane] / (TX_SIZE_W_MIN * TX_SIZE_H_MIN); |
| } |
| |
| static AOM_INLINE void decode_reconstruct_tx(AV1_COMMON *cm, |
| ThreadData *const td, |
| aom_reader *r, |
| MB_MODE_INFO *const mbmi, |
| int plane, BLOCK_SIZE plane_bsize, |
| int blk_row, int blk_col, |
| #if !CONFIG_NEW_TX_PARTITION |
| int block, |
| #endif // !CONFIG_NEW_TX_PARTITION |
| TX_SIZE tx_size, int *eob_total) { |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) return; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| #if CONFIG_TX_PARTITION_TYPE_EXT |
| const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); |
| const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane); |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x, |
| pd->subsampling_y) |
| : mbmi->inter_tx_size[index]; |
| #else |
| const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane); |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x, |
| pd->subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, |
| blk_col)]; |
| #endif // CONFIG_TX_PARTITION_TYPE_EXT |
| #else |
| if (xd->tree_type == SHARED_PART) |
| assert(mbmi->sb_type[PLANE_TYPE_Y] == mbmi->sb_type[PLANE_TYPE_UV]); |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_max_uv_txsize(mbmi->sb_type[plane > 0], pd->subsampling_x, |
| pd->subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, |
| blk_col)]; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| // Scale to match transform block unit. |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (tx_size == plane_tx_size || plane) { |
| if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) { |
| td->read_coeffs_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_U, blk_row, |
| blk_col, tx_size); |
| td->read_coeffs_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_V, blk_row, |
| blk_col, tx_size); |
| td->inverse_cctx_block_visit(cm, dcb, r, -1, blk_row, blk_col, tx_size); |
| td->inverse_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_U, blk_row, |
| blk_col, tx_size); |
| td->inverse_tx_inter_block_visit(cm, dcb, r, AOM_PLANE_V, blk_row, |
| blk_col, tx_size); |
| eob_info *eob_data_c1 = |
| dcb->eob_data[AOM_PLANE_U] + dcb->txb_offset[AOM_PLANE_U]; |
| eob_info *eob_data_c2 = |
| dcb->eob_data[AOM_PLANE_V] + dcb->txb_offset[AOM_PLANE_V]; |
| *eob_total += eob_data_c1->eob + eob_data_c2->eob; |
| set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_U); |
| set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_V); |
| } else { |
| assert(plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd)); |
| td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col, |
| tx_size); |
| |
| td->inverse_tx_inter_block_visit(cm, dcb, r, plane, blk_row, blk_col, |
| tx_size); |
| eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; |
| *eob_total += eob_data->eob; |
| set_cb_buffer_offsets(dcb, tx_size, plane); |
| } |
| } else { |
| #if CONFIG_NEW_TX_PARTITION |
| #if CONFIG_TX_PARTITION_TYPE_EXT |
| get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, |
| &mbmi->txb_pos, mbmi->sub_txs); |
| |
| for (int txb_idx = 0; txb_idx < mbmi->txb_pos.n_partitions; ++txb_idx) { |
| mbmi->txb_idx = 0; |
| const TX_SIZE sub_tx = mbmi->sub_txs[txb_idx]; |
| const int offsetr = blk_row + mbmi->txb_pos.row_offset[txb_idx]; |
| const int offsetc = blk_col + mbmi->txb_pos.col_offset[txb_idx]; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| |
| td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, offsetr, offsetc, |
| sub_tx); |
| td->inverse_tx_inter_block_visit(cm, dcb, r, plane, offsetr, offsetc, |
| sub_tx); |
| eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; |
| *eob_total += eob_data->eob; |
| set_cb_buffer_offsets(dcb, sub_tx, plane); |
| } |
| #else |
| TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; |
| const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); |
| get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, sub_txs); |
| int cur_partition = 0; |
| int bsw = 0, bsh = 0; |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const TX_SIZE sub_tx = sub_txs[cur_partition]; |
| bsw = tx_size_wide_unit[sub_tx]; |
| bsh = tx_size_high_unit[sub_tx]; |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| |
| td->read_coeffs_tx_inter_block_visit(cm, dcb, r, plane, offsetr, |
| offsetc, sub_tx); |
| td->inverse_tx_inter_block_visit(cm, dcb, r, plane, offsetr, offsetc, |
| sub_tx); |
| eob_info *eob_data = dcb->eob_data[plane] + dcb->txb_offset[plane]; |
| *eob_total += eob_data->eob; |
| set_cb_buffer_offsets(dcb, sub_tx, plane); |
| cur_partition++; |
| } |
| } |
| #endif // CONFIG_TX_PARTITION_TYPE_EXT |
| #else |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); |
| assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int sub_step = bsw * bsh; |
| |
| assert(bsw > 0 && bsh > 0); |
| |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| |
| decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, offsetr, |
| offsetc, block, sub_txs, eob_total); |
| block += sub_step; |
| } |
| } |
| #endif // CONFIG_NEW_TX_PARTITION |
| } |
| } |
| |
| static AOM_INLINE void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int bw, int bh, int x_inside_boundary, |
| int y_inside_boundary, |
| PARTITION_TREE *parent, int index) { |
| const int num_planes = av1_num_planes(cm); |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const TileInfo *const tile = &xd->tile; |
| |
| set_mi_offsets(mi_params, xd, mi_row, mi_col |
| #if CONFIG_C071_SUBBLK_WARPMV |
| , |
| x_inside_boundary, y_inside_boundary |
| #endif // CONFIG_C071_SUBBLK_WARPMV |
| ); |
| xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART] = bsize; |
| #if CONFIG_RD_DEBUG |
| xd->mi[0]->mi_row = mi_row; |
| xd->mi[0]->mi_col = mi_col; |
| #endif |
| |
| if (xd->tree_type == SHARED_PART) { |
| assert(x_inside_boundary && y_inside_boundary); |
| for (int x = 1; x < x_inside_boundary; ++x) xd->mi[x] = xd->mi[0]; |
| int idx = mi_params->mi_stride; |
| for (int y = 1; y < y_inside_boundary; ++y) { |
| memcpy(&xd->mi[idx], &xd->mi[0], x_inside_boundary * sizeof(xd->mi[0])); |
| idx += mi_params->mi_stride; |
| } |
| } |
| |
| CHROMA_REF_INFO *chroma_ref_info = &xd->mi[0]->chroma_ref_info; |
| set_chroma_ref_info(xd->tree_type, mi_row, mi_col, index, bsize, |
| chroma_ref_info, parent ? &parent->chroma_ref_info : NULL, |
| parent ? parent->bsize : BLOCK_INVALID, |
| parent ? parent->partition : PARTITION_NONE, |
| xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); |
| set_plane_n4(xd, bw, bh, num_planes, chroma_ref_info); |
| set_entropy_context(xd, mi_row, mi_col, num_planes, chroma_ref_info); |
| |
| // Distance of Mb to the various image edges. These are specified to 8th pel |
| // as they are always compared to values that are in 1/8th pel units |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, |
| mi_params->mi_cols, chroma_ref_info); |
| |
| av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0, |
| num_planes, chroma_ref_info); |
| } |
| |
| #if !CONFIG_REFINEMV |
| typedef struct PadBlock { |
| int x0; |
| int x1; |
| int y0; |
| int y1; |
| } PadBlock; |
| #endif //! CONFIG_REFINEMV |
| |
| static AOM_INLINE void highbd_build_mc_border(const uint16_t *src, |
| int src_stride, uint16_t *dst, |
| int dst_stride, int x, int y, |
| int b_w, int b_h, int w, int h) { |
| // Get a pointer to the start of the real data for this row. |
| const uint16_t *ref_row = src - x - y * src_stride; |
| |
| if (y >= h) |
| ref_row += (h - 1) * src_stride; |
| else if (y > 0) |
| ref_row += y * src_stride; |
| |
| do { |
| int right = 0, copy; |
| int left = x < 0 ? -x : 0; |
| |
| if (left > b_w) left = b_w; |
| |
| if (x + b_w > w) right = x + b_w - w; |
| |
| if (right > b_w) right = b_w; |
| |
| copy = b_w - left - right; |
| |
| if (left) aom_memset16(dst, ref_row[0], left); |
| |
| if (copy) memcpy(dst + left, ref_row + x + left, copy * sizeof(uint16_t)); |
| |
| if (right) aom_memset16(dst + left + copy, ref_row[w - 1], right); |
| |
| dst += dst_stride; |
| ++y; |
| |
| if (y > 0 && y < h) ref_row += src_stride; |
| } while (--b_h); |
| } |
| |
| #if !CONFIG_REFINEMV |
| int update_extend_mc_border_params(const struct scale_factors *const sf, |
| struct buf_2d *const pre_buf, MV32 scaled_mv, |
| PadBlock *block, int subpel_x_mv, |
| int subpel_y_mv, int do_warp, int is_intrabc, |
| int *x_pad, int *y_pad) { |
| // Get reference width and height. |
| int frame_width = pre_buf->width; |
| int frame_height = pre_buf->height; |
| |
| // Do border extension if there is motion or |
| // width/height is not a multiple of 8 pixels. |
| // Extension is needed in optical flow refinement to obtain MV offsets |
| (void)scaled_mv; |
| if (!is_intrabc && !do_warp) { |
| if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) { |
| block->x0 -= AOM_INTERP_EXTEND - 1; |
| block->x1 += AOM_INTERP_EXTEND; |
| *x_pad = 1; |
| } |
| |
| if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) { |
| block->y0 -= AOM_INTERP_EXTEND - 1; |
| block->y1 += AOM_INTERP_EXTEND; |
| *y_pad = 1; |
| } |
| |
| // Skip border extension if block is inside the frame. |
| if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 || |
| block->y1 > frame_height - 1) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| #endif //! CONFIG_REFINEMV |
| |
| static INLINE void extend_mc_border(const struct scale_factors *const sf, |
| struct buf_2d *const pre_buf, |
| MV32 scaled_mv, PadBlock block, |
| int subpel_x_mv, int subpel_y_mv, |
| int do_warp, int is_intrabc, |
| uint16_t *mc_buf, uint16_t **pre, |
| int *src_stride) { |
| int x_pad = 0, y_pad = 0; |
| if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block, |
| subpel_x_mv, subpel_y_mv, do_warp, |
| is_intrabc, &x_pad, &y_pad |
| #if CONFIG_REFINEMV |
| , |
| NULL |
| #endif // CONFIG_REFINEMV |
| |
| )) { |
| // Get reference block pointer. |
| const uint16_t *const buf_ptr = |
| pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0; |
| int buf_stride = pre_buf->stride; |
| const int b_w = block.x1 - block.x0; |
| const int b_h = block.y1 - block.y0; |
| |
| // Extend the border. |
| highbd_build_mc_border(buf_ptr, buf_stride, mc_buf, b_w, block.x0, block.y0, |
| b_w, b_h, pre_buf->width, pre_buf->height); |
| |
| *src_stride = b_w; |
| *pre = mc_buf + y_pad * (AOM_INTERP_EXTEND - 1) * b_w + |
| x_pad * (AOM_INTERP_EXTEND - 1); |
| } |
| } |
| #if !CONFIG_REFINEMV |
| static void dec_calc_subpel_params( |
| const MV *const src_mv, InterPredParams *const inter_pred_params, |
| const MACROBLOCKD *const xd, int mi_x, int mi_y, uint16_t **pre, |
| SubpelParams *subpel_params, int *src_stride, PadBlock *block, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| MV32 *scaled_mv, int *subpel_x_mv, int *subpel_y_mv) { |
| const struct scale_factors *sf = inter_pred_params->scale_factors; |
| struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // Use original block size to clamp MV and to extend block boundary |
| const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width |
| : inter_pred_params->block_width; |
| const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height |
| : inter_pred_params->block_height; |
| #else |
| const int bw = inter_pred_params->block_width; |
| const int bh = inter_pred_params->block_height; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| const int is_scaled = av1_is_scaled(sf); |
| if (is_scaled) { |
| int ssx = inter_pred_params->subsampling_x; |
| int ssy = inter_pred_params->subsampling_y; |
| int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| if (use_optflow_refinement) { |
| orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS), |
| MV_REFINE_PREC_BITS + ssy); |
| orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS), |
| MV_REFINE_PREC_BITS + ssx); |
| } else { |
| orig_pos_y += src_mv->row * (1 << (1 - ssy)); |
| orig_pos_x += src_mv->col * (1 << (1 - ssx)); |
| } |
| #else |
| orig_pos_y += src_mv->row * (1 << (1 - ssy)); |
| orig_pos_x += src_mv->col * (1 << (1 - ssx)); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| int pos_y = sf->scale_value_y(orig_pos_y, sf); |
| int pos_x = sf->scale_value_x(orig_pos_x, sf); |
| pos_x += SCALE_EXTRA_OFF; |
| pos_y += SCALE_EXTRA_OFF; |
| |
| const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); |
| const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); |
| const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; |
| pos_y = clamp(pos_y, top, bottom); |
| pos_x = clamp(pos_x, left, right); |
| |
| subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; |
| subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; |
| subpel_params->xs = sf->x_step_q4; |
| subpel_params->ys = sf->y_step_q4; |
| |
| // Get reference block top left coordinate. |
| block->x0 = pos_x >> SCALE_SUBPEL_BITS; |
| block->y0 = pos_y >> SCALE_SUBPEL_BITS; |
| |
| // Get reference block bottom right coordinate. |
| block->x1 = |
| ((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >> |
| SCALE_SUBPEL_BITS) + |
| 1; |
| block->y1 = |
| ((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >> |
| SCALE_SUBPEL_BITS) + |
| 1; |
| |
| MV temp_mv; |
| temp_mv = clamp_mv_to_umv_border_sb(xd, src_mv, bw, bh, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->subsampling_x, |
| inter_pred_params->subsampling_y); |
| *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf); |
| scaled_mv->row += SCALE_EXTRA_OFF; |
| scaled_mv->col += SCALE_EXTRA_OFF; |
| |
| *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK; |
| } else { |
| // Get block position in current frame. |
| int pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| int pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, src_mv, bw, bh, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->subsampling_x, inter_pred_params->subsampling_y); |
| subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; |
| subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| |
| // Get reference block top left coordinate. |
| pos_x += mv_q4.col; |
| pos_y += mv_q4.row; |
| block->x0 = pos_x >> SUBPEL_BITS; |
| block->y0 = pos_y >> SUBPEL_BITS; |
| |
| // Get reference block bottom right coordinate. |
| block->x1 = |
| (pos_x >> SUBPEL_BITS) + (inter_pred_params->block_width - 1) + 1; |
| block->y1 = |
| (pos_y >> SUBPEL_BITS) + (inter_pred_params->block_height - 1) + 1; |
| |
| scaled_mv->row = mv_q4.row; |
| scaled_mv->col = mv_q4.col; |
| *subpel_x_mv = scaled_mv->col & SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SUBPEL_MASK; |
| } |
| *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0; |
| *src_stride = pre_buf->stride; |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| if (inter_pred_params->border_data.enable_bacp) { |
| subpel_params->x0 = block->x0; |
| subpel_params->x1 = block->x1; |
| subpel_params->y0 = block->y0; |
| subpel_params->y1 = block->y1; |
| } |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| } |
| #endif //! CONFIG_REFINEMV |
| static void dec_calc_subpel_params_and_extend( |
| const MV *const src_mv, InterPredParams *const inter_pred_params, |
| MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| uint16_t **mc_buf, uint16_t **pre, SubpelParams *subpel_params, |
| int *src_stride) { |
| |
| #if CONFIG_REFINEMV |
| if (inter_pred_params->use_ref_padding) { |
| common_calc_subpel_params_and_extend( |
| src_mv, inter_pred_params, xd, mi_x, mi_y, ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mc_buf, pre, subpel_params, src_stride); |
| return; |
| } |
| #endif |
| |
| PadBlock block; |
| MV32 scaled_mv; |
| int subpel_x_mv, subpel_y_mv; |
| dec_calc_subpel_params(src_mv, inter_pred_params, xd, mi_x, mi_y, pre, |
| subpel_params, src_stride, &block, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| &scaled_mv, &subpel_x_mv, &subpel_y_mv); |
| extend_mc_border(inter_pred_params->scale_factors, |
| &inter_pred_params->ref_frame_buf, scaled_mv, block, |
| subpel_x_mv, subpel_y_mv, |
| inter_pred_params->mode == WARP_PRED, |
| inter_pred_params->is_intrabc, mc_buf[ref], pre, src_stride); |
| } |
| |
| #if !CONFIG_TIP_REF_PRED_MERGING |
| #if !CONFIG_REFINEMV |
| static AOM_INLINE void tip_dec_calc_subpel_params( |
| const MV *const src_mv, InterPredParams *const inter_pred_params, int mi_x, |
| int mi_y, uint16_t **pre, SubpelParams *subpel_params, int *src_stride, |
| PadBlock *block, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| MV32 *scaled_mv, int *subpel_x_mv, int *subpel_y_mv) { |
| const struct scale_factors *sf = inter_pred_params->scale_factors; |
| struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf; |
| |
| #if CONFIG_REFINEMV |
| const int bw = inter_pred_params->original_pu_width; |
| const int bh = inter_pred_params->original_pu_height; |
| #else |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // Use original block size to clamp MV and to extend block boundary |
| const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width |
| : inter_pred_params->block_width; |
| const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height |
| : inter_pred_params->block_height; |
| #else |
| const int bw = inter_pred_params->block_width; |
| const int bh = inter_pred_params->block_height; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #endif // CONFIG_REFINEMV |
| |
| const int is_scaled = av1_is_scaled(sf); |
| if (is_scaled) { |
| const int ssx = inter_pred_params->subsampling_x; |
| const int ssy = inter_pred_params->subsampling_y; |
| int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| if (use_optflow_refinement) { |
| orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS), |
| MV_REFINE_PREC_BITS + ssy); |
| orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS), |
| MV_REFINE_PREC_BITS + ssx); |
| } else { |
| orig_pos_y += src_mv->row * (1 << (1 - ssy)); |
| orig_pos_x += src_mv->col * (1 << (1 - ssx)); |
| } |
| #else |
| orig_pos_y += src_mv->row * (1 << (1 - ssy)); |
| orig_pos_x += src_mv->col * (1 << (1 - ssx)); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| int pos_y = sf->scale_value_y(orig_pos_y, sf); |
| int pos_x = sf->scale_value_x(orig_pos_x, sf); |
| pos_x += SCALE_EXTRA_OFF; |
| pos_y += SCALE_EXTRA_OFF; |
| |
| const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy); |
| const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx); |
| const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) |
| << SCALE_SUBPEL_BITS; |
| const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; |
| pos_y = clamp(pos_y, top, bottom); |
| pos_x = clamp(pos_x, left, right); |
| |
| subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK; |
| subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK; |
| subpel_params->xs = sf->x_step_q4; |
| subpel_params->ys = sf->y_step_q4; |
| |
| // Get reference block top left coordinate. |
| block->x0 = pos_x >> SCALE_SUBPEL_BITS; |
| block->y0 = pos_y >> SCALE_SUBPEL_BITS; |
| |
| // Get reference block bottom right coordinate. |
| #if CONFIG_D071_IMP_MSK_BLD |
| block->x1 = |
| ((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >> |
| SCALE_SUBPEL_BITS) + |
| 1; |
| block->y1 = |
| ((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >> |
| SCALE_SUBPEL_BITS) + |
| 1; |
| #else |
| block->x1 = |
| ((pos_x + (bw - 1) * subpel_params->xs) >> SCALE_SUBPEL_BITS) + 1; |
| block->y1 = |
| ((pos_y + (bh - 1) * subpel_params->ys) >> SCALE_SUBPEL_BITS) + 1; |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| MV temp_mv; |
| temp_mv = tip_clamp_mv_to_umv_border_sb(inter_pred_params, src_mv, bw, bh, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->subsampling_x, |
| inter_pred_params->subsampling_y); |
| *scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf); |
| scaled_mv->row += SCALE_EXTRA_OFF; |
| scaled_mv->col += SCALE_EXTRA_OFF; |
| |
| *subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK; |
| } else { |
| // Get block position in current frame. |
| int pos_x = inter_pred_params->pix_col << SUBPEL_BITS; |
| int pos_y = inter_pred_params->pix_row << SUBPEL_BITS; |
| |
| const MV mv_q4 = tip_clamp_mv_to_umv_border_sb( |
| inter_pred_params, src_mv, bw, bh, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| inter_pred_params->subsampling_x, inter_pred_params->subsampling_y); |
| subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS; |
| subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| |
| // Get reference block top left coordinate. |
| pos_x += mv_q4.col; |
| pos_y += mv_q4.row; |
| pos_x = (pos_x >> SUBPEL_BITS); |
| pos_y = (pos_y >> SUBPEL_BITS); |
| block->x0 = pos_x; |
| block->y0 = pos_y; |
| |
| // Get reference block bottom right coordinate. |
| #if CONFIG_D071_IMP_MSK_BLD |
| block->x1 = pos_x + inter_pred_params->block_width; |
| block->y1 = pos_y + inter_pred_params->block_height; |
| #else |
| block->x1 = pos_x + bw; |
| block->y1 = pos_y + bh; |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| scaled_mv->row = mv_q4.row; |
| scaled_mv->col = mv_q4.col; |
| *subpel_x_mv = scaled_mv->col & SUBPEL_MASK; |
| *subpel_y_mv = scaled_mv->row & SUBPEL_MASK; |
| } |
| *pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0; |
| *src_stride = pre_buf->stride; |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| if (inter_pred_params->border_data.enable_bacp) { |
| subpel_params->x0 = block->x0; |
| subpel_params->x1 = block->x1; |
| subpel_params->y0 = block->y0; |
| subpel_params->y1 = block->y1; |
| } |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| } |
| #endif |
| static void tip_dec_calc_subpel_params_and_extend( |
| const MV *const src_mv, InterPredParams *const inter_pred_params, |
| MACROBLOCKD *const xd, int mi_x, int mi_y, int ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| uint16_t **mc_buf, uint16_t **pre, SubpelParams *subpel_params, |
| int *src_stride) { |
| |
| #if CONFIG_REFINEMV |
| if (inter_pred_params->use_ref_padding) { |
| // printf(" used pading in the decoder \n"); |
| tip_common_calc_subpel_params_and_extend( |
| src_mv, inter_pred_params, xd, mi_x, mi_y, ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| mc_buf, pre, subpel_params, src_stride); |
| return; |
| } |
| #else |
| |
| (void)xd; |
| #endif // CONFIG_REFINEMV |
| PadBlock block; |
| MV32 scaled_mv; |
| int subpel_x_mv, subpel_y_mv; |
| tip_dec_calc_subpel_params(src_mv, inter_pred_params, mi_x, mi_y, pre, |
| subpel_params, src_stride, &block, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| &scaled_mv, &subpel_x_mv, &subpel_y_mv); |
| extend_mc_border(inter_pred_params->scale_factors, |
| &inter_pred_params->ref_frame_buf, scaled_mv, block, |
| subpel_x_mv, subpel_y_mv, |
| inter_pred_params->mode == WARP_PRED, |
| inter_pred_params->is_intrabc, mc_buf[ref], pre, src_stride); |
| } |
| #endif // !CONFIG_TIP_REF_PRED_MERGING |
| |
| static void av1_dec_setup_tip_frame(AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint16_t **mc_buf, |
| CONV_BUF_TYPE *tmp_conv_dst) { |
| av1_setup_tip_motion_field(cm, 0); |
| |
| av1_setup_tip_frame(cm, xd, mc_buf, tmp_conv_dst, |
| #if CONFIG_TIP_REF_PRED_MERGING |
| dec_calc_subpel_params_and_extend |
| #else |
| tip_dec_calc_subpel_params_and_extend |
| #endif // CONFIG_TIP_REF_PRED_MERGING |
| ); |
| #if CONFIG_TIP_IMPLICIT_QUANT |
| if (cm->seq_params.enable_tip_explicit_qp == 0) { |
| const int avg_u_ac_delta_q = |
| (cm->tip_ref.ref_frame_buffer[0]->u_ac_delta_q + |
| cm->tip_ref.ref_frame_buffer[1]->u_ac_delta_q + 1) >> |
| 1; |
| const int avg_v_ac_delta_q = |
| (cm->tip_ref.ref_frame_buffer[0]->v_ac_delta_q + |
| cm->tip_ref.ref_frame_buffer[1]->v_ac_delta_q + 1) >> |
| 1; |
| const int base_qindex = |
| (cm->tip_ref.ref_frame_buffer[0]->base_qindex + |
| cm->tip_ref.ref_frame_buffer[1]->base_qindex + 1) >> |
| 1; |
| cm->cur_frame->base_qindex = cm->quant_params.base_qindex = base_qindex; |
| cm->cur_frame->u_ac_delta_q = cm->quant_params.u_ac_delta_q = |
| avg_u_ac_delta_q; |
| cm->cur_frame->v_ac_delta_q = cm->quant_params.v_ac_delta_q = |
| avg_v_ac_delta_q; |
| if (cm->seq_params.enable_pef && cm->features.allow_pef) { |
| init_pef_parameter(cm, 0, av1_num_planes(cm)); |
| } |
| } |
| #endif // CONFIG_TIP_IMPLICIT_QUANT |
| #if CONFIG_TIP_DIRECT_FRAME_MV |
| if (cm->seq_params.enable_pef && cm->features.allow_pef) { |
| enhance_tip_frame(cm, xd); |
| aom_extend_frame_borders(&cm->tip_ref.tip_frame->buf, av1_num_planes(cm)); |
| } |
| #if CONFIG_LF_SUB_PU |
| if (cm->seq_params.enable_lf_sub_pu && cm->features.allow_lf_sub_pu) { |
| init_tip_lf_parameter(cm, 0, av1_num_planes(cm)); |
| loop_filter_tip_frame(cm, 0, av1_num_planes(cm)); |
| aom_extend_frame_borders(&cm->tip_ref.tip_frame->buf, av1_num_planes(cm)); |
| } |
| #endif // CONFIG_LF_SUB_PU |
| #endif // CONFIG_TIP_DIRECT_FRAME_MV |
| } |
| |
| #if !CONFIG_TIP_REF_PRED_MERGING |
| static void av1_dec_tip_on_the_fly(AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint16_t **mc_buf, CONV_BUF_TYPE *conv_dst) { |
| const MV *mv = &xd->mi[0]->mv[0].as_mv; |
| const int mvs_rows = |
| ROUND_POWER_OF_TWO(cm->mi_params.mi_rows, TMVP_SHIFT_BITS); |
| const int mvs_cols = |
| ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, TMVP_SHIFT_BITS); |
| const int extra_pixel = 1 << TMVP_MI_SZ_LOG2; |
| |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| const int x_inside_boundary = xd->width; |
| const int y_inside_boundary = xd->height; |
| |
| // define the block start and end pixel locations |
| FULLPEL_MV start_mv = get_fullmv_from_mv(mv); |
| const int bw = (x_inside_boundary << MI_SIZE_LOG2); |
| const int bh = (y_inside_boundary << MI_SIZE_LOG2); |
| int start_pixel_row = (mi_row << MI_SIZE_LOG2) + start_mv.row; |
| int start_pixel_col = (mi_col << MI_SIZE_LOG2) + start_mv.col; |
| int end_pixel_row = start_pixel_row + bh; |
| int end_pixel_col = start_pixel_col + bw; |
| |
| // extend for handling interpolation |
| if (mv->row != 0) { |
| start_pixel_row -= extra_pixel; |
| end_pixel_row += extra_pixel; |
| } |
| |
| if (mv->col != 0) { |
| start_pixel_col -= extra_pixel; |
| end_pixel_col += extra_pixel; |
| } |
| |
| // clamp block start and end locations to make sure the block is in the |
| // frame |
| start_pixel_row = AOMMAX(0, start_pixel_row); |
| start_pixel_col = AOMMAX(0, start_pixel_col); |
| end_pixel_row = AOMMAX(0, end_pixel_row); |
| end_pixel_col = AOMMAX(0, end_pixel_col); |
| start_pixel_row = AOMMIN(cm->mi_params.mi_rows * MI_SIZE, start_pixel_row); |
| start_pixel_col = AOMMIN(cm->mi_params.mi_cols * MI_SIZE, start_pixel_col); |
| end_pixel_row = AOMMIN(cm->mi_params.mi_rows * MI_SIZE, end_pixel_row); |
| end_pixel_col = AOMMIN(cm->mi_params.mi_cols * MI_SIZE, end_pixel_col); |
| |
| // convert the pixel block location to MV field grid location |
| int tpl_start_row = start_pixel_row >> TMVP_MI_SZ_LOG2; |
| int tpl_end_row = (end_pixel_row + TMVP_MI_SIZE - 1) >> TMVP_MI_SZ_LOG2; |
| int tpl_start_col = start_pixel_col >> TMVP_MI_SZ_LOG2; |
| int tpl_end_col = (end_pixel_col + TMVP_MI_SIZE - 1) >> TMVP_MI_SZ_LOG2; |
| |
| // handling the boundary case when start and end locations are the same |
| if (tpl_start_row == tpl_end_row) { |
| if (tpl_start_row > 0) { |
| tpl_start_row -= 1; |
| } else { |
| tpl_end_row += 1; |
| } |
| } |
| |
| if (tpl_start_col == tpl_end_col) { |
| if (tpl_start_col > 0) { |
| tpl_start_col -= 1; |
| } else { |
| tpl_end_col += 1; |
| } |
| } |
| |
| // handle SIMD alignment for the chroma case |
| tpl_start_row = (tpl_start_row >> 1) << 1; |
| tpl_start_col = (tpl_start_col >> 1) << 1; |
| tpl_end_row = ((tpl_end_row + 1) >> 1) << 1; |
| tpl_end_col = ((tpl_end_col + 1) >> 1) << 1; |
| tpl_end_row = AOMMIN(mvs_rows, tpl_end_row); |
| tpl_end_col = AOMMIN(mvs_cols, tpl_end_col); |
| |
| av1_setup_tip_on_the_fly(cm, xd, tpl_start_row, tpl_start_col, tpl_end_row, |
| tpl_end_col, mvs_cols, mc_buf, conv_dst, |
| tip_dec_calc_subpel_params_and_extend); |
| } |
| #endif // !CONFIG_TIP_REF_PRED_MERGING |
| |
| static AOM_INLINE void decode_mbmi_block(AV1Decoder *const pbi, |
| DecoderCodingBlock *dcb, int mi_row, |
| int mi_col, aom_reader *r, |
| PARTITION_TYPE partition, |
| BLOCK_SIZE bsize, |
| PARTITION_TREE *parent, int index) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| const int x_mis = AOMMIN(bw, cm->mi_params.mi_cols - mi_col); |
| const int y_mis = AOMMIN(bh, cm->mi_params.mi_rows - mi_row); |
| MACROBLOCKD *const xd = &dcb->xd; |
| |
| #if CONFIG_ACCOUNTING |
| aom_accounting_set_context(&pbi->accounting, mi_col, mi_row, xd->tree_type); |
| #endif |
| set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis, parent, |
| index); |
| xd->mi[0]->partition = partition; |
| av1_read_mode_info(pbi, dcb, r, x_mis, y_mis); |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| if (xd->tree_type != LUMA_PART) { |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| const struct macroblockd_plane *const pd_u = &xd->plane[1]; |
| const BLOCK_SIZE chroma_bsize_base = |
| get_bsize_base(xd, xd->mi[0], AOM_PLANE_U); |
| assert(chroma_bsize_base < BLOCK_SIZES_ALL); |
| if (get_plane_block_size(chroma_bsize_base, pd_u->subsampling_x, |
| pd_u->subsampling_y) == BLOCK_INVALID) { |
| aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Block size %dx%d invalid with this subsampling mode", |
| block_size_wide[chroma_bsize_base], |
| block_size_high[chroma_bsize_base]); |
| } |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| #if !CONFIG_TIP_REF_PRED_MERGING |
| if (cm->features.tip_frame_mode == TIP_FRAME_AS_REF && |
| is_tip_ref_frame(xd->mi[0]->ref_frame[0])) { |
| av1_dec_tip_on_the_fly(cm, xd, pbi->td.mc_buf, pbi->td.tmp_conv_dst); |
| } |
| #endif // !CONFIG_TIP_REF_PRED_MERGING |
| } |
| |
| static void dec_build_inter_predictors(const AV1_COMMON *cm, |
| DecoderCodingBlock *dcb, int plane, |
| MB_MODE_INFO *mi, int build_for_obmc, |
| int bw, int bh, int mi_x, int mi_y |
| #if CONFIG_REFINEMV |
| , |
| int build_for_refine_mv_only |
| #endif // CONFIG_REFINEMV |
| ) { |
| av1_build_inter_predictors(cm, &dcb->xd, plane, mi, |
| #if CONFIG_BAWP |
| NULL, |
| #endif |
| #if CONFIG_REFINEMV |
| build_for_refine_mv_only, |
| #endif // CONFIG_REFINEMV |
| build_for_obmc, bw, bh, mi_x, mi_y, dcb->mc_buf, |
| dec_calc_subpel_params_and_extend); |
| } |
| |
| static AOM_INLINE void dec_build_inter_predictor(const AV1_COMMON *cm, |
| DecoderCodingBlock *dcb, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| MACROBLOCKD *const xd = &dcb->xd; |
| const int num_planes = av1_num_planes(cm); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| |
| #if CONFIG_REFINEMV |
| int need_subblock_mvs = xd->is_chroma_ref && mbmi->refinemv_flag && |
| !is_intrabc_block(mbmi, xd->tree_type); |
| assert(IMPLIES(need_subblock_mvs, !is_interintra_pred(mbmi))); |
| #if CONFIG_AFFINE_REFINEMENT |
| if (need_subblock_mvs && default_refinemv_modes(cm, mbmi)) |
| #else |
| if (need_subblock_mvs && default_refinemv_modes(mbmi)) |
| #endif // CONFIG_AFFINE_REFINEMENT |
| need_subblock_mvs &= (mbmi->comp_group_idx == 0 && |
| mbmi->interinter_comp.type == COMPOUND_AVERAGE); |
| if (need_subblock_mvs) { |
| fill_subblock_refine_mv(xd->refinemv_subinfo, xd->plane[0].width, |
| xd->plane[0].height, mbmi->mv[0].as_mv, |
| mbmi->mv[1].as_mv); |
| } |
| #endif // CONFIG_REFINEMV |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| if (plane && !xd->is_chroma_ref) break; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| dec_build_inter_predictors(cm, dcb, plane, xd->mi[0], 0, |
| xd->plane[plane].width, xd->plane[plane].height, |
| mi_x, mi_y |
| #if CONFIG_REFINEMV |
| , |
| 0 |
| #endif // CONFIG_REFINEMV |
| ); |
| |
| assert(IMPLIES(!is_interintra_allowed(xd->mi[0]), |
| !is_interintra_mode(xd->mi[0]))); |
| |
| if (is_interintra_pred(xd->mi[0])) { |
| BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf, |
| xd->plane[2].dst.buf }, |
| { xd->plane[0].dst.stride, xd->plane[1].dst.stride, |
| xd->plane[2].dst.stride } }; |
| av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf, |
| xd->plane[plane].dst.stride, &ctx, plane, |
| bsize); |
| } |
| } |
| |
| #if CONFIG_MORPH_PRED |
| if (mbmi->morph_pred) { |
| assert(av1_allow_intrabc(cm)); |
| assert(is_intrabc_block(mbmi, xd->tree_type)); |
| av1_build_morph_pred(cm, xd, bsize, mi_row, mi_col); |
| } |
| #endif // CONFIG_MORPH_PRED |
| } |
| |
| static INLINE void dec_build_prediction_by_above_pred( |
| MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) { |
| struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; |
| const int above_mi_col = xd->mi_col + rel_mi_col; |
| int mi_x, mi_y; |
| MB_MODE_INFO backup_mbmi = *above_mbmi; |
| |
| (void)rel_mi_row; |
| (void)dir; |
| |
| av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, op_mi_size, |
| &backup_mbmi, ctxt, num_planes); |
| mi_x = above_mi_col << MI_SIZE_LOG2; |
| mi_y = xd->mi_row << MI_SIZE_LOG2; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; |
| |
| for (int j = 0; j < num_planes; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x; |
| int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, |
| block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); |
| |
| if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; |
| dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j, |
| &backup_mbmi, 1, bw, bh, mi_x, mi_y |
| #if CONFIG_REFINEMV |
| , |
| 0 |
| #endif // CONFIG_REFINEMV |
| ); |
| } |
| } |
| |
| static AOM_INLINE void dec_build_prediction_by_above_preds( |
| const AV1_COMMON *cm, DecoderCodingBlock *dcb, |
| uint16_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { |
| MACROBLOCKD *const xd = &dcb->xd; |
| if (!xd->up_available) return; |
| |
| // Adjust mb_to_bottom_edge to have the correct value for the OBMC |
| // prediction block. This is half the height of the original block, |
| // except for 128-wide blocks, where we only use a height of 32. |
| const int this_height = xd->height * MI_SIZE; |
| const int pred_height = AOMMIN(this_height / 2, 32); |
| xd->mb_to_bottom_edge += GET_MV_SUBPEL(this_height - pred_height); |
| struct build_prediction_ctxt ctxt = { |
| cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge, dcb |
| }; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y]; |
| foreach_overlappable_nb_above( |
| cm, xd, max_neighbor_obmc[mi_size_wide_log2[bsize]], |
| dec_build_prediction_by_above_pred, &ctxt, false); |
| |
| xd->mb_to_left_edge = -GET_MV_SUBPEL(xd->mi_col * MI_SIZE); |
| xd->mb_to_right_edge = ctxt.mb_to_far_edge; |
| xd->mb_to_bottom_edge -= GET_MV_SUBPEL(this_height - pred_height); |
| } |
| |
| static INLINE void dec_build_prediction_by_left_pred( |
| MACROBLOCKD *const xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, |
| int dir, MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) { |
| struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; |
| const int left_mi_row = xd->mi_row + rel_mi_row; |
| int mi_x, mi_y; |
| MB_MODE_INFO backup_mbmi = *left_mbmi; |
| |
| (void)rel_mi_col; |
| (void)dir; |
| |
| av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, op_mi_size, |
| &backup_mbmi, ctxt, num_planes); |
| mi_x = xd->mi_col << MI_SIZE_LOG2; |
| mi_y = left_mi_row << MI_SIZE_LOG2; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]; |
| |
| for (int j = 0; j < num_planes; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, |
| block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); |
| int bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y; |
| |
| if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; |
| dec_build_inter_predictors(ctxt->cm, (DecoderCodingBlock *)ctxt->dcb, j, |
| &backup_mbmi, 1, bw, bh, mi_x, mi_y |
| #if CONFIG_REFINEMV |
| , |
| 0 |
| #endif // CONFIG_REFINEMV |
| ); |
| } |
| } |
| |
| static AOM_INLINE void dec_build_prediction_by_left_preds( |
| const AV1_COMMON *cm, DecoderCodingBlock *dcb, |
| uint16_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { |
| MACROBLOCKD *const xd = &dcb->xd; |
| if (!xd->left_available) return; |
| |
| // Adjust mb_to_right_edge to have the correct value for the OBMC |
| // prediction block. This is half the width of the original block, |
| // except for 128-wide blocks, where we only use a width of 32. |
| const int this_width = xd->width * MI_SIZE; |
| const int pred_width = AOMMIN(this_width / 2, 32); |
| xd->mb_to_right_edge += GET_MV_SUBPEL(this_width - pred_width); |
| |
| struct build_prediction_ctxt ctxt = { |
| cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge, dcb |
| }; |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]; |
| foreach_overlappable_nb_left(cm, xd, |
| max_neighbor_obmc[mi_size_high_log2[bsize]], |
| dec_build_prediction_by_left_pred, &ctxt); |
| |
| xd->mb_to_top_edge = -GET_MV_SUBPEL(xd->mi_row * MI_SIZE); |
| xd->mb_to_right_edge -= GET_MV_SUBPEL(this_width - pred_width); |
| xd->mb_to_bottom_edge = ctxt.mb_to_far_edge; |
| } |
| |
| static AOM_INLINE void dec_build_obmc_inter_predictors_sb( |
| const AV1_COMMON *cm, DecoderCodingBlock *dcb) { |
| const int num_planes = av1_num_planes(cm); |
| uint16_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; |
| int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| |
| MACROBLOCKD *const xd = &dcb->xd; |
| av1_setup_obmc_dst_bufs(xd, dst_buf1, dst_buf2); |
| |
| dec_build_prediction_by_above_preds(cm, dcb, dst_buf1, dst_width1, |
| dst_height1, dst_stride1); |
| dec_build_prediction_by_left_preds(cm, dcb, dst_buf2, dst_width2, dst_height2, |
| dst_stride2); |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0, |
| num_planes, &xd->mi[0]->chroma_ref_info); |
| av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2, |
| dst_stride2); |
| } |
| |
| static AOM_INLINE void cfl_store_inter_block(AV1_COMMON *const cm, |
| MACROBLOCKD *const xd) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| if (store_cfl_required(cm, xd) && xd->tree_type == SHARED_PART) { |
| #if CONFIG_IMPROVED_CFL |
| cfl_store_block(xd, mbmi->sb_type[PLANE_TYPE_Y], mbmi->tx_size, |
| cm->seq_params.enable_cfl_ds_filter); |
| #else |
| cfl_store_block(xd, mbmi->sb_type[PLANE_TYPE_Y], mbmi->tx_size); |
| #endif // CONFIG_IMPROVED_CFL |
| } |
| } |
| |
| static AOM_INLINE void predict_inter_block(AV1_COMMON *const cm, |
| DecoderCodingBlock *dcb, |
| BLOCK_SIZE bsize) { |
| MACROBLOCKD *const xd = &dcb->xd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int num_planes = av1_num_planes(cm); |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| #if CONFIG_TIP_REF_PRED_MERGING |
| const int is_compound = |
| has_second_ref(mbmi) || is_tip_ref_frame(mbmi->ref_frame[0]); |
| for (int ref = 0; ref < 1 + is_compound; ++ref) { |
| #else |
| for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| #endif |
| const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; |
| if (frame == INTRA_FRAME) { |
| assert(is_intrabc_block(mbmi, xd->tree_type)); |
| assert(ref == 0); |
| } else { |
| #if CONFIG_TIP_REF_PRED_MERGING |
| const RefCntBuffer *ref_buf = is_tip_ref_frame(mbmi->ref_frame[0]) |
| ? cm->tip_ref.ref_frame_buffer[ref] |
| : get_ref_frame_buf(cm, frame); |
| #else |
| const RefCntBuffer *ref_buf = get_ref_frame_buf(cm, frame); |
| #endif |
| const struct scale_factors *ref_scale_factors = |
| get_ref_scale_factors_const(cm, frame); |
| |
| xd->block_ref_scale_factors[ref] = ref_scale_factors; |
| av1_setup_pre_planes(xd, ref, &ref_buf->buf, mi_row, mi_col, |
| ref_scale_factors, num_planes, |
| &mbmi->chroma_ref_info); |
| } |
| } |
| |
| dec_build_inter_predictor(cm, dcb, mi_row, mi_col, bsize); |
| if (mbmi->motion_mode == OBMC_CAUSAL) { |
| dec_build_obmc_inter_predictors_sb(cm, dcb); |
| } |
| |
| #if CONFIG_MISMATCH_DEBUG |
| const int plane_start = get_partition_plane_start(xd->tree_type); |
| const int plane_end = get_partition_plane_end(xd->tree_type, num_planes); |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| int pixel_c, pixel_r; |
| if (plane && !xd->is_chroma_ref) continue; |
| if (plane) { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, |
| mbmi->chroma_ref_info.mi_col_chroma_base, |
| mbmi->chroma_ref_info.mi_row_chroma_base, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| } else { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| cm->current_frame.display_order_hint, |
| #else |
| cm->current_frame.order_hint, |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| plane, pixel_c, pixel_r, pd->width, pd->height); |
| } |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| #if CONFIG_INSPECTION |
| for (int plane = 0; plane < num_planes; plane++) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dst_stride = pd->dst.stride; |
| const int plane_block_size = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| const int plane_width = mi_size_wide[plane_block_size]; |
| const int plane_height = mi_size_high[plane_block_size]; |
| for (int i = 0; i < plane_height * MI_SIZE; i++) { |
| for (int j = 0; j < plane_width * MI_SIZE; j++) { |
| uint16_t pixel = pd->dst.buf[i * dst_stride + j]; |
| int stride = cm->predicted_pixels.strides[plane > 0]; |
| int pixel_c, pixel_r; |
| if (plane) { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, |
| mbmi->chroma_ref_info.mi_col_chroma_base, |
| mbmi->chroma_ref_info.mi_row_chroma_base, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| } else { |
| mi_to_pixel_loc(&pixel_c, &pixel_r, xd->mi_col, xd->mi_row, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| pixel_c += j; |
| pixel_r += i; |
| cm->predicted_pixels.buffers[plane][pixel_r * stride + pixel_c] = pixel; |
| } |
| } |
| } |
| #endif // CONFIG_INSPECTION |
| } |
| |
| static AOM_INLINE void set_color_index_map_offset(MACROBLOCKD *const xd, |
| int plane, aom_reader *r) { |
| (void)r; |
| Av1ColorMapParam params; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| av1_get_block_dimensions(mbmi->sb_type[plane > 0], plane, xd, |
| ¶ms.plane_width, ¶ms.plane_height, NULL, |
| NULL); |
| xd->color_index_map_offset[plane] += params.plane_width * params.plane_height; |
| } |
| |
| static AOM_INLINE void decode_token_recon_block(AV1Decoder *const pbi, |
| ThreadData *const td, |
| aom_reader *r, |
| PARTITION_TYPE partition, |
| BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &pbi->common; |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| xd->mi[0]->partition = partition; |
| const int plane_start = get_partition_plane_start(xd->tree_type); |
| const int plane_end = |
| get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); |
| if (!is_inter_block(mbmi, xd->tree_type)) { |
| #if CONFIG_LR_IMPROVEMENTS |
| // When row_mt is used, this function can be called with |
| // td->read_coeffs_tx_intra_block_visit == decode_block_void. |
| // In that case do not reset since it will erase previously set |
| // values. |
| if (td->read_coeffs_tx_intra_block_visit != decode_block_void) |
| av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 0, |
| xd->tree_type, &mbmi->chroma_ref_info, |
| plane_start, plane_end); |
| #endif // CONFIG_LR_IMPROVEMENTS |
| int row, col; |
| |
| xd->cfl.use_dc_pred_cache = 0; |
| xd->cfl.dc_pred_is_cached[0] = 0; |
| xd->cfl.dc_pred_is_cached[1] = 0; |
| assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, |
| xd->plane[0].subsampling_y)); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; |
| int mu_blocks_wide = mi_size_wide[max_unit_bsize]; |
| int mu_blocks_high = mi_size_high[max_unit_bsize]; |
| mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); |
| |
| for (row = 0; row < max_blocks_high; row += mu_blocks_high) { |
| for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| #if CONFIG_TX_PARTITION_TYPE_EXT |
| if (plane == AOM_PLANE_Y && !xd->lossless[mbmi->segment_id]) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const BLOCK_SIZE plane_bsize = |
| get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y); |
| const int plane_unit_height = |
| get_plane_tx_unit_height(xd, plane_bsize, plane, row, ss_y); |
| const int plane_unit_width = |
| get_plane_tx_unit_width(xd, plane_bsize, plane, col, ss_x); |
| |
| const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; |
| get_tx_partition_sizes(mbmi->tx_partition_type[0], max_tx_size, |
| &mbmi->txb_pos, mbmi->sub_txs); |
| |
| for (int txb_idx = 0; txb_idx < mbmi->txb_pos.n_partitions; |
| ++txb_idx) { |
| const TX_SIZE tx_size = mbmi->sub_txs[txb_idx]; |
| mbmi->txb_idx = txb_idx; |
| int blk_row = row + mbmi->txb_pos.row_offset[txb_idx]; |
| int blk_col = col + mbmi->txb_pos.col_offset[txb_idx]; |
| |
| if (blk_row >= plane_unit_height || blk_col >= plane_unit_width) |
| continue; |
| |
| td->read_coeffs_tx_intra_block_visit(cm, dcb, r, plane, blk_row, |
| blk_col, tx_size); |
| td->predict_and_recon_intra_block_visit( |
| cm, dcb, r, plane, blk_row, blk_col, tx_size); |
| set_cb_buffer_offsets(dcb, tx_size, plane); |
| } |
| // finish luma coding |
| } else { |
| if (plane && !xd->is_chroma_ref) break; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const BLOCK_SIZE plane_bsize = |
| get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y); |
| const TX_SIZE tx_size = av1_get_tx_size(plane, xd); |
| if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) continue; |
| const int stepr = tx_size_high_unit[tx_size]; |
| const int stepc = tx_size_wide_unit[tx_size]; |
| const int plane_unit_height = |
| get_plane_tx_unit_height(xd, plane_bsize, plane, row, ss_y); |
| const int plane_unit_width = |
| get_plane_tx_unit_width(xd, plane_bsize, plane, col, ss_x); |
| for (int blk_row = row >> ss_y; blk_row < plane_unit_height; |
| blk_row += stepr) { |
| for (int blk_col = col >> ss_x; blk_col < plane_unit_width; |
| blk_col += stepc) { |
| if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) { |
| td->read_coeffs_tx_intra_block_visit( |
| cm, dcb, r, AOM_PLANE_U, blk_row, blk_col, tx_size); |
| td->read_coeffs_tx_intra_block_visit( |
| cm, dcb, r, AOM_PLANE_V, blk_row, blk_col, tx_size); |
| td->inverse_cctx_block_visit(cm, dcb, r, -1, blk_row, blk_col, |
| tx_size); |
| td->predict_and_recon_intra_block_visit( |
| cm, dcb, r, AOM_PLANE_U, blk_row, blk_col, tx_size); |
| td->predict_and_recon_intra_block_visit( |
| cm, dcb, r, AOM_PLANE_V, blk_row, blk_col, tx_size); |
| set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_U); |
| set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_V); |
| } else { |
| assert(plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd)); |
| td->read_coeffs_tx_intra_block_visit( |
| cm, dcb, r, plane, blk_row, blk_col, tx_size); |
| td->predict_and_recon_intra_block_visit( |
| cm, dcb, r, plane, blk_row, blk_col, tx_size); |
| set_cb_buffer_offsets(dcb, tx_size, plane); |
| } |
| } |
| } |
| // finish coding of the chroma components |
| } |
| #else |
| if (plane && !xd->is_chroma_ref) break; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const BLOCK_SIZE plane_bsize = |
| get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y); |
| const TX_SIZE tx_size = av1_get_tx_size(plane, xd); |
| if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) continue; |
| const int stepr = tx_size_high_unit[tx_size]; |
| const int stepc = tx_size_wide_unit[tx_size]; |
| const int plane_unit_height = |
| get_plane_tx_unit_height(xd, plane_bsize, plane, row, ss_y); |
| const int plane_unit_width = |
| get_plane_tx_unit_width(xd, plane_bsize, plane, col, ss_x); |
| for (int blk_row = row >> ss_y; blk_row < plane_unit_height; |
| blk_row += stepr) { |
| for (int blk_col = col >> ss_x; blk_col < plane_unit_width; |
| blk_col += stepc) { |
| if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) { |
| td->read_coeffs_tx_intra_block_visit(cm, dcb, r, AOM_PLANE_U, |
| blk_row, blk_col, tx_size); |
| td->read_coeffs_tx_intra_block_visit(cm, dcb, r, AOM_PLANE_V, |
| blk_row, blk_col, tx_size); |
| td->inverse_cctx_block_visit(cm, dcb, r, -1, blk_row, blk_col, |
| tx_size); |
| td->predict_and_recon_intra_block_visit( |
| cm, dcb, r, AOM_PLANE_U, blk_row, blk_col, tx_size); |
| td->predict_and_recon_intra_block_visit( |
| cm, dcb, r, AOM_PLANE_V, blk_row, blk_col, tx_size); |
| set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_U); |
| set_cb_buffer_offsets(dcb, tx_size, AOM_PLANE_V); |
| } else { |
| assert(plane == AOM_PLANE_Y || !is_cctx_allowed(cm, xd)); |
| td->read_coeffs_tx_intra_block_visit(cm, dcb, r, plane, blk_row, |
| blk_col, tx_size); |
| td->predict_and_recon_intra_block_visit( |
| cm, dcb, r, plane, blk_row, blk_col, tx_size); |
| set_cb_buffer_offsets(dcb, tx_size, plane); |
| } |
| } |
| } |
| #endif // CONFIG_TX_PARTITION_TYPE_EXT |
| } |
| } |
| } |
| } else { |
| #if CONFIG_LR_IMPROVEMENTS |
| // When row_mt is used, this function can be called with |
| // td->read_coeffs_tx_inter_block_visit == decode_block_void. |
| // In that case do not reset since it will erase previously set |
| // values. |
| if (td->read_coeffs_tx_inter_block_visit != decode_block_void) |
| av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 0, |
| xd->tree_type, &mbmi->chroma_ref_info, |
| plane_start, plane_end); |
| #endif // CONFIG_LR_IMPROVEMENTS |
| td->predict_inter_block_visit(cm, dcb, bsize); |
| // Reconstruction |
| if (!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) { |
| int eobtotal = 0; |
| |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| int row, col; |
| |
| const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; |
| assert(max_unit_bsize == |
| get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x, |
| xd->plane[0].subsampling_y)); |
| int mu_blocks_wide = mi_size_wide[max_unit_bsize]; |
| int mu_blocks_high = mi_size_high[max_unit_bsize]; |
| |
| mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high); |
| |
| for (row = 0; row < max_blocks_high; row += mu_blocks_high) { |
| for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) { |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| if (plane && !xd->is_chroma_ref) break; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const BLOCK_SIZE plane_bsize = |
| get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y); |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| assert(plane_bsize == get_plane_block_size(bsize, ss_x, ss_y)); |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| const TX_SIZE max_tx_size = |
| get_vartx_max_txsize(xd, plane_bsize, plane); |
| const int bh_var_tx = tx_size_high_unit[max_tx_size]; |
| const int bw_var_tx = tx_size_wide_unit[max_tx_size]; |
| #if !CONFIG_NEW_TX_PARTITION |
| int block = 0; |
| int step = |
| tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| #endif // !CONFIG_NEW_TX_PARTITION |
| const int plane_unit_height = |
| get_plane_tx_unit_height(xd, plane_bsize, plane, row, ss_y); |
| const int plane_unit_width = |
| get_plane_tx_unit_width(xd, plane_bsize, plane, col, ss_x); |
| |
| for (int blk_row = row >> ss_y; blk_row < plane_unit_height; |
| blk_row += bh_var_tx) { |
| for (int blk_col = col >> ss_x; blk_col < plane_unit_width; |
| blk_col += bw_var_tx) { |
| decode_reconstruct_tx(cm, td, r, mbmi, plane, plane_bsize, |
| blk_row, blk_col, |
| #if !CONFIG_NEW_TX_PARTITION |
| block, |
| #endif // !CONFIG_NEW_TX_PARTITION |
| max_tx_size, &eobtotal); |
| #if !CONFIG_NEW_TX_PARTITION |
| block += step; |
| #endif // !CONFIG_NEW_TX_PARTITION |
| } |
| } |
| } |
| } |
| } |
| } else if (is_cctx_enabled(cm, xd) && xd->is_chroma_ref && |
| xd->tree_type != LUMA_PART) { |
| #if CONFIG_LR_IMPROVEMENTS |
| av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 1, |
| xd->tree_type, &mbmi->chroma_ref_info, |
| plane_start, plane_end); |
| #endif // CONFIG_LR_IMPROVEMENTS |
| // fill cctx_type_map with CCTX_NONE for skip blocks so their |
| // neighbors can derive cctx contexts |
| const struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const BLOCK_SIZE uv_plane_bsize = |
| get_mb_plane_block_size(xd, mbmi, AOM_PLANE_U, ss_x, ss_y); |
| const TX_SIZE max_tx_size = |
| get_vartx_max_txsize(xd, uv_plane_bsize, AOM_PLANE_U); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; |
| int mu_blocks_wide = mi_size_wide[max_unit_bsize]; |
| int mu_blocks_high = mi_size_high[max_unit_bsize]; |
| for (int row = 0; row < max_blocks_high; row += mu_blocks_high) { |
| for (int col = 0; col < max_blocks_wide; col += mu_blocks_wide) { |
| int row_offset, col_offset; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| get_chroma_mi_offsets(xd, &row_offset, &col_offset); |
| #else |
| get_chroma_mi_offsets(xd, max_tx_size, &row_offset, &col_offset); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| update_cctx_array(xd, 0, 0, row_offset, col_offset, max_tx_size, |
| CCTX_NONE); |
| } |
| } |
| } |
| #if CONFIG_LR_IMPROVEMENTS |
| else { |
| av1_init_txk_skip_array(cm, xd->mi_row, xd->mi_col, bsize, 1, |
| xd->tree_type, &mbmi->chroma_ref_info, |
| plane_start, plane_end); |
| } |
| #endif // CONFIG_LR_IMPROVEMENTS |
| td->cfl_store_inter_block_visit(cm, xd); |
| } |
| |
| av1_visit_palette(pbi, xd, r, set_color_index_map_offset); |
| av1_mark_block_as_coded(xd, bsize, cm->sb_size); |
| } |
| |
| #if !CONFIG_TX_PARTITION_TYPE_EXT |
| static AOM_INLINE void set_inter_tx_size(MB_MODE_INFO *mbmi, int stride_log2, |
| int tx_w_log2, int tx_h_log2, |
| int min_txs, int split_size, int txs, |
| int blk_row, int blk_col) { |
| for (int idy = 0; idy < tx_size_high_unit[split_size]; |
| idy += tx_size_high_unit[min_txs]) { |
| for (int idx = 0; idx < tx_size_wide_unit[split_size]; |
| idx += tx_size_wide_unit[min_txs]) { |
| const int index = (((blk_row + idy) >> tx_h_log2) << stride_log2) + |
| ((blk_col + idx) >> tx_w_log2); |
| mbmi->inter_tx_size[index] = txs; |
| } |
| } |
| } |
| #endif |
| |
| #if CONFIG_NEW_TX_PARTITION |
| static TX_SIZE read_tx_partition(MACROBLOCKD *xd, MB_MODE_INFO *mbmi, |
| TX_SIZE max_tx_size, int blk_row, int blk_col, |
| aom_reader *r) { |
| int plane_type = (xd->tree_type == CHROMA_PART); |
| const BLOCK_SIZE bsize = mbmi->sb_type[plane_type]; |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| if (is_inter && (blk_row >= max_blocks_high || blk_col >= max_blocks_wide)) |
| return TX_INVALID; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| #if !CONFIG_TX_PARTITION_CTX |
| const int is_rect = is_rect_tx(max_tx_size); |
| #endif // !CONFIG_TX_PARTITION_CTX |
| const int allow_horz = allow_tx_horz_split(max_tx_size); |
| const int allow_vert = allow_tx_vert_split(max_tx_size); |
| TX_PARTITION_TYPE partition = 0; |
| #if CONFIG_IMPROVEIDTX_CTXS |
| const int is_fsc = (xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART] && |
| plane_type == PLANE_TYPE_Y); |
| #endif // CONFIG_IMPROVEIDTX_CTXS |
| #if CONFIG_TX_PARTITION_CTX |
| #if CONFIG_TX_PARTITION_TYPE_EXT |
| const int bsize_group = size_to_tx_part_group_lookup[bsize]; |
| const int txsize_group = size_to_tx_type_group_lookup[bsize]; |
| int do_partition = 0; |
| if (allow_horz || allow_vert) { |
| aom_cdf_prob *do_partition_cdf = |
| #if CONFIG_IMPROVEIDTX_CTXS |
| ec_ctx->txfm_do_partition_cdf[is_fsc][is_inter][bsize_group]; |
| #else |
| ec_ctx->txfm_do_partition_cdf[is_inter][bsize_group]; |
| #endif // CONFIG_IMPROVEIDTX_CTXS |
| do_partition = |
| aom_read_symbol(r, do_partition_cdf, 2, ACCT_INFO("do_partition")); |
| } |
| |
| if (do_partition) { |
| if (allow_horz && allow_vert) { |
| // Read 4way tree type |
| assert(txsize_group > 0); |
| aom_cdf_prob *partition_type_cdf = |
| #if CONFIG_IMPROVEIDTX_CTXS |
| ec_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter] |
| [txsize_group - 1]; |
| #else |
| ec_ctx->txfm_4way_partition_type_cdf[is_inter][txsize_group - 1]; |
| #endif // CONFIG_IMPROVEIDTX_CTXS |
| const TX_PARTITION_TYPE partition_type = |
| aom_read_symbol(r, partition_type_cdf, TX_PARTITION_TYPE_NUM, |
| ACCT_INFO("partition_type")); |
| partition = partition_type + 1; |
| } else if (txsize_group) { |
| aom_cdf_prob *partition_type_cdf = |
| #if CONFIG_IMPROVEIDTX_CTXS |
| ec_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter] |
| [txsize_group - 1]; |
| #else |
| ec_ctx->txfm_4way_partition_type_cdf[is_inter][txsize_group - 1]; |
| #endif // CONFIG_IMPROVEIDTX_CTXS |
| const TX_PARTITION_TYPE partition_type = |
| aom_read_symbol(r, partition_type_cdf, TX_PARTITION_TYPE_NUM, |
| ACCT_INFO("partition_type")); |
| |
| if (allow_horz) { |
| switch (partition_type) { |
| case 0: partition = TX_PARTITION_HORZ; break; |
| case 1: partition = TX_PARTITION_HORZ_M; break; |
| default: assert(0); break; |
| } |
| } else { |
| switch (partition_type) { |
| case 0: partition = TX_PARTITION_VERT; break; |
| case 1: partition = TX_PARTITION_VERT_M; break; |
| default: assert(0); break; |
| } |
| } |
| } else { |
| partition = allow_horz ? TX_PARTITION_HORZ : TX_PARTITION_VERT; |
| } |
| } else { |
| partition = TX_PARTITION_NONE; |
| } |
| #else |
| const int bsize_group = size_to_tx_part_group_lookup[bsize]; |
| int do_partition = 0; |
| if (allow_horz || allow_vert) { |
| aom_cdf_prob *do_partition_cdf = |
| #if CONFIG_IMPROVEIDTX_CTXS |
| ec_ctx->txfm_do_partition_cdf[is_fsc][is_inter][bsize_group]; |
| #else |
| ec_ctx->txfm_do_partition_cdf[is_inter][bsize_group]; |
| #endif // CONFIG_IMPROVEIDTX_CTXS |
| do_partition = |
| aom_read_symbol(r, do_partition_cdf, 2, ACCT_INFO("do_partition")); |
| } |
| |
| if (do_partition) { |
| if (allow_horz && allow_vert) { |
| // Read 4way tree type |
| assert(bsize_group > 0); |
| aom_cdf_prob *partition_type_cdf = |
| #if CONFIG_IMPROVEIDTX_CTXS |
| ec_ctx |
| ->txfm_4way_partition_type_cdf[is_fsc][is_inter][bsize_group - 1]; |
| #else |
| ec_ctx->txfm_4way_partition_type_cdf[is_inter][bsize_group - 1]; |
| #endif // CONFIG_IMPROVEIDTX_CTXS |
| const TX_PARTITION_TYPE partition_type = aom_read_symbol( |
| r, partition_type_cdf, 3, ACCT_INFO("partition_type")); |
| partition = partition_type + 1; |
| } else { |
| /* |
| If only one split type (horizontal or vertical) is allowed for this |
| block, then derive parition type based on the allowed split type |
| (horizontal or vertical). |
| */ |
| partition = allow_horz ? TX_PARTITION_HORZ : TX_PARTITION_VERT; |
| } |
| } else { |
| partition = TX_PARTITION_NONE; |
| } |
| #endif // CONFIG_TX_PARTITION_TYPE_EXT |
| #else |
| /* |
| If both horizontal and vertical splits are allowed for this block, |
| first signal using a 4 way tree to indicate TX_PARTITION_NONE, |
| TX_PARTITION_SPLIT, TX_PARTITION_HORZ or TX_PARTITION_VERT. If the |
| actual tx partition type is HORZ4 or VERT4, we read an additional |
| bit to indicate to split further. |
| */ |
| if (allow_horz && allow_vert) { |
| // Read 4way tree type |
| const int split4_ctx = |
| is_inter ? txfm_partition_split4_inter_context( |
| xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, bsize, max_tx_size) |
| : get_tx_size_context(xd); |
| aom_cdf_prob *split4_cdf = |
| is_inter ? ec_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx] |
| : ec_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx]; |
| const TX_PARTITION_TYPE split4_partition = |
| aom_read_symbol(r, split4_cdf, 4, ACCT_INFO("split4_partition")); |
| partition = split4_partition; |
| |
| /* |
| If only one split type (horizontal or vertical) is allowed for this block, |
| first signal a bit indicating whether there is any split at all. If |
| the partition has a split, and this block is able to be split further, |
| we send a second bit to indicate if the type should be HORZ4 or VERT4. |
| */ |
| } else if (allow_horz || allow_vert) { |
| // Read bit to indicate if there is any split at all |
| aom_cdf_prob *split2_cdf = is_inter ? ec_ctx->inter_2way_txfm_partition_cdf |
| : ec_ctx->intra_2way_txfm_partition_cdf; |
| const int has_first_split = |
| aom_read_symbol(r, split2_cdf, 2, ACCT_INFO("has_first_split")); |
| partition = has_first_split |
| ? (allow_horz ? TX_PARTITION_HORZ : TX_PARTITION_VERT) |
| : TX_PARTITION_NONE; |
| } else { |
| assert(!allow_horz && !allow_vert); |
| partition = TX_PARTITION_NONE; |
| } |
| #endif // CONFIG_TX_PARTITION_CTX |
| #if CONFIG_TX_PARTITION_TYPE_EXT |
| TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; |
| int num_txfm_blocks = |
| get_tx_partition_sizes(partition, max_tx_size, &mbmi->txb_pos, sub_txs); |
| mbmi->tx_size = sub_txs[num_txfm_blocks - 1]; |
| int index = is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0; |
| mbmi->tx_partition_type[index] = partition; |
| if (is_inter) { |
| mbmi->inter_tx_size[index] = mbmi->tx_size; |
| #if !CONFIG_TX_PARTITION_CTX |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, mbmi->tx_size, |
| max_tx_size); |
| #endif // !CONFIG_TX_PARTITION_CTX |
| } |
| |
| return sub_txs[num_txfm_blocks - 1]; |
| #else |
| TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; |
| get_tx_partition_sizes(partition, max_tx_size, sub_txs); |
| // TODO(sarahparker) This assumes all of the tx sizes in the partition |
| // scheme are the same size. This will need to be adjusted to deal with the |
| // case where they can be different. |
| mbmi->tx_size = sub_txs[0]; |
| const int index = |
| is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0; |
| mbmi->tx_partition_type[index] = partition; |
| if (is_inter) { |
| const TX_SIZE txs = sub_tx_size_map[max_txsize_rect_lookup[bsize]]; |
| const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; |
| const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; |
| const int bw_log2 = mi_size_wide_log2[bsize]; |
| const int stride_log2 = bw_log2 - tx_w_log2; |
| set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, max_tx_size, |
| mbmi->tx_size, blk_row, blk_col); |
| #if !CONFIG_TX_PARTITION_CTX |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, mbmi->tx_size, |
| max_tx_size); |
| #endif // !CONFIG_TX_PARTITION_CTX |
| } |
| return sub_txs[0]; |
| #endif // CONFIG_TX_PARTITION_TYPE_EXT |
| } |
| #else |
| static AOM_INLINE void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi, |
| TX_SIZE tx_size, int depth, |
| #if CONFIG_LPF_MASK |
| AV1_COMMON *cm, int mi_row, |
| int mi_col, int store_bitmask, |
| #endif |
| int blk_row, int blk_col, |
| aom_reader *r) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| int is_split = 0; |
| int plane_type = (xd->tree_type == CHROMA_PART); |
| const BLOCK_SIZE bsize = mbmi->sb_type[plane_type]; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| assert(tx_size > TX_4X4); |
| TX_SIZE txs = max_txsize_rect_lookup[bsize]; |
| for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level) |
| txs = sub_tx_size_map[txs]; |
| const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2; |
| const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2; |
| const int bw_log2 = mi_size_wide_log2[bsize]; |
| const int stride_log2 = bw_log2 - tx_w_log2; |
| |
| if (depth == MAX_VARTX_DEPTH) { |
| set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, |
| tx_size, blk_row, blk_col); |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| return; |
| } |
| const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, |
| mbmi->sb_type[plane_type], tx_size); |
| is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, |
| ACCT_INFO("is_split")); |
| |
| if (is_split) { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| |
| if (sub_txs == TX_4X4) { |
| set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, |
| sub_txs, blk_row, blk_col); |
| mbmi->tx_size = sub_txs; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, sub_txs, tx_size); |
| #if CONFIG_LPF_MASK |
| if (store_bitmask) { |
| av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, |
| txsize_to_bsize[tx_size], TX_4X4, mbmi); |
| } |
| #endif |
| return; |
| } |
| #if CONFIG_LPF_MASK |
| if (depth + 1 == MAX_VARTX_DEPTH && store_bitmask) { |
| av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, |
| txsize_to_bsize[tx_size], sub_txs, mbmi); |
| store_bitmask = 0; |
| } |
| #endif |
| |
| assert(bsw > 0 && bsh > 0); |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| int offsetr = blk_row + row; |
| int offsetc = blk_col + col; |
| read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, |
| #if CONFIG_LPF_MASK |
| cm, mi_row, mi_col, store_bitmask, |
| #endif |
| offsetr, offsetc, r); |
| } |
| } |
| } else { |
| set_inter_tx_size(mbmi, stride_log2, tx_w_log2, tx_h_log2, txs, tx_size, |
| tx_size, blk_row, blk_col); |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| #if CONFIG_LPF_MASK |
| if (store_bitmask) { |
| av1_store_bitmask_vartx(cm, mi_row + blk_row, mi_col + blk_col, |
| txsize_to_bsize[tx_size], tx_size, mbmi); |
| } |
| #endif |
| } |
| } |
| |
| static TX_SIZE read_selected_tx_size(const MACROBLOCKD *const xd, |
| aom_reader *r) { |
| // TODO(debargha): Clean up the logic here. This function should only |
| // be called for intra. |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]; |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| const int max_depths = bsize_to_max_depth(bsize); |
| const int ctx = get_tx_size_context(xd); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx], |
| max_depths + 1, ACCT_INFO("depth")); |
| assert(depth >= 0 && depth <= max_depths); |
| const TX_SIZE tx_size = depth_to_tx_size(depth, bsize); |
| return tx_size; |
| } |
| #endif // CONFIG_NEW_TX_PARTITION |
| |
| static TX_SIZE read_tx_size(MACROBLOCKD *xd, TX_MODE tx_mode, int is_inter, |
| int allow_select_inter, aom_reader *r) { |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]; |
| if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4; |
| |
| if (block_signals_txsize(bsize)) { |
| if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) { |
| #if CONFIG_NEW_TX_PARTITION |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; |
| return read_tx_partition(xd, mbmi, max_tx_size, 0, 0, r); |
| #else |
| const TX_SIZE coded_tx_size = read_selected_tx_size(xd, r); |
| return coded_tx_size; |
| #endif // CONFIG_NEW_TX_PARTITION |
| } else { |
| return tx_size_from_tx_mode(bsize, tx_mode); |
| } |
| } else { |
| assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4)); |
| return max_txsize_rect_lookup[bsize]; |
| } |
| } |
| |
| static AOM_INLINE void parse_decode_block(AV1Decoder *const pbi, |
| ThreadData *const td, int mi_row, |
| int mi_col, aom_reader *r, |
| PARTITION_TYPE partition, |
| BLOCK_SIZE bsize, |
| PARTITION_TREE *parent, int index) { |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| decode_mbmi_block(pbi, dcb, mi_row, mi_col, r, partition, bsize, parent, |
| index); |
| |
| av1_visit_palette(pbi, xd, r, av1_decode_palette_tokens); |
| |
| AV1_COMMON *cm = &pbi->common; |
| const int num_planes = av1_num_planes(cm); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| int inter_block_tx = is_inter_block(mbmi, xd->tree_type) || |
| is_intrabc_block(mbmi, xd->tree_type); |
| if (xd->tree_type != CHROMA_PART) { |
| #if CONFIG_TX_PARTITION_TYPE_EXT |
| memset(mbmi->tx_partition_type, TX_PARTITION_NONE, |
| sizeof(mbmi->tx_partition_type)); |
| #endif // CONFIG_TX_PARTITION_TYPE_EXT |
| if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && |
| !mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && inter_block_tx && |
| !xd->lossless[mbmi->segment_id]) { |
| const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| const int width = mi_size_wide[bsize]; |
| const int height = mi_size_high[bsize]; |
| |
| for (int idy = 0; idy < height; idy += bh) |
| for (int idx = 0; idx < width; idx += bw) |
| #if CONFIG_NEW_TX_PARTITION |
| read_tx_partition(xd, mbmi, max_tx_size, idy, idx, r); |
| #else |
| read_tx_size_vartx(xd, mbmi, max_tx_size, 0, |
| #if CONFIG_LPF_MASK |
| cm, mi_row, mi_col, 1, |
| #endif |
| idy, idx, r); |
| #endif // CONFIG_NEW_TX_PARTITION |
| } else { |
| mbmi->tx_size = |
| read_tx_size(xd, cm->features.tx_mode, inter_block_tx, |
| !mbmi->skip_txfm[xd->tree_type == CHROMA_PART], r); |
| if (inter_block_tx) |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| #if !CONFIG_TX_PARTITION_CTX |
| set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, |
| mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && |
| is_inter_block(mbmi, xd->tree_type), |
| xd); |
| #endif // !CONFIG_TX_PARTITION_CTX |
| #if CONFIG_LPF_MASK |
| const int w = mi_size_wide[bsize]; |
| const int h = mi_size_high[bsize]; |
| if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) { |
| av1_store_bitmask_univariant_tx(cm, mi_row, mi_col, bsize, mbmi); |
| } else { |
| for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) { |
| for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) { |
| av1_store_bitmask_univariant_tx(cm, mi_row + row, mi_col + col, |
| BLOCK_64X64, mbmi); |
| } |
| } |
| } |
| #endif |
| } |
| } |
| #if CONFIG_LPF_MASK |
| const int w = mi_size_wide[bsize]; |
| const int h = mi_size_high[bsize]; |
| if (w <= mi_size_wide[BLOCK_64X64] && h <= mi_size_high[BLOCK_64X64]) { |
| av1_store_bitmask_other_info(cm, mi_row, mi_col, bsize, mbmi, 1, 1); |
| } else { |
| for (int row = 0; row < h; row += mi_size_high[BLOCK_64X64]) { |
| for (int col = 0; col < w; col += mi_size_wide[BLOCK_64X64]) { |
| av1_store_bitmask_other_info(cm, mi_row + row, mi_col + col, |
| BLOCK_64X64, mbmi, row == 0, col == 0); |
| } |
| } |
| } |
| #endif |
| |
| if (cm->delta_q_info.delta_q_present_flag) { |
| for (int i = 0; i < MAX_SEGMENTS; i++) { |
| const int current_qindex = av1_get_qindex( |
| &cm->seg, i, xd->current_base_qindex, cm->seq_params.bit_depth); |
| |
| const CommonQuantParams *const quant_params = &cm->quant_params; |
| for (int j = 0; j < num_planes; ++j) { |
| const int dc_delta_q = j == 0 ? quant_params->y_dc_delta_q |
| : (j == 1 ? quant_params->u_dc_delta_q |
| : quant_params->v_dc_delta_q); |
| const int ac_delta_q = j == 0 ? 0 |
| : (j == 1 ? quant_params->u_ac_delta_q |
| : quant_params->v_ac_delta_q); |
| xd->plane[j].seg_dequant_QTX[i][0] = |
| av1_dc_quant_QTX(current_qindex, dc_delta_q, |
| j == 0 ? cm->seq_params.base_y_dc_delta_q |
| : cm->seq_params.base_uv_dc_delta_q, |
| cm->seq_params.bit_depth); |
| xd->plane[j].seg_dequant_QTX[i][1] = av1_ac_quant_QTX( |
| current_qindex, ac_delta_q, cm->seq_params.bit_depth); |
| } |
| } |
| } |
| |
| assert(bsize == mbmi->sb_type[av1_get_sdp_idx(xd->tree_type)]); |
| if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) |
| av1_reset_entropy_context(xd, bsize, num_planes); |
| decode_token_recon_block(pbi, td, r, partition, bsize); |
| |
| #if CONFIG_REFINED_MVS_IN_TMVP |
| if (!frame_is_intra_only(cm) && |
| cm->seq_params.order_hint_info.enable_ref_frame_mvs) { |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| if (opfl_allowed_for_cur_block(cm, mi) |
| #if CONFIG_REFINEMV |
| || (mi->refinemv_flag && mi->interinter_comp.type == COMPOUND_AVERAGE) |
| #endif // CONFIG_REFINEMV |
| ) { |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| const int x_inside_boundary = AOMMIN(bw, cm->mi_params.mi_cols - mi_col); |
| const int y_inside_boundary = AOMMIN(bh, cm->mi_params.mi_rows - mi_row); |
| av1_copy_frame_refined_mvs(cm, xd, mi, xd->mi_row, xd->mi_col, |
| x_inside_boundary, y_inside_boundary); |
| } |
| } |
| #endif // CONFIG_REFINED_MVS_IN_TMVP |
| |
| if (xd->tree_type != SHARED_PART) { |
| const int bh = mi_size_high[bsize]; |
| const int bw = mi_size_wide[bsize]; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int x_inside_boundary = AOMMIN(bw, mi_params->mi_cols - mi_col); |
| const int y_inside_boundary = AOMMIN(bh, mi_params->mi_rows - mi_row); |
| int idx = mi_params->mi_stride; |
| assert(x_inside_boundary && y_inside_boundary); |
| if (xd->tree_type != CHROMA_PART) { |
| for (int y = 0; y < y_inside_boundary; ++y) { |
| for (int x = 0; x < x_inside_boundary; ++x) { |
| if (x == 0 && y == 0) continue; |
| set_blk_offsets(mi_params, xd, mi_row, mi_col, y, x); |
| *(xd->mi[y * idx + x]) = *(xd->mi[0]); |
| } |
| } |
| } else { |
| assert(x_inside_boundary && y_inside_boundary); |
| for (int y = 0; y < y_inside_boundary; ++y) { |
| for (int x = 0; x < x_inside_boundary; ++x) { |
| if (x == 0 && y == 0) continue; |
| set_blk_offsets(mi_params, xd, mi_row, mi_col, y, x); |
| xd->mi[y * idx + x]->sb_type[PLANE_TYPE_UV] = |
| xd->mi[0]->sb_type[PLANE_TYPE_UV]; |
| xd->mi[y * idx + x]->uv_mode = xd->mi[0]->uv_mode; |
| xd->mi[y * idx + x]->angle_delta[PLANE_TYPE_UV] = |
| xd->mi[0]->angle_delta[PLANE_TYPE_UV]; |
| if (av1_allow_palette(cm->features.allow_screen_content_tools, |
| bsize)) { |
| xd->mi[y * idx + x]->palette_mode_info.palette_size[PLANE_TYPE_UV] = |
| xd->mi[0]->palette_mode_info.palette_size[PLANE_TYPE_UV]; |
| for (int i = PALETTE_MAX_SIZE; i < 3 * PALETTE_MAX_SIZE; i++) |
| xd->mi[y * idx + x]->palette_mode_info.palette_colors[i] = |
| xd->mi[0]->palette_mode_info.palette_colors[i]; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void set_offsets_for_pred_and_recon(AV1Decoder *const pbi, |
| ThreadData *const td, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &pbi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| const int num_planes = av1_num_planes(cm); |
| |
| const int offset = mi_row * mi_params->mi_stride + mi_col; |
| const TileInfo *const tile = &xd->tile; |
| |
| xd->mi = mi_params->mi_grid_base + offset; |
| xd->tx_type_map = |
| &mi_params->tx_type_map[mi_row * mi_params->mi_stride + mi_col]; |
| xd->tx_type_map_stride = mi_params->mi_stride; |
| xd->cctx_type_map = |
| &mi_params->cctx_type_map[mi_row * mi_params->mi_stride + mi_col]; |
| xd->cctx_type_map_stride = mi_params->mi_stride; |
| |
| // It is assumed that CHROMA_REF_INFO is already set (during parsing stage). |
| CHROMA_REF_INFO *chroma_ref_info = &xd->mi[0]->chroma_ref_info; |
| set_plane_n4(xd, bw, bh, num_planes, chroma_ref_info); |
| |
| // Distance of Mb to the various image edges. These are specified to 8th pel |
| // as they are always compared to values that are in 1/8th pel units |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, |
| mi_params->mi_cols, chroma_ref_info); |
| |
| av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, mi_row, mi_col, 0, |
| num_planes, chroma_ref_info); |
| } |
| |
| static AOM_INLINE void decode_block(AV1Decoder *const pbi, ThreadData *const td, |
| int mi_row, int mi_col, aom_reader *r, |
| PARTITION_TYPE partition, BLOCK_SIZE bsize, |
| PARTITION_TREE *parent, int index) { |
| (void)partition; |
| (void)parent; |
| (void)index; |
| set_offsets_for_pred_and_recon(pbi, td, mi_row, mi_col, bsize); |
| decode_token_recon_block(pbi, td, r, partition, bsize); |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| /*!\brief Maps (ext_part, 4way, 4way_type, rect_type) to partition_type. */ |
| static PARTITION_TYPE |
| rect_part_table[2][2][NUM_UNEVEN_4WAY_PARTS][NUM_RECT_PARTS] = { |
| { |
| // !do_ext_partition |
| { |
| // !do_4way |
| { // UNEVEN_4A |
| PARTITION_HORZ, PARTITION_VERT }, |
| { // UNEVEN_4B |
| PARTITION_HORZ, PARTITION_VERT }, |
| }, |
| { |
| // do_4way |
| { // UNEVEN_4A |
| PARTITION_HORZ, PARTITION_VERT }, |
| { // UNEVEN_4B |
| PARTITION_HORZ, PARTITION_VERT }, |
| }, |
| }, |
| { |
| // do_ext_partition |
| { |
| // !do_4way |
| { // UNEVEN_4A |
| PARTITION_HORZ_3, PARTITION_VERT_3 }, |
| { // UNEVEN_4B |
| PARTITION_HORZ_3, PARTITION_VERT_3 }, |
| }, |
| { |
| // do_4way |
| { // UNEVEN_4A |
| PARTITION_HORZ_4A, PARTITION_VERT_4A }, |
| { // UNEVEN_4B |
| PARTITION_HORZ_4B, PARTITION_VERT_4B }, |
| }, |
| }, |
| }; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| static PARTITION_TYPE read_partition(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, int mi_row, int mi_col, |
| aom_reader *r, int has_rows, int has_cols, |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const PARTITION_TREE *ptree, |
| const PARTITION_TREE *ptree_luma, |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| BLOCK_SIZE bsize) { |
| const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| (void)has_rows; |
| (void)has_cols; |
| const int plane = xd->tree_type == CHROMA_PART; |
| const int ssx = cm->seq_params.subsampling_x; |
| const int ssy = cm->seq_params.subsampling_y; |
| const PARTITION_TYPE derived_partition = |
| av1_get_normative_forced_partition_type( |
| &cm->mi_params, xd->tree_type, ssx, ssy, mi_row, mi_col, bsize, |
| #if CONFIG_CB1TO4_SPLIT |
| ptree->parent ? ptree->parent->bsize : BLOCK_INVALID, |
| #endif // CONFIG_CB1TO4_SPLIT |
| ptree_luma, &ptree->chroma_ref_info); |
| if (derived_partition != PARTITION_INVALID) { |
| return derived_partition; |
| } |
| |
| const bool do_split = aom_read_symbol(r, ec_ctx->do_split_cdf[plane][ctx], 2, |
| ACCT_INFO("do_split")); |
| if (!do_split) { |
| return PARTITION_NONE; |
| } |
| #if CONFIG_BLOCK_256 |
| const int square_split_ctx = square_split_context(xd, mi_row, mi_col, bsize); |
| if (is_square_split_eligible(bsize, cm->sb_size)) { |
| const bool do_square_split = |
| aom_read_symbol(r, ec_ctx->do_square_split_cdf[plane][square_split_ctx], |
| 2, ACCT_INFO("do_square_split")); |
| if (do_square_split) { |
| return PARTITION_SPLIT; |
| } |
| } |
| #endif // CONFIG_BLOCK_256 |
| |
| RECT_PART_TYPE rect_type = rect_type_implied_by_bsize(bsize, xd->tree_type); |
| if (rect_type == RECT_INVALID) { |
| rect_type = aom_read_symbol(r, ec_ctx->rect_type_cdf[plane][ctx], |
| NUM_RECT_PARTS, ACCT_INFO("rect_type")); |
| } |
| |
| bool do_ext_partition = false; |
| bool do_uneven_4way_partition = false; |
| UNEVEN_4WAY_PART_TYPE uneven_4way_partition_type = UNEVEN_4A; |
| |
| const bool ext_partition_allowed = |
| cm->seq_params.enable_ext_partitions && |
| is_ext_partition_allowed(bsize, rect_type, xd->tree_type); |
| if (ext_partition_allowed) { |
| do_ext_partition = |
| aom_read_symbol(r, ec_ctx->do_ext_partition_cdf[plane][rect_type][ctx], |
| 2, ACCT_INFO("do_ext_partition")); |
| if (do_ext_partition) { |
| const bool uneven_4way_partition_allowed = |
| is_uneven_4way_partition_allowed(bsize, rect_type, xd->tree_type); |
| if (uneven_4way_partition_allowed) { |
| do_uneven_4way_partition = aom_read_symbol( |
| r, ec_ctx->do_uneven_4way_partition_cdf[plane][rect_type][ctx], 2, |
| ACCT_INFO("do_uneven_4way_partition")); |
| if (do_uneven_4way_partition) { |
| uneven_4way_partition_type = aom_read_symbol( |
| r, ec_ctx->uneven_4way_partition_type_cdf[plane][rect_type][ctx], |
| NUM_UNEVEN_4WAY_PARTS, ACCT_INFO("uneven_4way_partition_type")); |
| } |
| } |
| } |
| } |
| return rect_part_table[do_ext_partition][do_uneven_4way_partition] |
| [uneven_4way_partition_type][rect_type]; |
| #else // !CONFIG_EXT_RECUR_PARTITIONS |
| if (!has_rows && !has_cols) return PARTITION_SPLIT; |
| |
| const int plane = xd->tree_type == CHROMA_PART; |
| if (plane == 1 && bsize == BLOCK_8X8) { |
| return PARTITION_NONE; |
| } |
| int parent_block_width = block_size_wide[bsize]; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| if (plane && parent_block_width >= SHARED_PART_SIZE) { |
| int luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col); |
| // if luma blocks uses smaller blocks, then chroma will also split |
| if (luma_split_flag > 3) return PARTITION_SPLIT; |
| } |
| |
| assert(ctx >= 0); |
| aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[plane][ctx]; |
| if (has_rows && has_cols) { |
| return (PARTITION_TYPE)aom_read_symbol(r, partition_cdf, |
| partition_cdf_length(bsize), |
| ACCT_INFO("partition_cdf")); |
| } else if (!has_rows && has_cols) { |
| assert(bsize > BLOCK_8X8); |
| aom_cdf_prob cdf[2]; |
| partition_gather_vert_alike(cdf, partition_cdf, bsize); |
| assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); |
| return aom_read_cdf(r, cdf, 2, ACCT_INFO("partition_cdf")) ? PARTITION_SPLIT |
| : PARTITION_HORZ; |
| } else { |
| assert(has_rows && !has_cols); |
| assert(bsize > BLOCK_8X8); |
| aom_cdf_prob cdf[2]; |
| partition_gather_horz_alike(cdf, partition_cdf, bsize); |
| assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP)); |
| return aom_read_cdf(r, cdf, 2, ACCT_INFO("partition_cdf")) ? PARTITION_SPLIT |
| : PARTITION_VERT; |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| |
| // Set the superblock level parameters |
| static void set_sb_mv_precision(SB_INFO *sbi, AV1Decoder *const pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| sbi->sb_mv_precision = cm->features.fr_mv_precision; |
| } |
| |
| // TODO(slavarnway): eliminate bsize and subsize in future commits |
| static AOM_INLINE void decode_partition(AV1Decoder *const pbi, |
| ThreadData *const td, int mi_row, |
| int mi_col, aom_reader *reader, |
| BLOCK_SIZE bsize, SB_INFO *sbi, |
| PARTITION_TREE *ptree, |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const PARTITION_TREE *ptree_luma, |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| int parse_decode_flag) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| AV1_COMMON *const cm = &pbi->common; |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| const int ss_x = xd->plane[1].subsampling_x; |
| const int ss_y = xd->plane[1].subsampling_y; |
| // Half block width/height. |
| const int hbs_w = mi_size_wide[bsize] / 2; |
| const int hbs_h = mi_size_high[bsize] / 2; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| // One-eighth block width/height. |
| const int ebs_w = mi_size_wide[bsize] / 8; |
| const int ebs_h = mi_size_high[bsize] / 8; |
| #else |
| // Quarter block width/height. |
| const int qbs_w = mi_size_wide[bsize] / 4; |
| const int qbs_h = mi_size_high[bsize] / 4; |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| PARTITION_TYPE partition; |
| const int has_rows = (mi_row + hbs_h) < cm->mi_params.mi_rows; |
| const int has_cols = (mi_col + hbs_w) < cm->mi_params.mi_cols; |
| |
| if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) |
| return; |
| |
| // parse_decode_flag takes the following values : |
| // 01 - do parse only |
| // 10 - do decode only |
| // 11 - do parse and decode |
| static const block_visitor_fn_t block_visit[4] = { NULL, parse_decode_block, |
| decode_block, |
| parse_decode_block }; |
| const int is_sb_root = bsize == cm->sb_size; |
| |
| if (parse_decode_flag & 1) { |
| if (is_sb_root) { |
| set_sb_mv_precision(sbi, pbi); |
| } |
| const int plane_start = get_partition_plane_start(xd->tree_type); |
| const int plane_end = |
| get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| int rcol0, rcol1, rrow0, rrow1; |
| if ((cm->rst_info[plane].frame_restoration_type != RESTORE_NONE) && |
| av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, |
| &rcol0, &rcol1, &rrow0, &rrow1)) { |
| const int rstride = cm->rst_info[plane].horz_units_per_tile; |
| for (int rrow = rrow0; rrow < rrow1; ++rrow) { |
| for (int rcol = rcol0; rcol < rcol1; ++rcol) { |
| const int runit_idx = rcol + rrow * rstride; |
| loop_restoration_read_sb_coeffs(cm, xd, reader, plane, runit_idx); |
| } |
| } |
| } |
| } |
| |
| ptree->bsize = bsize; |
| ptree->mi_row = mi_row; |
| ptree->mi_col = mi_col; |
| ptree->is_settled = 1; |
| PARTITION_TREE *parent = ptree->parent; |
| const BLOCK_SIZE parent_bsize = parent ? parent->bsize : BLOCK_INVALID; |
| set_chroma_ref_info( |
| xd->tree_type, mi_row, mi_col, ptree->index, bsize, |
| &ptree->chroma_ref_info, parent ? &parent->chroma_ref_info : NULL, |
| parent_bsize, parent ? parent->partition : PARTITION_NONE, ss_x, ss_y); |
| |
| partition = |
| !is_partition_point(bsize |
| #if CONFIG_CB1TO4_SPLIT |
| , |
| parent_bsize |
| #endif // CONFIG_CB1TO4_SPLIT |
| ) |
| ? PARTITION_NONE |
| : read_partition(cm, xd, mi_row, mi_col, reader, has_rows, has_cols, |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| ptree, ptree_luma, |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| bsize); |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| if (!is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, |
| bsize)) { |
| ptree_luma = NULL; |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| ptree->partition = partition; |
| |
| switch (partition) { |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_HORZ_4A: |
| case PARTITION_HORZ_4B: |
| case PARTITION_VERT_4A: |
| case PARTITION_VERT_4B: |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_SPLIT: |
| ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); |
| ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); |
| ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2); |
| ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3); |
| break; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_HORZ: |
| case PARTITION_VERT: |
| ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); |
| ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); |
| break; |
| case PARTITION_HORZ_3: |
| case PARTITION_VERT_3: |
| ptree->sub_tree[0] = av1_alloc_ptree_node(ptree, 0); |
| ptree->sub_tree[1] = av1_alloc_ptree_node(ptree, 1); |
| ptree->sub_tree[2] = av1_alloc_ptree_node(ptree, 2); |
| ptree->sub_tree[3] = av1_alloc_ptree_node(ptree, 3); |
| break; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| default: break; |
| } |
| } else { |
| partition = ptree->partition; |
| } |
| |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| if (subsize == BLOCK_INVALID) { |
| aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Partition %d is invalid for block size %dx%d", |
| partition, block_size_wide[bsize], |
| block_size_high[bsize]); |
| assert(0); |
| } |
| // Check the bitstream is conformant: if there is subsampling on the |
| // chroma planes, subsize must subsample to a valid block size. |
| const struct macroblockd_plane *const pd_u = &xd->plane[1]; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| BLOCK_SIZE test_subsize = subsize; |
| if (xd->tree_type == SHARED_PART) { |
| const PARTITION_TREE *parent = ptree; |
| CHROMA_REF_INFO chroma_ref_info; |
| const int index = |
| (partition == PARTITION_HORZ || partition == PARTITION_VERT) ? 1 : 0; |
| set_chroma_ref_info(xd->tree_type, mi_row, mi_col, index, subsize, |
| &chroma_ref_info, |
| parent ? &parent->chroma_ref_info : NULL, |
| parent ? parent->bsize : BLOCK_INVALID, |
| parent ? parent->partition : PARTITION_NONE, |
| xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); |
| test_subsize = chroma_ref_info.bsize_base; |
| assert(test_subsize != BLOCK_INVALID); |
| } |
| if (xd->tree_type != LUMA_PART && |
| get_plane_block_size(test_subsize, pd_u->subsampling_x, |
| pd_u->subsampling_y) == BLOCK_INVALID) { |
| aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Block size %dx%d invalid with this subsampling mode", |
| block_size_wide[test_subsize], |
| block_size_high[test_subsize]); |
| } |
| #else |
| if (get_plane_block_size(subsize, pd_u->subsampling_x, pd_u->subsampling_y) == |
| BLOCK_INVALID) { |
| aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Block size %dx%d invalid with this subsampling mode", |
| block_size_wide[subsize], block_size_high[subsize]); |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| #define DEC_BLOCK_STX_ARG |
| #define DEC_BLOCK_EPT_ARG partition, |
| #define DEC_BLOCK(db_r, db_c, db_subsize, index) \ |
| block_visit[parse_decode_flag](pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), \ |
| reader, DEC_BLOCK_EPT_ARG(db_subsize), ptree, \ |
| index) |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| #define DEC_PARTITION(db_r, db_c, db_subsize, index) \ |
| decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \ |
| (db_subsize), sbi, ptree->sub_tree[(index)], \ |
| get_partition_subtree_const(ptree_luma, index), \ |
| parse_decode_flag) |
| #else |
| #define DEC_PARTITION(db_r, db_c, db_subsize, index) \ |
| decode_partition(pbi, td, DEC_BLOCK_STX_ARG(db_r), (db_c), reader, \ |
| (db_subsize), sbi, ptree->sub_tree[(index)], \ |
| parse_decode_flag) |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| const BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| |
| switch (partition) { |
| case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize, 0); break; |
| case PARTITION_HORZ: |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| DEC_PARTITION(mi_row, mi_col, subsize, 0); |
| if ((mi_row + hbs_h) < cm->mi_params.mi_rows) |
| DEC_PARTITION(mi_row + hbs_h, mi_col, subsize, 1); |
| #else |
| DEC_BLOCK(mi_row, mi_col, subsize, 0); |
| if (has_rows) DEC_BLOCK(mi_row + hbs_h, mi_col, subsize, 1); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| break; |
| case PARTITION_VERT: |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| DEC_PARTITION(mi_row, mi_col, subsize, 0); |
| if ((mi_col + hbs_w) < cm->mi_params.mi_cols) |
| DEC_PARTITION(mi_row, mi_col + hbs_w, subsize, 1); |
| #else |
| DEC_BLOCK(mi_row, mi_col, subsize, 0); |
| if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs_w, subsize, 1); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| break; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_HORZ_4A: { |
| const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); |
| const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big]; |
| assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]); |
| int this_mi_row = mi_row; |
| DEC_PARTITION(this_mi_row, mi_col, subsize, 0); |
| this_mi_row += ebs_h; |
| if (this_mi_row >= cm->mi_params.mi_rows) break; |
| DEC_PARTITION(this_mi_row, mi_col, bsize_med, 1); |
| this_mi_row += 2 * ebs_h; |
| if (this_mi_row >= cm->mi_params.mi_rows) break; |
| DEC_PARTITION(this_mi_row, mi_col, bsize_big, 2); |
| this_mi_row += 4 * ebs_h; |
| if (this_mi_row >= cm->mi_params.mi_rows) break; |
| DEC_PARTITION(this_mi_row, mi_col, subsize, 3); |
| break; |
| } |
| case PARTITION_HORZ_4B: { |
| const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); |
| const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big]; |
| assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]); |
| int this_mi_row = mi_row; |
| DEC_PARTITION(this_mi_row, mi_col, subsize, 0); |
| this_mi_row += ebs_h; |
| if (this_mi_row >= cm->mi_params.mi_rows) break; |
| DEC_PARTITION(this_mi_row, mi_col, bsize_big, 1); |
| this_mi_row += 4 * ebs_h; |
| if (this_mi_row >= cm->mi_params.mi_rows) break; |
| DEC_PARTITION(this_mi_row, mi_col, bsize_med, 2); |
| this_mi_row += 2 * ebs_h; |
| if (this_mi_row >= cm->mi_params.mi_rows) break; |
| DEC_PARTITION(this_mi_row, mi_col, subsize, 3); |
| break; |
| } |
| case PARTITION_VERT_4A: { |
| const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); |
| const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big]; |
| assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]); |
| int this_mi_col = mi_col; |
| DEC_PARTITION(mi_row, this_mi_col, subsize, 0); |
| this_mi_col += ebs_w; |
| if (this_mi_col >= cm->mi_params.mi_cols) break; |
| DEC_PARTITION(mi_row, this_mi_col, bsize_med, 1); |
| this_mi_col += 2 * ebs_w; |
| if (this_mi_col >= cm->mi_params.mi_cols) break; |
| DEC_PARTITION(mi_row, this_mi_col, bsize_big, 2); |
| this_mi_col += 4 * ebs_w; |
| if (this_mi_col >= cm->mi_params.mi_cols) break; |
| DEC_PARTITION(mi_row, this_mi_col, subsize, 3); |
| break; |
| } |
| case PARTITION_VERT_4B: { |
| const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); |
| const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big]; |
| assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]); |
| int this_mi_col = mi_col; |
| DEC_PARTITION(mi_row, this_mi_col, subsize, 0); |
| this_mi_col += ebs_w; |
| if (this_mi_col >= cm->mi_params.mi_cols) break; |
| DEC_PARTITION(mi_row, this_mi_col, bsize_big, 1); |
| this_mi_col += 4 * ebs_w; |
| if (this_mi_col >= cm->mi_params.mi_cols) break; |
| DEC_PARTITION(mi_row, this_mi_col, bsize_med, 2); |
| this_mi_col += 2 * ebs_w; |
| if (this_mi_col >= cm->mi_params.mi_cols) break; |
| DEC_PARTITION(mi_row, this_mi_col, subsize, 3); |
| break; |
| } |
| case PARTITION_HORZ_3: |
| case PARTITION_VERT_3: { |
| for (int i = 0; i < 4; ++i) { |
| BLOCK_SIZE this_bsize = get_h_partition_subsize(bsize, i, partition); |
| const int offset_r = get_h_partition_offset_mi_row(bsize, i, partition); |
| const int offset_c = get_h_partition_offset_mi_col(bsize, i, partition); |
| |
| assert(this_bsize != BLOCK_INVALID); |
| assert(offset_r >= 0 && offset_c >= 0); |
| |
| const int this_mi_row = mi_row + offset_r; |
| const int this_mi_col = mi_col + offset_c; |
| if (partition == PARTITION_HORZ_3) { |
| if (this_mi_row >= cm->mi_params.mi_rows) break; |
| } else { |
| if (this_mi_col >= cm->mi_params.mi_cols) break; |
| } |
| |
| DEC_PARTITION(this_mi_row, this_mi_col, this_bsize, i); |
| } |
| break; |
| } |
| case PARTITION_SPLIT: |
| DEC_PARTITION(mi_row, mi_col, subsize, 0); |
| DEC_PARTITION(mi_row, mi_col + hbs_w, subsize, 1); |
| DEC_PARTITION(mi_row + hbs_h, mi_col, subsize, 2); |
| DEC_PARTITION(mi_row + hbs_h, mi_col + hbs_w, subsize, 3); |
| break; |
| #else // !CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_SPLIT: |
| DEC_PARTITION(mi_row, mi_col, subsize, 0); |
| DEC_PARTITION(mi_row, mi_col + hbs_w, subsize, 1); |
| DEC_PARTITION(mi_row + hbs_h, mi_col, subsize, 2); |
| DEC_PARTITION(mi_row + hbs_h, mi_col + hbs_w, subsize, 3); |
| break; |
| case PARTITION_HORZ_A: |
| DEC_BLOCK(mi_row, mi_col, bsize2, 0); |
| DEC_BLOCK(mi_row, mi_col + hbs_w, bsize2, 1); |
| DEC_BLOCK(mi_row + hbs_h, mi_col, subsize, 2); |
| break; |
| case PARTITION_HORZ_B: |
| DEC_BLOCK(mi_row, mi_col, subsize, 0); |
| DEC_BLOCK(mi_row + hbs_h, mi_col, bsize2, 1); |
| DEC_BLOCK(mi_row + hbs_h, mi_col + hbs_w, bsize2, 2); |
| break; |
| case PARTITION_VERT_A: |
| DEC_BLOCK(mi_row, mi_col, bsize2, 0); |
| DEC_BLOCK(mi_row + hbs_h, mi_col, bsize2, 1); |
| DEC_BLOCK(mi_row, mi_col + hbs_w, subsize, 2); |
| break; |
| case PARTITION_VERT_B: |
| DEC_BLOCK(mi_row, mi_col, subsize, 0); |
| DEC_BLOCK(mi_row, mi_col + hbs_w, bsize2, 1); |
| DEC_BLOCK(mi_row + hbs_h, mi_col + hbs_w, bsize2, 2); |
| break; |
| case PARTITION_HORZ_4: |
| for (int i = 0; i < 4; ++i) { |
| int this_mi_row = mi_row + i * qbs_h; |
| if (i > 0 && this_mi_row >= cm->mi_params.mi_rows) break; |
| DEC_BLOCK(this_mi_row, mi_col, subsize, i); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (int i = 0; i < 4; ++i) { |
| int this_mi_col = mi_col + i * qbs_w; |
| if (i > 0 && this_mi_col >= cm->mi_params.mi_cols) break; |
| DEC_BLOCK(mi_row, this_mi_col, subsize, i); |
| } |
| break; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| default: assert(0 && "Invalid partition type"); |
| } |
| |
| #undef DEC_PARTITION |
| #undef DEC_BLOCK |
| #undef DEC_BLOCK_EPT_ARG |
| #undef DEC_BLOCK_STX_ARG |
| |
| if (parse_decode_flag & 1) |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| } |
| |
| static AOM_INLINE void setup_bool_decoder( |
| const uint8_t *data, const uint8_t *data_end, const size_t read_size, |
| struct aom_internal_error_info *error_info, aom_reader *r, |
| uint8_t allow_update_cdf) { |
| // Validate the calculated partition length. If the buffer |
| // described by the partition can't be fully read, then restrict |
| // it to the portion that can be (for EC mode) or throw an error. |
| if (!read_is_valid(data, read_size, data_end)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile length"); |
| |
| if (aom_reader_init(r, data, read_size)) |
| aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate bool decoder %d", 1); |
| |
| r->allow_update_cdf = allow_update_cdf; |
| } |
| |
| static AOM_INLINE void decode_partition_sb(AV1Decoder *const pbi, |
| ThreadData *const td, int mi_row, |
| int mi_col, aom_reader *reader, |
| BLOCK_SIZE bsize, |
| int parse_decode_flag) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| AV1_COMMON *const cm = &pbi->common; |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| const int total_loop_num = |
| (frame_is_intra_only(cm) && !cm->seq_params.monochrome && |
| cm->seq_params.enable_sdp) |
| ? 2 |
| : 1; |
| xd->tree_type = (total_loop_num == 1 ? SHARED_PART : LUMA_PART); |
| if (parse_decode_flag & 1) { |
| av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type); |
| } |
| decode_partition(pbi, td, mi_row, mi_col, reader, bsize, xd->sbi, |
| td->dcb.xd.sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)], |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| NULL, |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| parse_decode_flag); |
| if (total_loop_num == 2) { |
| xd->tree_type = CHROMA_PART; |
| if (parse_decode_flag & 1) { |
| av1_reset_ptree_in_sbi(xd->sbi, xd->tree_type); |
| } |
| decode_partition(pbi, td, mi_row, mi_col, reader, bsize, xd->sbi, |
| td->dcb.xd.sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)], |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| td->dcb.xd.sbi->ptree_root[0], |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| parse_decode_flag); |
| xd->tree_type = SHARED_PART; |
| } |
| #if CONFIG_INSPECTION |
| if (pbi->inspect_sb_cb != NULL) { |
| (*pbi->inspect_sb_cb)(pbi, pbi->inspect_ctx); |
| } |
| #endif // CONFIG_INSPECTION |
| } |
| |
| static AOM_INLINE void setup_segmentation(AV1_COMMON *const cm, |
| struct aom_read_bit_buffer *rb) { |
| struct segmentation *const seg = &cm->seg; |
| |
| seg->update_map = 0; |
| seg->update_data = 0; |
| seg->temporal_update = 0; |
| |
| seg->enabled = aom_rb_read_bit(rb); |
| if (!seg->enabled) { |
| if (cm->cur_frame->seg_map) { |
| memset(cm->cur_frame->seg_map, 0, |
| (cm->cur_frame->mi_rows * cm->cur_frame->mi_cols)); |
| } |
| |
| memset(seg, 0, sizeof(*seg)); |
| segfeatures_copy(&cm->cur_frame->seg, seg); |
| return; |
| } |
| if (cm->seg.enabled && cm->prev_frame && |
| (cm->mi_params.mi_rows == cm->prev_frame->mi_rows) && |
| (cm->mi_params.mi_cols == cm->prev_frame->mi_cols)) { |
| cm->last_frame_seg_map = cm->prev_frame->seg_map; |
| } else { |
| cm->last_frame_seg_map = NULL; |
| } |
| // Read update flags |
| #if CONFIG_PRIMARY_REF_FRAME_OPT |
| if (cm->features.derived_primary_ref_frame == PRIMARY_REF_NONE) { |
| #else |
| if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { |
| #endif // CONFIG_PRIMARY_REF_FRAME_OPT |
| // These frames can't use previous frames, so must signal map + features |
| seg->update_map = 1; |
| seg->temporal_update = 0; |
| seg->update_data = 1; |
| } else { |
| seg->update_map = aom_rb_read_bit(rb); |
| if (seg->update_map) { |
| seg->temporal_update = aom_rb_read_bit(rb); |
| } else { |
| seg->temporal_update = 0; |
| } |
| seg->update_data = aom_rb_read_bit(rb); |
| } |
| |
| // Segmentation data update |
| if (seg->update_data) { |
| av1_clearall_segfeatures(seg); |
| |
| for (int i = 0; i < MAX_SEGMENTS; i++) { |
| for (int j = 0; j < SEG_LVL_MAX; j++) { |
| int data = 0; |
| const int feature_enabled = aom_rb_read_bit(rb); |
| if (feature_enabled) { |
| av1_enable_segfeature(seg, i, j); |
| |
| const int data_max = av1_seg_feature_data_max(j); |
| const int data_min = -data_max; |
| const int ubits = get_unsigned_bits(data_max); |
| |
| if (av1_is_segfeature_signed(j)) { |
| data = aom_rb_read_inv_signed_literal(rb, ubits); |
| } else { |
| data = aom_rb_read_literal(rb, ubits); |
| } |
| |
| data = clamp(data, data_min, data_max); |
| } |
| av1_set_segdata(seg, i, j, data); |
| } |
| } |
| av1_calculate_segdata(seg); |
| } else if (cm->prev_frame) { |
| segfeatures_copy(seg, &cm->prev_frame->seg); |
| } |
| segfeatures_copy(&cm->cur_frame->seg, seg); |
| } |
| |
| // Same function as av1_read_uniform but reading from uncompressed header rb |
| static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) { |
| const int l = get_unsigned_bits(n); |
| const int m = (1 << l) - n; |
| const int v = aom_rb_read_literal(rb, l - 1); |
| assert(l != 0); |
| if (v < m) |
| return v; |
| else |
| return (v << 1) - m + aom_rb_read_bit(rb); |
| } |
| |
| #if CONFIG_LR_IMPROVEMENTS |
| // Converts decoded index to frame restoration type depending on lr tools |
| // that are enabled for the frame for a given plane. |
| static RestorationType index_to_frame_restoration_type( |
| const AV1_COMMON *const cm, int plane, int ndx) { |
| RestorationType r = RESTORE_NONE; |
| for (r = RESTORE_NONE; r < RESTORE_TYPES; ++r) { |
| if (((cm->features.lr_tools_disable_mask[plane] >> r) & 1) == 0) { |
| ndx--; |
| if (ndx < 0) break; |
| } |
| } |
| assert(r < RESTORE_TYPES); |
| return r; |
| } |
| #endif // CONFIG_LR_IMPROVEMENTS |
| |
| static AOM_INLINE void decode_restoration_mode(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| assert(!cm->features.all_lossless); |
| const int num_planes = av1_num_planes(cm); |
| if (is_global_intrabc_allowed(cm)) return; |
| #if CONFIG_LR_IMPROVEMENTS |
| int luma_none = 1, chroma_none = 1; |
| #else |
| int all_none = 1, chroma_none = 1; |
| #endif // CONFIG_LR_IMPROVEMENTS |
| for (int p = 0; p < num_planes; ++p) { |
| RestorationInfo *rsi = &cm->rst_info[p]; |
| #if CONFIG_LR_IMPROVEMENTS |
| uint8_t plane_lr_tools_disable_mask = |
| cm->seq_params.lr_tools_disable_mask[p > 0]; |
| // If superres is used turn off PC_WIENER since tx_skip values will |
| // be misaligned. |
| if (av1_superres_scaled(cm)) |
| plane_lr_tools_disable_mask |= (1 << RESTORE_PC_WIENER); |
| av1_set_lr_tools(plane_lr_tools_disable_mask, p, &cm->features); |
| const int ndx = rb_read_uniform(rb, cm->features.lr_frame_tools_count[p]); |
| rsi->frame_restoration_type = index_to_frame_restoration_type(cm, p, ndx); |
| if (rsi->frame_restoration_type == RESTORE_SWITCHABLE && |
| cm->features.lr_tools_count[p] > 2) { |
| if (aom_rb_read_bit(rb)) { |
| int tools_count = cm->features.lr_tools_count[p]; |
| for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { |
| if (!(plane_lr_tools_disable_mask & (1 << i))) { |
| const int disable_tool = aom_rb_read_bit(rb); |
| plane_lr_tools_disable_mask |= (disable_tool << i); |
| tools_count -= disable_tool; |
| // if tools_count becomes 2 break from the loop since we |
| // do not allow any other tool to be disabled. |
| if (tools_count == 2) break; |
| } |
| } |
| av1_set_lr_tools(plane_lr_tools_disable_mask, p, &cm->features); |
| } |
| } |
| #else |
| if (aom_rb_read_bit(rb)) { |
| rsi->frame_restoration_type = |
| aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER; |
| } else { |
| if (aom_rb_read_bit(rb)) { |
| rsi->frame_restoration_type = RESTORE_SWITCHABLE; |
| } else { |
| rsi->frame_restoration_type = RESTORE_NONE; |
| } |
| } |
| #endif // CONFIG_LR_IMPROVEMENTS |
| |
| if (rsi->frame_restoration_type != RESTORE_NONE) { |
| #if CONFIG_LR_IMPROVEMENTS |
| luma_none &= p > 0; |
| #else |
| all_none = 0; |
| #endif // CONFIG_LR_IMPROVEMENTS |
| chroma_none &= p == 0; |
| } |
| #if CONFIG_LR_IMPROVEMENTS |
| const int is_wiener_nonsep_possible = |
| rsi->frame_restoration_type == RESTORE_WIENER_NONSEP || |
| rsi->frame_restoration_type == RESTORE_SWITCHABLE; |
| if (is_wiener_nonsep_possible) |
| rsi->num_filter_classes = p == AOM_PLANE_Y |
| ? NUM_WIENERNS_CLASS_INIT_LUMA |
| : NUM_WIENERNS_CLASS_INIT_CHROMA; |
| #endif // CONFIG_LR_IMPROVEMENTS |
| } |
| #if CONFIG_LR_IMPROVEMENTS |
| const int frame_width = cm->superres_upscaled_width; |
| const int frame_height = cm->superres_upscaled_height; |
| set_restoration_unit_size(frame_width, frame_height, |
| cm->seq_params.subsampling_x, |
| cm->seq_params.subsampling_y, cm->rst_info); |
| int size = cm->rst_info[0].max_restoration_unit_size; |
| |
| cm->rst_info[0].restoration_unit_size = |
| cm->rst_info[0].max_restoration_unit_size; |
| if (!luma_none) { |
| if (aom_rb_read_bit(rb)) |
| cm->rst_info[0].restoration_unit_size = size >> 1; |
| else { |
| if (aom_rb_read_bit(rb)) |
| cm->rst_info[0].restoration_unit_size = size; |
| else |
| cm->rst_info[0].restoration_unit_size = size >> 2; |
| } |
| } |
| if (num_planes > 1) { |
| cm->rst_info[1].restoration_unit_size = |
| cm->rst_info[1].max_restoration_unit_size; |
| if (!chroma_none) { |
| size = cm->rst_info[1].max_restoration_unit_size; |
| if (aom_rb_read_bit(rb)) |
| cm->rst_info[1].restoration_unit_size = size >> 1; |
| else { |
| if (aom_rb_read_bit(rb)) |
| cm->rst_info[1].restoration_unit_size = size; |
| else |
| cm->rst_info[1].restoration_unit_size = size >> 2; |
| } |
| } |
| cm->rst_info[2].restoration_unit_size = |
| cm->rst_info[1].restoration_unit_size; |
| } |
| #else |
| if (!all_none) { |
| #if CONFIG_BLOCK_256 |
| assert(cm->sb_size == BLOCK_64X64 || cm->sb_size == BLOCK_128X128 || |
| cm->sb_size == BLOCK_256X256); |
| #else |
| assert(cm->sb_size == BLOCK_64X64 || cm->sb_size == BLOCK_128X128); |
| #endif // CONFIG_BLOCK_256 |
| const int sb_size = |
| #if CONFIG_BLOCK_256 |
| cm->sb_size == BLOCK_256X256 ? 256 : |
| #endif // CONFIG_BLOCK_256 |
| cm->sb_size == BLOCK_128X128 ? 128 |
| : 64; |
| |
| for (int p = 0; p < num_planes; ++p) |
| cm->rst_info[p].restoration_unit_size = sb_size; |
| |
| RestorationInfo *rsi = &cm->rst_info[0]; |
| |
| #if CONFIG_BLOCK_256 |
| if (sb_size <= 128) { |
| rsi->restoration_unit_size <<= aom_rb_read_bit(rb); |
| } |
| if (sb_size == 64) { |
| rsi->restoration_unit_size <<= aom_rb_read_bit(rb); |
| } |
| #else |
| if (sb_size == 64) { |
| rsi->restoration_unit_size <<= aom_rb_read_bit(rb); |
| } |
| // TODO(any): We could save a bit by adding a special case for sb_size == |
| // 128 |
| if (rsi->restoration_unit_size > 64) { |
| rsi->restoration_unit_size <<= aom_rb_read_bit(rb); |
| } |
| #endif // CONFIG_BLOCK_256 |
| } else { |
| const int size = RESTORATION_UNITSIZE_MAX; |
| for (int p = 0; p < num_planes; ++p) |
| cm->rst_info[p].restoration_unit_size = size; |
| } |
| |
| if (num_planes > 1) { |
| int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y); |
| if (s && !chroma_none) { |
| cm->rst_info[1].restoration_unit_size = |
| cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s); |
| } else { |
| cm->rst_info[1].restoration_unit_size = |
| cm->rst_info[0].restoration_unit_size; |
| } |
| cm->rst_info[2].restoration_unit_size = |
| cm->rst_info[1].restoration_unit_size; |
| } |
| #endif // CONFIG_LR_IMPROVEMENTS |
| } |
| |
| static AOM_INLINE void read_wiener_filter(MACROBLOCKD *xd, int wiener_win, |
| WienerInfo *wiener_info, |
| WienerInfoBank *bank, |
| aom_reader *rb) { |
| #if CONFIG_LR_MERGE_COEFFS |
| const int exact_match = aom_read_symbol(rb, xd->tile_ctx->merged_param_cdf, 2, |
| ACCT_INFO("exact_match")); |
| int k; |
| for (k = 0; k < bank->bank_size - 1; ++k) { |
| if (aom_read_literal(rb, 1, ACCT_INFO("bank_size"))) break; |
| } |
| const int ref = k; |
| if (exact_match) { |
| memcpy(wiener_info, av1_constref_from_wiener_bank(bank, ref), |
| sizeof(*wiener_info)); |
| wiener_info->bank_ref = ref; |
| if (bank->bank_size == 0) av1_add_to_wiener_bank(bank, wiener_info); |
| return; |
| } |
| #else |
| const int ref = 0; |
| (void)xd; |
| #endif // CONFIG_LR_MERGE_COEFFS |
| WienerInfo *ref_wiener_info = av1_ref_from_wiener_bank(bank, ref); |
| memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter)); |
| memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter)); |
| |
| if (wiener_win == WIENER_WIN) |
| wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, |
| ACCT_INFO("vfilter[0]")) + |
| WIENER_FILT_TAP0_MINV; |
| else |
| wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0; |
| wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, |
| ACCT_INFO("vfilter[1]")) + |
| WIENER_FILT_TAP1_MINV; |
| wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, |
| ACCT_INFO("vfilter[2]")) + |
| WIENER_FILT_TAP2_MINV; |
| // The central element has an implicit +WIENER_FILT_STEP |
| wiener_info->vfilter[WIENER_HALFWIN] = |
| -2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] + |
| wiener_info->vfilter[2]); |
| |
| if (wiener_win == WIENER_WIN) |
| wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, |
| ACCT_INFO("hfilter[0]")) + |
| WIENER_FILT_TAP0_MINV; |
| else |
| wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0; |
| wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, |
| ACCT_INFO("hfilter[1]")) + |
| WIENER_FILT_TAP1_MINV; |
| wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] = |
| aom_read_primitive_refsubexpfin( |
| rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, |
| ACCT_INFO("hfilter[2]")) + |
| WIENER_FILT_TAP2_MINV; |
| // The central element has an implicit +WIENER_FILT_STEP |
| wiener_info->hfilter[WIENER_HALFWIN] = |
| -2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] + |
| wiener_info->hfilter[2]); |
| av1_add_to_wiener_bank(bank, wiener_info); |
| } |
| |
| static AOM_INLINE void read_sgrproj_filter(MACROBLOCKD *xd, |
| SgrprojInfo *sgrproj_info, |
| SgrprojInfoBank *bank, |
| aom_reader *rb) { |
| #if CONFIG_LR_MERGE_COEFFS |
| const int exact_match = aom_read_symbol(rb, xd->tile_ctx->merged_param_cdf, 2, |
| ACCT_INFO("exact_match")); |
| int k; |
| for (k = 0; k < bank->bank_size - 1; ++k) { |
| if (aom_read_literal(rb, 1, ACCT_INFO("bank"))) break; |
| } |
| const int ref = k; |
| if (exact_match) { |
| memcpy(sgrproj_info, av1_constref_from_sgrproj_bank(bank, ref), |
| sizeof(*sgrproj_info)); |
| sgrproj_info->bank_ref = ref; |
| if (bank->bank_size == 0) av1_add_to_sgrproj_bank(bank, sgrproj_info); |
| return; |
| } |
| #else |
| const int ref = 0; |
| (void)xd; |
| #endif // CONFIG_LR_MERGE_COEFFS |
| SgrprojInfo *ref_sgrproj_info = av1_ref_from_sgrproj_bank(bank, ref); |
| |
| sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_INFO("ep")); |
| const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; |
| |
| if (params->r[0] == 0) { |
| sgrproj_info->xqd[0] = 0; |
| sgrproj_info->xqd[1] = |
| aom_read_primitive_refsubexpfin( |
| rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_INFO()) + |
| SGRPROJ_PRJ_MIN1; |
| } else if (params->r[1] == 0) { |
| sgrproj_info->xqd[0] = |
| aom_read_primitive_refsubexpfin( |
| rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_INFO()) + |
| SGRPROJ_PRJ_MIN0; |
| sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0], |
| SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); |
| } else { |
| sgrproj_info->xqd[0] = |
| aom_read_primitive_refsubexpfin( |
| rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_INFO()) + |
| SGRPROJ_PRJ_MIN0; |
| sgrproj_info->xqd[1] = |
| aom_read_primitive_refsubexpfin( |
| rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_INFO()) + |
| SGRPROJ_PRJ_MIN1; |
| } |
| |
| av1_add_to_sgrproj_bank(bank, sgrproj_info); |
| } |
| |
| #if CONFIG_LR_IMPROVEMENTS |
| static void read_wienerns_filter(MACROBLOCKD *xd, int is_uv, |
| WienerNonsepInfo *wienerns_info, |
| WienerNonsepInfoBank *bank, aom_reader *rb) { |
| int skip_filter_read_for_class[WIENERNS_MAX_CLASSES] = { 0 }; |
| int ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; |
| const int num_classes = wienerns_info->num_classes; |
| assert(num_classes <= WIENERNS_MAX_CLASSES); |
| #if CONFIG_LR_MERGE_COEFFS |
| for (int c_id = 0; c_id < num_classes; ++c_id) { |
| const int exact_match = aom_read_symbol(rb, xd->tile_ctx->merged_param_cdf, |
| 2, ACCT_INFO("exact_match")); |
| int ref; |
| for (ref = 0; ref < bank->bank_size_for_class[c_id] - 1; ++ref) { |
| if (aom_read_literal(rb, 1, ACCT_INFO("bank"))) break; |
| } |
| if (exact_match) { |
| copy_nsfilter_taps_for_class( |
| wienerns_info, av1_constref_from_wienerns_bank(bank, ref, c_id), |
| c_id); |
| } |
| wienerns_info->bank_ref_for_class[c_id] = ref; |
| skip_filter_read_for_class[c_id] = exact_match; |
| ref_for_class[c_id] = ref; |
| } |
| #else |
| (void)xd; |
| #endif // CONFIG_LR_MERGE_COEFFS |
| const WienernsFilterParameters *nsfilter_params = |
| get_wienerns_parameters(xd->current_base_qindex, is_uv); |
| const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs; |
| for (int c_id = 0; c_id < num_classes; ++c_id) { |
| if (skip_filter_read_for_class[c_id]) continue; |
| const int ref = ref_for_class[c_id]; |
| |
| const WienerNonsepInfo *ref_wienerns_info = |
| av1_ref_from_wienerns_bank(bank, ref, c_id); |
| assert(ref_wienerns_info->num_classes == num_classes); |
| int16_t *wienerns_info_nsfilter = nsfilter_taps(wienerns_info, c_id); |
| const int16_t *ref_wienerns_info_nsfilter = |
| const_nsfilter_taps(ref_wienerns_info, c_id); |
| |
| memset(wienerns_info_nsfilter, 0, |
| nsfilter_params->ncoeffs * sizeof(wienerns_info_nsfilter[0])); |
| |
| const int beg_feat = 0; |
| int end_feat = nsfilter_params->ncoeffs; |
| if (end_feat > 6) { |
| const int filter_length_bit = |
| aom_read_symbol(rb, xd->tile_ctx->wienerns_length_cdf[is_uv], 2, |
| ACCT_INFO("wienerns_length")); |
| end_feat = filter_length_bit ? nsfilter_params->ncoeffs : 6; |
| } |
| assert((end_feat & 1) == 0); |
| |
| int uv_sym = 0; |
| if (is_uv && end_feat > 6) { |
| uv_sym = aom_read_symbol(rb, xd->tile_ctx->wienerns_uv_sym_cdf, 2, |
| ACCT_INFO("wienerns_uv_sym")); |
| } |
| |
| for (int i = beg_feat; i < end_feat; ++i) { |
| #if ENABLE_LR_4PART_CODE |
| wienerns_info_nsfilter[i] = |
| aom_read_4part_wref( |
| rb, |
| ref_wienerns_info_nsfilter[i] - |
| wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], |
| xd->tile_ctx->wienerns_4part_cdf |
| [wienerns_coeffs[i - beg_feat][WIENERNS_PAR_ID]], |
| wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID], |
| ACCT_INFO("wienerns_info_nsfilter")) + |
| wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID]; |
| #else |
| wienerns_info_nsfilter[i] = |
| aom_read_primitive_refsubexpfin( |
| rb, (1 << wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]), |
| wienerns_coeffs[i - beg_feat][WIENERNS_PAR_ID], |
| ref_wienerns_info_nsfilter[i] - |
| wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], |
| ACCT_INFO("wienerns_info_nsfilter")) + |
| wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID]; |
| #endif // ENABLE_LR_4PART_CODE |
| if (uv_sym && i >= 6) { |
| // Fill in symmetrical tap without reading it |
| wienerns_info_nsfilter[i + 1] = wienerns_info_nsfilter[i]; |
| i++; |
| } |
| } |
| av1_add_to_wienerns_bank(bank, wienerns_info, c_id); |
| } |
| } |
| #endif // CONFIG_LR_IMPROVEMENTS |
| |
| static AOM_INLINE void loop_restoration_read_sb_coeffs( |
| const AV1_COMMON *const cm, MACROBLOCKD *xd, aom_reader *const r, int plane, |
| int runit_idx) { |
| const RestorationInfo *rsi = &cm->rst_info[plane]; |
| RestorationUnitInfo *rui = &rsi->unit_info[runit_idx]; |
| assert(rsi->frame_restoration_type != RESTORE_NONE); |
| |
| assert(!cm->features.all_lossless); |
| |
| const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; |
| #if CONFIG_LR_IMPROVEMENTS |
| rui->wienerns_info.num_classes = rsi->num_filter_classes; |
| #endif // CONFIG_LR_IMPROVEMENTS |
| |
| if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) { |
| #if CONFIG_LR_IMPROVEMENTS |
| rui->restoration_type = cm->features.lr_last_switchable_ndx_0_type[plane]; |
| for (int re = 0; re <= cm->features.lr_last_switchable_ndx[plane]; re++) { |
| if (cm->features.lr_tools_disable_mask[plane] & (1 << re)) continue; |
| const int found = aom_read_symbol( |
| r, xd->tile_ctx->switchable_flex_restore_cdf[re][plane], 2, |
| ACCT_INFO("found")); |
| if (found) { |
| rui->restoration_type = re; |
| break; |
| } |
| } |
| #else |
| rui->restoration_type = aom_read_symbol( |
| r, xd->tile_ctx->switchable_restore_cdf, RESTORE_SWITCHABLE_TYPES, |
| ACCT_INFO("restoration_type")); |
| #endif // CONFIG_LR_IMPROVEMENTS |
| switch (rui->restoration_type) { |
| case RESTORE_WIENER: |
| read_wiener_filter(xd, wiener_win, &rui->wiener_info, |
| &xd->wiener_info[plane], r); |
| break; |
| case RESTORE_SGRPROJ: |
| read_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane], |
| r); |
| break; |
| #if CONFIG_LR_IMPROVEMENTS |
| case RESTORE_WIENER_NONSEP: |
| read_wienerns_filter(xd, plane != AOM_PLANE_Y, &rui->wienerns_info, |
| &xd->wienerns_info[plane], r); |
| break; |
| case RESTORE_PC_WIENER: |
| // No side-information for now. |
| break; |
| #endif // CONFIG_LR_IMPROVEMENTS |
| default: assert(rui->restoration_type == RESTORE_NONE); break; |
| } |
| } else if (rsi->frame_restoration_type == RESTORE_WIENER) { |
| if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, |
| ACCT_INFO("wiener_restore_cdf"))) { |
| rui->restoration_type = RESTORE_WIENER; |
| read_wiener_filter(xd, wiener_win, &rui->wiener_info, |
| &xd->wiener_info[plane], r); |
| } else { |
| rui->restoration_type = RESTORE_NONE; |
| } |
| } else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) { |
| if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, |
| ACCT_INFO("sgrproj_restore_cdf"))) { |
| rui->restoration_type = RESTORE_SGRPROJ; |
| read_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane], r); |
| } else { |
| rui->restoration_type = RESTORE_NONE; |
| } |
| #if CONFIG_LR_IMPROVEMENTS |
| } else if (rsi->frame_restoration_type == RESTORE_WIENER_NONSEP) { |
| if (aom_read_symbol(r, xd->tile_ctx->wienerns_restore_cdf, 2, |
| ACCT_INFO("wienerns_restore_cdf"))) { |
| rui->restoration_type = RESTORE_WIENER_NONSEP; |
| read_wienerns_filter(xd, plane != AOM_PLANE_Y, &rui->wienerns_info, |
| &xd->wienerns_info[plane], r); |
| } else { |
| rui->restoration_type = RESTORE_NONE; |
| } |
| } else if (rsi->frame_restoration_type == RESTORE_PC_WIENER) { |
| if (aom_read_symbol(r, xd->tile_ctx->pc_wiener_restore_cdf, 2, |
| ACCT_INFO("pc_wiener_restore_cdf"))) { |
| rui->restoration_type = RESTORE_PC_WIENER; |
| // No side-information for now. |
| } else { |
| rui->restoration_type = RESTORE_NONE; |
| } |
| #endif // CONFIG_LR_IMPROVEMENTS |
| } |
| |
| #if CONFIG_LR_IMPROVEMENTS |
| assert(((cm->features.lr_tools_disable_mask[plane] >> rui->restoration_type) & |
| 1) == 0); |
| #endif // CONFIG_LR_IMPROVEMENTS |
| } |
| static AOM_INLINE void setup_loopfilter(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| const int num_planes = av1_num_planes(cm); |
| struct loopfilter *lf = &cm->lf; |
| |
| if (is_global_intrabc_allowed(cm) || cm->features.coded_lossless) { |
| // write default deltas to frame buffer |
| av1_set_default_ref_deltas(cm->cur_frame->ref_deltas); |
| av1_set_default_mode_deltas(cm->cur_frame->mode_deltas); |
| return; |
| } |
| assert(!cm->features.coded_lossless); |
| |
| if (cm->prev_frame) { |
| // write deltas to frame buffer |
| memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, SINGLE_REF_FRAMES); |
| memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); |
| } else { |
| av1_set_default_ref_deltas(lf->ref_deltas); |
| av1_set_default_mode_deltas(lf->mode_deltas); |
| } |
| |
| lf->filter_level[0] = aom_rb_read_bit(rb); |
| #if DF_DUAL |
| lf->filter_level[1] = aom_rb_read_bit(rb); |
| #else |
| lf->filter_level[1] = lf->filter_level[0]; |
| #endif // DF_DUAL |
| if (num_planes > 1) { |
| if (lf->filter_level[0] || lf->filter_level[1]) { |
| lf->filter_level_u = aom_rb_read_bit(rb); |
| lf->filter_level_v = aom_rb_read_bit(rb); |
| } else { |
| lf->filter_level_u = lf->filter_level_v = 0; |
| } |
| } |
| // lf->sharpness_level = 0; |
| |
| #if DF_DUAL |
| if (lf->filter_level[0]) { |
| int luma_delta_q = aom_rb_read_bit(rb); |
| if (luma_delta_q) { |
| lf->delta_q_luma[0] = |
| aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; |
| } else { |
| lf->delta_q_luma[0] = 0; |
| } |
| #if DF_TWO_PARAM |
| int luma_delta_side = aom_rb_read_bit(rb); |
| if (luma_delta_side) { |
| lf->delta_side_luma[0] = |
| aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; |
| } else { |
| lf->delta_side_luma[0] = 0; |
| } |
| #else |
| lf->delta_side_luma[0] = lf->delta_q_luma[0]; |
| #endif // DF_TWO_PARAM |
| } else { |
| lf->delta_q_luma[0] = 0; |
| lf->delta_side_luma[0] = 0; |
| } |
| if (lf->filter_level[1]) { |
| int luma_delta_q = aom_rb_read_bit(rb); |
| if (luma_delta_q) { |
| lf->delta_q_luma[1] = |
| aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; |
| } else { |
| lf->delta_q_luma[1] = lf->delta_q_luma[0]; |
| } |
| #if DF_TWO_PARAM |
| int luma_delta_side = aom_rb_read_bit(rb); |
| if (luma_delta_side) { |
| lf->delta_side_luma[1] = |
| aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; |
| } else { |
| lf->delta_side_luma[1] = lf->delta_side_luma[0]; |
| } |
| #else |
| lf->delta_side_luma[1] = lf->delta_q_luma[1]; |
| #endif // DF_TWO_PARAM |
| } else { |
| lf->delta_q_luma[1] = 0; |
| lf->delta_side_luma[1] = 0; |
| } |
| #else |
| if (lf->filter_level[0] || lf->filter_level[1]) { |
| int luma_delta_q = aom_rb_read_bit(rb); |
| if (luma_delta_q) { |
| lf->delta_q_luma = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; |
| } else { |
| lf->delta_q_luma = 0; |
| } |
| #if DF_TWO_PARAM |
| int luma_delta_side = aom_rb_read_bit(rb); |
| if (luma_delta_side) { |
| lf->delta_side_luma = |
| aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; |
| } else { |
| lf->delta_side_luma = 0; |
| } |
| #else |
| lf->delta_side_luma = lf->delta_q_luma; |
| #endif // DF_TWO_PARAM |
| } else { |
| lf->delta_q_luma = 0; |
| lf->delta_side_luma = 0; |
| } |
| #endif // DF_DUAL |
| |
| if (lf->filter_level_u) { |
| int u_delta_q = aom_rb_read_bit(rb); |
| if (u_delta_q) { |
| lf->delta_q_u = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; |
| } else { |
| lf->delta_q_u = 0; |
| } |
| #if DF_TWO_PARAM |
| int u_delta_side = aom_rb_read_bit(rb); |
| if (u_delta_side) { |
| lf->delta_side_u = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; |
| } else { |
| lf->delta_side_u = 0; |
| } |
| #else |
| lf->delta_side_u = lf->delta_q_u; |
| #endif // DF_TWO_PARAM |
| } else { |
| lf->delta_q_u = 0; |
| lf->delta_side_u = 0; |
| } |
| if (lf->filter_level_v) { |
| int v_delta_q = aom_rb_read_bit(rb); |
| if (v_delta_q) { |
| lf->delta_q_v = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; |
| } else { |
| lf->delta_q_v = 0; |
| } |
| #if DF_TWO_PARAM |
| int v_delta_side = aom_rb_read_bit(rb); |
| if (v_delta_side) { |
| lf->delta_side_v = aom_rb_read_literal(rb, DF_PAR_BITS) - DF_PAR_OFFSET; |
| } else { |
| lf->delta_side_v = 0; |
| } |
| #else |
| lf->delta_side_v = lf->delta_q_v; |
| #endif // DF_TWO_PARAM |
| } else { |
| lf->delta_q_v = 0; |
| lf->delta_side_v = 0; |
| } |
| lf->mode_ref_delta_update = 0; |
| lf->mode_ref_delta_enabled = 0; |
| } |
| |
| static AOM_INLINE void setup_cdef(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| const int num_planes = av1_num_planes(cm); |
| CdefInfo *const cdef_info = &cm->cdef_info; |
| |
| if (is_global_intrabc_allowed(cm)) return; |
| #if CONFIG_FIX_CDEF_SYNTAX |
| cdef_info->cdef_frame_enable = aom_rb_read_bit(rb); |
| if (!cdef_info->cdef_frame_enable) return; |
| #endif // CONFIG_FIX_CDEF_SYNTAX |
| cdef_info->cdef_damping = aom_rb_read_literal(rb, 2) + 3; |
| cdef_info->cdef_bits = aom_rb_read_literal(rb, 2); |
| cdef_info->nb_cdef_strengths = 1 << cdef_info->cdef_bits; |
| for (int i = 0; i < cdef_info->nb_cdef_strengths; i++) { |
| cdef_info->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS); |
| cdef_info->cdef_uv_strengths[i] = |
| num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0; |
| } |
| } |
| |
| #if CONFIG_CCSO |
| #if CONFIG_CCSO_EDGE_CLF |
| // read offset idx using truncated unary coding |
| static AOM_INLINE int read_ccso_offset_idx(struct aom_read_bit_buffer *rb) { |
| int offset_idx = 0; |
| for (int idx = 0; idx < 7; ++idx) { |
| const int cur_bit = aom_rb_read_bit(rb); |
| if (!cur_bit) break; |
| offset_idx++; |
| } |
| return offset_idx; |
| } |
| #endif // CONFIG_CCSO_EDGE_CLF |
| static AOM_INLINE void setup_ccso(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| if (is_global_intrabc_allowed(cm)) return; |
| #if CONFIG_CCSO_EXT |
| const int ccso_offset[8] = { 0, 1, -1, 3, -3, 7, -7, -10 }; |
| #if CONFIG_D143_CCSO_FM_FLAG |
| cm->ccso_info.ccso_frame_flag = aom_rb_read_literal(rb, 1); |
| if (cm->ccso_info.ccso_frame_flag) { |
| #endif // CONFIG_D143_CCSO_FM_FLAG |
| for (int plane = 0; plane < av1_num_planes(cm); plane++) { |
| #else |
| const int ccso_offset[8] = { 0, 1, -1, 3, -3, 5, -5, -7 }; |
| for (int plane = 0; plane < 2; plane++) { |
| #endif |
| cm->ccso_info.ccso_enable[plane] = aom_rb_read_literal(rb, 1); |
| if (cm->ccso_info.ccso_enable[plane]) { |
| #if CONFIG_CCSO_BO_ONLY_OPTION |
| cm->ccso_info.ccso_bo_only[plane] = aom_rb_read_literal(rb, 1); |
| #endif // CONFIG_CCSO_BO_ONLY_OPTION |
| #if !CONFIG_CCSO_SIGFIX |
| cm->ccso_info.quant_idx[plane] = aom_rb_read_literal(rb, 2); |
| cm->ccso_info.ext_filter_support[plane] = aom_rb_read_literal(rb, 3); |
| #endif // !CONFIG_CCSO_SIGFIX |
| #if CONFIG_CCSO_EXT |
| #if CONFIG_CCSO_BO_ONLY_OPTION |
| if (cm->ccso_info.ccso_bo_only[plane]) { |
| #if CONFIG_CCSO_SIGFIX |
| cm->ccso_info.quant_idx[plane] = 0; |
| cm->ccso_info.ext_filter_support[plane] = 0; |
| cm->ccso_info.edge_clf[plane] = 0; |
| #endif // CONFIG_CCSO_SIGFIX |
| cm->ccso_info.max_band_log2[plane] = aom_rb_read_literal(rb, 3); |
| } else { |
| #if CONFIG_CCSO_SIGFIX |
| cm->ccso_info.quant_idx[plane] = aom_rb_read_literal(rb, 2); |
| cm->ccso_info.ext_filter_support[plane] = aom_rb_read_literal(rb, 3); |
| cm->ccso_info.edge_clf[plane] = aom_rb_read_bit(rb); |
| #endif // CONFIG_CCSO_SIGFIX |
| cm->ccso_info.max_band_log2[plane] = aom_rb_read_literal(rb, 2); |
| } |
| #else |
| cm->ccso_info.max_band_log2[plane] = aom_rb_read_literal(rb, 2); |
| #endif // CONFIG_CCSO_BO_ONLY_OPTION |
| const int max_band = 1 << cm->ccso_info.max_band_log2[plane]; |
| #endif |
| #if CONFIG_CCSO_EDGE_CLF |
| #if !CONFIG_CCSO_SIGFIX |
| cm->ccso_info.edge_clf[plane] = aom_rb_read_bit(rb); |
| #endif // !CONFIG_CCSO_SIGFIX |
| const int edge_clf = cm->ccso_info.edge_clf[plane]; |
| const int max_edge_interval = edge_clf_to_edge_interval[edge_clf]; |
| #if CONFIG_CCSO_BO_ONLY_OPTION |
| const int num_edge_offset_intervals = |
| cm->ccso_info.ccso_bo_only[plane] ? 1 : max_edge_interval; |
| for (int d0 = 0; d0 < num_edge_offset_intervals; d0++) { |
| for (int d1 = 0; d1 < num_edge_offset_intervals; d1++) { |
| #else |
| for (int d0 = 0; d0 < max_edge_interval; d0++) { |
| for (int d1 = 0; d1 < max_edge_interval; d1++) { |
| #endif // CONFIG_CCSO_BO_ONLY_OPTION |
| #else |
| for (int d0 = 0; d0 < CCSO_INPUT_INTERVAL; d0++) { |
| for (int d1 = 0; d1 < CCSO_INPUT_INTERVAL; d1++) { |
| #endif // CONFIG_CCSO_EDGE_CLF |
| #if !CONFIG_CCSO_EXT |
| const int lut_idx_ext = (d0 << 2) + d1; |
| #else |
| for (int band_num = 0; band_num < max_band; band_num++) { |
| const int lut_idx_ext = (band_num << 4) + (d0 << 2) + d1; |
| #endif |
| #if CONFIG_CCSO_EDGE_CLF |
| const int offset_idx = read_ccso_offset_idx(rb); |
| #else |
| const int offset_idx = aom_rb_read_literal(rb, 3); |
| #endif // CONFIG_CCSO_EDGE_CLF |
| cm->ccso_info.filter_offset[plane][lut_idx_ext] = |
| ccso_offset[offset_idx]; |
| } |
| #if CONFIG_CCSO_EXT |
| } |
| #endif |
| } |
| } |
| } |
| #if CONFIG_D143_CCSO_FM_FLAG |
| } |
| else { |
| cm->ccso_info.ccso_enable[0] = 0; |
| cm->ccso_info.ccso_enable[1] = 0; |
| cm->ccso_info.ccso_enable[2] = 0; |
| } |
| #endif // CONFIG_D143_CCSO_FM_FLAG |
| } |
| #endif |
| |
| static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) { |
| return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0; |
| } |
| |
| static AOM_INLINE void setup_quantization(CommonQuantParams *quant_params, |
| int num_planes, |
| aom_bit_depth_t bit_depth, |
| bool separate_uv_delta_q, |
| struct aom_read_bit_buffer *rb) { |
| quant_params->base_qindex = aom_rb_read_literal( |
| rb, bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT : QINDEX_BITS); |
| quant_params->y_dc_delta_q = read_delta_q(rb); |
| if (num_planes > 1) { |
| int diff_uv_delta = 0; |
| if (separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb); |
| quant_params->u_dc_delta_q = read_delta_q(rb); |
| quant_params->u_ac_delta_q = read_delta_q(rb); |
| if (diff_uv_delta) { |
| quant_params->v_dc_delta_q = read_delta_q(rb); |
| quant_params->v_ac_delta_q = read_delta_q(rb); |
| } else { |
| quant_params->v_dc_delta_q = quant_params->u_dc_delta_q; |
| quant_params->v_ac_delta_q = quant_params->u_ac_delta_q; |
| } |
| } else { |
| quant_params->u_dc_delta_q = 0; |
| quant_params->u_ac_delta_q = 0; |
| quant_params->v_dc_delta_q = 0; |
| quant_params->v_ac_delta_q = 0; |
| } |
| quant_params->using_qmatrix = aom_rb_read_bit(rb); |
| if (quant_params->using_qmatrix) { |
| quant_params->qmatrix_level_y = aom_rb_read_literal(rb, QM_LEVEL_BITS); |
| quant_params->qmatrix_level_u = aom_rb_read_literal(rb, QM_LEVEL_BITS); |
| if (!separate_uv_delta_q) |
| quant_params->qmatrix_level_v = quant_params->qmatrix_level_u; |
| else |
| quant_params->qmatrix_level_v = aom_rb_read_literal(rb, QM_LEVEL_BITS); |
| } else { |
| quant_params->qmatrix_level_y = 0; |
| quant_params->qmatrix_level_u = 0; |
| quant_params->qmatrix_level_v = 0; |
| } |
| } |
| |
| // Build y/uv dequant values based on segmentation. |
| static AOM_INLINE void setup_segmentation_dequant(AV1_COMMON *const cm, |
| MACROBLOCKD *const xd) { |
| const int bit_depth = cm->seq_params.bit_depth; |
| // When segmentation is disabled, only the first value is used. The |
| // remaining are don't cares. |
| const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1; |
| CommonQuantParams *const quant_params = &cm->quant_params; |
| for (int i = 0; i < max_segments; ++i) { |
| const int qindex = xd->qindex[i]; |
| quant_params->y_dequant_QTX[i][0] = |
| av1_dc_quant_QTX(qindex, quant_params->y_dc_delta_q, |
| cm->seq_params.base_y_dc_delta_q, bit_depth); |
| quant_params->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, bit_depth); |
| quant_params->u_dequant_QTX[i][0] = |
| av1_dc_quant_QTX(qindex, quant_params->u_dc_delta_q, |
| cm->seq_params.base_uv_dc_delta_q, bit_depth); |
| quant_params->u_dequant_QTX[i][1] = |
| av1_ac_quant_QTX(qindex, quant_params->u_ac_delta_q, bit_depth); |
| quant_params->v_dequant_QTX[i][0] = |
| av1_dc_quant_QTX(qindex, quant_params->v_dc_delta_q, |
| cm->seq_params.base_uv_dc_delta_q, bit_depth); |
| quant_params->v_dequant_QTX[i][1] = |
| av1_ac_quant_QTX(qindex, quant_params->v_ac_delta_q, bit_depth); |
| const int use_qmatrix = av1_use_qmatrix(quant_params, xd, i); |
| // NB: depends on base index so there is only 1 set per frame |
| // No quant weighting when lossless or signalled not using QM |
| const int qmlevel_y = |
| use_qmatrix ? quant_params->qmatrix_level_y : NUM_QM_LEVELS - 1; |
| for (int j = 0; j < TX_SIZES_ALL; ++j) { |
| quant_params->y_iqmatrix[i][j] = |
| av1_iqmatrix(quant_params, qmlevel_y, AOM_PLANE_Y, j); |
| } |
| const int qmlevel_u = |
| use_qmatrix ? quant_params->qmatrix_level_u : NUM_QM_LEVELS - 1; |
| for (int j = 0; j < TX_SIZES_ALL; ++j) { |
| quant_params->u_iqmatrix[i][j] = |
| av1_iqmatrix(quant_params, qmlevel_u, AOM_PLANE_U, j); |
| } |
| const int qmlevel_v = |
| use_qmatrix ? quant_params->qmatrix_level_v : NUM_QM_LEVELS - 1; |
| for (int j = 0; j < TX_SIZES_ALL; ++j) { |
| quant_params->v_iqmatrix[i][j] = |
| av1_iqmatrix(quant_params, qmlevel_v, AOM_PLANE_V, j); |
| } |
| } |
| } |
| |
| static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) { |
| return aom_rb_read_bit(rb) ? SWITCHABLE |
| : aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS); |
| } |
| |
| static AOM_INLINE void setup_render_size(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| cm->render_width = cm->superres_upscaled_width; |
| cm->render_height = cm->superres_upscaled_height; |
| if (aom_rb_read_bit(rb)) |
| av1_read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height); |
| } |
| |
| // TODO(afergs): make "struct aom_read_bit_buffer *const rb"? |
| static AOM_INLINE void setup_superres(AV1_COMMON *const cm, |
| struct aom_read_bit_buffer *rb, |
| int *width, int *height) { |
| cm->superres_upscaled_width = *width; |
| cm->superres_upscaled_height = *height; |
| cm->superres_scale_denominator = SCALE_NUMERATOR; |
| |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| if (!seq_params->enable_superres) return; |
| |
| if (aom_rb_read_bit(rb)) { |
| cm->superres_scale_denominator = |
| (uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS); |
| cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN; |
| // Don't edit cm->width or cm->height directly, or the buffers won't get |
| // resized correctly |
| av1_calculate_scaled_superres_size(width, height, |
| cm->superres_scale_denominator); |
| } else { |
| // 1:1 scaling - ie. no scaling, scale not provided |
| cm->superres_scale_denominator = SCALE_NUMERATOR; |
| } |
| } |
| |
| static AOM_INLINE void resize_context_buffers(AV1_COMMON *cm, int width, |
| int height) { |
| #if CONFIG_SIZE_LIMIT |
| if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Dimensions of %dx%d beyond allowed size of %dx%d.", |
| width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT); |
| #endif |
| if (cm->width != width || cm->height != height) { |
| const int new_mi_rows = |
| ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2; |
| const int new_mi_cols = |
| ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2; |
| |
| // Allocations in av1_alloc_context_buffers() depend on individual |
| // dimensions as well as the overall size. |
| if (new_mi_cols > cm->mi_params.mi_cols || |
| new_mi_rows > cm->mi_params.mi_rows) { |
| if (av1_alloc_context_buffers(cm, width, height)) { |
| // The cm->mi_* values have been cleared and any existing context |
| // buffers have been freed. Clear cm->width and cm->height to be |
| // consistent and to force a realloc next time. |
| cm->width = 0; |
| cm->height = 0; |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate context buffers"); |
| } |
| } else { |
| cm->mi_params.set_mb_mi(&cm->mi_params, width, height); |
| } |
| av1_init_mi_buffers(&cm->mi_params); |
| cm->width = width; |
| cm->height = height; |
| } |
| |
| ensure_mv_buffer(cm->cur_frame, cm); |
| cm->cur_frame->width = cm->width; |
| cm->cur_frame->height = cm->height; |
| } |
| |
| static AOM_INLINE void setup_tip_frame_size(AV1_COMMON *cm) { |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| YV12_BUFFER_CONFIG *tip_frame_buf = &cm->tip_ref.tip_frame->buf; |
| if (aom_realloc_frame_buffer( |
| tip_frame_buf, cm->width, cm->height, seq_params->subsampling_x, |
| seq_params->subsampling_y, AOM_DEC_BORDER_IN_PIXELS, |
| cm->features.byte_alignment, NULL, NULL, NULL, false)) { |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| } |
| |
| if (tip_frame_buf) { |
| tip_frame_buf->bit_depth = (unsigned int)seq_params->bit_depth; |
| tip_frame_buf->color_primaries = seq_params->color_primaries; |
| tip_frame_buf->transfer_characteristics = |
| seq_params->transfer_characteristics; |
| tip_frame_buf->matrix_coefficients = seq_params->matrix_coefficients; |
| tip_frame_buf->monochrome = seq_params->monochrome; |
| tip_frame_buf->chroma_sample_position = seq_params->chroma_sample_position; |
| tip_frame_buf->color_range = seq_params->color_range; |
| tip_frame_buf->render_width = cm->render_width; |
| tip_frame_buf->render_height = cm->render_height; |
| } |
| |
| #if CONFIG_TIP_DIRECT_FRAME_MV |
| tip_frame_buf = &cm->tip_ref.tmp_tip_frame->buf; |
| if (aom_realloc_frame_buffer( |
| tip_frame_buf, cm->width, cm->height, seq_params->subsampling_x, |
| seq_params->subsampling_y, AOM_DEC_BORDER_IN_PIXELS, |
| cm->features.byte_alignment, NULL, NULL, NULL, false)) { |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| } |
| |
| if (tip_frame_buf) { |
| tip_frame_buf->bit_depth = (unsigned int)seq_params->bit_depth; |
| tip_frame_buf->color_primaries = seq_params->color_primaries; |
| tip_frame_buf->transfer_characteristics = |
| seq_params->transfer_characteristics; |
| tip_frame_buf->matrix_coefficients = seq_params->matrix_coefficients; |
| tip_frame_buf->monochrome = seq_params->monochrome; |
| tip_frame_buf->chroma_sample_position = seq_params->chroma_sample_position; |
| tip_frame_buf->color_range = seq_params->color_range; |
| tip_frame_buf->render_width = cm->render_width; |
| tip_frame_buf->render_height = cm->render_height; |
| } |
| #endif // CONFIG_TIP_DIRECT_FRAME_MV |
| } |
| |
| static AOM_INLINE void setup_buffer_pool(AV1_COMMON *cm) { |
| BufferPool *const pool = cm->buffer_pool; |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| |
| lock_buffer_pool(pool); |
| if (aom_realloc_frame_buffer( |
| &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x, |
| seq_params->subsampling_y, AOM_DEC_BORDER_IN_PIXELS, |
| cm->features.byte_alignment, &cm->cur_frame->raw_frame_buffer, |
| pool->get_fb_cb, pool->cb_priv, false)) { |
| unlock_buffer_pool(pool); |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| } |
| unlock_buffer_pool(pool); |
| |
| cm->cur_frame->buf.bit_depth = (unsigned int)seq_params->bit_depth; |
| cm->cur_frame->buf.color_primaries = seq_params->color_primaries; |
| cm->cur_frame->buf.transfer_characteristics = |
| seq_params->transfer_characteristics; |
| cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; |
| cm->cur_frame->buf.monochrome = seq_params->monochrome; |
| cm->cur_frame->buf.chroma_sample_position = |
| seq_params->chroma_sample_position; |
| cm->cur_frame->buf.color_range = seq_params->color_range; |
| cm->cur_frame->buf.render_width = cm->render_width; |
| cm->cur_frame->buf.render_height = cm->render_height; |
| if (cm->seq_params.enable_tip) { |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, TIP_FRAME); |
| if (ref_buf == NULL || (ref_buf->buf.y_crop_width != cm->width || |
| ref_buf->buf.y_crop_height != cm->height)) { |
| setup_tip_frame_size(cm); |
| } |
| } |
| } |
| |
| static AOM_INLINE void setup_frame_size(AV1_COMMON *cm, |
| int frame_size_override_flag, |
| struct aom_read_bit_buffer *rb) { |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| int width, height; |
| |
| if (frame_size_override_flag) { |
| int num_bits_width = seq_params->num_bits_width; |
| int num_bits_height = seq_params->num_bits_height; |
| av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); |
| if (width > seq_params->max_frame_width || |
| height > seq_params->max_frame_height) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Frame dimensions are larger than the maximum values"); |
| } |
| } else { |
| width = seq_params->max_frame_width; |
| height = seq_params->max_frame_height; |
| } |
| |
| setup_superres(cm, rb, &width, &height); |
| resize_context_buffers(cm, width, height); |
| setup_render_size(cm, rb); |
| setup_buffer_pool(cm); |
| } |
| |
| static AOM_INLINE void setup_seq_sb_size(SequenceHeader *seq_params, |
| struct aom_read_bit_buffer *rb) { |
| static const BLOCK_SIZE sb_sizes[] = { |
| #if CONFIG_BLOCK_256 |
| BLOCK_256X256, |
| #endif |
| BLOCK_128X128, |
| BLOCK_64X64 |
| }; |
| int index = 0; |
| bool bit = aom_rb_read_bit(rb); |
| if (!bit) { |
| index++; |
| #if CONFIG_BLOCK_256 |
| bit = aom_rb_read_bit(rb); |
| if (!bit) { |
| index++; |
| } |
| #endif |
| } |
| BLOCK_SIZE sb_size = sb_sizes[index]; |
| seq_params->sb_size = sb_size; |
| seq_params->mib_size = mi_size_wide[sb_size]; |
| seq_params->mib_size_log2 = mi_size_wide_log2[sb_size]; |
| } |
| |
| static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth, |
| int ref_xss, int ref_yss, |
| aom_bit_depth_t this_bit_depth, |
| int this_xss, int this_yss) { |
| return ref_bit_depth == this_bit_depth && ref_xss == this_xss && |
| ref_yss == this_yss; |
| } |
| |
| static AOM_INLINE void setup_frame_size_with_refs( |
| AV1_COMMON *cm, struct aom_read_bit_buffer *rb) { |
| int width, height; |
| int found = 0; |
| int has_valid_ref_frame = 0; |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| if (aom_rb_read_bit(rb)) { |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i); |
| // This will never be NULL in a normal stream, as streams are required to |
| // have a shown keyframe before any inter frames, which would refresh all |
| // the reference buffers. However, it might be null if we're starting in |
| // the middle of a stream, and static analysis will error if we don't do |
| // a null check here. |
| if (ref_buf == NULL) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid condition: invalid reference buffer"); |
| } else { |
| const YV12_BUFFER_CONFIG *const buf = &ref_buf->buf; |
| width = buf->y_crop_width; |
| height = buf->y_crop_height; |
| cm->render_width = buf->render_width; |
| cm->render_height = buf->render_height; |
| setup_superres(cm, rb, &width, &height); |
| resize_context_buffers(cm, width, height); |
| found = 1; |
| break; |
| } |
| } |
| } |
| |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| if (!found) { |
| int num_bits_width = seq_params->num_bits_width; |
| int num_bits_height = seq_params->num_bits_height; |
| |
| av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height); |
| setup_superres(cm, rb, &width, &height); |
| resize_context_buffers(cm, width, height); |
| setup_render_size(cm, rb); |
| } |
| |
| if (width <= 0 || height <= 0) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid frame size"); |
| |
| // Check to make sure at least one of frames that this frame references has |
| // valid dimensions. |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i); |
| has_valid_ref_frame |= |
| valid_ref_frame_size(ref_frame->buf.y_crop_width, |
| ref_frame->buf.y_crop_height, width, height); |
| } |
| if (!has_valid_ref_frame) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Referenced frame has invalid size"); |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| const RefCntBuffer *const ref_frame = get_ref_frame_buf(cm, i); |
| if (!valid_ref_frame_img_fmt( |
| ref_frame->buf.bit_depth, ref_frame->buf.subsampling_x, |
| ref_frame->buf.subsampling_y, seq_params->bit_depth, |
| seq_params->subsampling_x, seq_params->subsampling_y)) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Referenced frame has incompatible color format"); |
| } |
| setup_buffer_pool(cm); |
| } |
| |
| static AOM_INLINE void read_tile_info_max_tile( |
| AV1_COMMON *const cm, struct aom_read_bit_buffer *const rb) { |
| CommonTileParams *const tiles = &cm->tiles; |
| int width_mi = ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, cm->mib_size_log2); |
| int height_mi = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, cm->mib_size_log2); |
| int width_sb = width_mi >> cm->mib_size_log2; |
| int height_sb = height_mi >> cm->mib_size_log2; |
| |
| av1_get_tile_limits(cm); |
| tiles->uniform_spacing = aom_rb_read_bit(rb); |
| |
| // Read tile columns |
| if (tiles->uniform_spacing) { |
| tiles->log2_cols = tiles->min_log2_cols; |
| while (tiles->log2_cols < tiles->max_log2_cols) { |
| if (!aom_rb_read_bit(rb)) { |
| break; |
| } |
| tiles->log2_cols++; |
| } |
| } else { |
| int i; |
| int start_sb; |
| for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) { |
| const int size_sb = |
| 1 + rb_read_uniform(rb, AOMMIN(width_sb, tiles->max_width_sb)); |
| tiles->col_start_sb[i] = start_sb; |
| start_sb += size_sb; |
| width_sb -= size_sb; |
| } |
| tiles->cols = i; |
| tiles->col_start_sb[i] = start_sb + width_sb; |
| } |
| av1_calculate_tile_cols(cm, cm->mi_params.mi_rows, cm->mi_params.mi_cols, |
| tiles); |
| |
| // Read tile rows |
| if (tiles->uniform_spacing) { |
| tiles->log2_rows = tiles->min_log2_rows; |
| while (tiles->log2_rows < tiles->max_log2_rows) { |
| if (!aom_rb_read_bit(rb)) { |
| break; |
| } |
| tiles->log2_rows++; |
| } |
| } else { |
| int i; |
| int start_sb; |
| for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) { |
| const int size_sb = |
| 1 + rb_read_uniform(rb, AOMMIN(height_sb, tiles->max_height_sb)); |
| tiles->row_start_sb[i] = start_sb; |
| start_sb += size_sb; |
| height_sb -= size_sb; |
| } |
| tiles->rows = i; |
| tiles->row_start_sb[i] = start_sb + height_sb; |
| } |
| av1_calculate_tile_rows(cm, cm->mi_params.mi_rows, tiles); |
| } |
| |
| void av1_set_single_tile_decoding_mode(AV1_COMMON *const cm) { |
| cm->tiles.single_tile_decoding = 0; |
| if (cm->tiles.large_scale) { |
| struct loopfilter *lf = &cm->lf; |
| RestorationInfo *const rst_info = cm->rst_info; |
| const CdefInfo *const cdef_info = &cm->cdef_info; |
| |
| // Figure out single_tile_decoding by loopfilter_level. |
| const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]); |
| const int no_cdef = cdef_info->cdef_bits == 0 && |
| cdef_info->cdef_strengths[0] == 0 && |
| cdef_info->cdef_uv_strengths[0] == 0; |
| const int no_restoration = |
| rst_info[0].frame_restoration_type == RESTORE_NONE && |
| rst_info[1].frame_restoration_type == RESTORE_NONE && |
| rst_info[2].frame_restoration_type == RESTORE_NONE; |
| assert(IMPLIES(cm->features.coded_lossless, no_loopfilter && no_cdef)); |
| assert(IMPLIES(cm->features.all_lossless, no_restoration)); |
| cm->tiles.single_tile_decoding = no_loopfilter && no_cdef && no_restoration; |
| } |
| } |
| |
| static AOM_INLINE void read_tile_info(AV1Decoder *const pbi, |
| struct aom_read_bit_buffer *const rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| |
| read_tile_info_max_tile(cm, rb); |
| |
| pbi->context_update_tile_id = 0; |
| if (cm->tiles.rows * cm->tiles.cols > 1) { |
| // tile to use for cdf update |
| pbi->context_update_tile_id = |
| aom_rb_read_literal(rb, cm->tiles.log2_rows + cm->tiles.log2_cols); |
| if (pbi->context_update_tile_id >= cm->tiles.rows * cm->tiles.cols) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid context_update_tile_id"); |
| } |
| // tile size magnitude |
| pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; |
| } |
| } |
| |
| #if EXT_TILE_DEBUG |
| static AOM_INLINE void read_ext_tile_info( |
| AV1Decoder *const pbi, struct aom_read_bit_buffer *const rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| |
| // This information is stored as a separate byte. |
| int mod = rb->bit_offset % CHAR_BIT; |
| if (mod > 0) aom_rb_read_literal(rb, CHAR_BIT - mod); |
| assert(rb->bit_offset % CHAR_BIT == 0); |
| |
| if (cm->tiles.cols * cm->tiles.rows > 1) { |
| // Read the number of bytes used to store tile size |
| pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1; |
| pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1; |
| } |
| } |
| #endif // EXT_TILE_DEBUG |
| |
| static size_t mem_get_varsize(const uint8_t *src, int sz) { |
| switch (sz) { |
| case 1: return src[0]; |
| case 2: return mem_get_le16(src); |
| case 3: return mem_get_le24(src); |
| case 4: return mem_get_le32(src); |
| default: assert(0 && "Invalid size"); return -1; |
| } |
| } |
| |
| #if EXT_TILE_DEBUG |
| // Reads the next tile returning its size and adjusting '*data' accordingly |
| // based on 'is_last'. On return, '*data' is updated to point to the end of the |
| // raw tile buffer in the bit stream. |
| static AOM_INLINE void get_ls_tile_buffer( |
| const uint8_t *const data_end, struct aom_internal_error_info *error_info, |
| const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], |
| int tile_size_bytes, int col, int row, int tile_copy_mode) { |
| size_t size; |
| |
| size_t copy_size = 0; |
| const uint8_t *copy_data = NULL; |
| |
| if (!read_is_valid(*data, tile_size_bytes, data_end)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile length"); |
| size = mem_get_varsize(*data, tile_size_bytes); |
| |
| // If tile_copy_mode = 1, then the top bit of the tile header indicates copy |
| // mode. |
| if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) { |
| // The remaining bits in the top byte signal the row offset |
| int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f; |
| |
| // Currently, only use tiles in same column as reference tiles. |
| copy_data = tile_buffers[row - offset][col].data; |
| copy_size = tile_buffers[row - offset][col].size; |
| size = 0; |
| } else { |
| size += AV1_MIN_TILE_SIZE_BYTES; |
| } |
| |
| *data += tile_size_bytes; |
| |
| if (size > (size_t)(data_end - *data)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile size"); |
| |
| if (size > 0) { |
| tile_buffers[row][col].data = *data; |
| tile_buffers[row][col].size = size; |
| } else { |
| tile_buffers[row][col].data = copy_data; |
| tile_buffers[row][col].size = copy_size; |
| } |
| |
| *data += size; |
| } |
| |
| // Returns the end of the last tile buffer |
| // (tile_buffers[cm->tiles.rows - 1][cm->tiles.cols - 1]). |
| static const uint8_t *get_ls_tile_buffers( |
| AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, |
| TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| const int have_tiles = tile_cols * tile_rows > 1; |
| const uint8_t *raw_data_end; // The end of the last tile buffer |
| |
| if (!have_tiles) { |
| const size_t tile_size = data_end - data; |
| tile_buffers[0][0].data = data; |
| tile_buffers[0][0].size = tile_size; |
| raw_data_end = NULL; |
| } else { |
| // We locate only the tile buffers that are required, which are the ones |
| // specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always |
| // need the last (bottom right) tile buffer, as we need to know where the |
| // end of the compressed frame buffer is for proper superframe decoding. |
| |
| const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL }; |
| const uint8_t *const data_start = data; |
| |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int tile_rows_start = single_row ? dec_tile_row : 0; |
| const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| const int tile_cols_start = single_col ? dec_tile_col : 0; |
| const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| |
| const int tile_col_size_bytes = pbi->tile_col_size_bytes; |
| const int tile_size_bytes = pbi->tile_size_bytes; |
| int tile_width, tile_height; |
| av1_get_uniform_tile_size(cm, &tile_width, &tile_height); |
| const int tile_copy_mode = |
| ((AOMMAX(tile_width, tile_height) << MI_SIZE_LOG2) <= 256) ? 1 : 0; |
| // Read tile column sizes for all columns (we need the last tile buffer) |
| for (int c = 0; c < tile_cols; ++c) { |
| const int is_last = c == tile_cols - 1; |
| size_t tile_col_size; |
| |
| if (!is_last) { |
| tile_col_size = mem_get_varsize(data, tile_col_size_bytes); |
| data += tile_col_size_bytes; |
| tile_col_data_end[c] = data + tile_col_size; |
| } else { |
| tile_col_size = data_end - data; |
| tile_col_data_end[c] = data_end; |
| } |
| data += tile_col_size; |
| } |
| |
| data = data_start; |
| |
| // Read the required tile sizes. |
| for (int c = tile_cols_start; c < tile_cols_end; ++c) { |
| const int is_last = c == tile_cols - 1; |
| |
| if (c > 0) data = tile_col_data_end[c - 1]; |
| |
| if (!is_last) data += tile_col_size_bytes; |
| |
| // Get the whole of the last column, otherwise stop at the required tile. |
| for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) { |
| get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, |
| tile_buffers, tile_size_bytes, c, r, tile_copy_mode); |
| } |
| } |
| |
| // If we have not read the last column, then read it to get the last tile. |
| if (tile_cols_end != tile_cols) { |
| const int c = tile_cols - 1; |
| |
| data = tile_col_data_end[c - 1]; |
| |
| for (int r = 0; r < tile_rows; ++r) { |
| get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data, |
| tile_buffers, tile_size_bytes, c, r, tile_copy_mode); |
| } |
| } |
| raw_data_end = data; |
| } |
| return raw_data_end; |
| } |
| #endif // EXT_TILE_DEBUG |
| |
| static const uint8_t *get_ls_single_tile_buffer( |
| AV1Decoder *pbi, const uint8_t *data, |
| TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) { |
| assert(pbi->dec_tile_row >= 0 && pbi->dec_tile_col >= 0); |
| tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].data = data; |
| tile_buffers[pbi->dec_tile_row][pbi->dec_tile_col].size = |
| (size_t)pbi->coded_tile_data_size; |
| return data + pbi->coded_tile_data_size; |
| } |
| |
| // Reads the next tile returning its size and adjusting '*data' accordingly |
| // based on 'is_last'. |
| static AOM_INLINE void get_tile_buffer( |
| const uint8_t *const data_end, const int tile_size_bytes, int is_last, |
| struct aom_internal_error_info *error_info, const uint8_t **data, |
| TileBufferDec *const buf) { |
| size_t size; |
| |
| if (!is_last) { |
| if (!read_is_valid(*data, tile_size_bytes, data_end)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Not enough data to read tile size"); |
| |
| size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES; |
| *data += tile_size_bytes; |
| |
| if (size > (size_t)(data_end - *data)) |
| aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Truncated packet or corrupt tile size"); |
| } else { |
| size = data_end - *data; |
| } |
| |
| buf->data = *data; |
| buf->size = size; |
| |
| *data += size; |
| } |
| |
| static AOM_INLINE void get_tile_buffers( |
| AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end, |
| TileBufferDec (*const tile_buffers)[MAX_TILE_COLS], int start_tile, |
| int end_tile) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int tile_cols = cm->tiles.cols; |
| const int tile_rows = cm->tiles.rows; |
| int tc = 0; |
| |
| for (int r = 0; r < tile_rows; ++r) { |
| for (int c = 0; c < tile_cols; ++c, ++tc) { |
| TileBufferDec *const buf = &tile_buffers[r][c]; |
| |
| const int is_last = (tc == end_tile); |
| const size_t hdr_offset = 0; |
| |
| if (tc < start_tile || tc > end_tile) continue; |
| |
| if (data + hdr_offset >= data_end) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Data ended before all tiles were read."); |
| data += hdr_offset; |
| get_tile_buffer(data_end, pbi->tile_size_bytes, is_last, |
| &pbi->common.error, &data, buf); |
| } |
| } |
| } |
| |
| static AOM_INLINE void set_cb_buffer(AV1Decoder *pbi, DecoderCodingBlock *dcb, |
| CB_BUFFER *cb_buffer_base, |
| const int num_planes, int mi_row, |
| int mi_col) { |
| AV1_COMMON *const cm = &pbi->common; |
| int mib_size_log2 = cm->mib_size_log2; |
| int stride = (cm->mi_params.mi_cols >> mib_size_log2) + 1; |
| int offset = (mi_row >> mib_size_log2) * stride + (mi_col >> mib_size_log2); |
| CB_BUFFER *cb_buffer = cb_buffer_base + offset; |
| |
| for (int plane = 0; plane < num_planes; ++plane) { |
| dcb->dqcoeff_block[plane] = cb_buffer->dqcoeff[plane]; |
| #if CONFIG_INSPECTION |
| dcb->dqcoeff_block_copy[plane] = cb_buffer->dqcoeff_copy[plane]; |
| dcb->qcoeff_block[plane] = cb_buffer->qcoeff[plane]; |
| dcb->dequant_values[plane] = cb_buffer->dequant_values[plane]; |
| #endif // CONFIG_INSPECTION |
| dcb->eob_data[plane] = cb_buffer->eob_data[plane]; |
| dcb->bob_data[plane] = cb_buffer->bob_data[plane]; |
| dcb->cb_offset[plane] = 0; |
| dcb->txb_offset[plane] = 0; |
| } |
| MACROBLOCKD *const xd = &dcb->xd; |
| xd->plane[0].color_index_map = cb_buffer->color_index_map[0]; |
| xd->plane[1].color_index_map = cb_buffer->color_index_map[1]; |
| xd->color_index_map_offset[0] = 0; |
| xd->color_index_map_offset[1] = 0; |
| } |
| |
| static AOM_INLINE void decoder_alloc_tile_data(AV1Decoder *pbi, |
| const int n_tiles) { |
| AV1_COMMON *const cm = &pbi->common; |
| aom_free(pbi->tile_data); |
| CHECK_MEM_ERROR(cm, pbi->tile_data, |
| aom_memalign(32, n_tiles * sizeof(*pbi->tile_data))); |
| pbi->allocated_tiles = n_tiles; |
| for (int i = 0; i < n_tiles; i++) { |
| TileDataDec *const tile_data = pbi->tile_data + i; |
| av1_zero(tile_data->dec_row_mt_sync); |
| } |
| pbi->allocated_row_mt_sync_rows = 0; |
| } |
| |
| // Set up nsync by width. |
| static INLINE int get_sync_range(int width) { |
| // nsync numbers are picked by testing. |
| #if 0 |
| if (width < 640) |
| return 1; |
| else if (width <= 1280) |
| return 2; |
| else if (width <= 4096) |
| return 4; |
| else |
| return 8; |
| #else |
| (void)width; |
| #endif |
| return 1; |
| } |
| |
| // Allocate memory for decoder row synchronization |
| static AOM_INLINE void dec_row_mt_alloc(AV1DecRowMTSync *dec_row_mt_sync, |
| AV1_COMMON *cm, int rows) { |
| dec_row_mt_sync->allocated_sb_rows = rows; |
| #if CONFIG_MULTITHREAD |
| { |
| int i; |
| |
| CHECK_MEM_ERROR(cm, dec_row_mt_sync->mutex_, |
| aom_malloc(sizeof(*(dec_row_mt_sync->mutex_)) * rows)); |
| if (dec_row_mt_sync->mutex_) { |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&dec_row_mt_sync->mutex_[i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, dec_row_mt_sync->cond_, |
| aom_malloc(sizeof(*(dec_row_mt_sync->cond_)) * rows)); |
| if (dec_row_mt_sync->cond_) { |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&dec_row_mt_sync->cond_[i], NULL); |
| } |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| |
| CHECK_MEM_ERROR(cm, dec_row_mt_sync->cur_sb_col, |
| aom_malloc(sizeof(*(dec_row_mt_sync->cur_sb_col)) * rows)); |
| |
| // Set up nsync. |
| dec_row_mt_sync->sync_range = get_sync_range(cm->width); |
| } |
| |
| // Deallocate decoder row synchronization related mutex and data |
| void av1_dec_row_mt_dealloc(AV1DecRowMTSync *dec_row_mt_sync) { |
| if (dec_row_mt_sync != NULL) { |
| #if CONFIG_MULTITHREAD |
| int i; |
| if (dec_row_mt_sync->mutex_ != NULL) { |
| for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { |
| pthread_mutex_destroy(&dec_row_mt_sync->mutex_[i]); |
| } |
| aom_free(dec_row_mt_sync->mutex_); |
| } |
| if (dec_row_mt_sync->cond_ != NULL) { |
| for (i = 0; i < dec_row_mt_sync->allocated_sb_rows; ++i) { |
| pthread_cond_destroy(&dec_row_mt_sync->cond_[i]); |
| } |
| aom_free(dec_row_mt_sync->cond_); |
| } |
| #endif // CONFIG_MULTITHREAD |
| aom_free(dec_row_mt_sync->cur_sb_col); |
| |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| av1_zero(*dec_row_mt_sync); |
| } |
| } |
| |
| static INLINE void sync_read(AV1DecRowMTSync *const dec_row_mt_sync, int r, |
| int c) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = dec_row_mt_sync->sync_range; |
| |
| if (r && !(c & (nsync - 1))) { |
| pthread_mutex_t *const mutex = &dec_row_mt_sync->mutex_[r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > dec_row_mt_sync->cur_sb_col[r - 1] - nsync) { |
| pthread_cond_wait(&dec_row_mt_sync->cond_[r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)dec_row_mt_sync; |
| (void)r; |
| (void)c; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void sync_write(AV1DecRowMTSync *const dec_row_mt_sync, int r, |
| int c, const int sb_cols) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = dec_row_mt_sync->sync_range; |
| int cur; |
| int sig = 1; |
| |
| if (c < sb_cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = sb_cols + nsync; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&dec_row_mt_sync->mutex_[r]); |
| |
| dec_row_mt_sync->cur_sb_col[r] = cur; |
| |
| pthread_cond_signal(&dec_row_mt_sync->cond_[r]); |
| pthread_mutex_unlock(&dec_row_mt_sync->mutex_[r]); |
| } |
| #else |
| (void)dec_row_mt_sync; |
| (void)r; |
| (void)c; |
| (void)sb_cols; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static AOM_INLINE void decode_tile_sb_row(AV1Decoder *pbi, ThreadData *const td, |
| TileInfo tile_info, |
| const int mi_row) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int num_planes = av1_num_planes(cm); |
| TileDataDec *const tile_data = |
| pbi->tile_data + tile_info.tile_row * cm->tiles.cols + tile_info.tile_col; |
| const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info); |
| const int sb_row_in_tile = |
| (mi_row - tile_info.mi_row_start) >> cm->mib_size_log2; |
| int sb_col_in_tile = 0; |
| |
| for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; |
| mi_col += cm->mib_size, sb_col_in_tile++) { |
| av1_reset_is_mi_coded_map(&td->dcb.xd, cm->mib_size); |
| td->dcb.xd.sbi = av1_get_sb_info(cm, mi_row, mi_col); |
| set_cb_buffer(pbi, &td->dcb, pbi->cb_buffer_base, num_planes, mi_row, |
| mi_col); |
| |
| sync_read(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile); |
| |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| |
| xd->ref_mv_bank.rmb_sb_hits = 0; |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| xd->warp_param_bank.wpb_sb_hits = 0; |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| // Decoding of the super-block |
| decode_partition_sb(pbi, td, mi_row, mi_col, td->bit_reader, cm->sb_size, |
| 0x2); |
| |
| sync_write(&tile_data->dec_row_mt_sync, sb_row_in_tile, sb_col_in_tile, |
| sb_cols_in_tile); |
| } |
| } |
| |
| static int check_trailing_bits_after_symbol_coder(aom_reader *r) { |
| if (aom_reader_has_overflowed(r)) return -1; |
| |
| uint32_t nb_bits = aom_reader_tell(r); |
| uint32_t nb_bytes = (nb_bits + 7) >> 3; |
| const uint8_t *p = aom_reader_find_begin(r) + nb_bytes; |
| |
| // aom_reader_tell() returns 1 for a newly initialized decoder, and the |
| // return value only increases as values are decoded. So nb_bits > 0, and |
| // thus p > p_begin. Therefore accessing p[-1] is safe. |
| uint8_t last_byte = p[-1]; |
| uint8_t pattern = 128 >> ((nb_bits - 1) & 7); |
| if ((last_byte & (2 * pattern - 1)) != pattern) return -1; |
| |
| // Make sure that all padding bytes are zero as required by the spec. |
| const uint8_t *p_end = aom_reader_find_end(r); |
| while (p < p_end) { |
| if (*p != 0) return -1; |
| p++; |
| } |
| return 0; |
| } |
| |
| static AOM_INLINE void set_decode_func_pointers(ThreadData *td, |
| int parse_decode_flag) { |
| td->read_coeffs_tx_intra_block_visit = decode_block_void; |
| td->predict_and_recon_intra_block_visit = decode_block_void; |
| td->read_coeffs_tx_inter_block_visit = decode_block_void; |
| td->inverse_tx_inter_block_visit = decode_block_void; |
| td->inverse_cctx_block_visit = decode_block_void; |
| td->predict_inter_block_visit = predict_inter_block_void; |
| td->cfl_store_inter_block_visit = cfl_store_inter_block_void; |
| |
| if (parse_decode_flag & 0x1) { |
| td->read_coeffs_tx_intra_block_visit = read_coeffs_tx_intra_block; |
| td->read_coeffs_tx_inter_block_visit = av1_read_coeffs_txb_facade; |
| } |
| if (parse_decode_flag & 0x2) { |
| td->predict_and_recon_intra_block_visit = |
| predict_and_reconstruct_intra_block; |
| td->inverse_tx_inter_block_visit = inverse_transform_inter_block; |
| td->inverse_cctx_block_visit = inverse_cross_chroma_transform_block; |
| td->predict_inter_block_visit = predict_inter_block; |
| td->cfl_store_inter_block_visit = cfl_store_inter_block; |
| } |
| } |
| |
| static AOM_INLINE void decode_tile(AV1Decoder *pbi, ThreadData *const td, |
| int tile_row, int tile_col) { |
| TileInfo tile_info; |
| |
| AV1_COMMON *const cm = &pbi->common; |
| const int num_planes = av1_num_planes(cm); |
| |
| av1_tile_set_row(&tile_info, cm, tile_row); |
| av1_tile_set_col(&tile_info, cm, tile_col); |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| |
| av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end, |
| tile_row); |
| av1_reset_loop_filter_delta(xd, num_planes); |
| #if CONFIG_LR_IMPROVEMENTS |
| int num_filter_classes[MAX_MB_PLANE]; |
| for (int p = 0; p < num_planes; ++p) |
| num_filter_classes[p] = cm->rst_info[p].num_filter_classes; |
| #endif // CONFIG_LR_IMPROVEMENTS |
| av1_reset_loop_restoration(xd, 0, num_planes |
| #if CONFIG_LR_IMPROVEMENTS |
| , |
| num_filter_classes |
| #endif // CONFIG_LR_IMPROVEMENTS |
| ); |
| |
| for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; |
| mi_row += cm->mib_size) { |
| av1_zero_left_context(xd); |
| av1_zero(xd->ref_mv_bank); |
| #if !CONFIG_MVP_IMPROVEMENT |
| xd->ref_mv_bank_pt = &td->ref_mv_bank; |
| #endif |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| av1_zero(xd->warp_param_bank); |
| #if !WARP_CU_BANK |
| xd->warp_param_bank_pt = &td->warp_param_bank; |
| #endif //! WARP_CU_BANK |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; |
| mi_col += cm->mib_size) { |
| av1_reset_is_mi_coded_map(xd, cm->mib_size); |
| av1_set_sb_info(cm, xd, mi_row, mi_col); |
| set_cb_buffer(pbi, dcb, &td->cb_buffer_base, num_planes, 0, 0); |
| // td->ref_mv_bank is initialized as xd->ref_mv_bank, and used |
| // for MV referencing during decoding the tile. |
| // xd->ref_mv_bank is updated as decoding goes. |
| xd->ref_mv_bank.rmb_sb_hits = 0; |
| #if !CONFIG_MVP_IMPROVEMENT |
| td->ref_mv_bank = xd->ref_mv_bank; |
| #endif // !CONFIG_MVP_IMPROVEMENT |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| xd->warp_param_bank.wpb_sb_hits = 0; |
| #if !WARP_CU_BANK |
| td->warp_param_bank = xd->warp_param_bank; |
| #endif //! WARP_CU_BANK |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| decode_partition_sb(pbi, td, mi_row, mi_col, td->bit_reader, cm->sb_size, |
| 0x3); |
| |
| if (aom_reader_has_overflowed(td->bit_reader)) { |
| aom_merge_corrupted_flag(&dcb->corrupted, 1); |
| return; |
| } |
| } |
| } |
| |
| int corrupted = |
| (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; |
| aom_merge_corrupted_flag(&dcb->corrupted, corrupted); |
| } |
| |
| #if CONFIG_THROUGHPUT_ANALYSIS |
| static void aom_accounting_cal_total(AV1Decoder *pbi) { |
| if (pbi->decoding_first_frame) { |
| pbi->common.sym_stats.frame_dec_order = 0; |
| pbi->common.sym_stats.tot_ctx_syms = 0; |
| pbi->common.sym_stats.total_total_hits = 0; |
| pbi->common.sym_stats.total_context_switch = 0; |
| pbi->common.sym_stats.tot_bypass_syms = 0; |
| pbi->common.sym_stats.tot_bits = 0; |
| pbi->common.sym_stats.peak_ctx_syms = 0; |
| pbi->common.sym_stats.peak_bypass_syms = 0; |
| pbi->common.sym_stats.peak_bits = 0; |
| } |
| Accounting accounting = pbi->accounting; |
| int64_t frm_ctx_syms = accounting.syms.num_ctx_coded; |
| int64_t frm_bypass_syms = accounting.syms.num_bypass_coded; |
| int64_t frm_context_switch = accounting.syms.context_switch; |
| int64_t frm_total_hits = accounting.syms.total_hits; |
| int64_t frm_bits = 0; |
| for (int i = 0; i < accounting.syms.num_syms; i++) { |
| AccountingSymbol sym = accounting.syms.syms[i]; |
| frm_bits += sym.bits; |
| } |
| int64_t peak_ctx_syms = pbi->common.sym_stats.peak_ctx_syms; |
| int64_t peak_bypass_syms = pbi->common.sym_stats.peak_bypass_syms; |
| pbi->common.sym_stats.tot_ctx_syms += frm_ctx_syms; |
| pbi->common.sym_stats.total_context_switch += frm_context_switch; |
| pbi->common.sym_stats.total_total_hits += frm_total_hits; |
| pbi->common.sym_stats.tot_bypass_syms += frm_bypass_syms; |
| pbi->common.sym_stats.frame_dec_order += 1; |
| pbi->common.sym_stats.tot_bits += frm_bits; |
| if (frm_ctx_syms * 4 + frm_bypass_syms > |
| peak_ctx_syms * 4 + peak_bypass_syms) { |
| pbi->common.sym_stats.peak_ctx_syms = frm_ctx_syms; |
| pbi->common.sym_stats.peak_bypass_syms = frm_bypass_syms; |
| pbi->common.sym_stats.peak_bits = frm_bits; |
| } |
| tot_ctx_syms = pbi->common.sym_stats.tot_ctx_syms; |
| tot_bypass_syms = pbi->common.sym_stats.tot_bypass_syms; |
| tot_bits = pbi->common.sym_stats.tot_bits; |
| total_context_switch = pbi->common.sym_stats.total_context_switch; |
| total_total_hits = pbi->common.sym_stats.total_total_hits; |
| max_ctx_syms = pbi->common.sym_stats.peak_ctx_syms; |
| max_bypass_syms = pbi->common.sym_stats.peak_bypass_syms; |
| max_bits = pbi->common.sym_stats.peak_bits; |
| tot_frames = pbi->common.sym_stats.frame_dec_order; |
| } |
| #endif // CONFIG_THROUGHPUT_ANALYSIS |
| |
| static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end, int start_tile, |
| int end_tile) { |
| AV1_COMMON *const cm = &pbi->common; |
| ThreadData *const td = &pbi->td; |
| CommonTileParams *const tiles = &cm->tiles; |
| const int tile_cols = tiles->cols; |
| const int tile_rows = tiles->rows; |
| const int n_tiles = tile_cols * tile_rows; |
| TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| int tile_rows_start; |
| int tile_rows_end; |
| int tile_cols_start; |
| int tile_cols_end; |
| int inv_col_order; |
| int inv_row_order; |
| int tile_row, tile_col; |
| uint8_t allow_update_cdf; |
| const uint8_t *raw_data_end = NULL; |
| |
| if (tiles->large_scale) { |
| tile_rows_start = single_row ? dec_tile_row : 0; |
| tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; |
| tile_cols_start = single_col ? dec_tile_col : 0; |
| tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| inv_col_order = pbi->inv_tile_order && !single_col; |
| inv_row_order = pbi->inv_tile_order && !single_row; |
| allow_update_cdf = 0; |
| } else { |
| tile_rows_start = 0; |
| tile_rows_end = tile_rows; |
| tile_cols_start = 0; |
| tile_cols_end = tile_cols; |
| inv_col_order = pbi->inv_tile_order; |
| inv_row_order = pbi->inv_tile_order; |
| allow_update_cdf = 1; |
| } |
| |
| // No tiles to decode. |
| if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || |
| // First tile is larger than end_tile. |
| tile_rows_start * tiles->cols + tile_cols_start > end_tile || |
| // Last tile is smaller than start_tile. |
| (tile_rows_end - 1) * tiles->cols + tile_cols_end - 1 < start_tile) |
| return data; |
| |
| allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; |
| |
| assert(tile_rows <= MAX_TILE_ROWS); |
| assert(tile_cols <= MAX_TILE_COLS); |
| |
| #if EXT_TILE_DEBUG |
| if (tiles->large_scale && !pbi->ext_tile_debug) |
| raw_data_end = get_ls_single_tile_buffer(pbi, data, tile_buffers); |
| else if (tiles->large_scale && pbi->ext_tile_debug) |
| raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); |
| else |
| #endif // EXT_TILE_DEBUG |
| get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); |
| |
| if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { |
| decoder_alloc_tile_data(pbi, n_tiles); |
| } |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| aom_accounting_reset(&pbi->accounting); |
| } |
| #endif |
| |
| set_decode_func_pointers(&pbi->td, 0x3); |
| |
| // Load all tile information into thread_data. |
| td->dcb = pbi->dcb; |
| |
| td->dcb.corrupted = 0; |
| td->dcb.mc_buf[0] = td->mc_buf[0]; |
| td->dcb.mc_buf[1] = td->mc_buf[1]; |
| td->dcb.xd.tmp_conv_dst = td->tmp_conv_dst; |
| for (int j = 0; j < 2; ++j) { |
| td->dcb.xd.tmp_obmc_bufs[j] = td->tmp_obmc_bufs[j]; |
| } |
| |
| for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { |
| const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row; |
| |
| for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { |
| const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col; |
| TileDataDec *const tile_data = pbi->tile_data + row * tiles->cols + col; |
| const TileBufferDec *const tile_bs_buf = &tile_buffers[row][col]; |
| |
| if (row * tiles->cols + col < start_tile || |
| row * tiles->cols + col > end_tile) |
| continue; |
| |
| td->bit_reader = &tile_data->bit_reader; |
| // av1_zero(td->cb_buffer_base.dqcoeff); |
| av1_tile_init(&td->dcb.xd.tile, cm, row, col); |
| td->dcb.xd.current_base_qindex = cm->quant_params.base_qindex; |
| setup_bool_decoder(tile_bs_buf->data, data_end, tile_bs_buf->size, |
| &cm->error, td->bit_reader, allow_update_cdf); |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| td->bit_reader->accounting = &pbi->accounting; |
| td->bit_reader->accounting->last_tell_frac = |
| aom_reader_tell_frac(td->bit_reader); |
| } else { |
| td->bit_reader->accounting = NULL; |
| } |
| #endif |
| av1_init_macroblockd(cm, &td->dcb.xd); |
| av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), row, |
| &td->dcb.xd); |
| |
| // Initialise the tile context from the frame context |
| tile_data->tctx = *cm->fc; |
| td->dcb.xd.tile_ctx = &tile_data->tctx; |
| |
| // decode tile |
| decode_tile(pbi, td, row, col); |
| aom_merge_corrupted_flag(&pbi->dcb.corrupted, td->dcb.corrupted); |
| if (pbi->dcb.corrupted) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Failed to decode tile data"); |
| } |
| } |
| |
| if (tiles->large_scale) { |
| if (n_tiles == 1) { |
| // Find the end of the single tile buffer |
| return aom_reader_find_end(&pbi->tile_data->bit_reader); |
| } |
| // Return the end of the last tile buffer |
| return raw_data_end; |
| } |
| TileDataDec *const tile_data = pbi->tile_data + end_tile; |
| #if CONFIG_THROUGHPUT_ANALYSIS |
| if (pbi->acct_enabled) { |
| aom_accounting_cal_total(pbi); |
| } |
| #endif // CONFIG_THROUGHPUT_ANALYSIS |
| return aom_reader_find_end(&tile_data->bit_reader); |
| } |
| |
| static TileJobsDec *get_dec_job_info(AV1DecTileMT *tile_mt_info) { |
| TileJobsDec *cur_job_info = NULL; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(tile_mt_info->job_mutex); |
| |
| if (tile_mt_info->jobs_dequeued < tile_mt_info->jobs_enqueued) { |
| cur_job_info = tile_mt_info->job_queue + tile_mt_info->jobs_dequeued; |
| tile_mt_info->jobs_dequeued++; |
| } |
| |
| pthread_mutex_unlock(tile_mt_info->job_mutex); |
| #else |
| (void)tile_mt_info; |
| #endif |
| return cur_job_info; |
| } |
| |
| static AOM_INLINE void tile_worker_hook_init( |
| AV1Decoder *const pbi, DecWorkerData *const thread_data, |
| const TileBufferDec *const tile_buffer, TileDataDec *const tile_data, |
| uint8_t allow_update_cdf) { |
| AV1_COMMON *cm = &pbi->common; |
| ThreadData *const td = thread_data->td; |
| int tile_row = tile_data->tile_info.tile_row; |
| int tile_col = tile_data->tile_info.tile_col; |
| |
| td->bit_reader = &tile_data->bit_reader; |
| av1_zero(td->cb_buffer_base.dqcoeff); |
| |
| MACROBLOCKD *const xd = &td->dcb.xd; |
| av1_tile_init(&xd->tile, cm, tile_row, tile_col); |
| xd->current_base_qindex = cm->quant_params.base_qindex; |
| setup_bool_decoder(tile_buffer->data, thread_data->data_end, |
| tile_buffer->size, &thread_data->error_info, |
| td->bit_reader, allow_update_cdf); |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| td->bit_reader->accounting = &pbi->accounting; |
| td->bit_reader->accounting->last_tell_frac = |
| aom_reader_tell_frac(td->bit_reader); |
| } else { |
| td->bit_reader->accounting = NULL; |
| } |
| #endif |
| av1_init_macroblockd(cm, xd); |
| xd->error_info = &thread_data->error_info; |
| av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row, xd); |
| |
| // Initialise the tile context from the frame context |
| tile_data->tctx = *cm->fc; |
| xd->tile_ctx = &tile_data->tctx; |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| tile_data->bit_reader.accounting->last_tell_frac = |
| aom_reader_tell_frac(&tile_data->bit_reader); |
| } |
| #endif |
| } |
| |
| static int tile_worker_hook(void *arg1, void *arg2) { |
| DecWorkerData *const thread_data = (DecWorkerData *)arg1; |
| AV1Decoder *const pbi = (AV1Decoder *)arg2; |
| AV1_COMMON *cm = &pbi->common; |
| ThreadData *const td = thread_data->td; |
| uint8_t allow_update_cdf; |
| |
| // The jmp_buf is valid only for the duration of the function that calls |
| // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
| // before it returns. |
| if (setjmp(thread_data->error_info.jmp)) { |
| thread_data->error_info.setjmp = 0; |
| thread_data->td->dcb.corrupted = 1; |
| return 0; |
| } |
| thread_data->error_info.setjmp = 1; |
| |
| allow_update_cdf = cm->tiles.large_scale ? 0 : 1; |
| allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; |
| |
| set_decode_func_pointers(td, 0x3); |
| |
| assert(cm->tiles.cols > 0); |
| while (!td->dcb.corrupted) { |
| TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); |
| |
| if (cur_job_info != NULL) { |
| const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; |
| TileDataDec *const tile_data = cur_job_info->tile_data; |
| tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, |
| allow_update_cdf); |
| // decode tile |
| int tile_row = tile_data->tile_info.tile_row; |
| int tile_col = tile_data->tile_info.tile_col; |
| decode_tile(pbi, td, tile_row, tile_col); |
| } else { |
| break; |
| } |
| } |
| thread_data->error_info.setjmp = 0; |
| return !td->dcb.corrupted; |
| } |
| |
| static INLINE int get_max_row_mt_workers_per_tile(AV1_COMMON *cm, |
| TileInfo tile) { |
| // NOTE: Currently value of max workers is calculated based |
| // on the parse and decode time. As per the theoretical estimate |
| // when percentage of parse time is equal to percentage of decode |
| // time, number of workers needed to parse + decode a tile can not |
| // exceed more than 2. |
| // TODO(any): Modify this value if parsing is optimized in future. |
| int sb_rows = av1_get_sb_rows_in_tile(cm, tile); |
| int max_workers = |
| sb_rows == 1 ? AOM_MIN_THREADS_PER_TILE : AOM_MAX_THREADS_PER_TILE; |
| return max_workers; |
| } |
| |
| // The caller must hold pbi->row_mt_mutex_ when calling this function. |
| // Returns 1 if either the next job is stored in *next_job_info or 1 is stored |
| // in *end_of_frame. |
| // NOTE: The caller waits on pbi->row_mt_cond_ if this function returns 0. |
| // The return value of this function depends on the following variables: |
| // - frame_row_mt_info->mi_rows_parse_done |
| // - frame_row_mt_info->mi_rows_decode_started |
| // - frame_row_mt_info->row_mt_exit |
| // Therefore we may need to signal or broadcast pbi->row_mt_cond_ if any of |
| // these variables is modified. |
| static int get_next_job_info(AV1Decoder *const pbi, |
| AV1DecRowMTJobInfo *next_job_info, |
| int *end_of_frame) { |
| AV1_COMMON *cm = &pbi->common; |
| TileDataDec *tile_data; |
| AV1DecRowMTSync *dec_row_mt_sync; |
| AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; |
| TileInfo tile_info; |
| const int tile_rows_start = frame_row_mt_info->tile_rows_start; |
| const int tile_rows_end = frame_row_mt_info->tile_rows_end; |
| const int tile_cols_start = frame_row_mt_info->tile_cols_start; |
| const int tile_cols_end = frame_row_mt_info->tile_cols_end; |
| const int start_tile = frame_row_mt_info->start_tile; |
| const int end_tile = frame_row_mt_info->end_tile; |
| const int sb_mi_size = mi_size_wide[cm->sb_size]; |
| int num_mis_to_decode, num_threads_working; |
| int num_mis_waiting_for_decode; |
| int min_threads_working = INT_MAX; |
| int max_mis_to_decode = 0; |
| int tile_row_idx, tile_col_idx; |
| int tile_row = -1; |
| int tile_col = -1; |
| |
| memset(next_job_info, 0, sizeof(*next_job_info)); |
| |
| // Frame decode is completed or error is encountered. |
| *end_of_frame = (frame_row_mt_info->mi_rows_decode_started == |
| frame_row_mt_info->mi_rows_to_decode) || |
| (frame_row_mt_info->row_mt_exit == 1); |
| if (*end_of_frame) { |
| return 1; |
| } |
| |
| // Decoding cannot start as bit-stream parsing is not complete. |
| assert(frame_row_mt_info->mi_rows_parse_done >= |
| frame_row_mt_info->mi_rows_decode_started); |
| if (frame_row_mt_info->mi_rows_parse_done == |
| frame_row_mt_info->mi_rows_decode_started) |
| return 0; |
| |
| // Choose the tile to decode. |
| for (tile_row_idx = tile_rows_start; tile_row_idx < tile_rows_end; |
| ++tile_row_idx) { |
| for (tile_col_idx = tile_cols_start; tile_col_idx < tile_cols_end; |
| ++tile_col_idx) { |
| if (tile_row_idx * cm->tiles.cols + tile_col_idx < start_tile || |
| tile_row_idx * cm->tiles.cols + tile_col_idx > end_tile) |
| continue; |
| |
| tile_data = pbi->tile_data + tile_row_idx * cm->tiles.cols + tile_col_idx; |
| dec_row_mt_sync = &tile_data->dec_row_mt_sync; |
| |
| num_threads_working = dec_row_mt_sync->num_threads_working; |
| num_mis_waiting_for_decode = (dec_row_mt_sync->mi_rows_parse_done - |
| dec_row_mt_sync->mi_rows_decode_started) * |
| dec_row_mt_sync->mi_cols; |
| num_mis_to_decode = |
| (dec_row_mt_sync->mi_rows - dec_row_mt_sync->mi_rows_decode_started) * |
| dec_row_mt_sync->mi_cols; |
| |
| assert(num_mis_to_decode >= num_mis_waiting_for_decode); |
| |
| // Pick the tile which has minimum number of threads working on it. |
| if (num_mis_waiting_for_decode > 0) { |
| if (num_threads_working < min_threads_working) { |
| min_threads_working = num_threads_working; |
| max_mis_to_decode = 0; |
| } |
| if (num_threads_working == min_threads_working && |
| num_mis_to_decode > max_mis_to_decode && |
| num_threads_working < |
| get_max_row_mt_workers_per_tile(cm, tile_data->tile_info)) { |
| max_mis_to_decode = num_mis_to_decode; |
| tile_row = tile_row_idx; |
| tile_col = tile_col_idx; |
| } |
| } |
| } |
| } |
| // No job found to process |
| if (tile_row == -1 || tile_col == -1) return 0; |
| |
| tile_data = pbi->tile_data + tile_row * cm->tiles.cols + tile_col; |
| tile_info = tile_data->tile_info; |
| dec_row_mt_sync = &tile_data->dec_row_mt_sync; |
| |
| next_job_info->tile_row = tile_row; |
| next_job_info->tile_col = tile_col; |
| next_job_info->mi_row = |
| dec_row_mt_sync->mi_rows_decode_started + tile_info.mi_row_start; |
| |
| dec_row_mt_sync->num_threads_working++; |
| dec_row_mt_sync->mi_rows_decode_started += sb_mi_size; |
| frame_row_mt_info->mi_rows_decode_started += sb_mi_size; |
| assert(frame_row_mt_info->mi_rows_parse_done >= |
| frame_row_mt_info->mi_rows_decode_started); |
| #if CONFIG_MULTITHREAD |
| if (frame_row_mt_info->mi_rows_decode_started == |
| frame_row_mt_info->mi_rows_to_decode) { |
| pthread_cond_broadcast(pbi->row_mt_cond_); |
| } |
| #endif |
| |
| return 1; |
| } |
| |
| static INLINE void signal_parse_sb_row_done(AV1Decoder *const pbi, |
| TileDataDec *const tile_data, |
| const int sb_mi_size) { |
| AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| assert(frame_row_mt_info->mi_rows_parse_done >= |
| frame_row_mt_info->mi_rows_decode_started); |
| tile_data->dec_row_mt_sync.mi_rows_parse_done += sb_mi_size; |
| frame_row_mt_info->mi_rows_parse_done += sb_mi_size; |
| #if CONFIG_MULTITHREAD |
| // A new decode job is available. Wake up one worker thread to handle the |
| // new decode job. |
| // NOTE: This assumes we bump mi_rows_parse_done and mi_rows_decode_started |
| // by the same increment (sb_mi_size). |
| pthread_cond_signal(pbi->row_mt_cond_); |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| } |
| |
| // This function is very similar to decode_tile(). It would be good to figure |
| // out how to share code. |
| static AOM_INLINE void parse_tile_row_mt(AV1Decoder *pbi, ThreadData *const td, |
| TileDataDec *const tile_data) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int sb_mi_size = mi_size_wide[cm->sb_size]; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo tile_info = tile_data->tile_info; |
| int tile_row = tile_info.tile_row; |
| DecoderCodingBlock *const dcb = &td->dcb; |
| MACROBLOCKD *const xd = &dcb->xd; |
| |
| av1_zero_above_context(cm, xd, tile_info.mi_col_start, tile_info.mi_col_end, |
| tile_row); |
| av1_reset_loop_filter_delta(xd, num_planes); |
| #if CONFIG_LR_IMPROVEMENTS |
| int num_filter_classes[MAX_MB_PLANE]; |
| for (int p = 0; p < num_planes; ++p) |
| num_filter_classes[p] = cm->rst_info[p].num_filter_classes; |
| #endif // CONFIG_LR_IMPROVEMENTS |
| av1_reset_loop_restoration(xd, 0, num_planes |
| #if CONFIG_LR_IMPROVEMENTS |
| , |
| num_filter_classes |
| #endif // CONFIG_LR_IMPROVEMENTS |
| ); |
| |
| for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end; |
| mi_row += cm->mib_size) { |
| av1_zero_left_context(xd); |
| av1_zero(xd->ref_mv_bank); |
| #if !CONFIG_MVP_IMPROVEMENT |
| xd->ref_mv_bank_pt = &td->ref_mv_bank; |
| #endif |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| av1_zero(xd->warp_param_bank); |
| #if !WARP_CU_BANK |
| xd->warp_param_bank_pt = &td->warp_param_bank; |
| #endif //! WARP_CU_BANK |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end; |
| mi_col += cm->mib_size) { |
| av1_reset_is_mi_coded_map(xd, cm->mib_size); |
| av1_set_sb_info(cm, xd, mi_row, mi_col); |
| set_cb_buffer(pbi, dcb, pbi->cb_buffer_base, num_planes, mi_row, mi_col); |
| |
| xd->ref_mv_bank.rmb_sb_hits = 0; |
| #if !CONFIG_MVP_IMPROVEMENT |
| td->ref_mv_bank = xd->ref_mv_bank; |
| #endif // !CONFIG_MVP_IMPROVEMENT |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| xd->warp_param_bank.wpb_sb_hits = 0; |
| #if !WARP_CU_BANK |
| td->warp_param_bank = xd->warp_param_bank; |
| #endif //! WARP_CU_BANK |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| // Bit-stream parsing of the superblock |
| decode_partition_sb(pbi, td, mi_row, mi_col, td->bit_reader, cm->sb_size, |
| 0x1); |
| if (aom_reader_has_overflowed(td->bit_reader)) { |
| aom_merge_corrupted_flag(&dcb->corrupted, 1); |
| return; |
| } |
| } |
| signal_parse_sb_row_done(pbi, tile_data, sb_mi_size); |
| } |
| |
| int corrupted = |
| (check_trailing_bits_after_symbol_coder(td->bit_reader)) ? 1 : 0; |
| aom_merge_corrupted_flag(&dcb->corrupted, corrupted); |
| } |
| |
| static int row_mt_worker_hook(void *arg1, void *arg2) { |
| DecWorkerData *const thread_data = (DecWorkerData *)arg1; |
| AV1Decoder *const pbi = (AV1Decoder *)arg2; |
| AV1_COMMON *cm = &pbi->common; |
| ThreadData *const td = thread_data->td; |
| uint8_t allow_update_cdf; |
| AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; |
| td->dcb.corrupted = 0; |
| |
| // The jmp_buf is valid only for the duration of the function that calls |
| // setjmp(). Therefore, this function must reset the 'setjmp' field to 0 |
| // before it returns. |
| if (setjmp(thread_data->error_info.jmp)) { |
| thread_data->error_info.setjmp = 0; |
| thread_data->td->dcb.corrupted = 1; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| frame_row_mt_info->row_mt_exit = 1; |
| #if CONFIG_MULTITHREAD |
| pthread_cond_broadcast(pbi->row_mt_cond_); |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| return 0; |
| } |
| thread_data->error_info.setjmp = 1; |
| |
| allow_update_cdf = cm->tiles.large_scale ? 0 : 1; |
| allow_update_cdf = allow_update_cdf && !cm->features.disable_cdf_update; |
| |
| set_decode_func_pointers(td, 0x1); |
| |
| assert(cm->tiles.cols > 0); |
| while (!td->dcb.corrupted) { |
| TileJobsDec *cur_job_info = get_dec_job_info(&pbi->tile_mt_info); |
| |
| if (cur_job_info != NULL) { |
| const TileBufferDec *const tile_buffer = cur_job_info->tile_buffer; |
| TileDataDec *const tile_data = cur_job_info->tile_data; |
| tile_worker_hook_init(pbi, thread_data, tile_buffer, tile_data, |
| allow_update_cdf); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| tile_data->dec_row_mt_sync.num_threads_working++; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| // decode tile |
| parse_tile_row_mt(pbi, td, tile_data); |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| tile_data->dec_row_mt_sync.num_threads_working--; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| } else { |
| break; |
| } |
| } |
| |
| if (td->dcb.corrupted) { |
| thread_data->error_info.setjmp = 0; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| frame_row_mt_info->row_mt_exit = 1; |
| #if CONFIG_MULTITHREAD |
| pthread_cond_broadcast(pbi->row_mt_cond_); |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| return 0; |
| } |
| |
| set_decode_func_pointers(td, 0x2); |
| |
| while (1) { |
| AV1DecRowMTJobInfo next_job_info; |
| int end_of_frame = 0; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| while (!get_next_job_info(pbi, &next_job_info, &end_of_frame)) { |
| #if CONFIG_MULTITHREAD |
| pthread_cond_wait(pbi->row_mt_cond_, pbi->row_mt_mutex_); |
| #endif |
| } |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| |
| if (end_of_frame) break; |
| |
| int tile_row = next_job_info.tile_row; |
| int tile_col = next_job_info.tile_col; |
| int mi_row = next_job_info.mi_row; |
| |
| TileDataDec *tile_data = |
| pbi->tile_data + tile_row * cm->tiles.cols + tile_col; |
| AV1DecRowMTSync *dec_row_mt_sync = &tile_data->dec_row_mt_sync; |
| TileInfo tile_info = tile_data->tile_info; |
| |
| av1_tile_init(&td->dcb.xd.tile, cm, tile_row, tile_col); |
| av1_init_macroblockd(cm, &td->dcb.xd); |
| td->dcb.xd.error_info = &thread_data->error_info; |
| |
| decode_tile_sb_row(pbi, td, tile_info, mi_row); |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(pbi->row_mt_mutex_); |
| #endif |
| dec_row_mt_sync->num_threads_working--; |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(pbi->row_mt_mutex_); |
| #endif |
| } |
| thread_data->error_info.setjmp = 0; |
| return !td->dcb.corrupted; |
| } |
| |
| // sorts in descending order |
| static int compare_tile_buffers(const void *a, const void *b) { |
| const TileJobsDec *const buf1 = (const TileJobsDec *)a; |
| const TileJobsDec *const buf2 = (const TileJobsDec *)b; |
| return (((int)buf2->tile_buffer->size) - ((int)buf1->tile_buffer->size)); |
| } |
| |
| static AOM_INLINE void enqueue_tile_jobs(AV1Decoder *pbi, AV1_COMMON *cm, |
| int tile_rows_start, int tile_rows_end, |
| int tile_cols_start, int tile_cols_end, |
| int start_tile, int end_tile) { |
| AV1DecTileMT *tile_mt_info = &pbi->tile_mt_info; |
| TileJobsDec *tile_job_queue = tile_mt_info->job_queue; |
| tile_mt_info->jobs_enqueued = 0; |
| tile_mt_info->jobs_dequeued = 0; |
| |
| for (int row = tile_rows_start; row < tile_rows_end; row++) { |
| for (int col = tile_cols_start; col < tile_cols_end; col++) { |
| if (row * cm->tiles.cols + col < start_tile || |
| row * cm->tiles.cols + col > end_tile) |
| continue; |
| tile_job_queue->tile_buffer = &pbi->tile_buffers[row][col]; |
| tile_job_queue->tile_data = pbi->tile_data + row * cm->tiles.cols + col; |
| tile_job_queue++; |
| tile_mt_info->jobs_enqueued++; |
| } |
| } |
| } |
| |
| static AOM_INLINE void alloc_dec_jobs(AV1DecTileMT *tile_mt_info, |
| AV1_COMMON *cm, int tile_rows, |
| int tile_cols) { |
| tile_mt_info->alloc_tile_rows = tile_rows; |
| tile_mt_info->alloc_tile_cols = tile_cols; |
| int num_tiles = tile_rows * tile_cols; |
| #if CONFIG_MULTITHREAD |
| { |
| CHECK_MEM_ERROR(cm, tile_mt_info->job_mutex, |
| aom_malloc(sizeof(*tile_mt_info->job_mutex) * num_tiles)); |
| |
| for (int i = 0; i < num_tiles; i++) { |
| pthread_mutex_init(&tile_mt_info->job_mutex[i], NULL); |
| } |
| } |
| #endif |
| CHECK_MEM_ERROR(cm, tile_mt_info->job_queue, |
| aom_malloc(sizeof(*tile_mt_info->job_queue) * num_tiles)); |
| } |
| |
| void av1_free_mc_tmp_buf(ThreadData *thread_data) { |
| int ref; |
| for (ref = 0; ref < 2; ref++) { |
| aom_free(thread_data->mc_buf[ref]); |
| thread_data->mc_buf[ref] = NULL; |
| } |
| thread_data->mc_buf_size = 0; |
| |
| aom_free(thread_data->tmp_conv_dst); |
| thread_data->tmp_conv_dst = NULL; |
| for (int i = 0; i < 2; ++i) { |
| aom_free(thread_data->tmp_obmc_bufs[i]); |
| thread_data->tmp_obmc_bufs[i] = NULL; |
| } |
| } |
| |
| static AOM_INLINE void allocate_mc_tmp_buf(AV1_COMMON *const cm, |
| ThreadData *thread_data, |
| int buf_size) { |
| for (int ref = 0; ref < 2; ref++) { |
| // The mc_buf/hbd_mc_buf must be zeroed to fix a intermittent valgrind error |
| // 'Conditional jump or move depends on uninitialised value' from the loop |
| // filter. Uninitialized reads in convolve function (e.g. horiz_4tap path in |
| // av1_convolve_2d_sr_avx2()) from mc_buf/hbd_mc_buf are seen to be the |
| // potential reason for this issue. |
| uint16_t *hbd_mc_buf; |
| CHECK_MEM_ERROR(cm, hbd_mc_buf, (uint16_t *)aom_memalign(16, buf_size)); |
| memset(hbd_mc_buf, 0, buf_size); |
| thread_data->mc_buf[ref] = hbd_mc_buf; |
| } |
| thread_data->mc_buf_size = buf_size; |
| |
| CHECK_MEM_ERROR(cm, thread_data->tmp_conv_dst, |
| aom_memalign(32, MAX_SB_SIZE * MAX_SB_SIZE * |
| sizeof(*thread_data->tmp_conv_dst))); |
| for (int i = 0; i < 2; ++i) { |
| CHECK_MEM_ERROR( |
| cm, thread_data->tmp_obmc_bufs[i], |
| aom_memalign(16, 2 * MAX_MB_PLANE * MAX_SB_SQUARE * |
| sizeof(*thread_data->tmp_obmc_bufs[i]))); |
| } |
| } |
| |
| static AOM_INLINE void reset_dec_workers(AV1Decoder *pbi, |
| AVxWorkerHook worker_hook, |
| int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| |
| // Reset tile decoding hook |
| for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { |
| AVxWorker *const worker = &pbi->tile_workers[worker_idx]; |
| DecWorkerData *const thread_data = pbi->thread_data + worker_idx; |
| thread_data->td->dcb = pbi->dcb; |
| thread_data->td->dcb.corrupted = 0; |
| thread_data->td->dcb.mc_buf[0] = thread_data->td->mc_buf[0]; |
| thread_data->td->dcb.mc_buf[1] = thread_data->td->mc_buf[1]; |
| thread_data->td->dcb.xd.tmp_conv_dst = thread_data->td->tmp_conv_dst; |
| for (int j = 0; j < 2; ++j) { |
| thread_data->td->dcb.xd.tmp_obmc_bufs[j] = |
| thread_data->td->tmp_obmc_bufs[j]; |
| } |
| winterface->sync(worker); |
| |
| worker->hook = worker_hook; |
| worker->data1 = thread_data; |
| worker->data2 = pbi; |
| } |
| #if CONFIG_ACCOUNTING |
| if (pbi->acct_enabled) { |
| #if CONFIG_THROUGHPUT_ANALYSIS |
| aom_accounting_cal_total(pbi); |
| #else |
| aom_accounting_dump(&pbi->accounting); |
| #endif // CONFIG_THROUGHPUT_ANALYSIS |
| aom_accounting_reset(&pbi->accounting); |
| } |
| #endif |
| } |
| |
| static AOM_INLINE void launch_dec_workers(AV1Decoder *pbi, |
| const uint8_t *data_end, |
| int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| |
| for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { |
| AVxWorker *const worker = &pbi->tile_workers[worker_idx]; |
| DecWorkerData *const thread_data = (DecWorkerData *)worker->data1; |
| |
| thread_data->data_end = data_end; |
| |
| worker->had_error = 0; |
| if (worker_idx == num_workers - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| } |
| |
| static AOM_INLINE void sync_dec_workers(AV1Decoder *pbi, int num_workers) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int corrupted = 0; |
| |
| for (int worker_idx = num_workers; worker_idx > 0; --worker_idx) { |
| AVxWorker *const worker = &pbi->tile_workers[worker_idx - 1]; |
| aom_merge_corrupted_flag(&corrupted, !winterface->sync(worker)); |
| } |
| |
| pbi->dcb.corrupted = corrupted; |
| } |
| |
| static AOM_INLINE void decode_mt_init(AV1Decoder *pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int worker_idx; |
| |
| // Create workers and thread_data |
| if (pbi->num_workers == 0) { |
| const int num_threads = pbi->max_threads; |
| CHECK_MEM_ERROR(cm, pbi->tile_workers, |
| aom_malloc(num_threads * sizeof(*pbi->tile_workers))); |
| CHECK_MEM_ERROR(cm, pbi->thread_data, |
| aom_malloc(num_threads * sizeof(*pbi->thread_data))); |
| |
| for (worker_idx = 0; worker_idx < num_threads; ++worker_idx) { |
| AVxWorker *const worker = &pbi->tile_workers[worker_idx]; |
| DecWorkerData *const thread_data = pbi->thread_data + worker_idx; |
| ++pbi->num_workers; |
| |
| winterface->init(worker); |
| worker->thread_name = "aom tile worker"; |
| if (worker_idx < num_threads - 1 && !winterface->reset(worker)) { |
| aom_internal_error(&cm->error, AOM_CODEC_ERROR, |
| "Tile decoder thread creation failed"); |
| } |
| |
| if (worker_idx < num_threads - 1) { |
| // Allocate thread data. |
| CHECK_MEM_ERROR(cm, thread_data->td, |
| aom_memalign(32, sizeof(*thread_data->td))); |
| av1_zero(*thread_data->td); |
| } else { |
| // Main thread acts as a worker and uses the thread data in pbi |
| thread_data->td = &pbi->td; |
| } |
| thread_data->error_info.error_code = AOM_CODEC_OK; |
| thread_data->error_info.setjmp = 0; |
| } |
| } |
| const int buf_size = MC_TEMP_BUF_PELS << 1; |
| for (worker_idx = 0; worker_idx < pbi->max_threads - 1; ++worker_idx) { |
| DecWorkerData *const thread_data = pbi->thread_data + worker_idx; |
| if (thread_data->td->mc_buf_size != buf_size) { |
| av1_free_mc_tmp_buf(thread_data->td); |
| allocate_mc_tmp_buf(cm, thread_data->td, buf_size); |
| } |
| } |
| } |
| |
| static AOM_INLINE void tile_mt_queue(AV1Decoder *pbi, int tile_cols, |
| int tile_rows, int tile_rows_start, |
| int tile_rows_end, int tile_cols_start, |
| int tile_cols_end, int start_tile, |
| int end_tile) { |
| AV1_COMMON *const cm = &pbi->common; |
| if (pbi->tile_mt_info.alloc_tile_cols != tile_cols || |
| pbi->tile_mt_info.alloc_tile_rows != tile_rows) { |
| av1_dealloc_dec_jobs(&pbi->tile_mt_info); |
| alloc_dec_jobs(&pbi->tile_mt_info, cm, tile_rows, tile_cols); |
| } |
| enqueue_tile_jobs(pbi, cm, tile_rows_start, tile_rows_end, tile_cols_start, |
| tile_cols_end, start_tile, end_tile); |
| qsort(pbi->tile_mt_info.job_queue, pbi->tile_mt_info.jobs_enqueued, |
| sizeof(pbi->tile_mt_info.job_queue[0]), compare_tile_buffers); |
| } |
| |
| static const uint8_t *decode_tiles_mt(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end, int start_tile, |
| int end_tile) { |
| AV1_COMMON *const cm = &pbi->common; |
| CommonTileParams *const tiles = &cm->tiles; |
| const int tile_cols = tiles->cols; |
| const int tile_rows = tiles->rows; |
| const int n_tiles = tile_cols * tile_rows; |
| TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| int tile_rows_start; |
| int tile_rows_end; |
| int tile_cols_start; |
| int tile_cols_end; |
| int tile_count_tg; |
| int num_workers; |
| const uint8_t *raw_data_end = NULL; |
| |
| if (tiles->large_scale) { |
| tile_rows_start = single_row ? dec_tile_row : 0; |
| tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; |
| tile_cols_start = single_col ? dec_tile_col : 0; |
| tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| } else { |
| tile_rows_start = 0; |
| tile_rows_end = tile_rows; |
| tile_cols_start = 0; |
| tile_cols_end = tile_cols; |
| } |
| tile_count_tg = end_tile - start_tile + 1; |
| num_workers = AOMMIN(pbi->max_threads, tile_count_tg); |
| |
| // No tiles to decode. |
| if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || |
| // First tile is larger than end_tile. |
| tile_rows_start * tile_cols + tile_cols_start > end_tile || |
| // Last tile is smaller than start_tile. |
| (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) |
| return data; |
| |
| assert(tile_rows <= MAX_TILE_ROWS); |
| assert(tile_cols <= MAX_TILE_COLS); |
| assert(tile_count_tg > 0); |
| assert(num_workers > 0); |
| assert(start_tile <= end_tile); |
| assert(start_tile >= 0 && end_tile < n_tiles); |
| |
| decode_mt_init(pbi); |
| |
| // get tile size in tile group |
| #if EXT_TILE_DEBUG |
| if (tiles->large_scale) assert(pbi->ext_tile_debug == 1); |
| if (tiles->large_scale) |
| raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); |
| else |
| #endif // EXT_TILE_DEBUG |
| get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); |
| |
| if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { |
| decoder_alloc_tile_data(pbi, n_tiles); |
| } |
| |
| for (int row = 0; row < tile_rows; row++) { |
| for (int col = 0; col < tile_cols; col++) { |
| TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col; |
| av1_tile_init(&tile_data->tile_info, cm, row, col); |
| } |
| } |
| |
| tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, |
| tile_cols_start, tile_cols_end, start_tile, end_tile); |
| |
| reset_dec_workers(pbi, tile_worker_hook, num_workers); |
| launch_dec_workers(pbi, data_end, num_workers); |
| sync_dec_workers(pbi, num_workers); |
| |
| if (pbi->dcb.corrupted) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Failed to decode tile data"); |
| |
| if (tiles->large_scale) { |
| if (n_tiles == 1) { |
| // Find the end of the single tile buffer |
| return aom_reader_find_end(&pbi->tile_data->bit_reader); |
| } |
| // Return the end of the last tile buffer |
| return raw_data_end; |
| } |
| TileDataDec *const tile_data = pbi->tile_data + end_tile; |
| |
| return aom_reader_find_end(&tile_data->bit_reader); |
| } |
| |
| static AOM_INLINE void dec_alloc_cb_buf(AV1Decoder *pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| int size = ((cm->mi_params.mi_rows >> cm->mib_size_log2) + 1) * |
| ((cm->mi_params.mi_cols >> cm->mib_size_log2) + 1); |
| |
| if (pbi->cb_buffer_alloc_size < size) { |
| av1_dec_free_cb_buf(pbi); |
| CHECK_MEM_ERROR(cm, pbi->cb_buffer_base, |
| aom_memalign(32, sizeof(*pbi->cb_buffer_base) * size)); |
| memset(pbi->cb_buffer_base, 0, sizeof(*pbi->cb_buffer_base) * size); |
| pbi->cb_buffer_alloc_size = size; |
| } |
| } |
| |
| static AOM_INLINE void row_mt_frame_init(AV1Decoder *pbi, int tile_rows_start, |
| int tile_rows_end, int tile_cols_start, |
| int tile_cols_end, int start_tile, |
| int end_tile, int max_sb_rows) { |
| AV1_COMMON *const cm = &pbi->common; |
| AV1DecRowMTInfo *frame_row_mt_info = &pbi->frame_row_mt_info; |
| |
| frame_row_mt_info->tile_rows_start = tile_rows_start; |
| frame_row_mt_info->tile_rows_end = tile_rows_end; |
| frame_row_mt_info->tile_cols_start = tile_cols_start; |
| frame_row_mt_info->tile_cols_end = tile_cols_end; |
| frame_row_mt_info->start_tile = start_tile; |
| frame_row_mt_info->end_tile = end_tile; |
| frame_row_mt_info->mi_rows_to_decode = 0; |
| frame_row_mt_info->mi_rows_parse_done = 0; |
| frame_row_mt_info->mi_rows_decode_started = 0; |
| frame_row_mt_info->row_mt_exit = 0; |
| |
| for (int tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) { |
| for (int tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) { |
| if (tile_row * cm->tiles.cols + tile_col < start_tile || |
| tile_row * cm->tiles.cols + tile_col > end_tile) |
| continue; |
| |
| TileDataDec *const tile_data = |
| pbi->tile_data + tile_row * cm->tiles.cols + tile_col; |
| TileInfo tile_info = tile_data->tile_info; |
| |
| tile_data->dec_row_mt_sync.mi_rows_parse_done = 0; |
| tile_data->dec_row_mt_sync.mi_rows_decode_started = 0; |
| tile_data->dec_row_mt_sync.num_threads_working = 0; |
| tile_data->dec_row_mt_sync.mi_rows = ALIGN_POWER_OF_TWO( |
| tile_info.mi_row_end - tile_info.mi_row_start, cm->mib_size_log2); |
| tile_data->dec_row_mt_sync.mi_cols = ALIGN_POWER_OF_TWO( |
| tile_info.mi_col_end - tile_info.mi_col_start, cm->mib_size_log2); |
| |
| frame_row_mt_info->mi_rows_to_decode += |
| tile_data->dec_row_mt_sync.mi_rows; |
| |
| // Initialize cur_sb_col to -1 for all SB rows. |
| memset(tile_data->dec_row_mt_sync.cur_sb_col, -1, |
| sizeof(*tile_data->dec_row_mt_sync.cur_sb_col) * max_sb_rows); |
| } |
| } |
| |
| #if CONFIG_MULTITHREAD |
| if (pbi->row_mt_mutex_ == NULL) { |
| CHECK_MEM_ERROR(cm, pbi->row_mt_mutex_, |
| aom_malloc(sizeof(*(pbi->row_mt_mutex_)))); |
| if (pbi->row_mt_mutex_) { |
| pthread_mutex_init(pbi->row_mt_mutex_, NULL); |
| } |
| } |
| |
| if (pbi->row_mt_cond_ == NULL) { |
| CHECK_MEM_ERROR(cm, pbi->row_mt_cond_, |
| aom_malloc(sizeof(*(pbi->row_mt_cond_)))); |
| if (pbi->row_mt_cond_) { |
| pthread_cond_init(pbi->row_mt_cond_, NULL); |
| } |
| } |
| #endif |
| } |
| |
| static const uint8_t *decode_tiles_row_mt(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end, |
| int start_tile, int end_tile) { |
| AV1_COMMON *const cm = &pbi->common; |
| CommonTileParams *const tiles = &cm->tiles; |
| const int tile_cols = tiles->cols; |
| const int tile_rows = tiles->rows; |
| const int n_tiles = tile_cols * tile_rows; |
| TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers; |
| const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows); |
| const int single_row = pbi->dec_tile_row >= 0; |
| const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols); |
| const int single_col = pbi->dec_tile_col >= 0; |
| int tile_rows_start; |
| int tile_rows_end; |
| int tile_cols_start; |
| int tile_cols_end; |
| int tile_count_tg; |
| int num_workers = 0; |
| int max_threads; |
| const uint8_t *raw_data_end = NULL; |
| int max_sb_rows = 0; |
| |
| if (tiles->large_scale) { |
| tile_rows_start = single_row ? dec_tile_row : 0; |
| tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows; |
| tile_cols_start = single_col ? dec_tile_col : 0; |
| tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols; |
| } else { |
| tile_rows_start = 0; |
| tile_rows_end = tile_rows; |
| tile_cols_start = 0; |
| tile_cols_end = tile_cols; |
| } |
| tile_count_tg = end_tile - start_tile + 1; |
| max_threads = pbi->max_threads; |
| |
| // No tiles to decode. |
| if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start || |
| // First tile is larger than end_tile. |
| tile_rows_start * tile_cols + tile_cols_start > end_tile || |
| // Last tile is smaller than start_tile. |
| (tile_rows_end - 1) * tile_cols + tile_cols_end - 1 < start_tile) |
| return data; |
| |
| assert(tile_rows <= MAX_TILE_ROWS); |
| assert(tile_cols <= MAX_TILE_COLS); |
| assert(tile_count_tg > 0); |
| assert(max_threads > 0); |
| assert(start_tile <= end_tile); |
| assert(start_tile >= 0 && end_tile < n_tiles); |
| |
| (void)tile_count_tg; |
| |
| decode_mt_init(pbi); |
| |
| // get tile size in tile group |
| #if EXT_TILE_DEBUG |
| if (tiles->large_scale) assert(pbi->ext_tile_debug == 1); |
| if (tiles->large_scale) |
| raw_data_end = get_ls_tile_buffers(pbi, data, data_end, tile_buffers); |
| else |
| #endif // EXT_TILE_DEBUG |
| get_tile_buffers(pbi, data, data_end, tile_buffers, start_tile, end_tile); |
| |
| if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) { |
| if (pbi->tile_data != NULL) { |
| for (int i = 0; i < pbi->allocated_tiles; i++) { |
| TileDataDec *const tile_data = pbi->tile_data + i; |
| av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); |
| } |
| } |
| decoder_alloc_tile_data(pbi, n_tiles); |
| } |
| |
| for (int row = 0; row < tile_rows; row++) { |
| for (int col = 0; col < tile_cols; col++) { |
| TileDataDec *tile_data = pbi->tile_data + row * tiles->cols + col; |
| av1_tile_init(&tile_data->tile_info, cm, row, col); |
| |
| max_sb_rows = AOMMAX(max_sb_rows, |
| av1_get_sb_rows_in_tile(cm, tile_data->tile_info)); |
| num_workers += get_max_row_mt_workers_per_tile(cm, tile_data->tile_info); |
| } |
| } |
| num_workers = AOMMIN(num_workers, max_threads); |
| |
| if (pbi->allocated_row_mt_sync_rows != max_sb_rows) { |
| for (int i = 0; i < n_tiles; ++i) { |
| TileDataDec *const tile_data = pbi->tile_data + i; |
| av1_dec_row_mt_dealloc(&tile_data->dec_row_mt_sync); |
| dec_row_mt_alloc(&tile_data->dec_row_mt_sync, cm, max_sb_rows); |
| } |
| pbi->allocated_row_mt_sync_rows = max_sb_rows; |
| } |
| |
| tile_mt_queue(pbi, tile_cols, tile_rows, tile_rows_start, tile_rows_end, |
| tile_cols_start, tile_cols_end, start_tile, end_tile); |
| |
| dec_alloc_cb_buf(pbi); |
| |
| row_mt_frame_init(pbi, tile_rows_start, tile_rows_end, tile_cols_start, |
| tile_cols_end, start_tile, end_tile, max_sb_rows); |
| |
| reset_dec_workers(pbi, row_mt_worker_hook, num_workers); |
| launch_dec_workers(pbi, data_end, num_workers); |
| sync_dec_workers(pbi, num_workers); |
| |
| if (pbi->dcb.corrupted) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Failed to decode tile data"); |
| |
| if (tiles->large_scale) { |
| if (n_tiles == 1) { |
| // Find the end of the single tile buffer |
| return aom_reader_find_end(&pbi->tile_data->bit_reader); |
| } |
| // Return the end of the last tile buffer |
| return raw_data_end; |
| } |
| TileDataDec *const tile_data = pbi->tile_data + end_tile; |
| |
| return aom_reader_find_end(&tile_data->bit_reader); |
| } |
| |
| static AOM_INLINE void error_handler(void *data) { |
| AV1_COMMON *const cm = (AV1_COMMON *)data; |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet"); |
| } |
| |
| // Reads the high_bitdepth and twelve_bit fields in color_config() and sets |
| // seq_params->bit_depth based on the values of those fields and |
| // seq_params->profile. Reports errors by calling rb->error_handler() or |
| // aom_internal_error(). |
| static AOM_INLINE void read_bitdepth( |
| struct aom_read_bit_buffer *rb, SequenceHeader *seq_params, |
| struct aom_internal_error_info *error_info) { |
| const int high_bitdepth = aom_rb_read_bit(rb); |
| if (seq_params->profile == PROFILE_2 && high_bitdepth) { |
| const int twelve_bit = aom_rb_read_bit(rb); |
| seq_params->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10; |
| } else if (seq_params->profile <= PROFILE_2) { |
| seq_params->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8; |
| } else { |
| aom_internal_error(error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Unsupported profile/bit-depth combination"); |
| } |
| } |
| |
| void av1_read_film_grain_params(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| aom_film_grain_t *pars = &cm->film_grain_params; |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| |
| pars->apply_grain = aom_rb_read_bit(rb); |
| if (!pars->apply_grain) { |
| memset(pars, 0, sizeof(*pars)); |
| return; |
| } |
| |
| pars->random_seed = aom_rb_read_literal(rb, 16); |
| if (cm->current_frame.frame_type == INTER_FRAME) |
| pars->update_parameters = aom_rb_read_bit(rb); |
| else |
| pars->update_parameters = 1; |
| |
| pars->bit_depth = seq_params->bit_depth; |
| |
| if (!pars->update_parameters) { |
| // inherit parameters from a previous reference frame |
| int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3); |
| // Section 6.8.20: It is a requirement of bitstream conformance that |
| // film_grain_params_ref_idx is equal to ref_frame_idx[ j ] for some value |
| // of j in the range 0 to REFS_PER_FRAME - 1. |
| int found = 0; |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| if (film_grain_params_ref_idx == cm->remapped_ref_idx[i]) { |
| found = 1; |
| break; |
| } |
| } |
| if (!found) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Invalid film grain reference idx %d. ref_frame_idx = " |
| "{%d, %d, %d, %d, %d, %d, %d}", |
| film_grain_params_ref_idx, cm->remapped_ref_idx[0], |
| cm->remapped_ref_idx[1], cm->remapped_ref_idx[2], |
| cm->remapped_ref_idx[3], cm->remapped_ref_idx[4], |
| cm->remapped_ref_idx[5], cm->remapped_ref_idx[6]); |
| } |
| RefCntBuffer *const buf = cm->ref_frame_map[film_grain_params_ref_idx]; |
| if (buf == NULL) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Invalid Film grain reference idx"); |
| } |
| if (!buf->film_grain_params_present) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Film grain reference parameters not available"); |
| } |
| uint16_t random_seed = pars->random_seed; |
| *pars = buf->film_grain_params; // inherit paramaters |
| pars->random_seed = random_seed; // with new random seed |
| return; |
| } |
| |
| // Scaling functions parameters |
| pars->num_y_points = aom_rb_read_literal(rb, 4); // max 14 |
| if (pars->num_y_points > 14) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Number of points for film grain luma scaling function " |
| "exceeds the maximum value."); |
| for (int i = 0; i < pars->num_y_points; i++) { |
| pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8); |
| if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0]) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "First coordinate of the scaling function points " |
| "shall be increasing."); |
| pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8); |
| } |
| |
| if (!seq_params->monochrome) |
| pars->chroma_scaling_from_luma = aom_rb_read_bit(rb); |
| else |
| pars->chroma_scaling_from_luma = 0; |
| |
| if (seq_params->monochrome || pars->chroma_scaling_from_luma || |
| ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && |
| (pars->num_y_points == 0))) { |
| pars->num_cb_points = 0; |
| pars->num_cr_points = 0; |
| } else { |
| pars->num_cb_points = aom_rb_read_literal(rb, 4); // max 10 |
| if (pars->num_cb_points > 10) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Number of points for film grain cb scaling function " |
| "exceeds the maximum value."); |
| for (int i = 0; i < pars->num_cb_points; i++) { |
| pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8); |
| if (i && |
| pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0]) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "First coordinate of the scaling function points " |
| "shall be increasing."); |
| pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8); |
| } |
| |
| pars->num_cr_points = aom_rb_read_literal(rb, 4); // max 10 |
| if (pars->num_cr_points > 10) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Number of points for film grain cr scaling function " |
| "exceeds the maximum value."); |
| for (int i = 0; i < pars->num_cr_points; i++) { |
| pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8); |
| if (i && |
| pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0]) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "First coordinate of the scaling function points " |
| "shall be increasing."); |
| pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8); |
| } |
| |
| if ((seq_params->subsampling_x == 1) && (seq_params->subsampling_y == 1) && |
| (((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) || |
| ((pars->num_cb_points != 0) && (pars->num_cr_points == 0)))) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "In YCbCr 4:2:0, film grain shall be applied " |
| "to both chroma components or neither."); |
| } |
| |
| pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8; // 8 + value |
| |
| // AR coefficients |
| // Only sent if the corresponsing scaling function has |
| // more than 0 points |
| |
| pars->ar_coeff_lag = aom_rb_read_literal(rb, 2); |
| |
| int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); |
| int num_pos_chroma = num_pos_luma; |
| if (pars->num_y_points > 0) ++num_pos_chroma; |
| |
| if (pars->num_y_points) |
| for (int i = 0; i < num_pos_luma; i++) |
| pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128; |
| |
| if (pars->num_cb_points || pars->chroma_scaling_from_luma) |
| for (int i = 0; i < num_pos_chroma; i++) |
| pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128; |
| |
| if (pars->num_cr_points || pars->chroma_scaling_from_luma) |
| for (int i = 0; i < num_pos_chroma; i++) |
| pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128; |
| |
| pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6; // 6 + value |
| |
| pars->grain_scale_shift = aom_rb_read_literal(rb, 2); |
| |
| if (pars->num_cb_points) { |
| pars->cb_mult = aom_rb_read_literal(rb, 8); |
| pars->cb_luma_mult = aom_rb_read_literal(rb, 8); |
| pars->cb_offset = aom_rb_read_literal(rb, 9); |
| } |
| |
| if (pars->num_cr_points) { |
| pars->cr_mult = aom_rb_read_literal(rb, 8); |
| pars->cr_luma_mult = aom_rb_read_literal(rb, 8); |
| pars->cr_offset = aom_rb_read_literal(rb, 9); |
| } |
| |
| pars->overlap_flag = aom_rb_read_bit(rb); |
| |
| pars->clip_to_restricted_range = aom_rb_read_bit(rb); |
| } |
| |
| static AOM_INLINE void read_film_grain(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| if (cm->seq_params.film_grain_params_present && |
| (cm->show_frame || cm->showable_frame)) { |
| av1_read_film_grain_params(cm, rb); |
| } else { |
| memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params)); |
| } |
| cm->film_grain_params.bit_depth = cm->seq_params.bit_depth; |
| memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params, |
| sizeof(aom_film_grain_t)); |
| } |
| |
| void av1_read_color_config(struct aom_read_bit_buffer *rb, |
| SequenceHeader *seq_params, |
| struct aom_internal_error_info *error_info) { |
| read_bitdepth(rb, seq_params, error_info); |
| |
| // monochrome bit (not needed for PROFILE_1) |
| const int is_monochrome = |
| seq_params->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0; |
| seq_params->monochrome = is_monochrome; |
| int color_description_present_flag = aom_rb_read_bit(rb); |
| if (color_description_present_flag) { |
| seq_params->color_primaries = aom_rb_read_literal(rb, 8); |
| seq_params->transfer_characteristics = aom_rb_read_literal(rb, 8); |
| seq_params->matrix_coefficients = aom_rb_read_literal(rb, 8); |
| } else { |
| seq_params->color_primaries = AOM_CICP_CP_UNSPECIFIED; |
| seq_params->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED; |
| seq_params->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED; |
| } |
| if (is_monochrome) { |
| // [16,235] (including xvycc) vs [0,255] range |
| seq_params->color_range = aom_rb_read_bit(rb); |
| seq_params->subsampling_y = seq_params->subsampling_x = 1; |
| seq_params->chroma_sample_position = AOM_CSP_UNKNOWN; |
| seq_params->separate_uv_delta_q = 0; |
| } else { |
| if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && |
| seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && |
| seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { |
| seq_params->subsampling_y = seq_params->subsampling_x = 0; |
| seq_params->color_range = 1; // assume full color-range |
| if (!(seq_params->profile == PROFILE_1 || |
| (seq_params->profile == PROFILE_2 && |
| seq_params->bit_depth == AOM_BITS_12))) { |
| aom_internal_error( |
| error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "sRGB colorspace not compatible with specified profile"); |
| } |
| } else { |
| // [16,235] (including xvycc) vs [0,255] range |
| seq_params->color_range = aom_rb_read_bit(rb); |
| if (seq_params->profile == PROFILE_0) { |
| // 420 only |
| seq_params->subsampling_x = seq_params->subsampling_y = 1; |
| } else if (seq_params->profile == PROFILE_1) { |
| // 444 only |
| seq_params->subsampling_x = seq_params->subsampling_y = 0; |
| } else { |
| assert(seq_params->profile == PROFILE_2); |
| if (seq_params->bit_depth == AOM_BITS_12) { |
| seq_params->subsampling_x = aom_rb_read_bit(rb); |
| if (seq_params->subsampling_x) |
| seq_params->subsampling_y = aom_rb_read_bit(rb); // 422 or 420 |
| else |
| seq_params->subsampling_y = 0; // 444 |
| } else { |
| // 422 |
| seq_params->subsampling_x = 1; |
| seq_params->subsampling_y = 0; |
| } |
| } |
| if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY && |
| (seq_params->subsampling_x || seq_params->subsampling_y)) { |
| aom_internal_error( |
| error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Identity CICP Matrix incompatible with non 4:4:4 color sampling"); |
| } |
| if (seq_params->subsampling_x && seq_params->subsampling_y) { |
| seq_params->chroma_sample_position = aom_rb_read_literal(rb, 2); |
| } |
| } |
| seq_params->separate_uv_delta_q = aom_rb_read_bit(rb); |
| } |
| |
| seq_params->base_y_dc_delta_q = |
| DELTA_DCQUANT_MIN + aom_rb_read_literal(rb, DELTA_DCQUANT_BITS); |
| if (!is_monochrome) { |
| seq_params->base_uv_dc_delta_q = |
| DELTA_DCQUANT_MIN + aom_rb_read_literal(rb, DELTA_DCQUANT_BITS); |
| } |
| } |
| |
| void av1_read_timing_info_header(aom_timing_info_t *timing_info, |
| struct aom_internal_error_info *error, |
| struct aom_read_bit_buffer *rb) { |
| timing_info->num_units_in_display_tick = |
| aom_rb_read_unsigned_literal(rb, |
| 32); // Number of units in a display tick |
| timing_info->time_scale = aom_rb_read_unsigned_literal(rb, 32); // Time scale |
| if (timing_info->num_units_in_display_tick == 0 || |
| timing_info->time_scale == 0) { |
| aom_internal_error( |
| error, AOM_CODEC_UNSUP_BITSTREAM, |
| "num_units_in_display_tick and time_scale must be greater than 0."); |
| } |
| timing_info->equal_picture_interval = |
| aom_rb_read_bit(rb); // Equal picture interval bit |
| if (timing_info->equal_picture_interval) { |
| const uint32_t num_ticks_per_picture_minus_1 = aom_rb_read_uvlc(rb); |
| if (num_ticks_per_picture_minus_1 == UINT32_MAX) { |
| aom_internal_error( |
| error, AOM_CODEC_UNSUP_BITSTREAM, |
| "num_ticks_per_picture_minus_1 cannot be (1 << 32) − 1."); |
| } |
| timing_info->num_ticks_per_picture = num_ticks_per_picture_minus_1 + 1; |
| } |
| } |
| |
| void av1_read_decoder_model_info(aom_dec_model_info_t *decoder_model_info, |
| struct aom_read_bit_buffer *rb) { |
| decoder_model_info->encoder_decoder_buffer_delay_length = |
| aom_rb_read_literal(rb, 5) + 1; |
| decoder_model_info->num_units_in_decoding_tick = |
| aom_rb_read_unsigned_literal(rb, |
| 32); // Number of units in a decoding tick |
| decoder_model_info->buffer_removal_time_length = |
| aom_rb_read_literal(rb, 5) + 1; |
| decoder_model_info->frame_presentation_time_length = |
| aom_rb_read_literal(rb, 5) + 1; |
| } |
| |
| void av1_read_op_parameters_info(aom_dec_model_op_parameters_t *op_params, |
| int buffer_delay_length, |
| struct aom_read_bit_buffer *rb) { |
| op_params->decoder_buffer_delay = |
| aom_rb_read_unsigned_literal(rb, buffer_delay_length); |
| op_params->encoder_buffer_delay = |
| aom_rb_read_unsigned_literal(rb, buffer_delay_length); |
| op_params->low_delay_mode_flag = aom_rb_read_bit(rb); |
| } |
| |
| static AOM_INLINE void read_temporal_point_info( |
| AV1_COMMON *const cm, struct aom_read_bit_buffer *rb) { |
| cm->frame_presentation_time = aom_rb_read_unsigned_literal( |
| rb, cm->seq_params.decoder_model_info.frame_presentation_time_length); |
| } |
| |
| void av1_read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb, |
| SequenceHeader *seq_params) { |
| const int num_bits_width = aom_rb_read_literal(rb, 4) + 1; |
| const int num_bits_height = aom_rb_read_literal(rb, 4) + 1; |
| const int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1; |
| const int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1; |
| |
| seq_params->num_bits_width = num_bits_width; |
| seq_params->num_bits_height = num_bits_height; |
| seq_params->max_frame_width = max_frame_width; |
| seq_params->max_frame_height = max_frame_height; |
| |
| if (seq_params->reduced_still_picture_hdr) { |
| seq_params->frame_id_numbers_present_flag = 0; |
| } else { |
| seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb); |
| } |
| if (seq_params->frame_id_numbers_present_flag) { |
| // We must always have delta_frame_id_length < frame_id_length, |
| // in order for a frame to be referenced with a unique delta. |
| // Avoid wasting bits by using a coding that enforces this restriction. |
| seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2; |
| seq_params->frame_id_length = |
| aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1; |
| if (seq_params->frame_id_length > 16) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid frame_id_length"); |
| } |
| |
| setup_seq_sb_size(seq_params, rb); |
| |
| seq_params->enable_filter_intra = aom_rb_read_bit(rb); |
| seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb); |
| if (seq_params->reduced_still_picture_hdr) { |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| seq_params->seq_enabled_motion_modes = (1 << SIMPLE_TRANSLATION); |
| #else |
| seq_params->enable_interintra_compound = 0; |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| seq_params->enable_masked_compound = 0; |
| #if !CONFIG_EXTENDED_WARP_PREDICTION |
| seq_params->enable_warped_motion = 0; |
| #endif // !CONFIG_EXTENDED_WARP_PREDICTION |
| seq_params->order_hint_info.enable_order_hint = 0; |
| seq_params->order_hint_info.enable_ref_frame_mvs = 0; |
| seq_params->force_screen_content_tools = 2; // SELECT_SCREEN_CONTENT_TOOLS |
| seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV |
| seq_params->order_hint_info.order_hint_bits_minus_1 = -1; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| seq_params->enable_opfl_refine = AOM_OPFL_REFINE_NONE; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_AFFINE_REFINEMENT |
| seq_params->enable_affine_refine = 0; |
| #endif // CONFIG_AFFINE_REFINEMENT |
| } else { |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| int seq_enabled_motion_modes = (1 << SIMPLE_TRANSLATION); |
| for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES; |
| motion_mode++) { |
| int enabled = aom_rb_read_bit(rb); |
| if (enabled) { |
| seq_enabled_motion_modes |= (1 << motion_mode); |
| } |
| } |
| seq_params->seq_enabled_motion_modes = seq_enabled_motion_modes; |
| #else |
| seq_params->enable_interintra_compound = aom_rb_read_bit(rb); |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| seq_params->enable_masked_compound = aom_rb_read_bit(rb); |
| #if !CONFIG_EXTENDED_WARP_PREDICTION |
| seq_params->enable_warped_motion = aom_rb_read_bit(rb); |
| #endif // !CONFIG_EXTENDED_WARP_PREDICTION |
| seq_params->order_hint_info.enable_order_hint = aom_rb_read_bit(rb); |
| seq_params->order_hint_info.enable_ref_frame_mvs = |
| seq_params->order_hint_info.enable_order_hint ? aom_rb_read_bit(rb) : 0; |
| |
| if (aom_rb_read_bit(rb)) { |
| seq_params->force_screen_content_tools = |
| 2; // SELECT_SCREEN_CONTENT_TOOLS |
| } else { |
| seq_params->force_screen_content_tools = aom_rb_read_bit(rb); |
| } |
| |
| if (seq_params->force_screen_content_tools > 0) { |
| if (aom_rb_read_bit(rb)) { |
| seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV |
| } else { |
| seq_params->force_integer_mv = aom_rb_read_bit(rb); |
| } |
| } else { |
| seq_params->force_integer_mv = 2; // SELECT_INTEGER_MV |
| } |
| seq_params->order_hint_info.order_hint_bits_minus_1 = |
| seq_params->order_hint_info.enable_order_hint |
| ? aom_rb_read_literal(rb, 3) |
| : -1; |
| } |
| |
| seq_params->enable_superres = aom_rb_read_bit(rb); |
| seq_params->enable_cdef = aom_rb_read_bit(rb); |
| seq_params->enable_restoration = aom_rb_read_bit(rb); |
| #if CONFIG_LR_IMPROVEMENTS |
| if (seq_params->enable_restoration) { |
| for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { |
| seq_params->lr_tools_disable_mask[0] |= (aom_rb_read_bit(rb) << i); |
| } |
| if (aom_rb_read_bit(rb)) { |
| seq_params->lr_tools_disable_mask[1] = DEF_UV_LR_TOOLS_DISABLE_MASK; |
| for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { |
| if (DEF_UV_LR_TOOLS_DISABLE_MASK & (1 << i)) continue; |
| seq_params->lr_tools_disable_mask[1] |= (aom_rb_read_bit(rb) << i); |
| } |
| } else { |
| seq_params->lr_tools_disable_mask[1] = |
| (seq_params->lr_tools_disable_mask[0] | DEF_UV_LR_TOOLS_DISABLE_MASK); |
| } |
| } |
| #endif // CONFIG_LR_IMPROVEMENTS |
| } |
| |
| void av1_read_sequence_header_beyond_av1(struct aom_read_bit_buffer *rb, |
| SequenceHeader *seq_params) { |
| // printf("print sps\n"); |
| seq_params->enable_refmvbank = aom_rb_read_bit(rb); |
| seq_params->explicit_ref_frame_map = aom_rb_read_bit(rb); |
| #if CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT |
| // 0 : use show_existing_frame, 1: use implicit derivation |
| seq_params->enable_frame_output_order = aom_rb_read_bit(rb); |
| #endif // CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT |
| // A bit is sent here to indicate if the max number of references is 7. If |
| // this bit is 0, then two more bits are sent to indicate the exact number |
| // of references allowed (range: 3 to 6). |
| if (aom_rb_read_bit(rb)) { |
| seq_params->max_reference_frames = 3 + aom_rb_read_literal(rb, 2); |
| } else { |
| seq_params->max_reference_frames = 7; |
| } |
| #if CONFIG_ALLOW_SAME_REF_COMPOUND |
| seq_params->num_same_ref_compound = aom_rb_read_literal(rb, 2); |
| #endif // CONFIG_ALLOW_SAME_REF_COMPOUND |
| seq_params->enable_sdp = aom_rb_read_bit(rb); |
| seq_params->enable_ist = aom_rb_read_bit(rb); |
| seq_params->enable_cctx = seq_params->monochrome ? 0 : aom_rb_read_bit(rb); |
| seq_params->enable_mrls = aom_rb_read_bit(rb); |
| seq_params->enable_tip = aom_rb_read_literal(rb, 2); |
| if (seq_params->enable_tip) { |
| seq_params->enable_tip_hole_fill = aom_rb_read_bit(rb); |
| } else { |
| seq_params->enable_tip_hole_fill = 0; |
| } |
| #if CONFIG_BAWP |
| seq_params->enable_bawp = aom_rb_read_bit(rb); |
| #endif // CONFIG_BAWP |
| seq_params->enable_cwp = aom_rb_read_bit(rb); |
| #if CONFIG_D071_IMP_MSK_BLD |
| seq_params->enable_imp_msk_bld = aom_rb_read_bit(rb); |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| seq_params->enable_fsc = aom_rb_read_bit(rb); |
| #if CONFIG_CCSO |
| seq_params->enable_ccso = aom_rb_read_bit(rb); |
| #endif |
| seq_params->enable_pef = aom_rb_read_bit(rb); |
| #if CONFIG_LF_SUB_PU |
| seq_params->enable_lf_sub_pu = aom_rb_read_bit(rb); |
| #endif // CONFIG_LF_SUB_PU |
| #if CONFIG_TIP_IMPLICIT_QUANT |
| if (seq_params->enable_tip == 1 && |
| #if CONFIG_LF_SUB_PU |
| seq_params->enable_lf_sub_pu |
| #else |
| seq_params->enable_pef |
| #endif // CONFIG_LF_SUB_PU |
| ) { |
| seq_params->enable_tip_explicit_qp = aom_rb_read_bit(rb); |
| } else { |
| seq_params->enable_tip_explicit_qp = 0; |
| } |
| #endif // CONFIG_TIP_IMPLICIT_QUANT |
| seq_params->enable_orip = aom_rb_read_bit(rb); |
| #if CONFIG_IDIF |
| seq_params->enable_idif = aom_rb_read_bit(rb); |
| #endif // CONFIG_IDIF |
| #if CONFIG_OPTFLOW_REFINEMENT |
| seq_params->enable_opfl_refine = seq_params->order_hint_info.enable_order_hint |
| ? aom_rb_read_literal(rb, 2) |
| : AOM_OPFL_REFINE_NONE; |
| #if CONFIG_AFFINE_REFINEMENT |
| seq_params->enable_affine_refine = |
| seq_params->enable_opfl_refine ? aom_rb_read_bit(rb) : 0; |
| #endif // CONFIG_AFFINE_REFINEMENT |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| seq_params->enable_ibp = aom_rb_read_bit(rb); |
| seq_params->enable_adaptive_mvd = aom_rb_read_bit(rb); |
| |
| #if CONFIG_REFINEMV |
| seq_params->enable_refinemv = aom_rb_read_bit(rb); |
| #endif // CONFIG_REFINEMV |
| #if CONFIG_DERIVED_MVD_SIGN |
| seq_params->enable_mvd_sign_derive = aom_rb_read_bit(rb); |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| seq_params->enable_flex_mvres = aom_rb_read_bit(rb); |
| #if CONFIG_IMPROVED_CFL |
| seq_params->enable_cfl_ds_filter = aom_rb_read_literal(rb, 2); |
| #endif // CONFIG_IMPROVED_CFL |
| |
| seq_params->enable_parity_hiding = aom_rb_read_bit(rb); |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| seq_params->enable_ext_partitions = aom_rb_read_bit(rb); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| if (seq_params->reduced_still_picture_hdr) { |
| seq_params->enable_global_motion = 0; |
| } else { |
| seq_params->enable_global_motion = aom_rb_read_bit(rb); |
| } |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| #if CONFIG_REFRESH_FLAG |
| seq_params->enable_short_refresh_frame_flags = aom_rb_read_bit(rb); |
| #endif // CONFIG_REFRESH_FLAG |
| } |
| |
| static int read_global_motion_params(WarpedMotionParams *params, |
| const WarpedMotionParams *ref_params, |
| struct aom_read_bit_buffer *rb, |
| MvSubpelPrecision precision) { |
| const int precision_loss = get_gm_precision_loss(precision); |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| (void)precision_loss; |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| TransformationType type = aom_rb_read_bit(rb); |
| if (type != IDENTITY) { |
| if (aom_rb_read_bit(rb)) { |
| type = ROTZOOM; |
| } else { |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| type = AFFINE; |
| #else |
| type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE; |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| } |
| } |
| |
| *params = default_warp_params; |
| params->wmtype = type; |
| |
| if (type >= ROTZOOM) { |
| params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS)) * |
| GM_ALPHA_DECODE_FACTOR + |
| (1 << WARPEDMODEL_PREC_BITS); |
| params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) * |
| GM_ALPHA_DECODE_FACTOR; |
| } |
| |
| if (type >= AFFINE) { |
| params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) * |
| GM_ALPHA_DECODE_FACTOR; |
| params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS)) * |
| GM_ALPHA_DECODE_FACTOR + |
| (1 << WARPEDMODEL_PREC_BITS); |
| } else { |
| params->wmmat[4] = -params->wmmat[3]; |
| params->wmmat[5] = params->wmmat[2]; |
| } |
| |
| if (type >= TRANSLATION) { |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| const int trans_dec_factor = GM_TRANS_DECODE_FACTOR; |
| const int trans_prec_diff = GM_TRANS_PREC_DIFF; |
| const int trans_max = GM_TRANS_MAX; |
| #else |
| const int trans_bits = (type == TRANSLATION) |
| ? GM_ABS_TRANS_ONLY_BITS - precision_loss |
| : GM_ABS_TRANS_BITS; |
| const int trans_dec_factor = |
| (type == TRANSLATION) |
| ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << precision_loss) |
| : GM_TRANS_DECODE_FACTOR; |
| const int trans_prec_diff = (type == TRANSLATION) |
| ? GM_TRANS_ONLY_PREC_DIFF + precision_loss |
| : GM_TRANS_PREC_DIFF; |
| const int trans_max = (1 << trans_bits); |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| |
| params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, trans_max + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[0] >> trans_prec_diff)) * |
| trans_dec_factor; |
| params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin( |
| rb, trans_max + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[1] >> trans_prec_diff)) * |
| trans_dec_factor; |
| } |
| |
| if (params->wmtype <= AFFINE) { |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| av1_reduce_warp_model(params); |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| int good_shear_params = av1_get_shear_params(params); |
| if (!good_shear_params) return 0; |
| } |
| |
| return 1; |
| } |
| |
| static AOM_INLINE void read_global_motion(AV1_COMMON *cm, |
| struct aom_read_bit_buffer *rb) { |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| int num_total_refs = cm->ref_frames_info.num_total_refs; |
| bool use_global_motion = false; |
| if (seq_params->enable_global_motion) { |
| use_global_motion = aom_rb_read_bit(rb); |
| } |
| if (!use_global_motion) { |
| for (int frame = 0; frame < INTER_REFS_PER_FRAME; ++frame) { |
| cm->global_motion[frame] = default_warp_params; |
| cm->cur_frame->global_motion[frame] = default_warp_params; |
| } |
| return; |
| } |
| |
| int our_ref = aom_rb_read_primitive_quniform(rb, num_total_refs + 1); |
| if (our_ref == num_total_refs) { |
| // Special case: Use IDENTITY model |
| cm->base_global_motion_model = default_warp_params; |
| cm->base_global_motion_distance = 1; |
| } else { |
| RefCntBuffer *buf = get_ref_frame_buf(cm, our_ref); |
| assert(buf); |
| int their_num_refs = buf->num_ref_frames; |
| if (their_num_refs == 0) { |
| // Special case: if an intra/key frame is used as a ref, use an |
| // IDENTITY model |
| cm->base_global_motion_model = default_warp_params; |
| cm->base_global_motion_distance = 1; |
| } else { |
| int their_ref = aom_rb_read_primitive_quniform(rb, their_num_refs); |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| const int our_ref_order_hint = buf->display_order_hint; |
| const int their_ref_order_hint = buf->ref_display_order_hint[their_ref]; |
| #else |
| const int our_ref_order_hint = buf->order_hint; |
| const int their_ref_order_hint = buf->ref_order_hints[their_ref]; |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| cm->base_global_motion_model = buf->global_motion[their_ref]; |
| cm->base_global_motion_distance = |
| get_relative_dist(&seq_params->order_hint_info, our_ref_order_hint, |
| their_ref_order_hint); |
| } |
| } |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| |
| for (int frame = 0; frame < cm->ref_frames_info.num_total_refs; ++frame) { |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| int temporal_distance; |
| if (seq_params->order_hint_info.enable_order_hint) { |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, frame); |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| const int ref_order_hint = ref_buf->display_order_hint; |
| const int cur_order_hint = cm->cur_frame->display_order_hint; |
| #else |
| const int ref_order_hint = ref_buf->order_hint; |
| const int cur_order_hint = cm->cur_frame->order_hint; |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| temporal_distance = get_relative_dist(&seq_params->order_hint_info, |
| cur_order_hint, ref_order_hint); |
| } else { |
| temporal_distance = 1; |
| } |
| |
| if (temporal_distance == 0) { |
| // Don't code global motion for frames at the same temporal instant |
| cm->global_motion[frame] = default_warp_params; |
| continue; |
| } |
| |
| WarpedMotionParams ref_params_; |
| av1_scale_warp_model(&cm->base_global_motion_model, |
| cm->base_global_motion_distance, &ref_params_, |
| temporal_distance); |
| WarpedMotionParams *ref_params = &ref_params_; |
| #else |
| const WarpedMotionParams *ref_params = |
| cm->prev_frame ? &cm->prev_frame->global_motion[frame] |
| : &default_warp_params; |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| int good_params = |
| read_global_motion_params(&cm->global_motion[frame], ref_params, rb, |
| cm->features.fr_mv_precision); |
| if (!good_params) { |
| #if WARPED_MOTION_DEBUG |
| printf("Warning: unexpected global motion shear params from aomenc\n"); |
| #endif |
| cm->global_motion[frame].invalid = 1; |
| } |
| |
| // TODO(sarahparker, debargha): The logic in the commented out code below |
| // does not work currently and causes mismatches when resize is on. Fix it |
| // before turning the optimization back on. |
| /* |
| YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame); |
| if (cm->width == ref_buf->y_crop_width && |
| cm->height == ref_buf->y_crop_height) { |
| read_global_motion_params(&cm->global_motion[frame], |
| &cm->prev_frame->global_motion[frame], rb, |
| cm->features.allow_high_precision_mv); |
| } else { |
| cm->global_motion[frame] = default_warp_params; |
| } |
| */ |
| /* |
| printf("Dec Ref %d [%d/%d]: %d %d %d %d\n", |
| frame, cm->current_frame.frame_number, cm->show_frame, |
| cm->global_motion[frame].wmmat[0], |
| cm->global_motion[frame].wmmat[1], |
| cm->global_motion[frame].wmmat[2], |
| cm->global_motion[frame].wmmat[3]); |
| */ |
| } |
| memcpy(cm->cur_frame->global_motion, cm->global_motion, |
| INTER_REFS_PER_FRAME * sizeof(WarpedMotionParams)); |
| } |
| |
| // Release the references to the frame buffers in cm->ref_frame_map and reset |
| // all elements of cm->ref_frame_map to NULL. |
| static AOM_INLINE void reset_ref_frame_map(AV1_COMMON *const cm) { |
| BufferPool *const pool = cm->buffer_pool; |
| |
| for (int i = 0; i < REF_FRAMES; i++) { |
| decrease_ref_count(cm->ref_frame_map[i], pool); |
| cm->ref_frame_map[i] = NULL; |
| } |
| } |
| |
| // If the refresh_frame_flags bitmask is set, update reference frame id values |
| // and mark frames as valid for reference. |
| static AOM_INLINE void update_ref_frame_id(AV1Decoder *const pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| int refresh_frame_flags = cm->current_frame.refresh_frame_flags; |
| for (int i = 0; i < REF_FRAMES; i++) { |
| if ((refresh_frame_flags >> i) & 1) { |
| cm->ref_frame_id[i] = cm->current_frame_id; |
| pbi->valid_for_referencing[i] = 1; |
| } |
| } |
| } |
| |
| static AOM_INLINE void show_existing_frame_reset(AV1Decoder *const pbi, |
| int existing_frame_idx) { |
| AV1_COMMON *const cm = &pbi->common; |
| |
| assert(cm->show_existing_frame); |
| |
| cm->current_frame.frame_type = KEY_FRAME; |
| cm->current_frame.refresh_frame_flags = REFRESH_FRAME_ALL; |
| |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| cm->remapped_ref_idx[i] = INVALID_IDX; |
| } |
| |
| cm->cur_frame->display_order_hint = 0; |
| |
| if (pbi->need_resync) { |
| reset_ref_frame_map(cm); |
| pbi->need_resync = 0; |
| } |
| |
| // Note that the displayed frame must be valid for referencing in order to |
| // have been selected. |
| cm->current_frame_id = cm->ref_frame_id[existing_frame_idx]; |
| update_ref_frame_id(pbi); |
| |
| cm->features.refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; |
| } |
| |
| static INLINE void reset_frame_buffers(AV1_COMMON *cm) { |
| RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; |
| int i; |
| |
| lock_buffer_pool(cm->buffer_pool); |
| #if !CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT |
| reset_ref_frame_map(cm); |
| #endif // !CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT |
| assert(cm->cur_frame->ref_count == 1); |
| for (i = 0; i < FRAME_BUFFERS; ++i) { |
| // Reset all unreferenced frame buffers. We can also reset cm->cur_frame |
| // because we are the sole owner of cm->cur_frame. |
| if (frame_bufs[i].ref_count > 0 && &frame_bufs[i] != cm->cur_frame) { |
| continue; |
| } |
| frame_bufs[i].order_hint = 0; |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| frame_bufs[i].display_order_hint = 0; |
| av1_zero(frame_bufs[i].ref_display_order_hint); |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| av1_zero(frame_bufs[i].ref_order_hints); |
| } |
| av1_zero_unused_internal_frame_buffers(&cm->buffer_pool->int_frame_buffers); |
| unlock_buffer_pool(cm->buffer_pool); |
| } |
| |
| static INLINE int get_disp_order_hint(AV1_COMMON *const cm) { |
| CurrentFrame *const current_frame = &cm->current_frame; |
| if (current_frame->frame_type == KEY_FRAME && cm->show_existing_frame) |
| return 0; |
| |
| #if CONFIG_DISPLAY_ORDER_HINT_FIX |
| // For key frames, the implicit derivation of display_order_hit is not |
| // applied. |
| if (current_frame->frame_type == KEY_FRAME) return current_frame->order_hint; |
| #endif // CONFIG_DISPLAY_ORDER_HINT_FIX |
| // Derive the exact display order hint from the signaled order_hint. |
| // This requires scaling up order_hints corresponding to frame |
| // numbers that exceed the number of bits available to send the order_hints. |
| |
| // Find the reference frame with the largest order_hint |
| int max_disp_order_hint = 0; |
| for (int map_idx = 0; map_idx < REF_FRAMES; map_idx++) { |
| // Get reference frame buffer |
| const RefCntBuffer *const buf = cm->ref_frame_map[map_idx]; |
| if (buf == NULL) continue; |
| if ((int)buf->display_order_hint > max_disp_order_hint) |
| max_disp_order_hint = buf->display_order_hint; |
| } |
| |
| // If the order_hint is above the threshold distance of 35 frames (largest |
| // possible lag_in_frames) from the found reference frame, we assume it was |
| // modified using: |
| // order_hint = display_order_hint % display_order_hint_factor |
| // Here, the actual display_order_hint is recovered. |
| int cur_disp_order_hint = current_frame->order_hint; |
| while (abs(max_disp_order_hint - cur_disp_order_hint) > 35) { |
| if (cur_disp_order_hint > max_disp_order_hint) return cur_disp_order_hint; |
| int display_order_hint_factor = |
| 1 << (cm->seq_params.order_hint_info.order_hint_bits_minus_1 + 1); |
| cur_disp_order_hint += display_order_hint_factor; |
| } |
| return cur_disp_order_hint; |
| } |
| |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| static INLINE int get_ref_frame_disp_order_hint(AV1_COMMON *const cm, |
| const RefCntBuffer *const buf) { |
| // Find the reference frame with the largest order_hint |
| int max_disp_order_hint = 0; |
| for (int map_idx = 0; map_idx < INTER_REFS_PER_FRAME; map_idx++) { |
| if ((int)buf->ref_display_order_hint[map_idx] > max_disp_order_hint) |
| max_disp_order_hint = buf->ref_display_order_hint[map_idx]; |
| } |
| |
| // If the order_hint is above the threshold distance of 35 frames (largest |
| // possible lag_in_frames) from the found reference frame, we assume it was |
| // modified using: |
| // order_hint = display_order_hint % display_order_hint_factor |
| // Here, the actual display_order_hint is recovered. |
| const int display_order_hint_factor = |
| 1 << (cm->seq_params.order_hint_info.order_hint_bits_minus_1 + 1); |
| int disp_order_hint = buf->order_hint; |
| while (abs(max_disp_order_hint - disp_order_hint) > 35) { |
| if (disp_order_hint > max_disp_order_hint) return disp_order_hint; |
| |
| disp_order_hint += display_order_hint_factor; |
| } |
| return disp_order_hint; |
| } |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| |
| // On success, returns 0. On failure, calls aom_internal_error and does not |
| // return. |
| static int read_uncompressed_header(AV1Decoder *pbi, |
| struct aom_read_bit_buffer *rb) { |
| AV1_COMMON *const cm = &pbi->common; |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| FeatureFlags *const features = &cm->features; |
| MACROBLOCKD *const xd = &pbi->dcb.xd; |
| BufferPool *const pool = cm->buffer_pool; |
| RefCntBuffer *const frame_bufs = pool->frame_bufs; |
| aom_s_frame_info *sframe_info = &pbi->sframe_info; |
| sframe_info->is_s_frame = 0; |
| sframe_info->is_s_frame_at_altref = 0; |
| |
| if (!pbi->sequence_header_ready) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "No sequence header"); |
| } |
| |
| if (seq_params->reduced_still_picture_hdr) { |
| cm->show_existing_frame = 0; |
| cm->show_frame = 1; |
| current_frame->frame_type = KEY_FRAME; |
| if (pbi->sequence_header_changed) { |
| // This is the start of a new coded video sequence. |
| pbi->sequence_header_changed = 0; |
| pbi->decoding_first_frame = 1; |
| reset_frame_buffers(cm); |
| } |
| features->error_resilient_mode = 1; |
| } else { |
| cm->show_existing_frame = aom_rb_read_bit(rb); |
| pbi->reset_decoder_state = 0; |
| |
| if (cm->show_existing_frame) { |
| if (pbi->sequence_header_changed) { |
| aom_internal_error( |
| &cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "New sequence header starts with a show_existing_frame."); |
| } |
| // Show an existing frame directly. |
| const int existing_frame_idx = aom_rb_read_literal(rb, 3); |
| RefCntBuffer *const frame_to_show = cm->ref_frame_map[existing_frame_idx]; |
| if (frame_to_show == NULL) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Buffer does not contain a decoded frame"); |
| } |
| if (seq_params->decoder_model_info_present_flag && |
| seq_params->timing_info.equal_picture_interval == 0) { |
| read_temporal_point_info(cm, rb); |
| } |
| if (seq_params->frame_id_numbers_present_flag) { |
| int frame_id_length = seq_params->frame_id_length; |
| int display_frame_id = aom_rb_read_literal(rb, frame_id_length); |
| /* Compare display_frame_id with ref_frame_id and check valid for |
| * referencing */ |
| if (display_frame_id != cm->ref_frame_id[existing_frame_idx] || |
| pbi->valid_for_referencing[existing_frame_idx] == 0) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference buffer frame ID mismatch"); |
| } |
| lock_buffer_pool(pool); |
| assert(frame_to_show->ref_count > 0); |
| // cm->cur_frame should be the buffer referenced by the return value |
| // of the get_free_fb() call in assign_cur_frame_new_fb() (called by |
| // av1_receive_compressed_data()), so the ref_count should be 1. |
| assert(cm->cur_frame->ref_count == 1); |
| // assign_frame_buffer_p() decrements ref_count directly rather than |
| // call decrease_ref_count(). If cm->cur_frame->raw_frame_buffer has |
| // already been allocated, it will not be released by |
| // assign_frame_buffer_p()! |
| assert(!cm->cur_frame->raw_frame_buffer.data); |
| |
| FrameHash raw_frame_hash = cm->cur_frame->raw_frame_hash; |
| FrameHash grain_frame_hash = cm->cur_frame->grain_frame_hash; |
| |
| assign_frame_buffer_p(&cm->cur_frame, frame_to_show); |
| pbi->reset_decoder_state = frame_to_show->frame_type == KEY_FRAME; |
| |
| // Combine any Decoded Frame Header metadata that was parsed before |
| // the referenced frame with any parsed before this |
| // show_existing_frame header, e.g. raw frame hash values before the |
| // referenced coded frame and post film grain hash values before this |
| // header. |
| if (raw_frame_hash.is_present) |
| cm->cur_frame->raw_frame_hash = raw_frame_hash; |
| if (grain_frame_hash.is_present) |
| cm->cur_frame->grain_frame_hash = grain_frame_hash; |
| unlock_buffer_pool(pool); |
| |
| cm->lf.filter_level[0] = 0; |
| cm->lf.filter_level[1] = 0; |
| cm->show_frame = 1; |
| #if !CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT |
| // Section 6.8.2: It is a requirement of bitstream conformance that when |
| // show_existing_frame is used to show a previous frame, that the value |
| // of showable_frame for the previous frame was equal to 1. |
| if (!frame_to_show->showable_frame) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Buffer does not contain a showable frame"); |
| } |
| #endif // !CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT |
| // Section 6.8.2: It is a requirement of bitstream conformance that when |
| // show_existing_frame is used to show a previous frame with |
| // RefFrameType[ frame_to_show_map_idx ] equal to KEY_FRAME, that the |
| // frame is output via the show_existing_frame mechanism at most once. |
| if (pbi->reset_decoder_state) frame_to_show->showable_frame = 0; |
| |
| cm->film_grain_params = frame_to_show->film_grain_params; |
| |
| if (pbi->reset_decoder_state) { |
| show_existing_frame_reset(pbi, existing_frame_idx); |
| } else { |
| current_frame->refresh_frame_flags = 0; |
| } |
| |
| return 0; |
| } |
| |
| current_frame->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2); |
| if (pbi->sequence_header_changed) { |
| if (current_frame->frame_type == KEY_FRAME) { |
| // This is the start of a new coded video sequence. |
| pbi->sequence_header_changed = 0; |
| pbi->decoding_first_frame = 1; |
| reset_frame_buffers(cm); |
| } else { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Sequence header has changed without a keyframe."); |
| } |
| } |
| |
| cm->show_frame = aom_rb_read_bit(rb); |
| if (cm->show_frame == 0) pbi->is_arf_frame_present = 1; |
| if (cm->show_frame == 0 && cm->current_frame.frame_type == KEY_FRAME) |
| pbi->is_fwd_kf_present = 1; |
| if (cm->current_frame.frame_type == S_FRAME) { |
| sframe_info->is_s_frame = 1; |
| sframe_info->is_s_frame_at_altref = cm->show_frame ? 0 : 1; |
| } |
| if (seq_params->still_picture && |
| (current_frame->frame_type != KEY_FRAME || !cm->show_frame)) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Still pictures must be coded as shown keyframes"); |
| } |
| cm->showable_frame = current_frame->frame_type != KEY_FRAME; |
| if (cm->show_frame) { |
| if (seq_params->decoder_model_info_present_flag && |
| seq_params->timing_info.equal_picture_interval == 0) |
| read_temporal_point_info(cm, rb); |
| } else { |
| // See if this frame can be used as show_existing_frame in future |
| cm->showable_frame = aom_rb_read_bit(rb); |
| } |
| cm->cur_frame->showable_frame = cm->showable_frame; |
| #if CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT |
| cm->cur_frame->frame_output_done = 0; |
| #endif // CONFIG_OUTPUT_FRAME_BASED_ON_ORDER_HINT_ENHANCEMENT |
| features->error_resilient_mode = |
| frame_is_sframe(cm) || |
| (current_frame->frame_type == KEY_FRAME && cm->show_frame) |
| ? 1 |
| : aom_rb_read_bit(rb); |
| } |
| |
| av1_set_frame_sb_size(cm, cm->seq_params.sb_size); |
| |
| if (current_frame->frame_type == KEY_FRAME && cm->show_frame) { |
| /* All frames need to be marked as not valid for referencing */ |
| for (int i = 0; i < REF_FRAMES; i++) { |
| pbi->valid_for_referencing[i] = 0; |
| } |
| } |
| features->disable_cdf_update = aom_rb_read_bit(rb); |
| |
| if (seq_params->force_screen_content_tools == 2) { |
| features->allow_screen_content_tools = aom_rb_read_bit(rb); |
| } else { |
| features->allow_screen_content_tools = |
| seq_params->force_screen_content_tools; |
| } |
| |
| if (features->allow_screen_content_tools) { |
| if (seq_params->force_integer_mv == 2) { |
| features->cur_frame_force_integer_mv = aom_rb_read_bit(rb); |
| } else { |
| features->cur_frame_force_integer_mv = seq_params->force_integer_mv; |
| } |
| } else { |
| features->cur_frame_force_integer_mv = 0; |
| } |
| |
| int frame_size_override_flag = 0; |
| features->allow_intrabc = 0; |
| #if CONFIG_IBC_SR_EXT |
| features->allow_global_intrabc = 0; |
| features->allow_local_intrabc = 0; |
| #endif // CONFIG_IBC_SR_EXT |
| features->primary_ref_frame = PRIMARY_REF_NONE; |
| |
| #if CONFIG_PRIMARY_REF_FRAME_OPT |
| int signal_primary_ref_frame = -1; |
| features->derived_primary_ref_frame = PRIMARY_REF_NONE; |
| #endif // CONFIG_PRIMARY_REF_FRAME_OPT |
| |
| if (!seq_params->reduced_still_picture_hdr) { |
| if (seq_params->frame_id_numbers_present_flag) { |
| int frame_id_length = seq_params->frame_id_length; |
| int diff_len = seq_params->delta_frame_id_length; |
| int prev_frame_id = 0; |
| int have_prev_frame_id = |
| !pbi->decoding_first_frame && |
| !(current_frame->frame_type == KEY_FRAME && cm->show_frame); |
| if (have_prev_frame_id) { |
| prev_frame_id = cm->current_frame_id; |
| } |
| cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length); |
| |
| if (have_prev_frame_id) { |
| int diff_frame_id; |
| if (cm->current_frame_id > prev_frame_id) { |
| diff_frame_id = cm->current_frame_id - prev_frame_id; |
| } else { |
| diff_frame_id = |
| (1 << frame_id_length) + cm->current_frame_id - prev_frame_id; |
| } |
| /* Check current_frame_id for conformance */ |
| if (prev_frame_id == cm->current_frame_id || |
| diff_frame_id >= (1 << (frame_id_length - 1))) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid value of current_frame_id"); |
| } |
| } |
| /* Check if some frames need to be marked as not valid for referencing */ |
| for (int i = 0; i < REF_FRAMES; i++) { |
| if (cm->current_frame_id - (1 << diff_len) > 0) { |
| if (cm->ref_frame_id[i] > cm->current_frame_id || |
| cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len)) |
| pbi->valid_for_referencing[i] = 0; |
| } else { |
| if (cm->ref_frame_id[i] > cm->current_frame_id && |
| cm->ref_frame_id[i] < (1 << frame_id_length) + |
| cm->current_frame_id - (1 << diff_len)) |
| pbi->valid_for_referencing[i] = 0; |
| } |
| } |
| } |
| |
| frame_size_override_flag = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb); |
| |
| current_frame->order_hint = aom_rb_read_literal( |
| rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); |
| |
| current_frame->display_order_hint = get_disp_order_hint(cm); |
| current_frame->frame_number = current_frame->order_hint; |
| |
| if (!features->error_resilient_mode && !frame_is_intra_only(cm)) { |
| #if CONFIG_PRIMARY_REF_FRAME_OPT |
| signal_primary_ref_frame = aom_rb_read_literal(rb, 1); |
| if (signal_primary_ref_frame) |
| features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS); |
| #else |
| features->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS); |
| #endif // CONFIG_PRIMARY_REF_FRAME_OPT |
| } |
| } |
| |
| if (seq_params->decoder_model_info_present_flag) { |
| cm->buffer_removal_time_present = aom_rb_read_bit(rb); |
| if (cm->buffer_removal_time_present) { |
| for (int op_num = 0; |
| op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { |
| if (seq_params->op_params[op_num].decoder_model_param_present_flag) { |
| if ((((seq_params->operating_point_idc[op_num] >> |
| cm->temporal_layer_id) & |
| 0x1) && |
| ((seq_params->operating_point_idc[op_num] >> |
| (cm->spatial_layer_id + 8)) & |
| 0x1)) || |
| seq_params->operating_point_idc[op_num] == 0) { |
| cm->buffer_removal_times[op_num] = aom_rb_read_unsigned_literal( |
| rb, seq_params->decoder_model_info.buffer_removal_time_length); |
| } else { |
| cm->buffer_removal_times[op_num] = 0; |
| } |
| } else { |
| cm->buffer_removal_times[op_num] = 0; |
| } |
| } |
| } |
| } |
| #if CONFIG_REFRESH_FLAG |
| const int short_refresh_frame_flags = |
| cm->seq_params.enable_short_refresh_frame_flags && |
| !cm->features.error_resilient_mode; |
| const int refresh_frame_flags_bits = |
| short_refresh_frame_flags ? 3 : REF_FRAMES; |
| #endif // CONFIG_REFRESH_FLAG |
| if (current_frame->frame_type == KEY_FRAME) { |
| if (!cm->show_frame) { // unshown keyframe (forward keyframe) |
| #if CONFIG_REFRESH_FLAG |
| if (short_refresh_frame_flags) { |
| const int refresh_idx = |
| aom_rb_read_literal(rb, refresh_frame_flags_bits); |
| if (refresh_idx == 0) { |
| const bool has_refresh_frame_flags = aom_rb_read_literal(rb, 1); |
| current_frame->refresh_frame_flags = has_refresh_frame_flags ? 1 : 0; |
| } else { |
| current_frame->refresh_frame_flags = 1 << refresh_idx; |
| } |
| } else { |
| current_frame->refresh_frame_flags = |
| aom_rb_read_literal(rb, refresh_frame_flags_bits); |
| } |
| #else |
| current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); |
| #endif // CONFIG_REFRESH_FLAG |
| } else { // shown keyframe |
| current_frame->refresh_frame_flags = REFRESH_FRAME_ALL; |
| } |
| |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| cm->remapped_ref_idx[i] = INVALID_IDX; |
| } |
| if (pbi->need_resync) { |
| reset_ref_frame_map(cm); |
| pbi->need_resync = 0; |
| } |
| } else { |
| if (current_frame->frame_type == INTRA_ONLY_FRAME) { |
| #if CONFIG_REFRESH_FLAG |
| if (short_refresh_frame_flags) { |
| const int refresh_idx = |
| aom_rb_read_literal(rb, refresh_frame_flags_bits); |
| if (refresh_idx == 0) { |
| const bool has_refresh_frame_flags = aom_rb_read_literal(rb, 1); |
| current_frame->refresh_frame_flags = has_refresh_frame_flags ? 1 : 0; |
| } else { |
| current_frame->refresh_frame_flags = 1 << refresh_idx; |
| } |
| } else { |
| current_frame->refresh_frame_flags = |
| aom_rb_read_literal(rb, refresh_frame_flags_bits); |
| } |
| #else |
| current_frame->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES); |
| #endif // CONFIG_REFRESH_FLAG |
| if (current_frame->refresh_frame_flags == REFRESH_FRAME_ALL) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Intra only frames cannot have refresh flags 0xFF"); |
| } |
| if (pbi->need_resync) { |
| reset_ref_frame_map(cm); |
| pbi->need_resync = 0; |
| } |
| } else if (pbi->need_resync != 1) { /* Skip if need resync */ |
| #if CONFIG_REFRESH_FLAG |
| if (frame_is_sframe(cm)) { |
| current_frame->refresh_frame_flags = REFRESH_FRAME_ALL; |
| } else { |
| if (short_refresh_frame_flags) { |
| const int refresh_idx = |
| aom_rb_read_literal(rb, refresh_frame_flags_bits); |
| if (refresh_idx == 0) { |
| const bool has_refresh_frame_flags = aom_rb_read_literal(rb, 1); |
| current_frame->refresh_frame_flags = |
| has_refresh_frame_flags ? 1 : 0; |
| } else { |
| current_frame->refresh_frame_flags = 1 << refresh_idx; |
| } |
| } else { |
| current_frame->refresh_frame_flags = |
| aom_rb_read_literal(rb, refresh_frame_flags_bits); |
| } |
| } |
| #else |
| current_frame->refresh_frame_flags = |
| frame_is_sframe(cm) ? REFRESH_FRAME_ALL |
| : aom_rb_read_literal(rb, REF_FRAMES); |
| #endif // CONFIG_REFRESH_FLAG |
| } |
| } |
| |
| if (!frame_is_intra_only(cm) || |
| current_frame->refresh_frame_flags != REFRESH_FRAME_ALL) { |
| // Read all ref frame order hints if error_resilient_mode == 1 |
| if (features->error_resilient_mode && |
| seq_params->order_hint_info.enable_order_hint) { |
| for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { |
| // Read order hint from bit stream |
| unsigned int order_hint = aom_rb_read_literal( |
| rb, seq_params->order_hint_info.order_hint_bits_minus_1 + 1); |
| // Get buffer |
| RefCntBuffer *buf = cm->ref_frame_map[ref_idx]; |
| if (buf == NULL || order_hint != buf->order_hint) { |
| if (buf != NULL) { |
| lock_buffer_pool(pool); |
| decrease_ref_count(buf, pool); |
| unlock_buffer_pool(pool); |
| cm->ref_frame_map[ref_idx] = NULL; |
| } |
| // If no corresponding buffer exists, allocate a new buffer with all |
| // pixels set to neutral grey. |
| int buf_idx = get_free_fb(cm); |
| if (buf_idx == INVALID_IDX) { |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Unable to find free frame buffer"); |
| } |
| buf = &frame_bufs[buf_idx]; |
| lock_buffer_pool(pool); |
| if (aom_realloc_frame_buffer( |
| &buf->buf, seq_params->max_frame_width, |
| seq_params->max_frame_height, seq_params->subsampling_x, |
| seq_params->subsampling_y, AOM_BORDER_IN_PIXELS, |
| features->byte_alignment, &buf->raw_frame_buffer, |
| pool->get_fb_cb, pool->cb_priv, false)) { |
| decrease_ref_count(buf, pool); |
| unlock_buffer_pool(pool); |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate frame buffer"); |
| } |
| unlock_buffer_pool(pool); |
| // According to the specification, valid bitstreams are required to |
| // never use missing reference frames so the filling process for |
| // missing frames is not normatively defined and RefValid for missing |
| // frames is set to 0. |
| |
| // To make libaom more robust when the bitstream has been corrupted |
| // by the loss of some frames of data, this code adds a neutral grey |
| // buffer in place of missing frames, i.e. |
| // |
| set_planes_to_neutral_grey(seq_params, &buf->buf, 0); |
| // |
| // and allows the frames to be used for referencing, i.e. |
| // |
| pbi->valid_for_referencing[ref_idx] = 1; |
| // |
| // Please note such behavior is not normative and other decoders may |
| // use a different approach. |
| cm->ref_frame_map[ref_idx] = buf; |
| buf->order_hint = order_hint; |
| // TODO(kslu) This is a workaround for error resilient mode. Make |
| // it more consistent with get_disp_order_hint(). |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| buf->display_order_hint = get_ref_frame_disp_order_hint(cm, buf); |
| #else |
| buf->display_order_hint = order_hint; |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| } |
| } |
| } |
| if (features->error_resilient_mode) { |
| // Read all ref frame base_qindex |
| for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { |
| RefCntBuffer *buf = cm->ref_frame_map[ref_idx]; |
| buf->base_qindex = aom_rb_read_literal( |
| rb, cm->seq_params.bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT |
| : QINDEX_BITS); |
| } |
| } |
| } |
| |
| #if CONFIG_LF_SUB_PU |
| features->allow_lf_sub_pu = 0; |
| #endif // CONFIG_LF_SUB_PU |
| if (current_frame->frame_type == KEY_FRAME) { |
| cm->current_frame.pyramid_level = 1; |
| features->tip_frame_mode = TIP_FRAME_DISABLED; |
| setup_frame_size(cm, frame_size_override_flag, rb); |
| |
| if (features->allow_screen_content_tools && !av1_superres_scaled(cm)) |
| features->allow_intrabc = aom_rb_read_bit(rb); |
| #if CONFIG_IBC_SR_EXT |
| if (features->allow_intrabc) { |
| features->allow_global_intrabc = aom_rb_read_bit(rb); |
| features->allow_local_intrabc = |
| features->allow_global_intrabc ? aom_rb_read_bit(rb) : 1; |
| #if CONFIG_IBC_BV_IMPROVEMENT |
| #if CONFIG_IBC_MAX_DRL |
| features->max_bvp_drl_bits = |
| aom_rb_read_primitive_quniform( |
| rb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1) + |
| MIN_MAX_IBC_DRL_BITS; |
| #else |
| features->max_drl_bits = |
| aom_rb_read_primitive_quniform( |
| rb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1) + |
| MIN_MAX_DRL_BITS; |
| #endif // CONFIG_IBC_MAX_DRL |
| #endif // CONFIG_IBC_BV_IMPROVEMENT |
| } |
| #endif // CONFIG_IBC_SR_EXT |
| |
| features->allow_ref_frame_mvs = 0; |
| cm->prev_frame = NULL; |
| |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| cm->cur_frame->num_ref_frames = 0; |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| } else { |
| features->allow_ref_frame_mvs = 0; |
| features->tip_frame_mode = TIP_FRAME_DISABLED; |
| if (current_frame->frame_type == INTRA_ONLY_FRAME) { |
| cm->cur_frame->film_grain_params_present = |
| seq_params->film_grain_params_present; |
| setup_frame_size(cm, frame_size_override_flag, rb); |
| if (features->allow_screen_content_tools && !av1_superres_scaled(cm)) |
| features->allow_intrabc = aom_rb_read_bit(rb); |
| #if CONFIG_IBC_SR_EXT |
| if (features->allow_intrabc) { |
| features->allow_global_intrabc = aom_rb_read_bit(rb); |
| features->allow_local_intrabc = |
| features->allow_global_intrabc ? aom_rb_read_bit(rb) : 1; |
| #if CONFIG_IBC_BV_IMPROVEMENT |
| #if CONFIG_IBC_MAX_DRL |
| features->max_bvp_drl_bits = |
| aom_rb_read_primitive_quniform( |
| rb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1) + |
| MIN_MAX_IBC_DRL_BITS; |
| #else |
| features->max_drl_bits = |
| aom_rb_read_primitive_quniform( |
| rb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1) + |
| MIN_MAX_DRL_BITS; |
| #endif // CONFIG_IBC_MAX_DRL |
| #endif // CONFIG_IBC_BV_IMPROVEMENT |
| } |
| #endif // CONFIG_IBC_SR_EXT |
| |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| cm->cur_frame->num_ref_frames = 0; |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| |
| } else if (pbi->need_resync != 1) { /* Skip if need resync */ |
| // Implicitly derive the reference mapping |
| #if CONFIG_PRIMARY_REF_FRAME_OPT |
| init_ref_map_pair(cm, cm->ref_frame_map_pairs, |
| current_frame->frame_type == KEY_FRAME); |
| int n_ranked = av1_get_ref_frames(cm, current_frame->display_order_hint, |
| cm->ref_frame_map_pairs); |
| #else |
| RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]; |
| init_ref_map_pair(cm, ref_frame_map_pairs, |
| current_frame->frame_type == KEY_FRAME); |
| int n_ranked = av1_get_ref_frames(cm, current_frame->display_order_hint, |
| ref_frame_map_pairs); |
| #endif // CONFIG_PRIMARY_REF_FRAME_OPT |
| |
| // Reference rankings have been implicitly derived in av1_get_ref_frames. |
| // However, reference indices can be overwritten if they have been |
| // signaled, which happens in error resilient mode or when order hint |
| // is unavailable. |
| const int explicit_ref_frame_map = |
| cm->features.error_resilient_mode || frame_is_sframe(cm) || |
| seq_params->explicit_ref_frame_map || |
| !seq_params->order_hint_info.enable_order_hint; |
| if (explicit_ref_frame_map) { |
| cm->ref_frames_info.num_total_refs = |
| aom_rb_read_literal(rb, REF_FRAMES_LOG2); |
| // Check whether num_total_refs read is valid and not greater than |
| // n_ranked (using a reference frame more than once is not allowed). |
| if (cm->ref_frames_info.num_total_refs <= 0 || |
| (seq_params->order_hint_info.enable_order_hint && |
| cm->ref_frames_info.num_total_refs > n_ranked) || |
| cm->ref_frames_info.num_total_refs > |
| seq_params->max_reference_frames) |
| aom_internal_error(&cm->error, AOM_CODEC_ERROR, |
| "Invalid num_total_refs"); |
| } |
| |
| #if CONFIG_ALLOW_SAME_REF_COMPOUND |
| cm->ref_frames_info.num_same_ref_compound = |
| AOMMIN(cm->seq_params.num_same_ref_compound, |
| cm->ref_frames_info.num_total_refs); |
| #endif // CONFIG_ALLOW_SAME_REF_COMPOUND |
| |
| if (features->primary_ref_frame >= cm->ref_frames_info.num_total_refs && |
| features->primary_ref_frame != PRIMARY_REF_NONE) { |
| aom_internal_error(&cm->error, AOM_CODEC_ERROR, |
| "Invalid primary_ref_frame"); |
| } |
| for (int i = 0; i < cm->ref_frames_info.num_total_refs; ++i) { |
| int ref = 0; |
| if (!explicit_ref_frame_map) { |
| ref = cm->remapped_ref_idx[i]; |
| if (cm->ref_frame_map[ref] == NULL) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Inter frame requests nonexistent reference"); |
| } else { |
| ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2); |
| |
| // Most of the time, streams start with a keyframe. In that case, |
| // ref_frame_map will have been filled in at that point and will not |
| // contain any NULLs. However, streams are explicitly allowed to start |
| // with an intra-only frame, so long as they don't then signal a |
| // reference to a slot that hasn't been set yet. That's what we are |
| // checking here. |
| if (cm->ref_frame_map[ref] == NULL) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Inter frame requests nonexistent reference"); |
| cm->remapped_ref_idx[i] = ref; |
| } |
| // Check valid for referencing |
| if (pbi->valid_for_referencing[ref] == 0) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference frame not valid for referencing"); |
| |
| if (seq_params->frame_id_numbers_present_flag) { |
| int frame_id_length = seq_params->frame_id_length; |
| int diff_len = seq_params->delta_frame_id_length; |
| int delta_frame_id_minus_1 = aom_rb_read_literal(rb, diff_len); |
| int ref_frame_id = |
| ((cm->current_frame_id - (delta_frame_id_minus_1 + 1) + |
| (1 << frame_id_length)) % |
| (1 << frame_id_length)); |
| // Compare values derived from delta_frame_id_minus_1 and |
| // refresh_frame_flags. |
| if (ref_frame_id != cm->ref_frame_id[ref]) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference buffer frame ID mismatch"); |
| } |
| } |
| // With explicit_ref_frame_map, cm->remapped_ref_idx has been |
| // overwritten. The reference lists also needs to be reset. |
| if (explicit_ref_frame_map) { |
| RefScoreData scores[REF_FRAMES]; |
| for (int i = 0; i < REF_FRAMES; i++) scores[i].score = INT_MAX; |
| for (int i = 0; i < cm->ref_frames_info.num_total_refs; i++) { |
| scores[i].score = i; |
| int ref = cm->remapped_ref_idx[i]; |
| scores[i].distance = |
| seq_params->order_hint_info.enable_order_hint |
| ? ((int)current_frame->display_order_hint - |
| #if CONFIG_PRIMARY_REF_FRAME_OPT |
| (int)cm->ref_frame_map_pairs[ref].disp_order) |
| #else |
| (int)ref_frame_map_pairs[ref].disp_order) |
| #endif // CONFIG_PRIMARY_REF_FRAME_OPT |
| : 1; |
| } |
| av1_get_past_future_cur_ref_lists(cm, scores); |
| } |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| cm->cur_frame->num_ref_frames = cm->ref_frames_info.num_total_refs; |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| |
| if (!features->error_resilient_mode && frame_size_override_flag) { |
| setup_frame_size_with_refs(cm, rb); |
| } else { |
| setup_frame_size(cm, frame_size_override_flag, rb); |
| } |
| |
| if (frame_might_allow_ref_frame_mvs(cm)) |
| features->allow_ref_frame_mvs = aom_rb_read_bit(rb); |
| else |
| features->allow_ref_frame_mvs = 0; |
| |
| features->allow_pef = false; |
| if (cm->seq_params.enable_pef) { |
| features->allow_pef = aom_rb_read_bit(rb); |
| if (features->allow_pef) { |
| cm->pef_params.pef_delta = aom_rb_read_bit(rb) + 1; |
| } |
| } |
| #if CONFIG_LF_SUB_PU |
| if (cm->seq_params.enable_lf_sub_pu) { |
| features->allow_lf_sub_pu = aom_rb_read_bit(rb); |
| } |
| #endif // CONFIG_LF_SUB_PU |
| |
| #if CONFIG_TIP_DIRECT_FRAME_MV |
| cm->tip_global_motion.as_int = 0; |
| cm->tip_interp_filter = MULTITAP_SHARP; |
| #endif // CONFIG_TIP_DIRECT_FRAME_MV |
| if (cm->seq_params.enable_tip) { |
| features->tip_frame_mode = aom_rb_read_literal(rb, 2); |
| #if CONFIG_OPTFLOW_ON_TIP |
| features->use_optflow_tip = 1; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| if (features->tip_frame_mode >= TIP_FRAME_MODES) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid TIP mode."); |
| } |
| if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT && |
| av1_superres_scaled(cm)) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid TIP Direct mode with superres."); |
| } |
| |
| if (features->tip_frame_mode && cm->seq_params.enable_tip_hole_fill) { |
| features->allow_tip_hole_fill = aom_rb_read_bit(rb); |
| } else { |
| features->allow_tip_hole_fill = false; |
| } |
| #if CONFIG_LF_SUB_PU |
| if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT && |
| cm->seq_params.enable_lf_sub_pu && features->allow_lf_sub_pu) { |
| cm->lf.tip_filter_level = aom_rb_read_bit(rb); |
| if (cm->lf.tip_filter_level) { |
| cm->lf.tip_delta_idx = aom_rb_read_literal(rb, 2); |
| const int tip_delta_idx_to_delta[4] = { -10, 0, 6, 12 }; |
| cm->lf.tip_delta = tip_delta_idx_to_delta[cm->lf.tip_delta_idx]; |
| } |
| } |
| #endif // CONFIG_LF_SUB_PU |
| #if CONFIG_TIP_DIRECT_FRAME_MV |
| if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) { |
| int all_zero = aom_rb_read_bit(rb); |
| if (!all_zero) { |
| cm->tip_global_motion.as_mv.row = aom_rb_read_literal(rb, 4); |
| cm->tip_global_motion.as_mv.col = aom_rb_read_literal(rb, 4); |
| if (cm->tip_global_motion.as_mv.row != 0) { |
| int sign = aom_rb_read_bit(rb); |
| if (sign) cm->tip_global_motion.as_mv.row *= -1; |
| } |
| if (cm->tip_global_motion.as_mv.col != 0) { |
| int sign = aom_rb_read_bit(rb); |
| if (sign) cm->tip_global_motion.as_mv.col *= -1; |
| } |
| } |
| cm->tip_interp_filter = |
| aom_rb_read_bit(rb) ? MULTITAP_SHARP : EIGHTTAP_REGULAR; |
| #endif // CONFIG_TIP_DIRECT_FRAME_MV |
| } |
| } else { |
| features->tip_frame_mode = TIP_FRAME_DISABLED; |
| } |
| |
| if (features->tip_frame_mode != TIP_FRAME_AS_OUTPUT) { |
| #if CONFIG_IBC_SR_EXT |
| if (features->allow_screen_content_tools && !av1_superres_scaled(cm)) { |
| features->allow_intrabc = aom_rb_read_bit(rb); |
| features->allow_global_intrabc = 0; |
| features->allow_local_intrabc = features->allow_intrabc; |
| } |
| #endif // CONFIG_IBC_SR_EXT |
| |
| features->max_drl_bits = |
| aom_rb_read_primitive_quniform( |
| rb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1) + |
| MIN_MAX_DRL_BITS; |
| #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| if (features->allow_intrabc) { |
| features->max_bvp_drl_bits = |
| aom_rb_read_primitive_quniform( |
| rb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1) + |
| MIN_MAX_IBC_DRL_BITS; |
| } |
| #endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| |
| if (features->cur_frame_force_integer_mv) { |
| features->fr_mv_precision = MV_PRECISION_ONE_PEL; |
| } else { |
| features->fr_mv_precision = aom_rb_read_bit(rb) |
| ? MV_PRECISION_ONE_EIGHTH_PEL |
| : MV_PRECISION_QTR_PEL; |
| features->most_probable_fr_mv_precision = features->fr_mv_precision; |
| } |
| if (features->fr_mv_precision == MV_PRECISION_ONE_PEL) { |
| features->use_pb_mv_precision = 0; |
| } else { |
| features->use_pb_mv_precision = cm->seq_params.enable_flex_mvres; |
| } |
| |
| features->interp_filter = read_frame_interp_filter(rb); |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| int seq_enabled_motion_modes = cm->seq_params.seq_enabled_motion_modes; |
| int frame_enabled_motion_modes = (1 << SIMPLE_TRANSLATION); |
| for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES; |
| motion_mode++) { |
| if (seq_enabled_motion_modes & (1 << motion_mode)) { |
| int enabled = aom_rb_read_bit(rb); |
| if (enabled) { |
| frame_enabled_motion_modes |= (1 << motion_mode); |
| } |
| } |
| } |
| features->enabled_motion_modes = frame_enabled_motion_modes; |
| #else |
| features->switchable_motion_mode = aom_rb_read_bit(rb); |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| #if CONFIG_OPTFLOW_REFINEMENT |
| if (cm->seq_params.enable_opfl_refine == AOM_OPFL_REFINE_AUTO) { |
| features->opfl_refine_type = aom_rb_read_literal(rb, 2); |
| if (features->opfl_refine_type == AOM_OPFL_REFINE_AUTO) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid frame level optical flow refine type"); |
| } else { |
| features->opfl_refine_type = cm->seq_params.enable_opfl_refine; |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| } |
| } |
| |
| #if !CONFIG_PRIMARY_REF_FRAME_OPT |
| cm->prev_frame = get_primary_ref_frame_buf(cm); |
| if (features->primary_ref_frame != PRIMARY_REF_NONE && |
| get_primary_ref_frame_buf(cm) == NULL) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference frame containing this frame's initial " |
| "frame context is unavailable."); |
| } |
| #endif // !CONFIG_PRIMARY_REF_FRAME_OPT |
| |
| if (!(current_frame->frame_type == INTRA_ONLY_FRAME) && |
| pbi->need_resync != 1) { |
| for (int i = 0; i < cm->ref_frames_info.num_total_refs; ++i) { |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, i); |
| if (!ref_buf) continue; |
| struct scale_factors *const ref_scale_factors = |
| get_ref_scale_factors(cm, i); |
| av1_setup_scale_factors_for_frame( |
| ref_scale_factors, ref_buf->buf.y_crop_width, |
| ref_buf->buf.y_crop_height, cm->width, cm->height); |
| if ((!av1_is_valid_scale(ref_scale_factors))) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| } |
| |
| if (cm->seq_params.enable_tip) { |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, TIP_FRAME); |
| if (ref_buf) { |
| struct scale_factors *const ref_scale_factors = |
| get_ref_scale_factors(cm, TIP_FRAME); |
| av1_setup_scale_factors_for_frame( |
| ref_scale_factors, ref_buf->buf.y_crop_width, |
| ref_buf->buf.y_crop_height, cm->width, cm->height); |
| if ((!av1_is_valid_scale(ref_scale_factors))) |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| } |
| } |
| } |
| } |
| |
| av1_setup_frame_buf_refs(cm); |
| |
| av1_setup_frame_sign_bias(cm); |
| |
| cm->cur_frame->frame_type = current_frame->frame_type; |
| |
| update_ref_frame_id(pbi); |
| |
| cm->cur_frame->buf.bit_depth = seq_params->bit_depth; |
| cm->cur_frame->buf.color_primaries = seq_params->color_primaries; |
| cm->cur_frame->buf.transfer_characteristics = |
| seq_params->transfer_characteristics; |
| cm->cur_frame->buf.matrix_coefficients = seq_params->matrix_coefficients; |
| cm->cur_frame->buf.monochrome = seq_params->monochrome; |
| cm->cur_frame->buf.chroma_sample_position = |
| seq_params->chroma_sample_position; |
| cm->cur_frame->buf.color_range = seq_params->color_range; |
| cm->cur_frame->buf.render_width = cm->render_width; |
| cm->cur_frame->buf.render_height = cm->render_height; |
| |
| #if CONFIG_TIP_DIRECT_FRAME_MV |
| YV12_BUFFER_CONFIG *tip_frame_buf = &cm->tip_ref.tmp_tip_frame->buf; |
| #else |
| YV12_BUFFER_CONFIG *tip_frame_buf = &cm->tip_ref.tip_frame->buf; |
| #endif // CONFIG_TIP_DIRECT_FRAME_MV |
| tip_frame_buf->bit_depth = seq_params->bit_depth; |
| tip_frame_buf->color_primaries = seq_params->color_primaries; |
| tip_frame_buf->transfer_characteristics = |
| seq_params->transfer_characteristics; |
| tip_frame_buf->matrix_coefficients = seq_params->matrix_coefficients; |
| tip_frame_buf->monochrome = seq_params->monochrome; |
| tip_frame_buf->chroma_sample_position = seq_params->chroma_sample_position; |
| tip_frame_buf->color_range = seq_params->color_range; |
| tip_frame_buf->render_width = cm->render_width; |
| tip_frame_buf->render_height = cm->render_height; |
| |
| if (pbi->need_resync) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Keyframe / intra-only frame required to reset decoder" |
| " state"); |
| } |
| |
| if (is_global_intrabc_allowed(cm) || |
| features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) { |
| // Set parameters corresponding to no filtering. |
| struct loopfilter *lf = &cm->lf; |
| lf->filter_level[0] = 0; |
| lf->filter_level[1] = 0; |
| #if CONFIG_FIX_CDEF_SYNTAX |
| cm->cdef_info.cdef_frame_enable = 0; |
| #else |
| cm->cdef_info.cdef_bits = 0; |
| cm->cdef_info.cdef_strengths[0] = 0; |
| cm->cdef_info.nb_cdef_strengths = 1; |
| cm->cdef_info.cdef_uv_strengths[0] = 0; |
| #endif // CONFIG_FIX_CDEF_SYNTAX |
| cm->rst_info[0].frame_restoration_type = RESTORE_NONE; |
| cm->rst_info[1].frame_restoration_type = RESTORE_NONE; |
| cm->rst_info[2].frame_restoration_type = RESTORE_NONE; |
| } |
| |
| if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) { |
| #if CONFIG_TIP_IMPLICIT_QUANT |
| if (cm->seq_params.enable_tip_explicit_qp) { |
| cm->quant_params.base_qindex = aom_rb_read_literal( |
| rb, cm->seq_params.bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT |
| : QINDEX_BITS); |
| if (av1_num_planes(cm) > 1) { |
| int diff_uv_delta = 0; |
| if (cm->seq_params.separate_uv_delta_q) { |
| diff_uv_delta = aom_rb_read_bit(rb); |
| } |
| cm->quant_params.u_ac_delta_q = read_delta_q(rb); |
| if (diff_uv_delta) { |
| cm->quant_params.v_ac_delta_q = read_delta_q(rb); |
| } else { |
| cm->quant_params.v_ac_delta_q = cm->quant_params.u_ac_delta_q; |
| } |
| } else { |
| cm->quant_params.v_ac_delta_q = cm->quant_params.u_ac_delta_q = 0; |
| } |
| cm->cur_frame->base_qindex = cm->quant_params.base_qindex; |
| cm->cur_frame->u_ac_delta_q = cm->quant_params.u_ac_delta_q; |
| cm->cur_frame->v_ac_delta_q = cm->quant_params.v_ac_delta_q; |
| } |
| #else |
| cm->quant_params.base_qindex = aom_rb_read_literal( |
| rb, |
| cm->seq_params.bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT : QINDEX_BITS); |
| cm->cur_frame->base_qindex = cm->quant_params.base_qindex; |
| #endif // CONFIG_TIP_IMPLICIT_QUANT |
| features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; |
| read_tile_info(pbi, rb); |
| cm->cur_frame->film_grain_params_present = |
| seq_params->film_grain_params_present; |
| read_film_grain(cm, rb); |
| av1_setup_past_independence(cm); |
| if (!cm->tiles.large_scale) { |
| cm->cur_frame->frame_context = *cm->fc; |
| } |
| // TIP frame will be output for displaying |
| // No futher processing needed |
| return 0; |
| } |
| |
| const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) && |
| !(features->disable_cdf_update); |
| if (might_bwd_adapt) { |
| features->refresh_frame_context = aom_rb_read_bit(rb) |
| ? REFRESH_FRAME_CONTEXT_DISABLED |
| : REFRESH_FRAME_CONTEXT_BACKWARD; |
| } else { |
| features->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; |
| } |
| |
| read_tile_info(pbi, rb); |
| if (!av1_is_min_tile_width_satisfied(cm)) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Minimum tile width requirement not satisfied"); |
| } |
| |
| CommonQuantParams *const quant_params = &cm->quant_params; |
| setup_quantization(quant_params, av1_num_planes(cm), cm->seq_params.bit_depth, |
| cm->seq_params.separate_uv_delta_q, rb); |
| cm->cur_frame->base_qindex = quant_params->base_qindex; |
| #if CONFIG_TIP_IMPLICIT_QUANT |
| cm->cur_frame->u_ac_delta_q = quant_params->u_ac_delta_q; |
| cm->cur_frame->v_ac_delta_q = quant_params->v_ac_delta_q; |
| #endif // CONFIG_TIP_IMPLICIT_QUANT |
| xd->bd = (int)seq_params->bit_depth; |
| |
| #if CONFIG_PRIMARY_REF_FRAME_OPT |
| if (!seq_params->reduced_still_picture_hdr) { |
| features->derived_primary_ref_frame = choose_primary_ref_frame(cm); |
| |
| if (!signal_primary_ref_frame) |
| features->primary_ref_frame = features->derived_primary_ref_frame; |
| } |
| |
| // For primary_ref_frame and derived_primary_ref_frame, if one of them is |
| // PRIMARY_REF_NONE, the other one is also PRIMARY_REF_NONE. |
| if (features->derived_primary_ref_frame == PRIMARY_REF_NONE || |
| features->primary_ref_frame == PRIMARY_REF_NONE) { |
| features->primary_ref_frame = PRIMARY_REF_NONE; |
| features->derived_primary_ref_frame = PRIMARY_REF_NONE; |
| } |
| assert(IMPLIES(features->derived_primary_ref_frame == PRIMARY_REF_NONE, |
| features->primary_ref_frame == PRIMARY_REF_NONE)); |
| assert(IMPLIES(features->primary_ref_frame == PRIMARY_REF_NONE, |
| features->derived_primary_ref_frame == PRIMARY_REF_NONE)); |
| |
| if (features->primary_ref_frame >= cm->ref_frames_info.num_total_refs && |
| features->primary_ref_frame != PRIMARY_REF_NONE) { |
| aom_internal_error(&cm->error, AOM_CODEC_ERROR, |
| "Invalid primary_ref_frame"); |
| } |
| |
| if (current_frame->frame_type != KEY_FRAME) { |
| cm->prev_frame = |
| get_primary_ref_frame_buf(cm, features->derived_primary_ref_frame); |
| if (features->derived_primary_ref_frame != PRIMARY_REF_NONE && |
| get_primary_ref_frame_buf(cm, features->derived_primary_ref_frame) == |
| NULL) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Reference frame containing this frame's initial " |
| "frame context is unavailable."); |
| } |
| } |
| #endif // CONFIG_PRIMARY_REF_FRAME_OPT |
| |
| CommonContexts *const above_contexts = &cm->above_contexts; |
| if (above_contexts->num_planes < av1_num_planes(cm) || |
| above_contexts->num_mi_cols < cm->mi_params.mi_cols || |
| above_contexts->num_tile_rows < cm->tiles.rows) { |
| av1_free_above_context_buffers(above_contexts); |
| if (av1_alloc_above_context_buffers(above_contexts, cm->tiles.rows, |
| cm->mi_params.mi_cols, |
| av1_num_planes(cm))) { |
| aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate context buffers"); |
| } |
| } |
| |
| if (features->primary_ref_frame == PRIMARY_REF_NONE) { |
| av1_setup_past_independence(cm); |
| } |
| |
| setup_segmentation(cm, rb); |
| |
| cm->delta_q_info.delta_q_res = 1; |
| cm->delta_q_info.delta_lf_res = 1; |
| cm->delta_q_info.delta_lf_present_flag = 0; |
| cm->delta_q_info.delta_lf_multi = 0; |
| cm->delta_q_info.delta_q_present_flag = |
| quant_params->base_qindex > 0 ? aom_rb_read_bit(rb) : 0; |
| if (cm->delta_q_info.delta_q_present_flag) { |
| xd->current_base_qindex = quant_params->base_qindex; |
| cm->delta_q_info.delta_q_res = 1 << aom_rb_read_literal(rb, 2); |
| if (!is_global_intrabc_allowed(cm)) |
| cm->delta_q_info.delta_lf_present_flag = aom_rb_read_bit(rb); |
| if (cm->delta_q_info.delta_lf_present_flag) { |
| cm->delta_q_info.delta_lf_res = 1 << aom_rb_read_literal(rb, 2); |
| cm->delta_q_info.delta_lf_multi = aom_rb_read_bit(rb); |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| } |
| } |
| |
| xd->cur_frame_force_integer_mv = features->cur_frame_force_integer_mv; |
| |
| for (int i = 0; i < MAX_SEGMENTS; ++i) { |
| const int qindex = av1_get_qindex(&cm->seg, i, quant_params->base_qindex, |
| cm->seq_params.bit_depth); |
| xd->lossless[i] = |
| qindex == 0 && |
| (quant_params->y_dc_delta_q + cm->seq_params.base_y_dc_delta_q <= 0) && |
| (quant_params->u_dc_delta_q + cm->seq_params.base_uv_dc_delta_q <= 0) && |
| quant_params->u_ac_delta_q <= 0 && |
| (quant_params->v_dc_delta_q + cm->seq_params.base_uv_dc_delta_q <= 0) && |
| quant_params->v_ac_delta_q <= 0; |
| xd->qindex[i] = qindex; |
| } |
| features->coded_lossless = is_coded_lossless(cm, xd); |
| features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm); |
| setup_segmentation_dequant(cm, xd); |
| if (features->coded_lossless) { |
| cm->lf.filter_level[0] = 0; |
| cm->lf.filter_level[1] = 0; |
| } |
| if (features->coded_lossless || !seq_params->enable_cdef) { |
| #if CONFIG_FIX_CDEF_SYNTAX |
| cm->cdef_info.cdef_frame_enable = 0; |
| #else |
| cm->cdef_info.cdef_bits = 0; |
| cm->cdef_info.cdef_strengths[0] = 0; |
| cm->cdef_info.cdef_uv_strengths[0] = 0; |
| #endif // CONFIG_FIX_CDEF_SYNTAX |
| } |
| if (features->all_lossless || !seq_params->enable_restoration) { |
| cm->rst_info[0].frame_restoration_type = RESTORE_NONE; |
| cm->rst_info[1].frame_restoration_type = RESTORE_NONE; |
| cm->rst_info[2].frame_restoration_type = RESTORE_NONE; |
| } |
| setup_loopfilter(cm, rb); |
| |
| if (!features->coded_lossless && seq_params->enable_cdef) { |
| setup_cdef(cm, rb); |
| } |
| if (!features->all_lossless && seq_params->enable_restoration) { |
| decode_restoration_mode(cm, rb); |
| } |
| #if CONFIG_CCSO |
| if (!features->coded_lossless && seq_params->enable_ccso) { |
| setup_ccso(cm, rb); |
| } |
| #endif |
| |
| if (features->coded_lossless || !cm->seq_params.enable_parity_hiding) |
| features->allow_parity_hiding = false; |
| else |
| features->allow_parity_hiding = aom_rb_read_bit(rb); |
| |
| features->tx_mode = read_tx_mode(rb, features->coded_lossless); |
| current_frame->reference_mode = read_frame_reference_mode(cm, rb); |
| |
| av1_setup_skip_mode_allowed(cm); |
| current_frame->skip_mode_info.skip_mode_flag = |
| current_frame->skip_mode_info.skip_mode_allowed ? aom_rb_read_bit(rb) : 0; |
| |
| #if !CONFIG_EXTENDED_WARP_PREDICTION |
| if (frame_might_allow_warped_motion(cm)) |
| features->allow_warped_motion = aom_rb_read_bit(rb); |
| else |
| features->allow_warped_motion = 0; |
| #endif // !CONFIG_EXTENDED_WARP_PREDICTION |
| |
| #if CONFIG_BAWP |
| if (!frame_is_intra_only(cm) && seq_params->enable_bawp) |
| features->enable_bawp = aom_rb_read_bit(rb); |
| else |
| features->enable_bawp = 0; |
| #endif // CONFIG_BAWP |
| |
| features->enable_cwp = seq_params->enable_cwp; |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| features->allow_warpmv_mode = 0; |
| if (!frame_is_intra_only(cm) && |
| (features->enabled_motion_modes & (1 << WARP_DELTA)) != 0) { |
| features->allow_warpmv_mode = aom_rb_read_bit(rb); |
| } |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| #if CONFIG_D071_IMP_MSK_BLD |
| features->enable_imp_msk_bld = seq_params->enable_imp_msk_bld; |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| |
| features->reduced_tx_set_used = aom_rb_read_bit(rb); |
| |
| if (features->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Frame wrongly requests reference frame MVs"); |
| } |
| |
| if (features->tip_frame_mode && !cm->seq_params.enable_tip) { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Frame wrongly requests TIP mode"); |
| } |
| |
| if (!frame_is_intra_only(cm)) read_global_motion(cm, rb); |
| |
| cm->cur_frame->film_grain_params_present = |
| seq_params->film_grain_params_present; |
| read_film_grain(cm, rb); |
| |
| #if EXT_TILE_DEBUG |
| if (pbi->ext_tile_debug && cm->tiles.large_scale) { |
| read_ext_tile_info(pbi, rb); |
| av1_set_single_tile_decoding_mode(cm); |
| } |
| #endif // EXT_TILE_DEBUG |
| return 0; |
| } |
| |
| struct aom_read_bit_buffer *av1_init_read_bit_buffer( |
| AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data, |
| const uint8_t *data_end) { |
| rb->bit_offset = 0; |
| rb->error_handler = error_handler; |
| rb->error_handler_data = &pbi->common; |
| rb->bit_buffer = data; |
| rb->bit_buffer_end = data_end; |
| return rb; |
| } |
| |
| void av1_read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width, |
| int num_bits_height, int *width, int *height) { |
| *width = aom_rb_read_literal(rb, num_bits_width) + 1; |
| *height = aom_rb_read_literal(rb, num_bits_height) + 1; |
| } |
| |
| BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) { |
| int profile = aom_rb_read_literal(rb, PROFILE_BITS); |
| return (BITSTREAM_PROFILE)profile; |
| } |
| |
| static AOM_INLINE void superres_post_decode(AV1Decoder *pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| BufferPool *const pool = cm->buffer_pool; |
| |
| if (!av1_superres_scaled(cm)) return; |
| assert(!cm->features.all_lossless); |
| |
| av1_superres_upscale(cm, pool, false); |
| } |
| |
| static AOM_INLINE void process_tip_mode(AV1Decoder *pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &pbi->dcb.xd; |
| |
| if (cm->features.allow_ref_frame_mvs && cm->has_bwd_ref) { |
| if (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT) { |
| av1_dec_setup_tip_frame(cm, xd, pbi->td.mc_buf, pbi->td.tmp_conv_dst); |
| #if !CONFIG_TIP_DIRECT_FRAME_MV |
| if (cm->seq_params.enable_pef && cm->features.allow_pef) { |
| enhance_tip_frame(cm, xd); |
| } |
| #if CONFIG_LF_SUB_PU |
| if (cm->seq_params.enable_lf_sub_pu && cm->features.allow_lf_sub_pu) { |
| init_tip_lf_parameter(cm, 0, num_planes); |
| loop_filter_tip_frame(cm, 0, num_planes); |
| } |
| #endif // CONFIG_LF_SUB_PU |
| #endif // !CONFIG_TIP_DIRECT_FRAME_MV |
| } else if (cm->features.tip_frame_mode == TIP_FRAME_AS_REF) { |
| av1_setup_tip_motion_field(cm, 0); |
| #if !CONFIG_TIP_REF_PRED_MERGING |
| const int mvs_rows = |
| ROUND_POWER_OF_TWO(cm->mi_params.mi_rows, TMVP_SHIFT_BITS); |
| const int mvs_cols = |
| ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, TMVP_SHIFT_BITS); |
| av1_zero_array(cm->tip_ref.available_flag, mvs_rows * mvs_cols); |
| #endif // !CONFIG_TIP_REF_PRED_MERGING |
| } |
| } |
| |
| if (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT) { |
| av1_copy_tip_frame_tmvp_mvs(cm); |
| aom_yv12_copy_frame(&cm->tip_ref.tip_frame->buf, &cm->cur_frame->buf, |
| num_planes); |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| cm->global_motion[i] = default_warp_params; |
| cm->cur_frame->global_motion[i] = default_warp_params; |
| } |
| av1_setup_past_independence(cm); |
| if (!cm->tiles.large_scale) { |
| cm->cur_frame->frame_context = *cm->fc; |
| } |
| } |
| } |
| |
| uint32_t av1_decode_frame_headers_and_setup(AV1Decoder *pbi, |
| struct aom_read_bit_buffer *rb, |
| const uint8_t *data, |
| const uint8_t **p_data_end, |
| int trailing_bits_present) { |
| AV1_COMMON *const cm = &pbi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &pbi->dcb.xd; |
| |
| #if CONFIG_BITSTREAM_DEBUG |
| aom_bitstream_queue_set_frame_read(cm->current_frame.order_hint * 2 + |
| cm->show_frame); |
| #endif |
| #if CONFIG_MISMATCH_DEBUG |
| mismatch_move_frame_idx_r(1); |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { |
| cm->global_motion[i] = default_warp_params; |
| cm->cur_frame->global_motion[i] = default_warp_params; |
| } |
| xd->global_motion = cm->global_motion; |
| |
| read_uncompressed_header(pbi, rb); |
| |
| if (trailing_bits_present) av1_check_trailing_bits(pbi, rb); |
| |
| if (!cm->tiles.single_tile_decoding && |
| (pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) { |
| pbi->dec_tile_row = -1; |
| pbi->dec_tile_col = -1; |
| } |
| |
| const uint32_t uncomp_hdr_size = |
| (uint32_t)aom_rb_bytes_read(rb); // Size of the uncompressed header |
| YV12_BUFFER_CONFIG *new_fb = &cm->cur_frame->buf; |
| xd->cur_buf = new_fb; |
| if (av1_allow_intrabc(cm) && xd->tree_type != CHROMA_PART) { |
| av1_setup_scale_factors_for_frame( |
| &cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height, |
| xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height); |
| } |
| |
| if (cm->show_existing_frame) { |
| // showing a frame directly |
| *p_data_end = data + uncomp_hdr_size; |
| if (pbi->reset_decoder_state) { |
| // Use the default frame context values. |
| *cm->fc = *cm->default_frame_context; |
| if (!cm->fc->initialized) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Uninitialized entropy context."); |
| } |
| return uncomp_hdr_size; |
| } |
| |
| cm->mi_params.setup_mi(&cm->mi_params); |
| |
| if (cm->features.allow_ref_frame_mvs) av1_setup_motion_field(cm); |
| #if CONFIG_MVP_IMPROVEMENT |
| else |
| av1_setup_ref_frame_sides(cm); |
| #endif // CONFIG_MVP_IMPROVEMENT |
| |
| if (cm->seq_params.enable_pef && cm->features.allow_pef) { |
| init_pef_parameter(cm, 0, num_planes); |
| } |
| |
| process_tip_mode(pbi); |
| if (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT) { |
| *p_data_end = data + uncomp_hdr_size; |
| return uncomp_hdr_size; |
| } |
| |
| av1_setup_block_planes(xd, cm->seq_params.subsampling_x, |
| cm->seq_params.subsampling_y, num_planes); |
| if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { |
| // use the default frame context values |
| *cm->fc = *cm->default_frame_context; |
| } else { |
| #if CONFIG_PRIMARY_REF_FRAME_OPT |
| *cm->fc = get_primary_ref_frame_buf(cm, cm->features.primary_ref_frame) |
| ->frame_context; |
| #else |
| *cm->fc = get_primary_ref_frame_buf(cm)->frame_context; |
| #endif // CONFIG_PRIMARY_REF_FRAME_OPT |
| } |
| if (!cm->fc->initialized) |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Uninitialized entropy context."); |
| |
| pbi->dcb.corrupted = 0; |
| return uncomp_hdr_size; |
| } |
| |
| // Once-per-frame initialization |
| static AOM_INLINE void setup_frame_info(AV1Decoder *pbi) { |
| AV1_COMMON *const cm = &pbi->common; |
| |
| if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE || |
| cm->rst_info[1].frame_restoration_type != RESTORE_NONE || |
| cm->rst_info[2].frame_restoration_type != RESTORE_NONE) { |
| av1_alloc_restoration_buffers(cm); |
| } |
| const int buf_size = MC_TEMP_BUF_PELS << 1; |
| if (pbi->td.mc_buf_size != buf_size) { |
| av1_free_mc_tmp_buf(&pbi->td); |
| allocate_mc_tmp_buf(cm, &pbi->td, buf_size); |
| } |
| } |
| |
| void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data, |
| const uint8_t *data_end, |
| const uint8_t **p_data_end, int start_tile, |
| int end_tile, int initialize_flag) { |
| AV1_COMMON *const cm = &pbi->common; |
| CommonTileParams *const tiles = &cm->tiles; |
| MACROBLOCKD *const xd = &pbi->dcb.xd; |
| const int tile_count_tg = end_tile - start_tile + 1; |
| |
| if (initialize_flag) setup_frame_info(pbi); |
| const int num_planes = av1_num_planes(cm); |
| #if CONFIG_LPF_MASK |
| av1_loop_filter_frame_init(cm, 0, num_planes); |
| #endif |
| #if CONFIG_INSPECTION |
| aom_realloc_frame_buffer( |
| &cm->predicted_pixels, cm->width, cm->height, |
| cm->seq_params.subsampling_x, cm->seq_params.subsampling_y, |
| AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment, NULL, NULL, NULL, |
| false); |
| aom_realloc_frame_buffer( |
| &cm->prefiltered_pixels, cm->width, cm->height, |
| cm->seq_params.subsampling_x, cm->seq_params.subsampling_y, |
| AOM_DEC_BORDER_IN_PIXELS, cm->features.byte_alignment, NULL, NULL, NULL, |
| false); |
| #endif // CONFIG_INSPECTION |
| if (pbi->max_threads > 1 && !(tiles->large_scale && !pbi->ext_tile_debug) && |
| pbi->row_mt) |
| *p_data_end = |
| decode_tiles_row_mt(pbi, data, data_end, start_tile, end_tile); |
| else if (pbi->max_threads > 1 && tile_count_tg > 1 && |
| !(tiles->large_scale && !pbi->ext_tile_debug)) |
| *p_data_end = decode_tiles_mt(pbi, data, data_end, start_tile, end_tile); |
| else |
| *p_data_end = decode_tiles(pbi, data, data_end, start_tile, end_tile); |
| |
| // If the bit stream is monochrome, set the U and V buffers to a constant. |
| if (num_planes < 3) { |
| set_planes_to_neutral_grey(&cm->seq_params, xd->cur_buf, 1); |
| } |
| |
| #if CONFIG_INSPECTION |
| memcpy(cm->prefiltered_pixels.buffer_alloc, cm->cur_frame->buf.buffer_alloc, |
| cm->prefiltered_pixels.frame_size); |
| #endif // CONFIG_INSPECTION |
| |
| if (end_tile != tiles->rows * tiles->cols - 1) { |
| return; |
| } |
| |
| if (!is_global_intrabc_allowed(cm) && !tiles->single_tile_decoding) { |
| if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) { |
| if (pbi->num_workers > 1 |
| #if CONFIG_LF_SUB_PU |
| && !cm->features.allow_lf_sub_pu |
| #endif // CONFIG_LF_SUB_PU |
| ) { |
| av1_loop_filter_frame_mt( |
| &cm->cur_frame->buf, cm, &pbi->dcb.xd, 0, num_planes, 0, |
| #if CONFIG_LPF_MASK |
| 1, |
| #endif |
| pbi->tile_workers, pbi->num_workers, &pbi->lf_row_sync); |
| } else { |
| av1_loop_filter_frame(&cm->cur_frame->buf, cm, &pbi->dcb.xd, |
| #if CONFIG_LPF_MASK |
| 1, |
| #endif |
| 0, num_planes, 0); |
| } |
| } |
| |
| #if CONFIG_CCSO |
| const int use_ccso = |
| !pbi->skip_loop_filter && !cm->features.coded_lossless && |
| (cm->ccso_info.ccso_enable[0] || cm->ccso_info.ccso_enable[1] |
| #if CONFIG_CCSO_EXT |
| || cm->ccso_info.ccso_enable[2] |
| #endif |
| ); |
| uint16_t *ext_rec_y; |
| if (use_ccso) { |
| av1_setup_dst_planes(xd->plane, &cm->cur_frame->buf, 0, 0, 0, num_planes, |
| NULL); |
| const int ccso_stride_ext = |
| xd->plane[0].dst.width + (CCSO_PADDING_SIZE << 1); |
| ext_rec_y = |
| aom_malloc(sizeof(*ext_rec_y) * |
| (xd->plane[0].dst.height + (CCSO_PADDING_SIZE << 1)) * |
| (xd->plane[0].dst.width + (CCSO_PADDING_SIZE << 1))); |
| for (int pli = 0; pli < 1; pli++) { |
| int pic_height = xd->plane[pli].dst.height; |
| int pic_width = xd->plane[pli].dst.width; |
| const int dst_stride = xd->plane[pli].dst.stride; |
| #if CONFIG_CCSO_EXT |
| ext_rec_y += CCSO_PADDING_SIZE * ccso_stride_ext + CCSO_PADDING_SIZE; |
| #endif |
| for (int r = 0; r < pic_height; ++r) { |
| for (int c = 0; c < pic_width; ++c) { |
| #if CONFIG_CCSO_EXT |
| ext_rec_y[c] = xd->plane[pli].dst.buf[c]; |
| #else |
| ext_rec_y[(r + CCSO_PADDING_SIZE) * ccso_stride_ext + c + |
| CCSO_PADDING_SIZE] = |
| xd->plane[pli].dst.buf[r * dst_stride + c]; |
| #endif |
| } |
| #if CONFIG_CCSO_EXT |
| ext_rec_y += ccso_stride_ext; |
| xd->plane[0].dst.buf += dst_stride; |
| } |
| ext_rec_y -= CCSO_PADDING_SIZE * ccso_stride_ext + CCSO_PADDING_SIZE; |
| ext_rec_y -= pic_height * ccso_stride_ext; |
| xd->plane[0].dst.buf -= pic_height * ccso_stride_ext; |
| #else |
| } |
| #endif |
| } |
| extend_ccso_border(ext_rec_y, CCSO_PADDING_SIZE, xd); |
| } |
| #endif |
| |
| const int do_loop_restoration = |
| cm->rst_info[0].frame_restoration_type != RESTORE_NONE || |
| cm->rst_info[1].frame_restoration_type != RESTORE_NONE || |
| cm->rst_info[2].frame_restoration_type != RESTORE_NONE; |
| const int do_cdef = !pbi->skip_loop_filter && |
| !cm->features.coded_lossless && |
| #if CONFIG_FIX_CDEF_SYNTAX |
| cm->cdef_info.cdef_frame_enable; |
| #else |
| (cm->cdef_info.cdef_bits || |
| cm->cdef_info.cdef_strengths[0] || |
| cm->cdef_info.cdef_uv_strengths[0]); |
| #endif // CONFIG_FIX_CDEF_SYNTAX |
| const int do_superres = av1_superres_scaled(cm); |
| |
| const int optimized_loop_restoration = |
| #if CONFIG_CCSO |
| !use_ccso && |
| #endif |
| !do_cdef && !do_superres; |
| |
| if (!optimized_loop_restoration) { |
| if (do_loop_restoration) |
| av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf, |
| cm, 0); |
| |
| if (do_cdef) { |
| av1_cdef_frame(&pbi->common.cur_frame->buf, cm, &pbi->dcb.xd); |
| } |
| |
| #if CONFIG_CCSO |
| if (use_ccso) { |
| ccso_frame(&cm->cur_frame->buf, cm, xd, ext_rec_y); |
| aom_free(ext_rec_y); |
| } |
| #endif |
| |
| superres_post_decode(pbi); |
| |
| if (do_loop_restoration) { |
| av1_loop_restoration_save_boundary_lines(&pbi->common.cur_frame->buf, |
| cm, 1); |
| if (pbi->num_workers > 1) { |
| av1_loop_restoration_filter_frame_mt( |
| (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration, |
| pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync, |
| &pbi->lr_ctxt); |
| } else { |
| av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, |
| cm, optimized_loop_restoration, |
| &pbi->lr_ctxt); |
| } |
| } |
| } else { |
| #if CONFIG_CCSO |
| if (use_ccso) { |
| ccso_frame(&cm->cur_frame->buf, cm, xd, ext_rec_y); |
| aom_free(ext_rec_y); |
| } |
| #endif |
| // In no cdef and no superres case. Provide an optimized version of |
| // loop_restoration_filter. |
| if (do_loop_restoration) { |
| if (pbi->num_workers > 1) { |
| av1_loop_restoration_filter_frame_mt( |
| (YV12_BUFFER_CONFIG *)xd->cur_buf, cm, optimized_loop_restoration, |
| pbi->tile_workers, pbi->num_workers, &pbi->lr_row_sync, |
| &pbi->lr_ctxt); |
| } else { |
| av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, |
| cm, optimized_loop_restoration, |
| &pbi->lr_ctxt); |
| } |
| } |
| } |
| } |
| #if CONFIG_LPF_MASK |
| av1_zero_array(cm->lf.lfm, cm->lf.lfm_num); |
| #endif |
| |
| if (!pbi->dcb.corrupted) { |
| if (cm->features.refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { |
| assert(pbi->context_update_tile_id < pbi->allocated_tiles); |
| *cm->fc = pbi->tile_data[pbi->context_update_tile_id].tctx; |
| av1_reset_cdf_symbol_counters(cm->fc); |
| } |
| } else { |
| aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, |
| "Decode failed. Frame data is corrupted."); |
| } |
| |
| #if CONFIG_INSPECTION |
| if (pbi->inspect_cb != NULL) { |
| (*pbi->inspect_cb)(pbi, pbi->inspect_ctx); |
| } |
| #endif // CONFIG_INSPECTION |
| |
| // Non frame parallel update frame context here. |
| if (!tiles->large_scale) { |
| cm->cur_frame->frame_context = *cm->fc; |
| } |
| } |