| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "third_party/googletest/src/googletest/include/gtest/gtest.h" |
| |
| #include "./av1_rtcd.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "test/acm_random.h" |
| #include "test/clear_system_state.h" |
| #include "test/register_state_check.h" |
| #include "test/util.h" |
| |
| #include "av1/common/mv.h" |
| |
| using std::tr1::tuple; |
| using std::tr1::make_tuple; |
| using libaom_test::ACMRandom; |
| |
| typedef tuple<int, int, int> WarpTestParam; |
| |
| namespace { |
| |
| class AV1WarpFilterTest : public ::testing::TestWithParam<WarpTestParam> { |
| public: |
| virtual ~AV1WarpFilterTest() {} |
| virtual void SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } |
| |
| virtual void TearDown() { libaom_test::ClearSystemState(); } |
| |
| protected: |
| int32_t random_param(int bits) { |
| // 1 in 8 chance of generating zero (arbitrarily chosen) |
| if (((rnd_.Rand8()) & 7) == 0) return 0; |
| // Otherwise, enerate uniform values in the range |
| // [-(1 << bits), 1] U [1, 1<<bits] |
| int32_t v = 1 + (rnd_.Rand16() & ((1 << bits) - 1)); |
| if ((rnd_.Rand8()) & 1) return -v; |
| return v; |
| } |
| void generate_model(int32_t *mat, int32_t *alpha, int32_t *beta, |
| int32_t *gamma, int32_t *delta) { |
| while (1) { |
| mat[0] = random_param(WARPEDMODEL_PREC_BITS + 6); |
| mat[1] = random_param(WARPEDMODEL_PREC_BITS + 6); |
| mat[2] = (random_param(WARPEDMODEL_PREC_BITS - 3)) + |
| (1 << WARPEDMODEL_PREC_BITS); |
| mat[3] = random_param(WARPEDMODEL_PREC_BITS - 3); |
| // 50/50 chance of generating ROTZOOM vs. AFFINE models |
| if (rnd_.Rand8() & 1) { |
| // AFFINE |
| mat[4] = random_param(WARPEDMODEL_PREC_BITS - 3); |
| mat[5] = (random_param(WARPEDMODEL_PREC_BITS - 3)) + |
| (1 << WARPEDMODEL_PREC_BITS); |
| } else { |
| mat[4] = -mat[3]; |
| mat[5] = mat[2]; |
| } |
| |
| // Calculate the derived parameters and check that they are suitable |
| // for the warp filter. |
| assert(mat[2] != 0); |
| |
| *alpha = mat[2] - (1 << WARPEDMODEL_PREC_BITS); |
| *beta = mat[3]; |
| *gamma = ((int64_t)mat[4] << WARPEDMODEL_PREC_BITS) / mat[2]; |
| *delta = mat[5] - (((int64_t)mat[3] * mat[4] + (mat[2] / 2)) / mat[2]) - |
| (1 << WARPEDMODEL_PREC_BITS); |
| |
| if ((4 * abs(*alpha) + 7 * abs(*beta) > (1 << WARPEDMODEL_PREC_BITS)) || |
| (4 * abs(*gamma) + 7 * abs(*delta) > (1 << WARPEDMODEL_PREC_BITS))) |
| continue; |
| |
| // We have a valid model, so finish |
| return; |
| } |
| } |
| |
| void RunCheckOutput() { |
| const int w = 128, h = 128; |
| const int border = 16; |
| const int stride = w + 2 * border; |
| const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); |
| const int num_iters = GET_PARAM(2); |
| int i, j; |
| |
| uint8_t *input_ = new uint8_t[h * stride]; |
| uint8_t *input = input_ + border; |
| uint8_t *output = new uint8_t[out_w * out_h]; |
| uint8_t *output2 = new uint8_t[out_w * out_h]; |
| int32_t mat[8], alpha, beta, gamma, delta; |
| |
| // Generate an input block and extend its borders horizontally |
| for (i = 0; i < h; ++i) |
| for (j = 0; j < w; ++j) input[i * stride + j] = rnd_.Rand8(); |
| for (i = 0; i < h; ++i) { |
| memset(input + i * stride - border, input[i * stride], border); |
| memset(input + i * stride + w, input[i * stride + (w - 1)], border); |
| } |
| |
| /* Try different sizes of prediction block */ |
| for (i = 0; i < num_iters; ++i) { |
| generate_model(mat, &alpha, &beta, &gamma, &delta); |
| av1_warp_affine_c(mat, input, w, h, stride, output, 32, 32, out_w, out_h, |
| out_w, 0, 0, 0, alpha, beta, gamma, delta); |
| av1_warp_affine_sse2(mat, input, w, h, stride, output2, 32, 32, out_w, |
| out_h, out_w, 0, 0, 0, alpha, beta, gamma, delta); |
| |
| for (j = 0; j < out_w * out_h; ++j) |
| ASSERT_EQ(output[j], output2[j]) |
| << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " |
| << (j / out_w) << ") on iteration " << i; |
| } |
| |
| delete[] input_; |
| delete[] output; |
| delete[] output2; |
| } |
| |
| ACMRandom rnd_; |
| }; |
| |
| TEST_P(AV1WarpFilterTest, CheckOutput) { RunCheckOutput(); } |
| |
| const WarpTestParam params[] = { |
| make_tuple(4, 4, 50000), make_tuple(8, 8, 50000), make_tuple(64, 64, 1000), |
| make_tuple(4, 16, 20000), make_tuple(32, 8, 10000), |
| }; |
| |
| INSTANTIATE_TEST_CASE_P(SSE2, AV1WarpFilterTest, ::testing::ValuesIn(params)); |
| |
| } // namespace |