| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| |
| #include "./vp10_rtcd.h" |
| #include "./vpx_config.h" |
| #include "./vpx_dsp_rtcd.h" |
| #include "aom_ports/system_state.h" |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| #include "aom_dsp/vpx_dsp_common.h" |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| #include "aom_mem/vpx_mem.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/vpx_once.h" |
| #if CONFIG_EXT_INTRA |
| #include "av1/common/intra_filters.h" |
| #endif |
| #include "av1/common/reconintra.h" |
| #include "av1/common/onyxc_int.h" |
| |
| enum { |
| NEED_LEFT = 1 << 1, |
| NEED_ABOVE = 1 << 2, |
| NEED_ABOVERIGHT = 1 << 3, |
| NEED_ABOVELEFT = 1 << 4, |
| NEED_BOTTOMLEFT = 1 << 5, |
| }; |
| |
| static const uint8_t extend_modes[INTRA_MODES] = { |
| NEED_ABOVE | NEED_LEFT, // DC |
| NEED_ABOVE, // V |
| NEED_LEFT, // H |
| NEED_ABOVE | NEED_ABOVERIGHT, // D45 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D135 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D117 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // D153 |
| NEED_LEFT | NEED_BOTTOMLEFT, // D207 |
| NEED_ABOVE | NEED_ABOVERIGHT, // D63 |
| NEED_LEFT | NEED_ABOVE | NEED_ABOVELEFT, // TM |
| }; |
| |
| static const uint8_t orders_128x128[1] = { 0 }; |
| static const uint8_t orders_128x64[2] = { 0, 1 }; |
| static const uint8_t orders_64x128[2] = { 0, 1 }; |
| static const uint8_t orders_64x64[4] = { |
| 0, 1, 2, 3, |
| }; |
| static const uint8_t orders_64x32[8] = { |
| 0, 2, 1, 3, 4, 6, 5, 7, |
| }; |
| static const uint8_t orders_32x64[8] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, |
| }; |
| static const uint8_t orders_32x32[16] = { |
| 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15, |
| }; |
| static const uint8_t orders_32x16[32] = { |
| 0, 2, 8, 10, 1, 3, 9, 11, 4, 6, 12, 14, 5, 7, 13, 15, |
| 16, 18, 24, 26, 17, 19, 25, 27, 20, 22, 28, 30, 21, 23, 29, 31, |
| }; |
| static const uint8_t orders_16x32[32] = { |
| 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, |
| 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31, |
| }; |
| static const uint8_t orders_16x16[64] = { |
| 0, 1, 4, 5, 16, 17, 20, 21, 2, 3, 6, 7, 18, 19, 22, 23, |
| 8, 9, 12, 13, 24, 25, 28, 29, 10, 11, 14, 15, 26, 27, 30, 31, |
| 32, 33, 36, 37, 48, 49, 52, 53, 34, 35, 38, 39, 50, 51, 54, 55, |
| 40, 41, 44, 45, 56, 57, 60, 61, 42, 43, 46, 47, 58, 59, 62, 63, |
| }; |
| |
| #if CONFIG_EXT_PARTITION |
| static const uint8_t orders_16x8[128] = { |
| 0, 2, 8, 10, 32, 34, 40, 42, 1, 3, 9, 11, 33, 35, 41, 43, |
| 4, 6, 12, 14, 36, 38, 44, 46, 5, 7, 13, 15, 37, 39, 45, 47, |
| 16, 18, 24, 26, 48, 50, 56, 58, 17, 19, 25, 27, 49, 51, 57, 59, |
| 20, 22, 28, 30, 52, 54, 60, 62, 21, 23, 29, 31, 53, 55, 61, 63, |
| 64, 66, 72, 74, 96, 98, 104, 106, 65, 67, 73, 75, 97, 99, 105, 107, |
| 68, 70, 76, 78, 100, 102, 108, 110, 69, 71, 77, 79, 101, 103, 109, 111, |
| 80, 82, 88, 90, 112, 114, 120, 122, 81, 83, 89, 91, 113, 115, 121, 123, |
| 84, 86, 92, 94, 116, 118, 124, 126, 85, 87, 93, 95, 117, 119, 125, 127, |
| }; |
| static const uint8_t orders_8x16[128] = { |
| 0, 1, 2, 3, 8, 9, 10, 11, 32, 33, 34, 35, 40, 41, 42, 43, |
| 4, 5, 6, 7, 12, 13, 14, 15, 36, 37, 38, 39, 44, 45, 46, 47, |
| 16, 17, 18, 19, 24, 25, 26, 27, 48, 49, 50, 51, 56, 57, 58, 59, |
| 20, 21, 22, 23, 28, 29, 30, 31, 52, 53, 54, 55, 60, 61, 62, 63, |
| 64, 65, 66, 67, 72, 73, 74, 75, 96, 97, 98, 99, 104, 105, 106, 107, |
| 68, 69, 70, 71, 76, 77, 78, 79, 100, 101, 102, 103, 108, 109, 110, 111, |
| 80, 81, 82, 83, 88, 89, 90, 91, 112, 113, 114, 115, 120, 121, 122, 123, |
| 84, 85, 86, 87, 92, 93, 94, 95, 116, 117, 118, 119, 124, 125, 126, 127, |
| }; |
| static const uint8_t orders_8x8[256] = { |
| 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, |
| 85, 2, 3, 6, 7, 18, 19, 22, 23, 66, 67, 70, 71, 82, 83, |
| 86, 87, 8, 9, 12, 13, 24, 25, 28, 29, 72, 73, 76, 77, 88, |
| 89, 92, 93, 10, 11, 14, 15, 26, 27, 30, 31, 74, 75, 78, 79, |
| 90, 91, 94, 95, 32, 33, 36, 37, 48, 49, 52, 53, 96, 97, 100, |
| 101, 112, 113, 116, 117, 34, 35, 38, 39, 50, 51, 54, 55, 98, 99, |
| 102, 103, 114, 115, 118, 119, 40, 41, 44, 45, 56, 57, 60, 61, 104, |
| 105, 108, 109, 120, 121, 124, 125, 42, 43, 46, 47, 58, 59, 62, 63, |
| 106, 107, 110, 111, 122, 123, 126, 127, 128, 129, 132, 133, 144, 145, 148, |
| 149, 192, 193, 196, 197, 208, 209, 212, 213, 130, 131, 134, 135, 146, 147, |
| 150, 151, 194, 195, 198, 199, 210, 211, 214, 215, 136, 137, 140, 141, 152, |
| 153, 156, 157, 200, 201, 204, 205, 216, 217, 220, 221, 138, 139, 142, 143, |
| 154, 155, 158, 159, 202, 203, 206, 207, 218, 219, 222, 223, 160, 161, 164, |
| 165, 176, 177, 180, 181, 224, 225, 228, 229, 240, 241, 244, 245, 162, 163, |
| 166, 167, 178, 179, 182, 183, 226, 227, 230, 231, 242, 243, 246, 247, 168, |
| 169, 172, 173, 184, 185, 188, 189, 232, 233, 236, 237, 248, 249, 252, 253, |
| 170, 171, 174, 175, 186, 187, 190, 191, 234, 235, 238, 239, 250, 251, 254, |
| 255, |
| }; |
| |
| /* clang-format off */ |
| static const uint8_t *const orders[BLOCK_SIZES] = { |
| // 4X4 |
| orders_8x8, |
| // 4X8, 8X4, 8X8 |
| orders_8x8, orders_8x8, orders_8x8, |
| // 8X16, 16X8, 16X16 |
| orders_8x16, orders_16x8, orders_16x16, |
| // 16X32, 32X16, 32X32 |
| orders_16x32, orders_32x16, orders_32x32, |
| // 32X64, 64X32, 64X64 |
| orders_32x64, orders_64x32, orders_64x64, |
| // 64x128, 128x64, 128x128 |
| orders_64x128, orders_128x64, orders_128x128 |
| }; |
| /* clang-format on */ |
| #else |
| /* clang-format off */ |
| static const uint8_t *const orders[BLOCK_SIZES] = { |
| // 4X4 |
| orders_16x16, |
| // 4X8, 8X4, 8X8 |
| orders_16x16, orders_16x16, orders_16x16, |
| // 8X16, 16X8, 16X16 |
| orders_16x32, orders_32x16, orders_32x32, |
| // 16X32, 32X16, 32X32 |
| orders_32x64, orders_64x32, orders_64x64, |
| // 32X64, 64X32, 64X64 |
| orders_64x128, orders_128x64, orders_128x128 |
| }; |
| /* clang-format on */ |
| #endif // CONFIG_EXT_PARTITION |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| static const uint8_t orders_verta_64x64[4] = { |
| 0, 2, 1, 2, |
| }; |
| static const uint8_t orders_verta_32x32[16] = { |
| 0, 2, 4, 6, 1, 2, 5, 6, 8, 10, 12, 14, 9, 10, 13, 14, |
| }; |
| static const uint8_t orders_verta_16x16[64] = { |
| 0, 2, 4, 6, 16, 18, 20, 22, 1, 2, 5, 6, 17, 18, 21, 22, |
| 8, 10, 12, 14, 24, 26, 28, 30, 9, 10, 13, 14, 25, 26, 29, 30, |
| 32, 34, 36, 38, 48, 50, 52, 54, 33, 34, 37, 38, 49, 50, 53, 54, |
| 40, 42, 44, 46, 56, 58, 60, 62, 41, 42, 45, 46, 57, 58, 61, 62, |
| }; |
| #if CONFIG_EXT_PARTITION |
| static const uint8_t orders_verta_8x8[256] = { |
| 0, 2, 4, 6, 16, 18, 20, 22, 64, 66, 68, 70, 80, 82, 84, |
| 86, 1, 2, 5, 6, 17, 18, 21, 22, 65, 66, 69, 70, 81, 82, |
| 85, 86, 8, 10, 12, 14, 24, 26, 28, 30, 72, 74, 76, 78, 88, |
| 90, 92, 94, 9, 10, 13, 14, 25, 26, 29, 30, 73, 74, 77, 78, |
| 89, 90, 93, 94, 32, 34, 36, 38, 48, 50, 52, 54, 96, 98, 100, |
| 102, 112, 114, 116, 118, 33, 34, 37, 38, 49, 50, 53, 54, 97, 98, |
| 101, 102, 113, 114, 117, 118, 40, 42, 44, 46, 56, 58, 60, 62, 104, |
| 106, 108, 110, 120, 122, 124, 126, 41, 42, 45, 46, 57, 58, 61, 62, |
| 105, 106, 109, 110, 121, 122, 125, 126, 128, 130, 132, 134, 144, 146, 148, |
| 150, 192, 194, 196, 198, 208, 210, 212, 214, 129, 130, 133, 134, 145, 146, |
| 149, 150, 193, 194, 197, 198, 209, 210, 213, 214, 136, 138, 140, 142, 152, |
| 154, 156, 158, 200, 202, 204, 206, 216, 218, 220, 222, 137, 138, 141, 142, |
| 153, 154, 157, 158, 201, 202, 205, 206, 217, 218, 221, 222, 160, 162, 164, |
| 166, 176, 178, 180, 182, 224, 226, 228, 230, 240, 242, 244, 246, 161, 162, |
| 165, 166, 177, 178, 181, 182, 225, 226, 229, 230, 241, 242, 245, 246, 168, |
| 170, 172, 174, 184, 186, 188, 190, 232, 234, 236, 238, 248, 250, 252, 254, |
| 169, 170, 173, 174, 185, 186, 189, 190, 233, 234, 237, 238, 249, 250, 253, |
| 254, |
| }; |
| |
| /* clang-format off */ |
| static const uint8_t *const orders_verta[BLOCK_SIZES] = { |
| // 4X4 |
| orders_verta_8x8, |
| // 4X8, 8X4, 8X8 |
| orders_verta_8x8, orders_verta_8x8, orders_verta_8x8, |
| // 8X16, 16X8, 16X16 |
| orders_8x16, orders_16x8, orders_verta_16x16, |
| // 16X32, 32X16, 32X32 |
| orders_16x32, orders_32x16, orders_verta_32x32, |
| // 32X64, 64X32, 64X64 |
| orders_32x64, orders_64x32, orders_verta_64x64, |
| // 64x128, 128x64, 128x128 |
| orders_64x128, orders_128x64, orders_128x128 |
| }; |
| /* clang-format on */ |
| #else |
| /* clang-format off */ |
| static const uint8_t *const orders_verta[BLOCK_SIZES] = { |
| // 4X4 |
| orders_verta_16x16, |
| // 4X8, 8X4, 8X8 |
| orders_verta_16x16, orders_verta_16x16, orders_verta_16x16, |
| // 8X16, 16X8, 16X16 |
| orders_16x32, orders_32x16, orders_verta_32x32, |
| // 16X32, 32X16, 32X32 |
| orders_32x64, orders_64x32, orders_verta_64x64, |
| // 32X64, 64X32, 64X64 |
| orders_64x128, orders_128x64, orders_128x128 |
| }; |
| /* clang-format on */ |
| #endif // CONFIG_EXT_PARTITION |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| |
| static int vp10_has_right(BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int right_available, |
| #if CONFIG_EXT_PARTITION_TYPES |
| PARTITION_TYPE partition, |
| #endif |
| TX_SIZE txsz, int y, int x, int ss_x) { |
| const int wl = mi_width_log2_lookup[bsize]; |
| const int w = VPXMAX(num_4x4_blocks_wide_lookup[bsize] >> ss_x, 1); |
| const int step = 1 << txsz; |
| |
| if (!right_available) { |
| return 0; |
| } else { |
| // Handle block size 4x8 and 4x4 |
| if (ss_x == 0 && num_4x4_blocks_wide_lookup[bsize] < 2 && x == 0) return 1; |
| |
| if (y == 0) { |
| const int hl = mi_height_log2_lookup[bsize]; |
| const uint8_t *order; |
| int my_order, tr_order; |
| #if CONFIG_EXT_PARTITION_TYPES |
| if (partition == PARTITION_VERT_A) |
| order = orders_verta[bsize]; |
| else |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| order = orders[bsize]; |
| |
| if (x + step < w) return 1; |
| |
| mi_row = (mi_row & MAX_MIB_MASK) >> hl; |
| mi_col = (mi_col & MAX_MIB_MASK) >> wl; |
| |
| // If top row of coding unit |
| if (mi_row == 0) return 1; |
| |
| // If rightmost column of coding unit |
| if (((mi_col + 1) << wl) >= MAX_MIB_SIZE) return 0; |
| |
| my_order = order[((mi_row + 0) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col + 0]; |
| tr_order = order[((mi_row - 1) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col + 1]; |
| |
| return my_order > tr_order; |
| } else { |
| return x + step < w; |
| } |
| } |
| } |
| |
| static int vp10_has_bottom(BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int bottom_available, TX_SIZE txsz, int y, int x, |
| int ss_y) { |
| if (!bottom_available || x != 0) { |
| return 0; |
| } else { |
| const int wl = mi_width_log2_lookup[bsize]; |
| const int hl = mi_height_log2_lookup[bsize]; |
| const int h = 1 << (hl + 1 - ss_y); |
| const int step = 1 << txsz; |
| const uint8_t *order = orders[bsize]; |
| int my_order, bl_order; |
| |
| // Handle block size 8x4 and 4x4 |
| if (ss_y == 0 && num_4x4_blocks_high_lookup[bsize] < 2 && y == 0) return 1; |
| |
| if (y + step < h) return 1; |
| |
| mi_row = (mi_row & MAX_MIB_MASK) >> hl; |
| mi_col = (mi_col & MAX_MIB_MASK) >> wl; |
| |
| if (mi_col == 0) |
| return (mi_row << (hl + !ss_y)) + y + step < (MAX_MIB_SIZE << !ss_y); |
| |
| if (((mi_row + 1) << hl) >= MAX_MIB_SIZE) return 0; |
| |
| my_order = order[((mi_row + 0) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col + 0]; |
| bl_order = order[((mi_row + 1) << (MAX_MIB_SIZE_LOG2 - wl)) + mi_col - 1]; |
| |
| return bl_order < my_order; |
| } |
| } |
| |
| typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride, |
| const uint8_t *above, const uint8_t *left); |
| |
| static intra_pred_fn pred[INTRA_MODES][TX_SIZES]; |
| static intra_pred_fn dc_pred[2][2][TX_SIZES]; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride, |
| const uint16_t *above, const uint16_t *left, |
| int bd); |
| static intra_high_pred_fn pred_high[INTRA_MODES][4]; |
| static intra_high_pred_fn dc_pred_high[2][2][4]; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| static void vp10_init_intra_predictors_internal(void) { |
| #define INIT_NO_4X4(p, type) \ |
| p[TX_8X8] = vpx_##type##_predictor_8x8; \ |
| p[TX_16X16] = vpx_##type##_predictor_16x16; \ |
| p[TX_32X32] = vpx_##type##_predictor_32x32 |
| |
| #define INIT_ALL_SIZES(p, type) \ |
| p[TX_4X4] = vpx_##type##_predictor_4x4; \ |
| INIT_NO_4X4(p, type) |
| |
| INIT_ALL_SIZES(pred[V_PRED], v); |
| INIT_ALL_SIZES(pred[H_PRED], h); |
| INIT_ALL_SIZES(pred[D207_PRED], d207e); |
| INIT_ALL_SIZES(pred[D45_PRED], d45e); |
| INIT_ALL_SIZES(pred[D63_PRED], d63e); |
| INIT_ALL_SIZES(pred[D117_PRED], d117); |
| INIT_ALL_SIZES(pred[D135_PRED], d135); |
| INIT_ALL_SIZES(pred[D153_PRED], d153); |
| INIT_ALL_SIZES(pred[TM_PRED], tm); |
| |
| INIT_ALL_SIZES(dc_pred[0][0], dc_128); |
| INIT_ALL_SIZES(dc_pred[0][1], dc_top); |
| INIT_ALL_SIZES(dc_pred[1][0], dc_left); |
| INIT_ALL_SIZES(dc_pred[1][1], dc); |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| INIT_ALL_SIZES(pred_high[V_PRED], highbd_v); |
| INIT_ALL_SIZES(pred_high[H_PRED], highbd_h); |
| INIT_ALL_SIZES(pred_high[D207_PRED], highbd_d207e); |
| INIT_ALL_SIZES(pred_high[D45_PRED], highbd_d45e); |
| INIT_ALL_SIZES(pred_high[D63_PRED], highbd_d63e); |
| INIT_ALL_SIZES(pred_high[D117_PRED], highbd_d117); |
| INIT_ALL_SIZES(pred_high[D135_PRED], highbd_d135); |
| INIT_ALL_SIZES(pred_high[D153_PRED], highbd_d153); |
| INIT_ALL_SIZES(pred_high[TM_PRED], highbd_tm); |
| |
| INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128); |
| INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top); |
| INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left); |
| INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| #undef intra_pred_allsizes |
| } |
| |
| #if CONFIG_EXT_INTRA |
| |
| static const uint8_t ext_intra_extend_modes[FILTER_INTRA_MODES] = { |
| NEED_LEFT | NEED_ABOVE, // FILTER_DC |
| NEED_LEFT | NEED_ABOVE, // FILTER_V |
| NEED_LEFT | NEED_ABOVE, // FILTER_H |
| NEED_LEFT | NEED_ABOVE, // FILTER_D45 |
| NEED_LEFT | NEED_ABOVE, // FILTER_D135 |
| NEED_LEFT | NEED_ABOVE, // FILTER_D117 |
| NEED_LEFT | NEED_ABOVE, // FILTER_D153 |
| NEED_LEFT | NEED_ABOVE, // FILTER_D207 |
| NEED_LEFT | NEED_ABOVE, // FILTER_D63 |
| NEED_LEFT | NEED_ABOVE, // FILTER_TM |
| }; |
| |
| static int intra_subpel_interp(int base, int shift, const uint8_t *ref, |
| int ref_start_idx, int ref_end_idx, |
| INTRA_FILTER filter_type) { |
| int val, k, idx, filter_idx = 0; |
| const int16_t *filter = NULL; |
| |
| if (filter_type == INTRA_FILTER_LINEAR) { |
| val = ref[base] * (256 - shift) + ref[base + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| } else { |
| filter_idx = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS); |
| filter = vp10_intra_filter_kernels[filter_type][filter_idx]; |
| |
| if (filter_idx < (1 << SUBPEL_BITS)) { |
| val = 0; |
| for (k = 0; k < SUBPEL_TAPS; ++k) { |
| idx = base + 1 - (SUBPEL_TAPS / 2) + k; |
| idx = VPXMAX(VPXMIN(idx, ref_end_idx), ref_start_idx); |
| val += ref[idx] * filter[k]; |
| } |
| val = ROUND_POWER_OF_TWO(val, FILTER_BITS); |
| } else { |
| val = ref[base + 1]; |
| } |
| } |
| |
| return val; |
| } |
| |
| // Directional prediction, zone 1: 0 < angle < 90 |
| static void dr_prediction_z1(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left, int dx, |
| int dy, INTRA_FILTER filter_type) { |
| int r, c, x, base, shift, val; |
| |
| (void)left; |
| (void)dy; |
| assert(dy == 1); |
| assert(dx < 0); |
| |
| if (filter_type != INTRA_FILTER_LINEAR) { |
| const int pad_size = SUBPEL_TAPS >> 1; |
| int len; |
| DECLARE_ALIGNED(16, uint8_t, buf[SUBPEL_SHIFTS][MAX_SB_SIZE]); |
| DECLARE_ALIGNED(16, uint8_t, src[MAX_SB_SIZE + SUBPEL_TAPS]); |
| uint8_t flags[SUBPEL_SHIFTS]; |
| |
| memset(flags, 0, SUBPEL_SHIFTS * sizeof(flags[0])); |
| memset(src, above[0], pad_size * sizeof(above[0])); |
| memcpy(src + pad_size, above, 2 * bs * sizeof(above[0])); |
| memset(src + pad_size + 2 * bs, above[2 * bs - 1], |
| pad_size * sizeof(above[0])); |
| flags[0] = 1; |
| x = -dx; |
| for (r = 0; r < bs; ++r, dst += stride, x -= dx) { |
| base = x >> 8; |
| shift = x & 0xFF; |
| shift = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS); |
| if (shift == SUBPEL_SHIFTS) { |
| base += 1; |
| shift = 0; |
| } |
| len = VPXMIN(bs, 2 * bs - 1 - base); |
| if (len <= 0) { |
| int i; |
| for (i = r; i < bs; ++i) { |
| memset(dst, above[2 * bs - 1], bs * sizeof(dst[0])); |
| dst += stride; |
| } |
| return; |
| } |
| |
| if (len <= (bs >> 1) && !flags[shift]) { |
| base = x >> 8; |
| shift = x & 0xFF; |
| for (c = 0; c < len; ++c) { |
| val = intra_subpel_interp(base, shift, above, 0, 2 * bs - 1, |
| filter_type); |
| dst[c] = clip_pixel(val); |
| ++base; |
| } |
| } else { |
| if (!flags[shift]) { |
| const int16_t *filter = vp10_intra_filter_kernels[filter_type][shift]; |
| vpx_convolve8_horiz(src + pad_size, 2 * bs, buf[shift], 2 * bs, |
| filter, 16, NULL, 16, 2 * bs, |
| 2 * bs < 16 ? 2 : 1); |
| flags[shift] = 1; |
| } |
| memcpy(dst, shift == 0 ? src + pad_size + base : &buf[shift][base], |
| len * sizeof(dst[0])); |
| } |
| |
| if (len < bs) |
| memset(dst + len, above[2 * bs - 1], (bs - len) * sizeof(dst[0])); |
| } |
| return; |
| } |
| |
| // For linear filter, C code is faster. |
| x = -dx; |
| for (r = 0; r < bs; ++r, dst += stride, x -= dx) { |
| base = x >> 8; |
| shift = x & 0xFF; |
| |
| if (base >= 2 * bs - 1) { |
| int i; |
| for (i = r; i < bs; ++i) { |
| memset(dst, above[2 * bs - 1], bs * sizeof(dst[0])); |
| dst += stride; |
| } |
| return; |
| } |
| |
| for (c = 0; c < bs; ++c, ++base) { |
| if (base < 2 * bs - 1) { |
| val = above[base] * (256 - shift) + above[base + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| dst[c] = clip_pixel(val); |
| } else { |
| dst[c] = above[2 * bs - 1]; |
| } |
| } |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 |
| static void dr_prediction_z2(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left, int dx, |
| int dy, INTRA_FILTER filter_type) { |
| int r, c, x, y, shift1, shift2, val, base1, base2; |
| |
| assert(dx > 0); |
| assert(dy > 0); |
| |
| x = -dx; |
| for (r = 0; r < bs; ++r, x -= dx, dst += stride) { |
| base1 = x >> 8; |
| y = (r << 8) - dy; |
| for (c = 0; c < bs; ++c, ++base1, y -= dy) { |
| if (base1 >= -1) { |
| shift1 = x & 0xFF; |
| val = |
| intra_subpel_interp(base1, shift1, above, -1, bs - 1, filter_type); |
| } else { |
| base2 = y >> 8; |
| if (base2 >= 0) { |
| shift2 = y & 0xFF; |
| val = |
| intra_subpel_interp(base2, shift2, left, 0, bs - 1, filter_type); |
| } else { |
| val = left[0]; |
| } |
| } |
| dst[c] = clip_pixel(val); |
| } |
| } |
| } |
| |
| // Directional prediction, zone 3: 180 < angle < 270 |
| static void dr_prediction_z3(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left, int dx, |
| int dy, INTRA_FILTER filter_type) { |
| int r, c, y, base, shift, val; |
| |
| (void)above; |
| (void)dx; |
| |
| assert(dx == 1); |
| assert(dy < 0); |
| |
| if (filter_type != INTRA_FILTER_LINEAR) { |
| const int pad_size = SUBPEL_TAPS >> 1; |
| int len, i; |
| DECLARE_ALIGNED(16, uint8_t, buf[MAX_SB_SIZE][4 * SUBPEL_SHIFTS]); |
| DECLARE_ALIGNED(16, uint8_t, src[(MAX_SB_SIZE + SUBPEL_TAPS) * 4]); |
| uint8_t flags[SUBPEL_SHIFTS]; |
| |
| memset(flags, 0, SUBPEL_SHIFTS * sizeof(flags[0])); |
| for (i = 0; i < pad_size; ++i) src[4 * i] = left[0]; |
| for (i = 0; i < 2 * bs; ++i) src[4 * (i + pad_size)] = left[i]; |
| for (i = 0; i < pad_size; ++i) |
| src[4 * (i + 2 * bs + pad_size)] = left[2 * bs - 1]; |
| flags[0] = 1; |
| y = -dy; |
| for (c = 0; c < bs; ++c, y -= dy) { |
| base = y >> 8; |
| shift = y & 0xFF; |
| shift = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS); |
| if (shift == SUBPEL_SHIFTS) { |
| base += 1; |
| shift = 0; |
| } |
| len = VPXMIN(bs, 2 * bs - 1 - base); |
| |
| if (len <= 0) { |
| for (r = 0; r < bs; ++r) { |
| dst[r * stride + c] = left[2 * bs - 1]; |
| } |
| continue; |
| } |
| |
| if (len <= (bs >> 1) && !flags[shift]) { |
| base = y >> 8; |
| shift = y & 0xFF; |
| for (r = 0; r < len; ++r) { |
| val = intra_subpel_interp(base, shift, left, 0, 2 * bs - 1, |
| filter_type); |
| dst[r * stride + c] = clip_pixel(val); |
| ++base; |
| } |
| } else { |
| if (!flags[shift]) { |
| const int16_t *filter = vp10_intra_filter_kernels[filter_type][shift]; |
| vpx_convolve8_vert(src + 4 * pad_size, 4, buf[0] + 4 * shift, |
| 4 * SUBPEL_SHIFTS, NULL, 16, filter, 16, |
| 2 * bs < 16 ? 4 : 4, 2 * bs); |
| flags[shift] = 1; |
| } |
| |
| if (shift == 0) { |
| for (r = 0; r < len; ++r) { |
| dst[r * stride + c] = left[r + base]; |
| } |
| } else { |
| for (r = 0; r < len; ++r) { |
| dst[r * stride + c] = buf[r + base][4 * shift]; |
| } |
| } |
| } |
| |
| if (len < bs) { |
| for (r = len; r < bs; ++r) { |
| dst[r * stride + c] = left[2 * bs - 1]; |
| } |
| } |
| } |
| return; |
| } |
| |
| // For linear filter, C code is faster. |
| y = -dy; |
| for (c = 0; c < bs; ++c, y -= dy) { |
| base = y >> 8; |
| shift = y & 0xFF; |
| |
| for (r = 0; r < bs; ++r, ++base) { |
| if (base < 2 * bs - 1) { |
| val = left[base] * (256 - shift) + left[base + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| dst[r * stride + c] = clip_pixel(val); |
| } else { |
| for (; r < bs; ++r) dst[r * stride + c] = left[2 * bs - 1]; |
| break; |
| } |
| } |
| } |
| } |
| |
| // Get the shift (up-scaled by 256) in X w.r.t a unit change in Y. |
| // If angle > 0 && angle < 90, dx = -((int)(256 / t)); |
| // If angle > 90 && angle < 180, dx = (int)(256 / t); |
| // If angle > 180 && angle < 270, dx = 1; |
| static inline int get_dx(int angle) { |
| if (angle > 0 && angle < 90) { |
| return -dr_intra_derivative[angle]; |
| } else if (angle > 90 && angle < 180) { |
| return dr_intra_derivative[180 - angle]; |
| } else { |
| // In this case, we are not really going to use dx. We may return any value. |
| return 1; |
| } |
| } |
| |
| // Get the shift (up-scaled by 256) in Y w.r.t a unit change in X. |
| // If angle > 0 && angle < 90, dy = 1; |
| // If angle > 90 && angle < 180, dy = (int)(256 * t); |
| // If angle > 180 && angle < 270, dy = -((int)(256 * t)); |
| static inline int get_dy(int angle) { |
| if (angle > 90 && angle < 180) { |
| return dr_intra_derivative[angle - 90]; |
| } else if (angle > 180 && angle < 270) { |
| return -dr_intra_derivative[270 - angle]; |
| } else { |
| // In this case, we are not really going to use dy. We may return any value. |
| return 1; |
| } |
| } |
| |
| static void dr_predictor(uint8_t *dst, ptrdiff_t stride, TX_SIZE tx_size, |
| const uint8_t *above, const uint8_t *left, int angle, |
| INTRA_FILTER filter_type) { |
| const int dx = get_dx(angle); |
| const int dy = get_dy(angle); |
| const int bs = 4 * num_4x4_blocks_wide_txsize_lookup[tx_size]; |
| assert(angle > 0 && angle < 270); |
| |
| if (angle > 0 && angle < 90) { |
| dr_prediction_z1(dst, stride, bs, above, left, dx, dy, filter_type); |
| } else if (angle > 90 && angle < 180) { |
| dr_prediction_z2(dst, stride, bs, above, left, dx, dy, filter_type); |
| } else if (angle > 180 && angle < 270) { |
| dr_prediction_z3(dst, stride, bs, above, left, dx, dy, filter_type); |
| } else if (angle == 90) { |
| pred[V_PRED][tx_size](dst, stride, above, left); |
| } else if (angle == 180) { |
| pred[H_PRED][tx_size](dst, stride, above, left); |
| } |
| } |
| |
| static void filter_intra_predictors_4tap(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, |
| const uint8_t *left, int mode) { |
| int k, r, c; |
| int pred[33][65]; |
| int mean, ipred; |
| const TX_SIZE tx_size = |
| (bs == 32) ? TX_32X32 |
| : ((bs == 16) ? TX_16X16 : ((bs == 8) ? TX_8X8 : (TX_4X4))); |
| const int c0 = filter_intra_taps_4[tx_size][mode][0]; |
| const int c1 = filter_intra_taps_4[tx_size][mode][1]; |
| const int c2 = filter_intra_taps_4[tx_size][mode][2]; |
| const int c3 = filter_intra_taps_4[tx_size][mode][3]; |
| |
| k = 0; |
| mean = 0; |
| while (k < bs) { |
| mean = mean + (int)left[k]; |
| mean = mean + (int)above[k]; |
| k++; |
| } |
| mean = (mean + bs) / (2 * bs); |
| |
| for (r = 0; r < bs; ++r) pred[r + 1][0] = (int)left[r] - mean; |
| |
| for (c = 0; c < 2 * bs + 1; ++c) pred[0][c] = (int)above[c - 1] - mean; |
| |
| for (r = 1; r < bs + 1; ++r) |
| for (c = 1; c < 2 * bs + 1 - r; ++c) { |
| ipred = c0 * pred[r - 1][c] + c1 * pred[r][c - 1] + |
| c2 * pred[r - 1][c - 1] + c3 * pred[r - 1][c + 1]; |
| pred[r][c] = ROUND_POWER_OF_TWO_SIGNED(ipred, FILTER_INTRA_PREC_BITS); |
| } |
| |
| for (r = 0; r < bs; ++r) { |
| for (c = 0; c < bs; ++c) { |
| ipred = pred[r + 1][c + 1] + mean; |
| dst[c] = clip_pixel(ipred); |
| } |
| dst += stride; |
| } |
| } |
| |
| void vp10_dc_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left) { |
| filter_intra_predictors_4tap(dst, stride, bs, above, left, DC_PRED); |
| } |
| |
| void vp10_v_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left) { |
| filter_intra_predictors_4tap(dst, stride, bs, above, left, V_PRED); |
| } |
| |
| void vp10_h_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left) { |
| filter_intra_predictors_4tap(dst, stride, bs, above, left, H_PRED); |
| } |
| |
| void vp10_d45_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left) { |
| filter_intra_predictors_4tap(dst, stride, bs, above, left, D45_PRED); |
| } |
| |
| void vp10_d135_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left) { |
| filter_intra_predictors_4tap(dst, stride, bs, above, left, D135_PRED); |
| } |
| |
| void vp10_d117_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left) { |
| filter_intra_predictors_4tap(dst, stride, bs, above, left, D117_PRED); |
| } |
| |
| void vp10_d153_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left) { |
| filter_intra_predictors_4tap(dst, stride, bs, above, left, D153_PRED); |
| } |
| |
| void vp10_d207_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left) { |
| filter_intra_predictors_4tap(dst, stride, bs, above, left, D207_PRED); |
| } |
| |
| void vp10_d63_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left) { |
| filter_intra_predictors_4tap(dst, stride, bs, above, left, D63_PRED); |
| } |
| |
| void vp10_tm_filter_predictor_c(uint8_t *dst, ptrdiff_t stride, int bs, |
| const uint8_t *above, const uint8_t *left) { |
| filter_intra_predictors_4tap(dst, stride, bs, above, left, TM_PRED); |
| } |
| |
| static void filter_intra_predictors(int mode, uint8_t *dst, ptrdiff_t stride, |
| int bs, const uint8_t *above, |
| const uint8_t *left) { |
| switch (mode) { |
| case DC_PRED: vp10_dc_filter_predictor(dst, stride, bs, above, left); break; |
| case V_PRED: vp10_v_filter_predictor(dst, stride, bs, above, left); break; |
| case H_PRED: vp10_h_filter_predictor(dst, stride, bs, above, left); break; |
| case D45_PRED: |
| vp10_d45_filter_predictor(dst, stride, bs, above, left); |
| break; |
| case D135_PRED: |
| vp10_d135_filter_predictor(dst, stride, bs, above, left); |
| break; |
| case D117_PRED: |
| vp10_d117_filter_predictor(dst, stride, bs, above, left); |
| break; |
| case D153_PRED: |
| vp10_d153_filter_predictor(dst, stride, bs, above, left); |
| break; |
| case D207_PRED: |
| vp10_d207_filter_predictor(dst, stride, bs, above, left); |
| break; |
| case D63_PRED: |
| vp10_d63_filter_predictor(dst, stride, bs, above, left); |
| break; |
| case TM_PRED: vp10_tm_filter_predictor(dst, stride, bs, above, left); break; |
| default: assert(0); |
| } |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static int highbd_intra_subpel_interp(int base, int shift, const uint16_t *ref, |
| int ref_start_idx, int ref_end_idx, |
| INTRA_FILTER filter_type) { |
| int val, k, idx, filter_idx = 0; |
| const int16_t *filter = NULL; |
| |
| if (filter_type == INTRA_FILTER_LINEAR) { |
| val = ref[base] * (256 - shift) + ref[base + 1] * shift; |
| val = ROUND_POWER_OF_TWO(val, 8); |
| } else { |
| filter_idx = ROUND_POWER_OF_TWO(shift, 8 - SUBPEL_BITS); |
| filter = vp10_intra_filter_kernels[filter_type][filter_idx]; |
| |
| if (filter_idx < (1 << SUBPEL_BITS)) { |
| val = 0; |
| for (k = 0; k < SUBPEL_TAPS; ++k) { |
| idx = base + 1 - (SUBPEL_TAPS / 2) + k; |
| idx = VPXMAX(VPXMIN(idx, ref_end_idx), ref_start_idx); |
| val += ref[idx] * filter[k]; |
| } |
| val = ROUND_POWER_OF_TWO(val, FILTER_BITS); |
| } else { |
| val = ref[base + 1]; |
| } |
| } |
| |
| return val; |
| } |
| |
| // Directional prediction, zone 1: 0 < angle < 90 |
| static void highbd_dr_prediction_z1(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, const uint16_t *left, |
| int dx, int dy, int bd, |
| INTRA_FILTER filter_type) { |
| int r, c, x, y, base, shift, val; |
| |
| (void)left; |
| (void)dy; |
| assert(dy == 1); |
| assert(dx < 0); |
| |
| for (r = 0; r < bs; ++r) { |
| y = r + 1; |
| for (c = 0; c < bs; ++c) { |
| x = (c << 8) - y * dx; |
| base = x >> 8; |
| shift = x - (base << 8); |
| if (base < 2 * bs - 1) { |
| val = highbd_intra_subpel_interp(base, shift, above, 0, 2 * bs - 1, |
| filter_type); |
| dst[c] = clip_pixel_highbd(val, bd); |
| } else { |
| dst[c] = above[2 * bs - 1]; |
| } |
| } |
| dst += stride; |
| } |
| } |
| |
| // Directional prediction, zone 2: 90 < angle < 180 |
| static void highbd_dr_prediction_z2(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, const uint16_t *left, |
| int dx, int dy, int bd, |
| INTRA_FILTER filter_type) { |
| int r, c, x, y, shift, val, base; |
| |
| assert(dx > 0); |
| assert(dy > 0); |
| |
| for (r = 0; r < bs; ++r) { |
| for (c = 0; c < bs; ++c) { |
| y = r + 1; |
| x = (c << 8) - y * dx; |
| base = x >> 8; |
| if (base >= -1) { |
| shift = x - (base << 8); |
| val = highbd_intra_subpel_interp(base, shift, above, -1, bs - 1, |
| filter_type); |
| } else { |
| x = c + 1; |
| y = (r << 8) - x * dy; |
| base = y >> 8; |
| if (base >= 0) { |
| shift = y - (base << 8); |
| val = highbd_intra_subpel_interp(base, shift, left, 0, bs - 1, |
| filter_type); |
| } else { |
| val = left[0]; |
| } |
| } |
| dst[c] = clip_pixel_highbd(val, bd); |
| } |
| dst += stride; |
| } |
| } |
| |
| // Directional prediction, zone 3: 180 < angle < 270 |
| static void highbd_dr_prediction_z3(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, const uint16_t *left, |
| int dx, int dy, int bd, |
| INTRA_FILTER filter_type) { |
| int r, c, x, y, base, shift, val; |
| |
| (void)above; |
| (void)dx; |
| assert(dx == 1); |
| assert(dy < 0); |
| |
| for (r = 0; r < bs; ++r) { |
| for (c = 0; c < bs; ++c) { |
| x = c + 1; |
| y = (r << 8) - x * dy; |
| base = y >> 8; |
| shift = y - (base << 8); |
| if (base < 2 * bs - 1) { |
| val = highbd_intra_subpel_interp(base, shift, left, 0, 2 * bs - 1, |
| filter_type); |
| dst[c] = clip_pixel_highbd(val, bd); |
| } else { |
| dst[c] = left[2 * bs - 1]; |
| } |
| } |
| dst += stride; |
| } |
| } |
| |
| static INLINE void highbd_v_predictor(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, |
| const uint16_t *left, int bd) { |
| int r; |
| (void)left; |
| (void)bd; |
| for (r = 0; r < bs; r++) { |
| memcpy(dst, above, bs * sizeof(uint16_t)); |
| dst += stride; |
| } |
| } |
| |
| static INLINE void highbd_h_predictor(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, |
| const uint16_t *left, int bd) { |
| int r; |
| (void)above; |
| (void)bd; |
| for (r = 0; r < bs; r++) { |
| vpx_memset16(dst, left[r], bs); |
| dst += stride; |
| } |
| } |
| |
| static void highbd_dr_predictor(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, const uint16_t *left, |
| int angle, int bd, INTRA_FILTER filter) { |
| const int dx = get_dx(angle); |
| const int dy = get_dy(angle); |
| assert(angle > 0 && angle < 270); |
| |
| if (angle > 0 && angle < 90) { |
| highbd_dr_prediction_z1(dst, stride, bs, above, left, dx, dy, bd, filter); |
| } else if (angle > 90 && angle < 180) { |
| highbd_dr_prediction_z2(dst, stride, bs, above, left, dx, dy, bd, filter); |
| } else if (angle > 180 && angle < 270) { |
| highbd_dr_prediction_z3(dst, stride, bs, above, left, dx, dy, bd, filter); |
| } else if (angle == 90) { |
| highbd_v_predictor(dst, stride, bs, above, left, bd); |
| } else if (angle == 180) { |
| highbd_h_predictor(dst, stride, bs, above, left, bd); |
| } |
| } |
| |
| static void highbd_filter_intra_predictors_4tap(uint16_t *dst, ptrdiff_t stride, |
| int bs, const uint16_t *above, |
| const uint16_t *left, int mode, |
| int bd) { |
| int k, r, c; |
| int pred[33][65]; |
| int mean, ipred; |
| const TX_SIZE tx_size = |
| (bs == 32) ? TX_32X32 |
| : ((bs == 16) ? TX_16X16 : ((bs == 8) ? TX_8X8 : (TX_4X4))); |
| const int c0 = filter_intra_taps_4[tx_size][mode][0]; |
| const int c1 = filter_intra_taps_4[tx_size][mode][1]; |
| const int c2 = filter_intra_taps_4[tx_size][mode][2]; |
| const int c3 = filter_intra_taps_4[tx_size][mode][3]; |
| |
| k = 0; |
| mean = 0; |
| while (k < bs) { |
| mean = mean + (int)left[k]; |
| mean = mean + (int)above[k]; |
| k++; |
| } |
| mean = (mean + bs) / (2 * bs); |
| |
| for (r = 0; r < bs; ++r) pred[r + 1][0] = (int)left[r] - mean; |
| |
| for (c = 0; c < 2 * bs + 1; ++c) pred[0][c] = (int)above[c - 1] - mean; |
| |
| for (r = 1; r < bs + 1; ++r) |
| for (c = 1; c < 2 * bs + 1 - r; ++c) { |
| ipred = c0 * pred[r - 1][c] + c1 * pred[r][c - 1] + |
| c2 * pred[r - 1][c - 1] + c3 * pred[r - 1][c + 1]; |
| pred[r][c] = ROUND_POWER_OF_TWO_SIGNED(ipred, FILTER_INTRA_PREC_BITS); |
| } |
| |
| for (r = 0; r < bs; ++r) { |
| for (c = 0; c < bs; ++c) { |
| ipred = pred[r + 1][c + 1] + mean; |
| dst[c] = clip_pixel_highbd(ipred, bd); |
| } |
| dst += stride; |
| } |
| } |
| |
| void vp10_highbd_dc_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, |
| const uint16_t *left, int bd) { |
| highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, DC_PRED, |
| bd); |
| } |
| |
| void vp10_highbd_v_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, |
| const uint16_t *left, int bd) { |
| highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, V_PRED, bd); |
| } |
| |
| void vp10_highbd_h_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, |
| const uint16_t *left, int bd) { |
| highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, H_PRED, bd); |
| } |
| |
| void vp10_highbd_d45_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, |
| const uint16_t *left, int bd) { |
| highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D45_PRED, |
| bd); |
| } |
| |
| void vp10_highbd_d135_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, |
| int bs, const uint16_t *above, |
| const uint16_t *left, int bd) { |
| highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D135_PRED, |
| bd); |
| } |
| |
| void vp10_highbd_d117_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, |
| int bs, const uint16_t *above, |
| const uint16_t *left, int bd) { |
| highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D117_PRED, |
| bd); |
| } |
| |
| void vp10_highbd_d153_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, |
| int bs, const uint16_t *above, |
| const uint16_t *left, int bd) { |
| highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D153_PRED, |
| bd); |
| } |
| |
| void vp10_highbd_d207_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, |
| int bs, const uint16_t *above, |
| const uint16_t *left, int bd) { |
| highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D207_PRED, |
| bd); |
| } |
| |
| void vp10_highbd_d63_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, |
| const uint16_t *left, int bd) { |
| highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, D63_PRED, |
| bd); |
| } |
| |
| void vp10_highbd_tm_filter_predictor_c(uint16_t *dst, ptrdiff_t stride, int bs, |
| const uint16_t *above, |
| const uint16_t *left, int bd) { |
| highbd_filter_intra_predictors_4tap(dst, stride, bs, above, left, TM_PRED, |
| bd); |
| } |
| |
| static void highbd_filter_intra_predictors(int mode, uint16_t *dst, |
| ptrdiff_t stride, int bs, |
| const uint16_t *above, |
| const uint16_t *left, int bd) { |
| switch (mode) { |
| case DC_PRED: |
| vp10_highbd_dc_filter_predictor(dst, stride, bs, above, left, bd); |
| break; |
| case V_PRED: |
| vp10_highbd_v_filter_predictor(dst, stride, bs, above, left, bd); |
| break; |
| case H_PRED: |
| vp10_highbd_h_filter_predictor(dst, stride, bs, above, left, bd); |
| break; |
| case D45_PRED: |
| vp10_highbd_d45_filter_predictor(dst, stride, bs, above, left, bd); |
| break; |
| case D135_PRED: |
| vp10_highbd_d135_filter_predictor(dst, stride, bs, above, left, bd); |
| break; |
| case D117_PRED: |
| vp10_highbd_d117_filter_predictor(dst, stride, bs, above, left, bd); |
| break; |
| case D153_PRED: |
| vp10_highbd_d153_filter_predictor(dst, stride, bs, above, left, bd); |
| break; |
| case D207_PRED: |
| vp10_highbd_d207_filter_predictor(dst, stride, bs, above, left, bd); |
| break; |
| case D63_PRED: |
| vp10_highbd_d63_filter_predictor(dst, stride, bs, above, left, bd); |
| break; |
| case TM_PRED: |
| vp10_highbd_tm_filter_predictor(dst, stride, bs, above, left, bd); |
| break; |
| default: assert(0); |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| #endif // CONFIG_EXT_INTRA |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static void build_intra_predictors_high( |
| const MACROBLOCKD *xd, const uint8_t *ref8, int ref_stride, uint8_t *dst8, |
| int dst_stride, PREDICTION_MODE mode, TX_SIZE tx_size, int n_top_px, |
| int n_topright_px, int n_left_px, int n_bottomleft_px, int plane) { |
| int i; |
| uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); |
| DECLARE_ALIGNED(16, uint16_t, left_col[MAX_SB_SIZE]); |
| DECLARE_ALIGNED(16, uint16_t, above_data[MAX_SB_SIZE + 16]); |
| uint16_t *above_row = above_data + 16; |
| const uint16_t *const_above_row = above_row; |
| const int bs = 4 * num_4x4_blocks_wide_txsize_lookup[tx_size]; |
| int need_left = extend_modes[mode] & NEED_LEFT; |
| int need_above = extend_modes[mode] & NEED_ABOVE; |
| const uint16_t *above_ref = ref - ref_stride; |
| int base = 128 << (xd->bd - 8); |
| // 127 127 127 .. 127 127 127 127 127 127 |
| // 129 A B .. Y Z |
| // 129 C D .. W X |
| // 129 E F .. U V |
| // 129 G H .. S T T T T T |
| |
| #if CONFIG_EXT_INTRA |
| const EXT_INTRA_MODE_INFO *ext_intra_mode_info = |
| &xd->mi[0]->mbmi.ext_intra_mode_info; |
| const EXT_INTRA_MODE ext_intra_mode = |
| ext_intra_mode_info->ext_intra_mode[plane != 0]; |
| int p_angle = 0; |
| |
| if (mode != DC_PRED && mode != TM_PRED && |
| xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) { |
| p_angle = mode_to_angle_map[mode] + |
| xd->mi[0]->mbmi.angle_delta[plane != 0] * ANGLE_STEP; |
| if (p_angle <= 90) |
| need_above = 1, need_left = 0; |
| else if (p_angle < 180) |
| need_above = 1, need_left = 1; |
| else |
| need_above = 0, need_left = 1; |
| } |
| |
| if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) { |
| EXT_INTRA_MODE ext_intra_mode = |
| ext_intra_mode_info->ext_intra_mode[plane != 0]; |
| need_left = ext_intra_extend_modes[ext_intra_mode] & NEED_LEFT; |
| need_above = ext_intra_extend_modes[ext_intra_mode] & NEED_ABOVE; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| (void)plane; |
| assert(n_top_px >= 0); |
| assert(n_topright_px >= 0); |
| assert(n_left_px >= 0); |
| assert(n_bottomleft_px >= 0); |
| |
| if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { |
| int i; |
| const int val = (n_left_px == 0) ? base + 1 : base - 1; |
| for (i = 0; i < bs; ++i) { |
| vpx_memset16(dst, val, bs); |
| dst += dst_stride; |
| } |
| return; |
| } |
| |
| // NEED_LEFT |
| if (need_left) { |
| #if CONFIG_EXT_INTRA |
| int need_bottom; |
| if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) { |
| need_bottom = 0; |
| } else if (mode != DC_PRED && mode != TM_PRED && |
| xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) { |
| need_bottom = p_angle > 180; |
| } else { |
| need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); |
| } |
| #else |
| const int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); |
| #endif // CONFIG_EXT_INTRA |
| i = 0; |
| if (n_left_px > 0) { |
| for (; i < n_left_px; i++) left_col[i] = ref[i * ref_stride - 1]; |
| if (need_bottom && n_bottomleft_px > 0) { |
| assert(i == bs); |
| for (; i < bs + n_bottomleft_px; i++) |
| left_col[i] = ref[i * ref_stride - 1]; |
| } |
| if (i < (bs << need_bottom)) |
| vpx_memset16(&left_col[i], left_col[i - 1], (bs << need_bottom) - i); |
| } else { |
| vpx_memset16(left_col, base + 1, bs << need_bottom); |
| } |
| } |
| |
| // NEED_ABOVE |
| if (need_above) { |
| #if CONFIG_EXT_INTRA |
| int need_right; |
| if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) { |
| need_right = 1; |
| } else if (mode != DC_PRED && mode != TM_PRED && |
| xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) { |
| need_right = p_angle < 90; |
| } else { |
| need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); |
| } |
| #else |
| const int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); |
| #endif // CONFIG_EXT_INTRA |
| if (n_top_px > 0) { |
| memcpy(above_row, above_ref, n_top_px * 2); |
| i = n_top_px; |
| if (need_right && n_topright_px > 0) { |
| assert(n_top_px == bs); |
| memcpy(above_row + bs, above_ref + bs, n_topright_px * 2); |
| i += n_topright_px; |
| } |
| if (i < (bs << need_right)) |
| vpx_memset16(&above_row[i], above_row[i - 1], (bs << need_right) - i); |
| } else { |
| vpx_memset16(above_row, base - 1, bs << need_right); |
| } |
| } |
| |
| #if CONFIG_EXT_INTRA |
| if (ext_intra_mode_info->use_ext_intra_mode[plane != 0] || |
| (extend_modes[mode] & NEED_ABOVELEFT) || |
| (mode != DC_PRED && mode != TM_PRED && |
| xd->mi[0]->mbmi.sb_type >= BLOCK_8X8)) { |
| above_row[-1] = |
| n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : base + 1) : base - 1; |
| } |
| #else |
| if ((extend_modes[mode] & NEED_ABOVELEFT)) { |
| above_row[-1] = |
| n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : base + 1) : base - 1; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| #if CONFIG_EXT_INTRA |
| if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) { |
| highbd_filter_intra_predictors(ext_intra_mode, dst, dst_stride, bs, |
| const_above_row, left_col, xd->bd); |
| return; |
| } |
| |
| if (mode != DC_PRED && mode != TM_PRED && |
| xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) { |
| INTRA_FILTER filter = INTRA_FILTER_LINEAR; |
| if (plane == 0 && vp10_is_intra_filter_switchable(p_angle)) |
| filter = xd->mi[0]->mbmi.intra_filter; |
| highbd_dr_predictor(dst, dst_stride, bs, const_above_row, left_col, p_angle, |
| xd->bd, filter); |
| return; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| // predict |
| if (mode == DC_PRED) { |
| dc_pred_high[n_left_px > 0][n_top_px > 0][tx_size]( |
| dst, dst_stride, const_above_row, left_col, xd->bd); |
| } else { |
| pred_high[mode][tx_size](dst, dst_stride, const_above_row, left_col, |
| xd->bd); |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref, |
| int ref_stride, uint8_t *dst, int dst_stride, |
| PREDICTION_MODE mode, TX_SIZE tx_size, |
| int n_top_px, int n_topright_px, |
| int n_left_px, int n_bottomleft_px, |
| int plane) { |
| int i; |
| DECLARE_ALIGNED(16, uint8_t, left_col[MAX_SB_SIZE]); |
| const uint8_t *above_ref = ref - ref_stride; |
| DECLARE_ALIGNED(16, uint8_t, above_data[MAX_SB_SIZE + 16]); |
| uint8_t *above_row = above_data + 16; |
| const uint8_t *const_above_row = above_row; |
| const int bs = 4 * num_4x4_blocks_wide_txsize_lookup[tx_size]; |
| int need_left = extend_modes[mode] & NEED_LEFT; |
| int need_above = extend_modes[mode] & NEED_ABOVE; |
| #if CONFIG_EXT_INTRA |
| const EXT_INTRA_MODE_INFO *ext_intra_mode_info = |
| &xd->mi[0]->mbmi.ext_intra_mode_info; |
| const EXT_INTRA_MODE ext_intra_mode = |
| ext_intra_mode_info->ext_intra_mode[plane != 0]; |
| int p_angle = 0; |
| |
| if (mode != DC_PRED && mode != TM_PRED && |
| xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) { |
| p_angle = mode_to_angle_map[mode] + |
| xd->mi[0]->mbmi.angle_delta[plane != 0] * ANGLE_STEP; |
| if (p_angle <= 90) |
| need_above = 1, need_left = 0; |
| else if (p_angle < 180) |
| need_above = 1, need_left = 1; |
| else |
| need_above = 0, need_left = 1; |
| } |
| |
| if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) { |
| EXT_INTRA_MODE ext_intra_mode = |
| ext_intra_mode_info->ext_intra_mode[plane != 0]; |
| need_left = ext_intra_extend_modes[ext_intra_mode] & NEED_LEFT; |
| need_above = ext_intra_extend_modes[ext_intra_mode] & NEED_ABOVE; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| // 127 127 127 .. 127 127 127 127 127 127 |
| // 129 A B .. Y Z |
| // 129 C D .. W X |
| // 129 E F .. U V |
| // 129 G H .. S T T T T T |
| // .. |
| |
| (void)xd; |
| (void)plane; |
| assert(n_top_px >= 0); |
| assert(n_topright_px >= 0); |
| assert(n_left_px >= 0); |
| assert(n_bottomleft_px >= 0); |
| |
| if ((!need_above && n_left_px == 0) || (!need_left && n_top_px == 0)) { |
| int i; |
| const int val = (n_left_px == 0) ? 129 : 127; |
| for (i = 0; i < bs; ++i) { |
| memset(dst, val, bs); |
| dst += dst_stride; |
| } |
| return; |
| } |
| |
| // NEED_LEFT |
| if (need_left) { |
| #if CONFIG_EXT_INTRA |
| int need_bottom; |
| if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) { |
| need_bottom = 0; |
| } else if (mode != DC_PRED && mode != TM_PRED && |
| xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) { |
| need_bottom = p_angle > 180; |
| } else { |
| need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); |
| } |
| #else |
| const int need_bottom = !!(extend_modes[mode] & NEED_BOTTOMLEFT); |
| #endif // CONFIG_EXT_INTRA |
| i = 0; |
| if (n_left_px > 0) { |
| for (; i < n_left_px; i++) left_col[i] = ref[i * ref_stride - 1]; |
| if (need_bottom && n_bottomleft_px > 0) { |
| assert(i == bs); |
| for (; i < bs + n_bottomleft_px; i++) |
| left_col[i] = ref[i * ref_stride - 1]; |
| } |
| if (i < (bs << need_bottom)) |
| memset(&left_col[i], left_col[i - 1], (bs << need_bottom) - i); |
| } else { |
| memset(left_col, 129, bs << need_bottom); |
| } |
| } |
| |
| // NEED_ABOVE |
| if (need_above) { |
| #if CONFIG_EXT_INTRA |
| int need_right; |
| if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) { |
| need_right = 1; |
| } else if (mode != DC_PRED && mode != TM_PRED && |
| xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) { |
| need_right = p_angle < 90; |
| } else { |
| need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); |
| } |
| #else |
| const int need_right = !!(extend_modes[mode] & NEED_ABOVERIGHT); |
| #endif // CONFIG_EXT_INTRA |
| if (n_top_px > 0) { |
| memcpy(above_row, above_ref, n_top_px); |
| i = n_top_px; |
| if (need_right && n_topright_px > 0) { |
| assert(n_top_px == bs); |
| memcpy(above_row + bs, above_ref + bs, n_topright_px); |
| i += n_topright_px; |
| } |
| if (i < (bs << need_right)) |
| memset(&above_row[i], above_row[i - 1], (bs << need_right) - i); |
| } else { |
| memset(above_row, 127, bs << need_right); |
| } |
| } |
| |
| #if CONFIG_EXT_INTRA |
| if (ext_intra_mode_info->use_ext_intra_mode[plane != 0] || |
| (extend_modes[mode] & NEED_ABOVELEFT) || |
| (mode != DC_PRED && mode != TM_PRED && |
| xd->mi[0]->mbmi.sb_type >= BLOCK_8X8)) { |
| above_row[-1] = n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : 129) : 127; |
| } |
| #else |
| if ((extend_modes[mode] & NEED_ABOVELEFT)) { |
| above_row[-1] = n_top_px > 0 ? (n_left_px > 0 ? above_ref[-1] : 129) : 127; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| #if CONFIG_EXT_INTRA |
| if (ext_intra_mode_info->use_ext_intra_mode[plane != 0]) { |
| filter_intra_predictors(ext_intra_mode, dst, dst_stride, bs, |
| const_above_row, left_col); |
| return; |
| } |
| |
| if (mode != DC_PRED && mode != TM_PRED && |
| xd->mi[0]->mbmi.sb_type >= BLOCK_8X8) { |
| INTRA_FILTER filter = INTRA_FILTER_LINEAR; |
| if (plane == 0 && vp10_is_intra_filter_switchable(p_angle)) |
| filter = xd->mi[0]->mbmi.intra_filter; |
| dr_predictor(dst, dst_stride, tx_size, const_above_row, left_col, p_angle, |
| filter); |
| return; |
| } |
| #endif // CONFIG_EXT_INTRA |
| |
| // predict |
| if (mode == DC_PRED) { |
| dc_pred[n_left_px > 0][n_top_px > 0][tx_size](dst, dst_stride, |
| const_above_row, left_col); |
| } else { |
| pred[mode][tx_size](dst, dst_stride, const_above_row, left_col); |
| } |
| } |
| |
| void vp10_predict_intra_block(const MACROBLOCKD *xd, int bwl_in, int bhl_in, |
| TX_SIZE tx_size, PREDICTION_MODE mode, |
| const uint8_t *ref, int ref_stride, uint8_t *dst, |
| int dst_stride, int col_off, int row_off, |
| int plane) { |
| const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int txw = num_4x4_blocks_wide_txsize_lookup[tx_size]; |
| const int txh = num_4x4_blocks_high_txsize_lookup[tx_size]; |
| const int have_top = row_off || xd->up_available; |
| const int have_left = col_off || xd->left_available; |
| const int x = col_off * 4; |
| const int y = row_off * 4; |
| const int bw = pd->subsampling_x ? 1 << bwl_in : VPXMAX(2, 1 << bwl_in); |
| const int bh = pd->subsampling_y ? 1 << bhl_in : VPXMAX(2, 1 << bhl_in); |
| const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); |
| const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); |
| const int wpx = 4 * bw; |
| const int hpx = 4 * bh; |
| const int txwpx = 4 * txw; |
| const int txhpx = 4 * txh; |
| // Distance between the right edge of this prediction block to |
| // the frame right edge |
| const int xr = |
| (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + (wpx - x - txwpx); |
| // Distance between the bottom edge of this prediction block to |
| // the frame bottom edge |
| const int yd = |
| (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + (hpx - y - txhpx); |
| const int right_available = |
| (mi_col + ((col_off + txw) >> (1 - pd->subsampling_x))) < |
| xd->tile.mi_col_end; |
| #if CONFIG_EXT_PARTITION_TYPES |
| const PARTITION_TYPE partition = xd->mi[0]->mbmi.partition; |
| #endif |
| const int have_right = |
| vp10_has_right(bsize, mi_row, mi_col, right_available, |
| #if CONFIG_EXT_PARTITION_TYPES |
| partition, |
| #endif |
| tx_size, row_off, col_off, pd->subsampling_x); |
| const int have_bottom = |
| vp10_has_bottom(bsize, mi_row, mi_col, yd > 0, tx_size, row_off, col_off, |
| pd->subsampling_y); |
| |
| if (xd->mi[0]->mbmi.palette_mode_info.palette_size[plane != 0] > 0) { |
| const int bs = 4 * num_4x4_blocks_wide_txsize_lookup[tx_size]; |
| const int stride = 4 * (1 << bwl_in); |
| int r, c; |
| uint8_t *map = NULL; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| uint16_t *palette = xd->mi[0]->mbmi.palette_mode_info.palette_colors + |
| plane * PALETTE_MAX_SIZE; |
| #else |
| uint8_t *palette = xd->mi[0]->mbmi.palette_mode_info.palette_colors + |
| plane * PALETTE_MAX_SIZE; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| map = xd->plane[plane != 0].color_index_map; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| for (r = 0; r < bs; ++r) |
| for (c = 0; c < bs; ++c) |
| dst16[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]]; |
| } else { |
| for (r = 0; r < bs; ++r) |
| for (c = 0; c < bs; ++c) |
| dst[r * dst_stride + c] = |
| (uint8_t)(palette[map[(r + y) * stride + c + x]]); |
| } |
| #else |
| for (r = 0; r < bs; ++r) |
| for (c = 0; c < bs; ++c) |
| dst[r * dst_stride + c] = palette[map[(r + y) * stride + c + x]]; |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| return; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| build_intra_predictors_high( |
| xd, ref, ref_stride, dst, dst_stride, mode, tx_size, |
| have_top ? VPXMIN(txwpx, xr + txwpx) : 0, |
| have_top && have_right ? VPXMIN(txwpx, xr) : 0, |
| have_left ? VPXMIN(txhpx, yd + txhpx) : 0, |
| have_bottom && have_left ? VPXMIN(txhpx, yd) : 0, plane); |
| return; |
| } |
| #endif |
| build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size, |
| have_top ? VPXMIN(txwpx, xr + txwpx) : 0, |
| have_top && have_right ? VPXMIN(txwpx, xr) : 0, |
| have_left ? VPXMIN(txhpx, yd + txhpx) : 0, |
| have_bottom && have_left ? VPXMIN(txhpx, yd) : 0, |
| plane); |
| } |
| |
| void vp10_init_intra_predictors(void) { |
| once(vp10_init_intra_predictors_internal); |
| } |