blob: e72db2d1c57f94f2c399796ffb965f407063114e [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vp10_rtcd.h"
#include "./vpx_config.h"
#include "./vpx_dsp_rtcd.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/vpx_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/quantize.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/tokenize.h"
void vp10_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize];
#if CONFIG_VP9_HIGHBITDEPTH
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
p->src.stride, pd->dst.buf, pd->dst.stride,
x->e_mbd.bd);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
typedef struct vp10_token_state {
int rate;
int64_t error;
int next;
int16_t token;
tran_low_t qc;
tran_low_t dqc;
} vp10_token_state;
// These numbers are empirically obtained.
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
{ 10, 6 }, { 8, 5 },
};
#define UPDATE_RD_COST() \
{ \
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \
}
int vp10_optimize_b(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size,
int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
vp10_token_state tokens[MAX_TX_SQUARE + 1][2];
unsigned best_index[MAX_TX_SQUARE + 1][2];
uint8_t token_cache[MAX_TX_SQUARE];
const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE type = pd->plane_type;
const int default_eob = get_tx2d_size(tx_size);
const int16_t *const dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
TX_TYPE tx_type = get_tx_type(type, xd, block, tx_size);
const scan_order *const so =
get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
const int16_t *const scan = so->scan;
const int16_t *const nb = so->neighbors;
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
#endif
const int shift = get_tx_scale(xd, tx_type, tx_size);
#if CONFIG_NEW_QUANT
int dq = get_dq_profile_from_ctx(ctx);
const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
#else
const int dq_step[2] = { dequant_ptr[0] >> shift, dequant_ptr[1] >> shift };
#endif // CONFIG_NEW_QUANT
int next = eob, sz = 0;
const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][type]) >> 1;
const int64_t rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int rate0, rate1;
int64_t error0, error1;
int16_t t0, t1;
int best, band = (eob < default_eob) ? band_translate[eob]
: band_translate[eob - 1];
int pt, i, final_eob;
#if CONFIG_VP9_HIGHBITDEPTH
const int *cat6_high_cost = vp10_get_high_cost_table(xd->bd);
#else
const int *cat6_high_cost = vp10_get_high_cost_table(8);
#endif
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
mb->token_costs[txsize_sqr_map[tx_size]][type][ref];
const uint16_t *band_counts = &band_count_table[tx_size][band];
uint16_t band_left = eob - band_cum_count_table[tx_size][band] + 1;
int shortcut = 0;
int next_shortcut = 0;
token_costs += band;
assert((!type && !plane) || (type && plane));
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][1] = tokens[eob][0];
for (i = 0; i < eob; i++) {
const int rc = scan[i];
tokens[i][0].rate = vp10_get_token_cost(qcoeff[rc], &t0, cat6_high_cost);
tokens[i][0].token = t0;
token_cache[rc] = vp10_pt_energy_class[t0];
}
for (i = eob; i-- > 0;) {
int base_bits, dx;
int64_t d2;
const int rc = scan[i];
#if CONFIG_AOM_QM
int iwt = iqmatrix[rc];
#endif
int x = qcoeff[rc];
next_shortcut = shortcut;
/* Only add a trellis state for non-zero coefficients. */
if (UNLIKELY(x)) {
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if (next_shortcut) {
/* Consider both possible successor states. */
if (next < default_eob) {
pt = get_coef_context(nb, token_cache, i + 1);
rate0 += (*token_costs)[0][pt][tokens[next][0].token];
rate1 += (*token_costs)[0][pt][tokens[next][1].token];
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
} else {
if (next < default_eob) {
pt = get_coef_context(nb, token_cache, i + 1);
rate0 += (*token_costs)[0][pt][tokens[next][0].token];
}
best = 0;
}
dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
d2 = (int64_t)dx * dx;
tokens[i][0].rate += (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].qc = x;
tokens[i][0].dqc = dqcoeff[rc];
best_index[i][0] = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
// The threshold of 3 is empirically obtained.
if (UNLIKELY(abs(x) > 3)) {
shortcut = 0;
} else {
#if CONFIG_NEW_QUANT
shortcut = ((vp10_dequant_abscoeff_nuq(abs(x), dequant_ptr[rc != 0],
dequant_val[band_translate[i]]) >
(abs(coeff[rc]) << shift)) &&
(vp10_dequant_abscoeff_nuq(abs(x) - 1, dequant_ptr[rc != 0],
dequant_val[band_translate[i]]) <
(abs(coeff[rc]) << shift)));
#else // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
if ((abs(x) * dequant_ptr[rc != 0] * iwt >
((abs(coeff[rc]) << shift) << AOM_QM_BITS)) &&
(abs(x) * dequant_ptr[rc != 0] * iwt <
(((abs(coeff[rc]) << shift) + dequant_ptr[rc != 0])
<< AOM_QM_BITS)))
#else
if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) &&
(abs(x) * dequant_ptr[rc != 0] <
(abs(coeff[rc]) << shift) + dequant_ptr[rc != 0]))
#endif // CONFIG_AOM_QM
shortcut = 1;
else
shortcut = 0;
#endif // CONFIG_NEW_QUANT
}
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
} else {
tokens[i][1] = tokens[i][0];
best_index[i][1] = best_index[i][0];
next = i;
if (UNLIKELY(!(--band_left))) {
--band_counts;
band_left = *band_counts;
--token_costs;
}
continue;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
base_bits = 0;
} else {
base_bits = vp10_get_token_cost(x, &t0, cat6_high_cost);
t1 = t0;
}
if (next_shortcut) {
if (LIKELY(next < default_eob)) {
if (t0 != EOB_TOKEN) {
token_cache[rc] = vp10_pt_energy_class[t0];
pt = get_coef_context(nb, token_cache, i + 1);
rate0 += (*token_costs)[!x][pt][tokens[next][0].token];
}
if (t1 != EOB_TOKEN) {
token_cache[rc] = vp10_pt_energy_class[t1];
pt = get_coef_context(nb, token_cache, i + 1);
rate1 += (*token_costs)[!x][pt][tokens[next][1].token];
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
} else {
// The two states in next stage are identical.
if (next < default_eob && t0 != EOB_TOKEN) {
token_cache[rc] = vp10_pt_energy_class[t0];
pt = get_coef_context(nb, token_cache, i + 1);
rate0 += (*token_costs)[!x][pt][tokens[next][0].token];
}
best = 0;
}
#if CONFIG_NEW_QUANT
dx = vp10_dequant_coeff_nuq(x, dequant_ptr[rc != 0],
dequant_val[band_translate[i]]) -
(coeff[rc] << shift);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
#else // CONFIG_NEW_QUANT
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
}
#else
dx -= (dequant_ptr[rc != 0] + sz) ^ sz;
#endif // CONFIG_VP9_HIGHBITDEPTH
#endif // CONFIG_NEW_QUANT
d2 = (int64_t)dx * dx;
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
if (x) {
#if CONFIG_NEW_QUANT
tokens[i][1].dqc = vp10_dequant_abscoeff_nuq(
abs(x), dequant_ptr[rc != 0], dequant_val[band_translate[i]]);
tokens[i][1].dqc = shift ? ROUND_POWER_OF_TWO(tokens[i][1].dqc, shift)
: tokens[i][1].dqc;
if (sz) tokens[i][1].dqc = -tokens[i][1].dqc;
#else
tran_low_t offset = dq_step[rc != 0];
// The 32x32 transform coefficient uses half quantization step size.
// Account for the rounding difference in the dequantized coefficeint
// value when the quantization index is dropped from an even number
// to an odd number.
if (shift & x) offset += (dequant_ptr[rc != 0] & 0x01);
if (sz == 0)
tokens[i][1].dqc = dqcoeff[rc] - offset;
else
tokens[i][1].dqc = dqcoeff[rc] + offset;
#endif // CONFIG_NEW_QUANT
} else {
tokens[i][1].dqc = 0;
}
best_index[i][1] = best;
/* Finally, make this the new head of the trellis. */
next = i;
} else {
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
pt = get_coef_context(nb, token_cache, i + 1);
/* Update the cost of each path if we're past the EOB token. */
if (t0 != EOB_TOKEN) {
tokens[next][0].rate += (*token_costs)[1][pt][t0];
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != EOB_TOKEN) {
tokens[next][1].rate += (*token_costs)[1][pt][t1];
tokens[next][1].token = ZERO_TOKEN;
}
best_index[i][0] = best_index[i][1] = 0;
shortcut = (tokens[next][0].rate != tokens[next][1].rate);
/* Don't update next, because we didn't add a new node. */
}
if (UNLIKELY(!(--band_left))) {
--band_counts;
band_left = *band_counts;
--token_costs;
}
}
/* Now pick the best path through the whole trellis. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += (*token_costs)[0][ctx][t0];
rate1 += (*token_costs)[0][ctx][t1];
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
for (i = next; i < eob; i = next) {
const int x = tokens[i][best].qc;
const int rc = scan[i];
#if CONFIG_AOM_QM
const int iwt = iqmatrix[rc];
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
#endif
if (x) final_eob = i;
qcoeff[rc] = x;
dqcoeff[rc] = tokens[i][best].dqc;
next = tokens[i][best].next;
best = best_index[i][best];
}
final_eob++;
mb->plane[plane].eobs[block] = final_eob;
assert(final_eob <= default_eob);
return final_eob;
}
#if CONFIG_VP9_HIGHBITDEPTH
typedef enum QUANT_FUNC {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_HIGHBD = 1,
QUANT_FUNC_LAST = 2
} QUANT_FUNC;
static VP10_QUANT_FACADE
quant_func_list[VP10_XFORM_QUANT_LAST][QUANT_FUNC_LAST] = {
{ vp10_quantize_fp_facade, vp10_highbd_quantize_fp_facade },
{ vp10_quantize_b_facade, vp10_highbd_quantize_b_facade },
{ vp10_quantize_dc_facade, vp10_highbd_quantize_dc_facade },
{ NULL, NULL }
};
#else
typedef enum QUANT_FUNC {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_LAST = 1
} QUANT_FUNC;
static VP10_QUANT_FACADE
quant_func_list[VP10_XFORM_QUANT_LAST][QUANT_FUNC_LAST] = {
{ vp10_quantize_fp_facade },
{ vp10_quantize_b_facade },
{ vp10_quantize_dc_facade },
{ NULL }
};
#endif
static FWD_TXFM_OPT fwd_txfm_opt_list[VP10_XFORM_QUANT_LAST] = {
FWD_TXFM_OPT_NORMAL, FWD_TXFM_OPT_NORMAL, FWD_TXFM_OPT_DC, FWD_TXFM_OPT_NORMAL
};
void vp10_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
VP10_XFORM_QUANT xform_quant_idx) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const scan_order *const scan_order =
get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
int is_intra = !is_inter_block(&xd->mi[0]->mbmi);
const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][is_intra][tx_size];
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][is_intra][tx_size];
#endif
const int16_t *src_diff;
const int tx2d_size = get_tx2d_size(tx_size);
FWD_TXFM_PARAM fwd_txfm_param;
QUANT_PARAM qparam;
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[xform_quant_idx];
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
qparam.log_scale = get_tx_scale(xd, tx_type, tx_size);
#if CONFIG_VP9_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (xform_quant_idx != VP10_XFORM_QUANT_SKIP_QUANT) {
if (LIKELY(!x->skip_block)) {
quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD](
coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam
#if CONFIG_AOM_QM
,
qmatrix, iqmatrix
#endif // CONFIG_AOM_QM
);
} else {
vp10_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
}
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (xform_quant_idx != VP10_XFORM_QUANT_SKIP_QUANT) {
if (LIKELY(!x->skip_block)) {
quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD](
coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam
#if CONFIG_AOM_QM
,
qmatrix, iqmatrix
#endif // CONFIG_AOM_QM
);
} else {
vp10_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
}
}
}
#if CONFIG_NEW_QUANT
void vp10_xform_quant_nuq(MACROBLOCK *x, int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
int ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const scan_order *const scan_order =
get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
int dq = get_dq_profile_from_ctx(ctx);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
const uint8_t *band = get_band_translate(tx_size);
FWD_TXFM_PARAM fwd_txfm_param;
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[VP10_XFORM_QUANT_FP];
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
// TODO(sarahparker) add all of these new quant quantize functions
// to quant_func_list, just trying to get this expr to work for now
#if CONFIG_VP9_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (tx_size == TX_32X32) {
highbd_quantize_32x32_nuq(
coeff, get_tx2d_size(tx_size), x->skip_block, p->quant,
p->quant_shift, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
} else {
highbd_quantize_nuq(coeff, get_tx2d_size(tx_size), x->skip_block,
p->quant, p->quant_shift, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq],
qcoeff, dqcoeff, eob, scan_order->scan, band);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (tx_size == TX_32X32) {
quantize_32x32_nuq(coeff, 1024, x->skip_block, p->quant, p->quant_shift,
pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq],
qcoeff, dqcoeff, eob, scan_order->scan, band);
} else {
quantize_nuq(coeff, get_tx2d_size(tx_size), x->skip_block, p->quant,
p->quant_shift, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
}
}
void vp10_xform_quant_fp_nuq(MACROBLOCK *x, int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
int dq = get_dq_profile_from_ctx(ctx);
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const scan_order *const scan_order =
get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
const uint8_t *band = get_band_translate(tx_size);
FWD_TXFM_PARAM fwd_txfm_param;
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[VP10_XFORM_QUANT_FP];
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
// TODO(sarahparker) add all of these new quant quantize functions
// to quant_func_list, just trying to get this expr to work for now
#if CONFIG_VP9_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (tx_size == TX_32X32) {
highbd_quantize_32x32_fp_nuq(
coeff, get_tx2d_size(tx_size), x->skip_block, p->quant_fp,
pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
} else {
highbd_quantize_fp_nuq(
coeff, get_tx2d_size(tx_size), x->skip_block, p->quant_fp,
pd->dequant, (const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq], qcoeff,
dqcoeff, eob, scan_order->scan, band);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (tx_size == TX_32X32) {
quantize_32x32_fp_nuq(coeff, get_tx2d_size(tx_size), x->skip_block,
p->quant_fp, pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq],
qcoeff, dqcoeff, eob, scan_order->scan, band);
} else {
quantize_fp_nuq(coeff, get_tx2d_size(tx_size), x->skip_block, p->quant_fp,
pd->dequant,
(const cuml_bins_type_nuq *)p->cuml_bins_nuq[dq],
(const dequant_val_type_nuq *)pd->dequant_val_nuq[dq],
qcoeff, dqcoeff, eob, scan_order->scan, band);
}
}
void vp10_xform_quant_dc_nuq(MACROBLOCK *x, int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
int dq = get_dq_profile_from_ctx(ctx);
FWD_TXFM_PARAM fwd_txfm_param;
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[VP10_XFORM_QUANT_DC];
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
// TODO(sarahparker) add all of these new quant quantize functions
// to quant_func_list, just trying to get this expr to work for now
#if CONFIG_VP9_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (tx_size == TX_32X32) {
highbd_quantize_dc_32x32_nuq(
coeff, get_tx2d_size(tx_size), x->skip_block, p->quant[0],
p->quant_shift[0], pd->dequant[0], p->cuml_bins_nuq[dq][0],
pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob);
} else {
highbd_quantize_dc_nuq(coeff, get_tx2d_size(tx_size), x->skip_block,
p->quant[0], p->quant_shift[0], pd->dequant[0],
p->cuml_bins_nuq[dq][0],
pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (tx_size == TX_32X32) {
quantize_dc_32x32_nuq(coeff, get_tx2d_size(tx_size), x->skip_block,
p->quant[0], p->quant_shift[0], pd->dequant[0],
p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
} else {
quantize_dc_nuq(coeff, get_tx2d_size(tx_size), x->skip_block, p->quant[0],
p->quant_shift[0], pd->dequant[0], p->cuml_bins_nuq[dq][0],
pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob);
}
}
void vp10_xform_quant_dc_fp_nuq(MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
int ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize];
const int16_t *src_diff;
int dq = get_dq_profile_from_ctx(ctx);
FWD_TXFM_PARAM fwd_txfm_param;
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[VP10_XFORM_QUANT_DC];
fwd_txfm_param.rd_transform = x->use_lp32x32fdct;
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
// TODO(sarahparker) add all of these new quant quantize functions
// to quant_func_list, just trying to get this expr to work for now
#if CONFIG_VP9_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (tx_size == TX_32X32) {
highbd_quantize_dc_32x32_fp_nuq(
coeff, get_tx2d_size(tx_size), x->skip_block, p->quant_fp[0],
pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
} else {
highbd_quantize_dc_fp_nuq(
coeff, get_tx2d_size(tx_size), x->skip_block, p->quant_fp[0],
pd->dequant[0], p->cuml_bins_nuq[dq][0], pd->dequant_val_nuq[dq][0],
qcoeff, dqcoeff, eob);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (tx_size == TX_32X32) {
quantize_dc_32x32_fp_nuq(coeff, get_tx2d_size(tx_size), x->skip_block,
p->quant_fp[0], pd->dequant[0],
p->cuml_bins_nuq[dq][0],
pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob);
} else {
quantize_dc_fp_nuq(coeff, get_tx2d_size(tx_size), x->skip_block,
p->quant_fp[0], pd->dequant[0], p->cuml_bins_nuq[dq][0],
pd->dequant_val_nuq[dq][0], qcoeff, dqcoeff, eob);
}
}
#endif // CONFIG_NEW_QUANT
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
int ctx;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
INV_TXFM_PARAM inv_txfm_param;
#if CONFIG_VAR_TX
int i;
const int bwl = b_width_log2_lookup[plane_bsize];
#endif
dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
a = &args->ta[blk_col];
l = &args->tl[blk_row];
#if CONFIG_VAR_TX
ctx = get_entropy_context(tx_size, a, l);
#else
ctx = combine_entropy_contexts(*a, *l);
#endif
#if CONFIG_VAR_TX
// Assert not magic number (uninitialised).
assert(x->blk_skip[plane][(blk_row << bwl) + blk_col] != 234);
if (x->blk_skip[plane][(blk_row << bwl) + blk_col] == 0) {
#else
{
#endif
#if CONFIG_NEW_QUANT
vp10_xform_quant_fp_nuq(x, plane, block, blk_row, blk_col, plane_bsize,
tx_size, ctx);
#else
vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
VP10_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
}
#if CONFIG_VAR_TX
else {
p->eobs[block] = 0;
}
#endif
if (p->eobs[block]) {
*a = *l = vp10_optimize_b(x, plane, block, tx_size, ctx) > 0;
} else {
*a = *l = p->eobs[block] > 0;
}
#if CONFIG_VAR_TX
for (i = 0; i < num_4x4_blocks_wide_txsize_lookup[tx_size]; ++i) {
a[i] = a[0];
}
for (i = 0; i < num_4x4_blocks_high_txsize_lookup[tx_size]; ++i) {
l[i] = l[0];
}
#endif
if (p->eobs[block]) *(args->skip) = 0;
if (p->eobs[block] == 0) return;
// inverse transform parameters
inv_txfm_param.tx_type = get_tx_type(pd->plane_type, xd, block, tx_size);
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = p->eobs[block];
inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
inv_txfm_param.bd = xd->bd;
highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &inv_txfm_param);
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
inv_txfm_add(dqcoeff, dst, pd->dst.stride, &inv_txfm_param);
}
#if CONFIG_VAR_TX
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
TX_SIZE plane_tx_size;
int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize];
int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize];
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y);
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
plane_tx_size = plane ? get_uv_tx_size_impl(
mbmi->inter_tx_size[tx_row][tx_col], bsize, 0, 0)
: mbmi->inter_tx_size[tx_row][tx_col];
if (tx_size == plane_tx_size) {
encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg);
} else {
int bsl = b_width_log2_lookup[bsize];
int i;
assert(bsl > 0);
--bsl;
#if CONFIG_EXT_TX
assert(tx_size < TX_SIZES);
#endif // CONFIG_EXT_TX
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + ((i >> 1) << bsl);
const int offsetc = blk_col + ((i & 0x01) << bsl);
int step = num_4x4_blocks_txsize_lookup[tx_size - 1];
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
encode_block_inter(plane, block + i * step, offsetr, offsetc, plane_bsize,
tx_size - 1, arg);
}
}
}
#endif
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
MACROBLOCK *const x = (MACROBLOCK *)arg;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
#if CONFIG_NEW_QUANT
int ctx;
#endif // CONFIG_NEW_QUANT
dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
#if CONFIG_NEW_QUANT
ctx = 0;
vp10_xform_quant_fp_nuq(x, plane, block, blk_row, blk_col, plane_bsize,
tx_size, ctx);
#else
vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
VP10_XFORM_QUANT_B);
#endif // CONFIG_NEW_QUANT
if (p->eobs[block] > 0) {
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
vp10_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
xd->bd);
} else {
vp10_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
xd->bd);
}
return;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
vp10_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
} else {
vp10_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
}
}
void vp10_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) {
vp10_subtract_plane(x, bsize, 0);
vp10_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, x);
}
void vp10_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_VAR_TX
// TODO(jingning): Clean this up.
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bh = num_4x4_blocks_wide_lookup[txb_size];
int idx, idy;
int block = 0;
int step = num_4x4_blocks_txsize_lookup[max_tx_size];
#if CONFIG_EXT_TX && CONFIG_RECT_TX
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
#endif
vp10_get_entropy_contexts(bsize, TX_4X4, pd, ctx.ta[plane], ctx.tl[plane]);
#else
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
vp10_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
#endif
vp10_subtract_plane(x, bsize, plane);
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
#if CONFIG_VAR_TX
#if CONFIG_EXT_TX && CONFIG_RECT_TX
if (tx_size >= TX_SIZES) {
vp10_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
} else {
#endif
for (idy = 0; idy < mi_height; idy += bh) {
for (idx = 0; idx < mi_width; idx += bh) {
encode_block_inter(plane, block, idy, idx, plane_bsize, max_tx_size,
&arg);
block += step;
}
}
#if CONFIG_EXT_TX && CONFIG_RECT_TX
}
#endif
#else
vp10_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
#endif
}
}
#if CONFIG_SUPERTX
void vp10_encode_sb_supertx(MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_VAR_TX
const TX_SIZE tx_size = TX_4X4;
#else
const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size;
#endif
vp10_subtract_plane(x, bsize, plane);
vp10_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
vp10_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
}
}
#endif // CONFIG_SUPERTX
void vp10_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
PREDICTION_MODE mode;
const int bwl = b_width_log2_lookup[plane_bsize];
const int bhl = b_height_log2_lookup[plane_bsize];
const int diff_stride = 4 * (1 << bwl);
uint8_t *src, *dst;
int16_t *src_diff;
uint16_t *eob = &p->eobs[block];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = num_4x4_blocks_wide_txsize_lookup[tx_size] << 2;
const int tx1d_height = num_4x4_blocks_high_txsize_lookup[tx_size] << 2;
ENTROPY_CONTEXT *a = NULL, *l = NULL;
int ctx;
INV_TXFM_PARAM inv_txfm_param;
assert(tx1d_width == tx1d_height);
dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode;
vp10_predict_intra_block(xd, bwl, bhl, tx_size, mode, dst, dst_stride, dst,
dst_stride, blk_col, blk_row, plane);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
vpx_highbd_subtract_block(tx1d_height, tx1d_width, src_diff, diff_stride,
src, src_stride, dst, dst_stride, xd->bd);
} else {
vpx_subtract_block(tx1d_height, tx1d_width, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
}
#else
vpx_subtract_block(tx1d_height, tx1d_width, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
#endif // CONFIG_VP9_HIGHBITDEPTH
a = &args->ta[blk_col];
l = &args->tl[blk_row];
ctx = combine_entropy_contexts(*a, *l);
if (args->enable_optimize_b) {
#if CONFIG_NEW_QUANT
vp10_xform_quant_fp_nuq(x, plane, block, blk_row, blk_col, plane_bsize,
tx_size, ctx);
#else // CONFIG_NEW_QUANT
vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
VP10_XFORM_QUANT_FP);
#endif // CONFIG_NEW_QUANT
if (p->eobs[block]) {
*a = *l = vp10_optimize_b(x, plane, block, tx_size, ctx) > 0;
} else {
*a = *l = 0;
}
} else {
vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
VP10_XFORM_QUANT_B);
*a = *l = p->eobs[block] > 0;
}
if (*eob) {
// inverse transform
inv_txfm_param.tx_type = tx_type;
inv_txfm_param.tx_size = tx_size;
inv_txfm_param.eob = *eob;
inv_txfm_param.lossless = xd->lossless[mbmi->segment_id];
#if CONFIG_VP9_HIGHBITDEPTH
inv_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
highbd_inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param);
} else {
inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param);
}
#else
inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param);
#endif // CONFIG_VP9_HIGHBITDEPTH
*(args->skip) = 0;
}
}
void vp10_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane,
int enable_optimize_b) {
const MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE];
ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE];
struct encode_b_args arg = { x, NULL, &xd->mi[0]->mbmi.skip,
ta, tl, enable_optimize_b };
if (enable_optimize_b) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size =
plane ? get_uv_tx_size(&xd->mi[0]->mbmi, pd) : xd->mi[0]->mbmi.tx_size;
vp10_get_entropy_contexts(bsize, tx_size, pd, ta, tl);
}
vp10_foreach_transformed_block_in_plane(xd, bsize, plane,
vp10_encode_block_intra, &arg);
}