| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "./vpx_dsp_rtcd.h" |
| #include "./vpx_scale_rtcd.h" |
| |
| #include "aom_dsp/vpx_dsp_common.h" |
| #include "aom_mem/vpx_mem.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| #include "aom_scale/vpx_scale.h" |
| #include "aom_scale/yv12config.h" |
| |
| #include "av1/common/entropymv.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconinter.h" // vp10_setup_dst_planes() |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/block.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/extend.h" |
| #include "av1/encoder/firstpass.h" |
| #include "av1/encoder/mcomp.h" |
| #include "av1/encoder/quantize.h" |
| #include "av1/encoder/rd.h" |
| #include "aom_dsp/variance.h" |
| |
| #define OUTPUT_FPF 0 |
| #define ARF_STATS_OUTPUT 0 |
| |
| #define GROUP_ADAPTIVE_MAXQ 1 |
| |
| #define BOOST_BREAKOUT 12.5 |
| #define BOOST_FACTOR 12.5 |
| #define FACTOR_PT_LOW 0.70 |
| #define FACTOR_PT_HIGH 0.90 |
| #define FIRST_PASS_Q 10.0 |
| #define GF_MAX_BOOST 96.0 |
| #define INTRA_MODE_PENALTY 1024 |
| #define KF_MAX_BOOST 128.0 |
| #define MIN_ARF_GF_BOOST 240 |
| #define MIN_DECAY_FACTOR 0.01 |
| #define MIN_KF_BOOST 300 |
| #define NEW_MV_MODE_PENALTY 32 |
| #define DARK_THRESH 64 |
| #define DEFAULT_GRP_WEIGHT 1.0 |
| #define RC_FACTOR_MIN 0.75 |
| #define RC_FACTOR_MAX 1.75 |
| |
| #define NCOUNT_INTRA_THRESH 8192 |
| #define NCOUNT_INTRA_FACTOR 3 |
| #define NCOUNT_FRAME_II_THRESH 5.0 |
| |
| #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001) |
| |
| #if ARF_STATS_OUTPUT |
| unsigned int arf_count = 0; |
| #endif |
| |
| // Resets the first pass file to the given position using a relative seek from |
| // the current position. |
| static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) { |
| p->stats_in = position; |
| } |
| |
| // Read frame stats at an offset from the current position. |
| static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) { |
| if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) || |
| (offset < 0 && p->stats_in + offset < p->stats_in_start)) { |
| return NULL; |
| } |
| |
| return &p->stats_in[offset]; |
| } |
| |
| static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) { |
| if (p->stats_in >= p->stats_in_end) return EOF; |
| |
| *fps = *p->stats_in; |
| ++p->stats_in; |
| return 1; |
| } |
| |
| static void output_stats(FIRSTPASS_STATS *stats, |
| struct vpx_codec_pkt_list *pktlist) { |
| struct vpx_codec_cx_pkt pkt; |
| pkt.kind = VPX_CODEC_STATS_PKT; |
| pkt.data.twopass_stats.buf = stats; |
| pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); |
| vpx_codec_pkt_list_add(pktlist, &pkt); |
| |
| // TEMP debug code |
| #if OUTPUT_FPF |
| { |
| FILE *fpfile; |
| fpfile = fopen("firstpass.stt", "a"); |
| |
| fprintf(fpfile, |
| "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf" |
| "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf" |
| "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf\n", |
| stats->frame, stats->weight, stats->intra_error, stats->coded_error, |
| stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion, |
| stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct, |
| stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr, |
| stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, |
| stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, |
| stats->count, stats->duration); |
| fclose(fpfile); |
| } |
| #endif |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP10_COMMON *cm, |
| struct vpx_codec_pkt_list *pktlist) { |
| struct vpx_codec_cx_pkt pkt; |
| pkt.kind = VPX_CODEC_FPMB_STATS_PKT; |
| pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats; |
| pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t); |
| vpx_codec_pkt_list_add(pktlist, &pkt); |
| } |
| #endif |
| |
| static void zero_stats(FIRSTPASS_STATS *section) { |
| section->frame = 0.0; |
| section->weight = 0.0; |
| section->intra_error = 0.0; |
| section->coded_error = 0.0; |
| section->sr_coded_error = 0.0; |
| section->pcnt_inter = 0.0; |
| section->pcnt_motion = 0.0; |
| section->pcnt_second_ref = 0.0; |
| section->pcnt_neutral = 0.0; |
| section->intra_skip_pct = 0.0; |
| section->inactive_zone_rows = 0.0; |
| section->inactive_zone_cols = 0.0; |
| section->MVr = 0.0; |
| section->mvr_abs = 0.0; |
| section->MVc = 0.0; |
| section->mvc_abs = 0.0; |
| section->MVrv = 0.0; |
| section->MVcv = 0.0; |
| section->mv_in_out_count = 0.0; |
| section->new_mv_count = 0.0; |
| section->count = 0.0; |
| section->duration = 1.0; |
| } |
| |
| static void accumulate_stats(FIRSTPASS_STATS *section, |
| const FIRSTPASS_STATS *frame) { |
| section->frame += frame->frame; |
| section->weight += frame->weight; |
| section->intra_error += frame->intra_error; |
| section->coded_error += frame->coded_error; |
| section->sr_coded_error += frame->sr_coded_error; |
| section->pcnt_inter += frame->pcnt_inter; |
| section->pcnt_motion += frame->pcnt_motion; |
| section->pcnt_second_ref += frame->pcnt_second_ref; |
| section->pcnt_neutral += frame->pcnt_neutral; |
| section->intra_skip_pct += frame->intra_skip_pct; |
| section->inactive_zone_rows += frame->inactive_zone_rows; |
| section->inactive_zone_cols += frame->inactive_zone_cols; |
| section->MVr += frame->MVr; |
| section->mvr_abs += frame->mvr_abs; |
| section->MVc += frame->MVc; |
| section->mvc_abs += frame->mvc_abs; |
| section->MVrv += frame->MVrv; |
| section->MVcv += frame->MVcv; |
| section->mv_in_out_count += frame->mv_in_out_count; |
| section->new_mv_count += frame->new_mv_count; |
| section->count += frame->count; |
| section->duration += frame->duration; |
| } |
| |
| static void subtract_stats(FIRSTPASS_STATS *section, |
| const FIRSTPASS_STATS *frame) { |
| section->frame -= frame->frame; |
| section->weight -= frame->weight; |
| section->intra_error -= frame->intra_error; |
| section->coded_error -= frame->coded_error; |
| section->sr_coded_error -= frame->sr_coded_error; |
| section->pcnt_inter -= frame->pcnt_inter; |
| section->pcnt_motion -= frame->pcnt_motion; |
| section->pcnt_second_ref -= frame->pcnt_second_ref; |
| section->pcnt_neutral -= frame->pcnt_neutral; |
| section->intra_skip_pct -= frame->intra_skip_pct; |
| section->inactive_zone_rows -= frame->inactive_zone_rows; |
| section->inactive_zone_cols -= frame->inactive_zone_cols; |
| section->MVr -= frame->MVr; |
| section->mvr_abs -= frame->mvr_abs; |
| section->MVc -= frame->MVc; |
| section->mvc_abs -= frame->mvc_abs; |
| section->MVrv -= frame->MVrv; |
| section->MVcv -= frame->MVcv; |
| section->mv_in_out_count -= frame->mv_in_out_count; |
| section->new_mv_count -= frame->new_mv_count; |
| section->count -= frame->count; |
| section->duration -= frame->duration; |
| } |
| |
| // Calculate the linear size relative to a baseline of 1080P |
| #define BASE_SIZE 2073600.0 // 1920x1080 |
| static double get_linear_size_factor(const VP10_COMP *cpi) { |
| const double this_area = cpi->initial_width * cpi->initial_height; |
| return pow(this_area / BASE_SIZE, 0.5); |
| } |
| |
| // Calculate an active area of the image that discounts formatting |
| // bars and partially discounts other 0 energy areas. |
| #define MIN_ACTIVE_AREA 0.5 |
| #define MAX_ACTIVE_AREA 1.0 |
| static double calculate_active_area(const VP10_COMP *cpi, |
| const FIRSTPASS_STATS *this_frame) { |
| double active_pct; |
| |
| active_pct = |
| 1.0 - |
| ((this_frame->intra_skip_pct / 2) + |
| ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows)); |
| return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); |
| } |
| |
| // Calculate a modified Error used in distributing bits between easier and |
| // harder frames. |
| #define ACT_AREA_CORRECTION 0.5 |
| static double calculate_modified_err(const VP10_COMP *cpi, |
| const TWO_PASS *twopass, |
| const VP10EncoderConfig *oxcf, |
| const FIRSTPASS_STATS *this_frame) { |
| const FIRSTPASS_STATS *const stats = &twopass->total_stats; |
| const double av_weight = stats->weight / stats->count; |
| const double av_err = (stats->coded_error * av_weight) / stats->count; |
| double modified_error = |
| av_err * pow(this_frame->coded_error * this_frame->weight / |
| DOUBLE_DIVIDE_CHECK(av_err), |
| oxcf->two_pass_vbrbias / 100.0); |
| |
| // Correction for active area. Frames with a reduced active area |
| // (eg due to formatting bars) have a higher error per mb for the |
| // remaining active MBs. The correction here assumes that coding |
| // 0.5N blocks of complexity 2X is a little easier than coding N |
| // blocks of complexity X. |
| modified_error *= |
| pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION); |
| |
| return fclamp(modified_error, twopass->modified_error_min, |
| twopass->modified_error_max); |
| } |
| |
| // This function returns the maximum target rate per frame. |
| static int frame_max_bits(const RATE_CONTROL *rc, |
| const VP10EncoderConfig *oxcf) { |
| int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * |
| (int64_t)oxcf->two_pass_vbrmax_section) / |
| 100; |
| if (max_bits < 0) |
| max_bits = 0; |
| else if (max_bits > rc->max_frame_bandwidth) |
| max_bits = rc->max_frame_bandwidth; |
| |
| return (int)max_bits; |
| } |
| |
| void vp10_init_first_pass(VP10_COMP *cpi) { |
| zero_stats(&cpi->twopass.total_stats); |
| } |
| |
| void vp10_end_first_pass(VP10_COMP *cpi) { |
| output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list); |
| } |
| |
| static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { |
| switch (bsize) { |
| case BLOCK_8X8: return vpx_mse8x8; |
| case BLOCK_16X8: return vpx_mse16x8; |
| case BLOCK_8X16: return vpx_mse8x16; |
| default: return vpx_mse16x16; |
| } |
| } |
| |
| static unsigned int get_prediction_error(BLOCK_SIZE bsize, |
| const struct buf_2d *src, |
| const struct buf_2d *ref) { |
| unsigned int sse; |
| const vpx_variance_fn_t fn = get_block_variance_fn(bsize); |
| fn(src->buf, src->stride, ref->buf, ref->stride, &sse); |
| return sse; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize, |
| int bd) { |
| switch (bd) { |
| default: |
| switch (bsize) { |
| case BLOCK_8X8: return vpx_highbd_8_mse8x8; |
| case BLOCK_16X8: return vpx_highbd_8_mse16x8; |
| case BLOCK_8X16: return vpx_highbd_8_mse8x16; |
| default: return vpx_highbd_8_mse16x16; |
| } |
| break; |
| case 10: |
| switch (bsize) { |
| case BLOCK_8X8: return vpx_highbd_10_mse8x8; |
| case BLOCK_16X8: return vpx_highbd_10_mse16x8; |
| case BLOCK_8X16: return vpx_highbd_10_mse8x16; |
| default: return vpx_highbd_10_mse16x16; |
| } |
| break; |
| case 12: |
| switch (bsize) { |
| case BLOCK_8X8: return vpx_highbd_12_mse8x8; |
| case BLOCK_16X8: return vpx_highbd_12_mse16x8; |
| case BLOCK_8X16: return vpx_highbd_12_mse8x16; |
| default: return vpx_highbd_12_mse16x16; |
| } |
| break; |
| } |
| } |
| |
| static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize, |
| const struct buf_2d *src, |
| const struct buf_2d *ref, |
| int bd) { |
| unsigned int sse; |
| const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd); |
| fn(src->buf, src->stride, ref->buf, ref->stride, &sse); |
| return sse; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Refine the motion search range according to the frame dimension |
| // for first pass test. |
| static int get_search_range(const VP10_COMP *cpi) { |
| int sr = 0; |
| const int dim = VPXMIN(cpi->initial_width, cpi->initial_height); |
| |
| while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr; |
| return sr; |
| } |
| |
| static void first_pass_motion_search(VP10_COMP *cpi, MACROBLOCK *x, |
| const MV *ref_mv, MV *best_mv, |
| int *best_motion_err) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MV tmp_mv = { 0, 0 }; |
| MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 }; |
| int num00, tmp_err, n; |
| const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| vpx_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize]; |
| const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY; |
| |
| int step_param = 3; |
| int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; |
| const int sr = get_search_range(cpi); |
| step_param += sr; |
| further_steps -= sr; |
| |
| // Override the default variance function to use MSE. |
| v_fn_ptr.vf = get_block_variance_fn(bsize); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd); |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Center the initial step/diamond search on best mv. |
| tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, |
| step_param, x->sadperbit16, &num00, |
| &v_fn_ptr, ref_mv); |
| if (tmp_err < INT_MAX) |
| tmp_err = vp10_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); |
| if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) { |
| *best_motion_err = tmp_err; |
| *best_mv = tmp_mv; |
| } |
| |
| // Carry out further step/diamond searches as necessary. |
| n = num00; |
| num00 = 0; |
| |
| while (n < further_steps) { |
| ++n; |
| |
| if (num00) { |
| --num00; |
| } else { |
| tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv, |
| step_param + n, x->sadperbit16, &num00, |
| &v_fn_ptr, ref_mv); |
| if (tmp_err < INT_MAX) |
| tmp_err = vp10_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1); |
| if (tmp_err < INT_MAX - new_mv_mode_penalty) |
| tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) { |
| *best_motion_err = tmp_err; |
| *best_mv = tmp_mv; |
| } |
| } |
| } |
| } |
| |
| static BLOCK_SIZE get_bsize(const VP10_COMMON *cm, int mb_row, int mb_col) { |
| if (2 * mb_col + 1 < cm->mi_cols) { |
| return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8; |
| } else { |
| return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8; |
| } |
| } |
| |
| static int find_fp_qindex(vpx_bit_depth_t bit_depth) { |
| int i; |
| |
| for (i = 0; i < QINDEX_RANGE; ++i) |
| if (vp10_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break; |
| |
| if (i == QINDEX_RANGE) i--; |
| |
| return i; |
| } |
| |
| static void set_first_pass_params(VP10_COMP *cpi) { |
| VP10_COMMON *const cm = &cpi->common; |
| if (!cpi->refresh_alt_ref_frame && |
| (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) { |
| cm->frame_type = KEY_FRAME; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| // Do not use periodic key frames. |
| cpi->rc.frames_to_key = INT_MAX; |
| } |
| |
| #define UL_INTRA_THRESH 50 |
| #define INVALID_ROW -1 |
| void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) { |
| int mb_row, mb_col; |
| MACROBLOCK *const x = &cpi->td.mb; |
| VP10_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TileInfo tile; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const PICK_MODE_CONTEXT *ctx = |
| &cpi->td.pc_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2]->none; |
| int i; |
| |
| int recon_yoffset, recon_uvoffset; |
| int64_t intra_error = 0; |
| int64_t coded_error = 0; |
| int64_t sr_coded_error = 0; |
| |
| int sum_mvr = 0, sum_mvc = 0; |
| int sum_mvr_abs = 0, sum_mvc_abs = 0; |
| int64_t sum_mvrs = 0, sum_mvcs = 0; |
| int mvcount = 0; |
| int intercount = 0; |
| int second_ref_count = 0; |
| const int intrapenalty = INTRA_MODE_PENALTY; |
| double neutral_count; |
| int intra_skip_count = 0; |
| int image_data_start_row = INVALID_ROW; |
| int new_mv_count = 0; |
| int sum_in_vectors = 0; |
| MV lastmv = { 0, 0 }; |
| TWO_PASS *twopass = &cpi->twopass; |
| const MV zero_mv = { 0, 0 }; |
| int recon_y_stride, recon_uv_stride, uv_mb_height; |
| |
| YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); |
| YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); |
| YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); |
| const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12; |
| double intra_factor; |
| double brightness_factor; |
| BufferPool *const pool = cm->buffer_pool; |
| |
| // First pass code requires valid last and new frame buffers. |
| assert(new_yv12 != NULL); |
| assert(frame_is_intra_only(cm) || (lst_yv12 != NULL)); |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| vp10_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs); |
| } |
| #endif |
| |
| vpx_clear_system_state(); |
| |
| intra_factor = 0.0; |
| brightness_factor = 0.0; |
| neutral_count = 0.0; |
| |
| set_first_pass_params(cpi); |
| vp10_set_quantizer(cm, find_fp_qindex(cm->bit_depth)); |
| |
| vp10_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); |
| |
| vp10_setup_src_planes(x, cpi->Source, 0, 0); |
| vp10_setup_dst_planes(xd->plane, new_yv12, 0, 0); |
| |
| if (!frame_is_intra_only(cm)) { |
| vp10_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL); |
| } |
| |
| xd->mi = cm->mi_grid_visible; |
| xd->mi[0] = cm->mi; |
| |
| vp10_frame_init_quantizer(cpi); |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff[i][1]; |
| p[i].qcoeff = ctx->qcoeff[i][1]; |
| pd[i].dqcoeff = ctx->dqcoeff[i][1]; |
| p[i].eobs = ctx->eobs[i][1]; |
| } |
| |
| vp10_init_mv_probs(cm); |
| vp10_initialize_rd_consts(cpi); |
| |
| // Tiling is ignored in the first pass. |
| vp10_tile_init(&tile, cm, 0, 0); |
| |
| recon_y_stride = new_yv12->y_stride; |
| recon_uv_stride = new_yv12->uv_stride; |
| uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height); |
| |
| for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { |
| MV best_ref_mv = { 0, 0 }; |
| |
| // Reset above block coeffs. |
| xd->up_available = (mb_row != 0); |
| recon_yoffset = (mb_row * recon_y_stride * 16); |
| recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height); |
| |
| // Set up limit values for motion vectors to prevent them extending |
| // outside the UMV borders. |
| x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); |
| x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16; |
| |
| for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { |
| int this_error; |
| const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
| const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col); |
| double log_intra; |
| int level_sample; |
| |
| #if CONFIG_FP_MB_STATS |
| const int mb_index = mb_row * cm->mb_cols + mb_col; |
| #endif |
| |
| vpx_clear_system_state(); |
| |
| xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; |
| xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; |
| xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; |
| xd->left_available = (mb_col != 0); |
| xd->mi[0]->mbmi.sb_type = bsize; |
| xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME; |
| set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize], |
| mb_col << 1, num_8x8_blocks_wide_lookup[bsize], |
| cm->mi_rows, cm->mi_cols); |
| |
| // Do intra 16x16 prediction. |
| xd->mi[0]->mbmi.segment_id = 0; |
| #if CONFIG_SUPERTX |
| xd->mi[0]->mbmi.segment_id_supertx = 0; |
| #endif // CONFIG_SUPERTX |
| xd->mi[0]->mbmi.mode = DC_PRED; |
| xd->mi[0]->mbmi.tx_size = |
| use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4; |
| vp10_encode_intra_block_plane(x, bsize, 0, 0); |
| this_error = vpx_get_mb_ss(x->plane[0].src_diff); |
| |
| // Keep a record of blocks that have almost no intra error residual |
| // (i.e. are in effect completely flat and untextured in the intra |
| // domain). In natural videos this is uncommon, but it is much more |
| // common in animations, graphics and screen content, so may be used |
| // as a signal to detect these types of content. |
| if (this_error < UL_INTRA_THRESH) { |
| ++intra_skip_count; |
| } else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) { |
| image_data_start_row = mb_row; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| switch (cm->bit_depth) { |
| case VPX_BITS_8: break; |
| case VPX_BITS_10: this_error >>= 4; break; |
| case VPX_BITS_12: this_error >>= 8; break; |
| default: |
| assert(0 && |
| "cm->bit_depth should be VPX_BITS_8, " |
| "VPX_BITS_10 or VPX_BITS_12"); |
| return; |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| vpx_clear_system_state(); |
| log_intra = log(this_error + 1.0); |
| if (log_intra < 10.0) |
| intra_factor += 1.0 + ((10.0 - log_intra) * 0.05); |
| else |
| intra_factor += 1.0; |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) |
| level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0]; |
| else |
| level_sample = x->plane[0].src.buf[0]; |
| #else |
| level_sample = x->plane[0].src.buf[0]; |
| #endif |
| if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) |
| brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample)); |
| else |
| brightness_factor += 1.0; |
| |
| // Intrapenalty below deals with situations where the intra and inter |
| // error scores are very low (e.g. a plain black frame). |
| // We do not have special cases in first pass for 0,0 and nearest etc so |
| // all inter modes carry an overhead cost estimate for the mv. |
| // When the error score is very low this causes us to pick all or lots of |
| // INTRA modes and throw lots of key frames. |
| // This penalty adds a cost matching that of a 0,0 mv to the intra case. |
| this_error += intrapenalty; |
| |
| // Accumulate the intra error. |
| intra_error += (int64_t)this_error; |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| // initialization |
| cpi->twopass.frame_mb_stats_buf[mb_index] = 0; |
| } |
| #endif |
| |
| // Set up limit values for motion vectors to prevent them extending |
| // outside the UMV borders. |
| x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); |
| x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16; |
| |
| // Other than for the first frame do a motion search. |
| if (cm->current_video_frame > 0) { |
| int tmp_err, motion_error, raw_motion_error; |
| // Assume 0,0 motion with no mv overhead. |
| MV mv = { 0, 0 }, tmp_mv = { 0, 0 }; |
| struct buf_2d unscaled_last_source_buf_2d; |
| |
| xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| motion_error = highbd_get_prediction_error( |
| bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); |
| } else { |
| motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &xd->plane[0].pre[0]); |
| } |
| #else |
| motion_error = |
| get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // Compute the motion error of the 0,0 motion using the last source |
| // frame as the reference. Skip the further motion search on |
| // reconstructed frame if this error is small. |
| unscaled_last_source_buf_2d.buf = |
| cpi->unscaled_last_source->y_buffer + recon_yoffset; |
| unscaled_last_source_buf_2d.stride = |
| cpi->unscaled_last_source->y_stride; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| raw_motion_error = highbd_get_prediction_error( |
| bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd); |
| } else { |
| raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &unscaled_last_source_buf_2d); |
| } |
| #else |
| raw_motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &unscaled_last_source_buf_2d); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // TODO(pengchong): Replace the hard-coded threshold |
| if (raw_motion_error > 25) { |
| // Test last reference frame using the previous best mv as the |
| // starting point (best reference) for the search. |
| first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error); |
| |
| // If the current best reference mv is not centered on 0,0 then do a |
| // 0,0 based search as well. |
| if (!is_zero_mv(&best_ref_mv)) { |
| tmp_err = INT_MAX; |
| first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err); |
| |
| if (tmp_err < motion_error) { |
| motion_error = tmp_err; |
| mv = tmp_mv; |
| } |
| } |
| |
| // Search in an older reference frame. |
| if ((cm->current_video_frame > 1) && gld_yv12 != NULL) { |
| // Assume 0,0 motion with no mv overhead. |
| int gf_motion_error; |
| |
| xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset; |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| gf_motion_error = highbd_get_prediction_error( |
| bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd); |
| } else { |
| gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &xd->plane[0].pre[0]); |
| } |
| #else |
| gf_motion_error = get_prediction_error(bsize, &x->plane[0].src, |
| &xd->plane[0].pre[0]); |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, |
| &gf_motion_error); |
| |
| if (gf_motion_error < motion_error && gf_motion_error < this_error) |
| ++second_ref_count; |
| |
| // Reset to last frame as reference buffer. |
| xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset; |
| xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset; |
| xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset; |
| |
| // In accumulating a score for the older reference frame take the |
| // best of the motion predicted score and the intra coded error |
| // (just as will be done for) accumulation of "coded_error" for |
| // the last frame. |
| if (gf_motion_error < this_error) |
| sr_coded_error += gf_motion_error; |
| else |
| sr_coded_error += this_error; |
| } else { |
| sr_coded_error += motion_error; |
| } |
| } else { |
| sr_coded_error += motion_error; |
| } |
| |
| // Start by assuming that intra mode is best. |
| best_ref_mv.row = 0; |
| best_ref_mv.col = 0; |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| // intra predication statistics |
| cpi->twopass.frame_mb_stats_buf[mb_index] = 0; |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK; |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; |
| if (this_error > FPMB_ERROR_LARGE_TH) { |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK; |
| } else if (this_error < FPMB_ERROR_SMALL_TH) { |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK; |
| } |
| } |
| #endif |
| |
| if (motion_error <= this_error) { |
| vpx_clear_system_state(); |
| |
| // Keep a count of cases where the inter and intra were very close |
| // and very low. This helps with scene cut detection for example in |
| // cropped clips with black bars at the sides or top and bottom. |
| if (((this_error - intrapenalty) * 9 <= motion_error * 10) && |
| (this_error < (2 * intrapenalty))) { |
| neutral_count += 1.0; |
| // Also track cases where the intra is not much worse than the inter |
| // and use this in limiting the GF/arf group length. |
| } else if ((this_error > NCOUNT_INTRA_THRESH) && |
| (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) { |
| neutral_count += |
| (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error); |
| } |
| |
| mv.row *= 8; |
| mv.col *= 8; |
| this_error = motion_error; |
| xd->mi[0]->mbmi.mode = NEWMV; |
| xd->mi[0]->mbmi.mv[0].as_mv = mv; |
| xd->mi[0]->mbmi.tx_size = TX_4X4; |
| xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME; |
| xd->mi[0]->mbmi.ref_frame[1] = NONE; |
| vp10_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize); |
| vp10_encode_sby_pass1(x, bsize); |
| sum_mvr += mv.row; |
| sum_mvr_abs += abs(mv.row); |
| sum_mvc += mv.col; |
| sum_mvc_abs += abs(mv.col); |
| sum_mvrs += mv.row * mv.row; |
| sum_mvcs += mv.col * mv.col; |
| ++intercount; |
| |
| best_ref_mv = mv; |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| // inter predication statistics |
| cpi->twopass.frame_mb_stats_buf[mb_index] = 0; |
| cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK; |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK; |
| if (this_error > FPMB_ERROR_LARGE_TH) { |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= |
| FPMB_ERROR_LARGE_MASK; |
| } else if (this_error < FPMB_ERROR_SMALL_TH) { |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= |
| FPMB_ERROR_SMALL_MASK; |
| } |
| } |
| #endif |
| |
| if (!is_zero_mv(&mv)) { |
| ++mvcount; |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| cpi->twopass.frame_mb_stats_buf[mb_index] &= |
| ~FPMB_MOTION_ZERO_MASK; |
| // check estimated motion direction |
| if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) { |
| // right direction |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= |
| FPMB_MOTION_RIGHT_MASK; |
| } else if (mv.as_mv.row < 0 && |
| abs(mv.as_mv.row) >= abs(mv.as_mv.col)) { |
| // up direction |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= |
| FPMB_MOTION_UP_MASK; |
| } else if (mv.as_mv.col < 0 && |
| abs(mv.as_mv.col) >= abs(mv.as_mv.row)) { |
| // left direction |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= |
| FPMB_MOTION_LEFT_MASK; |
| } else { |
| // down direction |
| cpi->twopass.frame_mb_stats_buf[mb_index] |= |
| FPMB_MOTION_DOWN_MASK; |
| } |
| } |
| #endif |
| |
| // Non-zero vector, was it different from the last non zero vector? |
| if (!is_equal_mv(&mv, &lastmv)) ++new_mv_count; |
| lastmv = mv; |
| |
| // Does the row vector point inwards or outwards? |
| if (mb_row < cm->mb_rows / 2) { |
| if (mv.row > 0) |
| --sum_in_vectors; |
| else if (mv.row < 0) |
| ++sum_in_vectors; |
| } else if (mb_row > cm->mb_rows / 2) { |
| if (mv.row > 0) |
| ++sum_in_vectors; |
| else if (mv.row < 0) |
| --sum_in_vectors; |
| } |
| |
| // Does the col vector point inwards or outwards? |
| if (mb_col < cm->mb_cols / 2) { |
| if (mv.col > 0) |
| --sum_in_vectors; |
| else if (mv.col < 0) |
| ++sum_in_vectors; |
| } else if (mb_col > cm->mb_cols / 2) { |
| if (mv.col > 0) |
| ++sum_in_vectors; |
| else if (mv.col < 0) |
| --sum_in_vectors; |
| } |
| } |
| } |
| } else { |
| sr_coded_error += (int64_t)this_error; |
| } |
| coded_error += (int64_t)this_error; |
| |
| // Adjust to the next column of MBs. |
| x->plane[0].src.buf += 16; |
| x->plane[1].src.buf += uv_mb_height; |
| x->plane[2].src.buf += uv_mb_height; |
| |
| recon_yoffset += 16; |
| recon_uvoffset += uv_mb_height; |
| } |
| |
| // Adjust to the next row of MBs. |
| x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; |
| x->plane[1].src.buf += |
| uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols; |
| x->plane[2].src.buf += |
| uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols; |
| |
| vpx_clear_system_state(); |
| } |
| |
| // Clamp the image start to rows/2. This number of rows is discarded top |
| // and bottom as dead data so rows / 2 means the frame is blank. |
| if ((image_data_start_row > cm->mb_rows / 2) || |
| (image_data_start_row == INVALID_ROW)) { |
| image_data_start_row = cm->mb_rows / 2; |
| } |
| // Exclude any image dead zone |
| if (image_data_start_row > 0) { |
| intra_skip_count = |
| VPXMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2)); |
| } |
| |
| { |
| FIRSTPASS_STATS fps; |
| // The minimum error here insures some bit allocation to frames even |
| // in static regions. The allocation per MB declines for larger formats |
| // where the typical "real" energy per MB also falls. |
| // Initial estimate here uses sqrt(mbs) to define the min_err, where the |
| // number of mbs is proportional to the image area. |
| const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cpi->common.MBs; |
| const double min_err = 200 * sqrt(num_mbs); |
| |
| intra_factor = intra_factor / (double)num_mbs; |
| brightness_factor = brightness_factor / (double)num_mbs; |
| fps.weight = intra_factor * brightness_factor; |
| |
| fps.frame = cm->current_video_frame; |
| fps.coded_error = (double)(coded_error >> 8) + min_err; |
| fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err; |
| fps.intra_error = (double)(intra_error >> 8) + min_err; |
| fps.count = 1.0; |
| fps.pcnt_inter = (double)intercount / num_mbs; |
| fps.pcnt_second_ref = (double)second_ref_count / num_mbs; |
| fps.pcnt_neutral = (double)neutral_count / num_mbs; |
| fps.intra_skip_pct = (double)intra_skip_count / num_mbs; |
| fps.inactive_zone_rows = (double)image_data_start_row; |
| fps.inactive_zone_cols = (double)0; // TODO(paulwilkins): fix |
| |
| if (mvcount > 0) { |
| fps.MVr = (double)sum_mvr / mvcount; |
| fps.mvr_abs = (double)sum_mvr_abs / mvcount; |
| fps.MVc = (double)sum_mvc / mvcount; |
| fps.mvc_abs = (double)sum_mvc_abs / mvcount; |
| fps.MVrv = |
| ((double)sum_mvrs - ((double)sum_mvr * sum_mvr / mvcount)) / mvcount; |
| fps.MVcv = |
| ((double)sum_mvcs - ((double)sum_mvc * sum_mvc / mvcount)) / mvcount; |
| fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2); |
| fps.new_mv_count = new_mv_count; |
| fps.pcnt_motion = (double)mvcount / num_mbs; |
| } else { |
| fps.MVr = 0.0; |
| fps.mvr_abs = 0.0; |
| fps.MVc = 0.0; |
| fps.mvc_abs = 0.0; |
| fps.MVrv = 0.0; |
| fps.MVcv = 0.0; |
| fps.mv_in_out_count = 0.0; |
| fps.new_mv_count = 0.0; |
| fps.pcnt_motion = 0.0; |
| } |
| |
| // TODO(paulwilkins): Handle the case when duration is set to 0, or |
| // something less than the full time between subsequent values of |
| // cpi->source_time_stamp. |
| fps.duration = (double)(source->ts_end - source->ts_start); |
| |
| // Don't want to do output stats with a stack variable! |
| twopass->this_frame_stats = fps; |
| output_stats(&twopass->this_frame_stats, cpi->output_pkt_list); |
| accumulate_stats(&twopass->total_stats, &fps); |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list); |
| } |
| #endif |
| } |
| |
| // Copy the previous Last Frame back into gf and and arf buffers if |
| // the prediction is good enough... but also don't allow it to lag too far. |
| if ((twopass->sr_update_lag > 3) || |
| ((cm->current_video_frame > 0) && |
| (twopass->this_frame_stats.pcnt_inter > 0.20) && |
| ((twopass->this_frame_stats.intra_error / |
| DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) { |
| if (gld_yv12 != NULL) { |
| #if CONFIG_EXT_REFS |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], |
| cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]]); |
| #else |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], |
| cm->ref_frame_map[cpi->lst_fb_idx]); |
| #endif // CONFIG_EXT_REFS |
| } |
| twopass->sr_update_lag = 1; |
| } else { |
| ++twopass->sr_update_lag; |
| } |
| |
| vpx_extend_frame_borders(new_yv12); |
| |
| // The frame we just compressed now becomes the last frame. |
| #if CONFIG_EXT_REFS |
| ref_cnt_fb(pool->frame_bufs, |
| &cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]], |
| cm->new_fb_idx); |
| #else |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx], |
| cm->new_fb_idx); |
| #endif // CONFIG_EXT_REFS |
| |
| // Special case for the first frame. Copy into the GF buffer as a second |
| // reference. |
| if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) { |
| #if CONFIG_EXT_REFS |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], |
| cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]]); |
| #else |
| ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx], |
| cm->ref_frame_map[cpi->lst_fb_idx]); |
| #endif // CONFIG_EXT_REFS |
| } |
| |
| // Use this to see what the first pass reconstruction looks like. |
| if (0) { |
| char filename[512]; |
| FILE *recon_file; |
| snprintf(filename, sizeof(filename), "enc%04d.yuv", |
| (int)cm->current_video_frame); |
| |
| if (cm->current_video_frame == 0) |
| recon_file = fopen(filename, "wb"); |
| else |
| recon_file = fopen(filename, "ab"); |
| |
| (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); |
| fclose(recon_file); |
| } |
| |
| ++cm->current_video_frame; |
| } |
| |
| static double calc_correction_factor(double err_per_mb, double err_divisor, |
| double pt_low, double pt_high, int q, |
| vpx_bit_depth_t bit_depth) { |
| const double error_term = err_per_mb / err_divisor; |
| |
| // Adjustment based on actual quantizer to power term. |
| const double power_term = |
| VPXMIN(vp10_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high); |
| |
| // Calculate correction factor. |
| if (power_term < 1.0) assert(error_term >= 0.0); |
| |
| return fclamp(pow(error_term, power_term), 0.05, 5.0); |
| } |
| |
| #define ERR_DIVISOR 100.0 |
| static int get_twopass_worst_quality(const VP10_COMP *cpi, |
| const double section_err, |
| double inactive_zone, |
| int section_target_bandwidth, |
| double group_weight_factor) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const VP10EncoderConfig *const oxcf = &cpi->oxcf; |
| |
| inactive_zone = fclamp(inactive_zone, 0.0, 1.0); |
| |
| if (section_target_bandwidth <= 0) { |
| return rc->worst_quality; // Highest value allowed |
| } else { |
| const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cpi->common.MBs; |
| const int active_mbs = VPXMAX(1, num_mbs - (int)(num_mbs * inactive_zone)); |
| const double av_err_per_mb = section_err / active_mbs; |
| const double speed_term = 1.0 + 0.04 * oxcf->speed; |
| double ediv_size_correction; |
| const int target_norm_bits_per_mb = |
| ((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) / active_mbs; |
| int q; |
| |
| // Larger image formats are expected to be a little harder to code |
| // relatively given the same prediction error score. This in part at |
| // least relates to the increased size and hence coding overheads of |
| // motion vectors. Some account of this is made through adjustment of |
| // the error divisor. |
| ediv_size_correction = |
| VPXMAX(0.2, VPXMIN(5.0, get_linear_size_factor(cpi))); |
| if (ediv_size_correction < 1.0) |
| ediv_size_correction = -(1.0 / ediv_size_correction); |
| ediv_size_correction *= 4.0; |
| |
| // Try and pick a max Q that will be high enough to encode the |
| // content at the given rate. |
| for (q = rc->best_quality; q < rc->worst_quality; ++q) { |
| const double factor = calc_correction_factor( |
| av_err_per_mb, ERR_DIVISOR - ediv_size_correction, FACTOR_PT_LOW, |
| FACTOR_PT_HIGH, q, cpi->common.bit_depth); |
| const int bits_per_mb = vp10_rc_bits_per_mb( |
| INTER_FRAME, q, factor * speed_term * group_weight_factor, |
| cpi->common.bit_depth); |
| if (bits_per_mb <= target_norm_bits_per_mb) break; |
| } |
| |
| // Restriction on active max q for constrained quality mode. |
| if (cpi->oxcf.rc_mode == VPX_CQ) q = VPXMAX(q, oxcf->cq_level); |
| return q; |
| } |
| } |
| |
| static void setup_rf_level_maxq(VP10_COMP *cpi) { |
| int i; |
| RATE_CONTROL *const rc = &cpi->rc; |
| for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) { |
| int qdelta = vp10_frame_type_qdelta(cpi, i, rc->worst_quality); |
| rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality); |
| } |
| } |
| |
| void vp10_init_subsampling(VP10_COMP *cpi) { |
| const VP10_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| const int w = cm->width; |
| const int h = cm->height; |
| int i; |
| |
| for (i = 0; i < FRAME_SCALE_STEPS; ++i) { |
| // Note: Frames with odd-sized dimensions may result from this scaling. |
| rc->frame_width[i] = (w * 16) / frame_scale_factor[i]; |
| rc->frame_height[i] = (h * 16) / frame_scale_factor[i]; |
| } |
| |
| setup_rf_level_maxq(cpi); |
| } |
| |
| void vp10_calculate_coded_size(VP10_COMP *cpi, int *scaled_frame_width, |
| int *scaled_frame_height) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| *scaled_frame_width = rc->frame_width[rc->frame_size_selector]; |
| *scaled_frame_height = rc->frame_height[rc->frame_size_selector]; |
| } |
| |
| void vp10_init_second_pass(VP10_COMP *cpi) { |
| const VP10EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->twopass; |
| double frame_rate; |
| FIRSTPASS_STATS *stats; |
| |
| zero_stats(&twopass->total_stats); |
| zero_stats(&twopass->total_left_stats); |
| |
| if (!twopass->stats_in_end) return; |
| |
| stats = &twopass->total_stats; |
| |
| *stats = *twopass->stats_in_end; |
| twopass->total_left_stats = *stats; |
| |
| frame_rate = 10000000.0 * stats->count / stats->duration; |
| // Each frame can have a different duration, as the frame rate in the source |
| // isn't guaranteed to be constant. The frame rate prior to the first frame |
| // encoded in the second pass is a guess. However, the sum duration is not. |
| // It is calculated based on the actual durations of all frames from the |
| // first pass. |
| vp10_new_framerate(cpi, frame_rate); |
| twopass->bits_left = |
| (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0); |
| |
| // This variable monitors how far behind the second ref update is lagging. |
| twopass->sr_update_lag = 1; |
| |
| // Scan the first pass file and calculate a modified total error based upon |
| // the bias/power function used to allocate bits. |
| { |
| const double avg_error = |
| stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count); |
| const FIRSTPASS_STATS *s = twopass->stats_in; |
| double modified_error_total = 0.0; |
| twopass->modified_error_min = |
| (avg_error * oxcf->two_pass_vbrmin_section) / 100; |
| twopass->modified_error_max = |
| (avg_error * oxcf->two_pass_vbrmax_section) / 100; |
| while (s < twopass->stats_in_end) { |
| modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s); |
| ++s; |
| } |
| twopass->modified_error_left = modified_error_total; |
| } |
| |
| // Reset the vbr bits off target counters |
| cpi->rc.vbr_bits_off_target = 0; |
| cpi->rc.vbr_bits_off_target_fast = 0; |
| |
| cpi->rc.rate_error_estimate = 0; |
| |
| // Static sequence monitor variables. |
| twopass->kf_zeromotion_pct = 100; |
| twopass->last_kfgroup_zeromotion_pct = 100; |
| |
| if (oxcf->resize_mode != RESIZE_NONE) { |
| vp10_init_subsampling(cpi); |
| } |
| } |
| |
| #define SR_DIFF_PART 0.0015 |
| #define MOTION_AMP_PART 0.003 |
| #define INTRA_PART 0.005 |
| #define DEFAULT_DECAY_LIMIT 0.75 |
| #define LOW_SR_DIFF_TRHESH 0.1 |
| #define SR_DIFF_MAX 128.0 |
| |
| static double get_sr_decay_rate(const VP10_COMP *cpi, |
| const FIRSTPASS_STATS *frame) { |
| const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs |
| : cpi->common.MBs; |
| double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs; |
| double sr_decay = 1.0; |
| double modified_pct_inter; |
| double modified_pcnt_intra; |
| const double motion_amplitude_factor = |
| frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2); |
| |
| modified_pct_inter = frame->pcnt_inter; |
| if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < |
| (double)NCOUNT_FRAME_II_THRESH) { |
| modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral; |
| } |
| modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); |
| |
| if ((sr_diff > LOW_SR_DIFF_TRHESH)) { |
| sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX); |
| sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - |
| (MOTION_AMP_PART * motion_amplitude_factor) - |
| (INTRA_PART * modified_pcnt_intra); |
| } |
| return VPXMAX(sr_decay, VPXMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter)); |
| } |
| |
| // This function gives an estimate of how badly we believe the prediction |
| // quality is decaying from frame to frame. |
| static double get_zero_motion_factor(const VP10_COMP *cpi, |
| const FIRSTPASS_STATS *frame) { |
| const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; |
| double sr_decay = get_sr_decay_rate(cpi, frame); |
| return VPXMIN(sr_decay, zero_motion_pct); |
| } |
| |
| #define ZM_POWER_FACTOR 0.75 |
| |
| static double get_prediction_decay_rate(const VP10_COMP *cpi, |
| const FIRSTPASS_STATS *next_frame) { |
| const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame); |
| const double zero_motion_factor = |
| (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion), |
| ZM_POWER_FACTOR)); |
| |
| return VPXMAX(zero_motion_factor, |
| (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); |
| } |
| |
| // Function to test for a condition where a complex transition is followed |
| // by a static section. For example in slide shows where there is a fade |
| // between slides. This is to help with more optimal kf and gf positioning. |
| static int detect_transition_to_still(VP10_COMP *cpi, int frame_interval, |
| int still_interval, |
| double loop_decay_rate, |
| double last_decay_rate) { |
| TWO_PASS *const twopass = &cpi->twopass; |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| // Break clause to detect very still sections after motion |
| // For example a static image after a fade or other transition |
| // instead of a clean scene cut. |
| if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 && |
| last_decay_rate < 0.9) { |
| int j; |
| |
| // Look ahead a few frames to see if static condition persists... |
| for (j = 0; j < still_interval; ++j) { |
| const FIRSTPASS_STATS *stats = &twopass->stats_in[j]; |
| if (stats >= twopass->stats_in_end) break; |
| |
| if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; |
| } |
| |
| // Only if it does do we signal a transition to still. |
| return j == still_interval; |
| } |
| |
| return 0; |
| } |
| |
| // This function detects a flash through the high relative pcnt_second_ref |
| // score in the frame following a flash frame. The offset passed in should |
| // reflect this. |
| static int detect_flash(const TWO_PASS *twopass, int offset) { |
| const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset); |
| |
| // What we are looking for here is a situation where there is a |
| // brief break in prediction (such as a flash) but subsequent frames |
| // are reasonably well predicted by an earlier (pre flash) frame. |
| // The recovery after a flash is indicated by a high pcnt_second_ref |
| // compared to pcnt_inter. |
| return next_frame != NULL && |
| next_frame->pcnt_second_ref > next_frame->pcnt_inter && |
| next_frame->pcnt_second_ref >= 0.5; |
| } |
| |
| // Update the motion related elements to the GF arf boost calculation. |
| static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, |
| double *mv_in_out, |
| double *mv_in_out_accumulator, |
| double *abs_mv_in_out_accumulator, |
| double *mv_ratio_accumulator) { |
| const double pct = stats->pcnt_motion; |
| |
| // Accumulate Motion In/Out of frame stats. |
| *mv_in_out = stats->mv_in_out_count * pct; |
| *mv_in_out_accumulator += *mv_in_out; |
| *abs_mv_in_out_accumulator += fabs(*mv_in_out); |
| |
| // Accumulate a measure of how uniform (or conversely how random) the motion |
| // field is (a ratio of abs(mv) / mv). |
| if (pct > 0.05) { |
| const double mvr_ratio = |
| fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); |
| const double mvc_ratio = |
| fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); |
| |
| *mv_ratio_accumulator += |
| pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs); |
| *mv_ratio_accumulator += |
| pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs); |
| } |
| } |
| |
| #define BASELINE_ERR_PER_MB 1000.0 |
| static double calc_frame_boost(VP10_COMP *cpi, |
| const FIRSTPASS_STATS *this_frame, |
| double this_frame_mv_in_out, double max_boost) { |
| double frame_boost; |
| const double lq = vp10_convert_qindex_to_q( |
| cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth); |
| const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5); |
| int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs |
| : cpi->common.MBs; |
| |
| // Correct for any inactive region in the image |
| num_mbs = (int)VPXMAX(1, num_mbs * calculate_active_area(cpi, this_frame)); |
| |
| // Underlying boost factor is based on inter error ratio. |
| frame_boost = (BASELINE_ERR_PER_MB * num_mbs) / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error); |
| frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction; |
| |
| // Increase boost for frames where new data coming into frame (e.g. zoom out). |
| // Slightly reduce boost if there is a net balance of motion out of the frame |
| // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0. |
| if (this_frame_mv_in_out > 0.0) |
| frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
| // In the extreme case the boost is halved. |
| else |
| frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); |
| |
| return VPXMIN(frame_boost, max_boost * boost_q_correction); |
| } |
| |
| static int calc_arf_boost(VP10_COMP *cpi, int offset, int f_frames, |
| int b_frames, int *f_boost, int *b_boost) { |
| TWO_PASS *const twopass = &cpi->twopass; |
| int i; |
| double boost_score = 0.0; |
| double mv_ratio_accumulator = 0.0; |
| double decay_accumulator = 1.0; |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| int arf_boost; |
| int flash_detected = 0; |
| |
| // Search forward from the proposed arf/next gf position. |
| for (i = 0; i < f_frames; ++i) { |
| const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); |
| if (this_frame == NULL) break; |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats( |
| this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
| |
| // We want to discount the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash(twopass, i + offset) || |
| detect_flash(twopass, i + offset + 1); |
| |
| // Accumulate the effect of prediction quality decay. |
| if (!flash_detected) { |
| decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); |
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR |
| : decay_accumulator; |
| } |
| |
| boost_score += |
| decay_accumulator * |
| calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST); |
| } |
| |
| *f_boost = (int)boost_score; |
| |
| // Reset for backward looking loop. |
| boost_score = 0.0; |
| mv_ratio_accumulator = 0.0; |
| decay_accumulator = 1.0; |
| this_frame_mv_in_out = 0.0; |
| mv_in_out_accumulator = 0.0; |
| abs_mv_in_out_accumulator = 0.0; |
| |
| // Search backward towards last gf position. |
| for (i = -1; i >= -b_frames; --i) { |
| const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset); |
| if (this_frame == NULL) break; |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats( |
| this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
| |
| // We want to discount the the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash(twopass, i + offset) || |
| detect_flash(twopass, i + offset + 1); |
| |
| // Cumulative effect of prediction quality decay. |
| if (!flash_detected) { |
| decay_accumulator *= get_prediction_decay_rate(cpi, this_frame); |
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR |
| : decay_accumulator; |
| } |
| |
| boost_score += |
| decay_accumulator * |
| calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST); |
| } |
| *b_boost = (int)boost_score; |
| |
| arf_boost = (*f_boost + *b_boost); |
| if (arf_boost < ((b_frames + f_frames) * 20)) |
| arf_boost = ((b_frames + f_frames) * 20); |
| arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST); |
| |
| return arf_boost; |
| } |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, |
| const FIRSTPASS_STATS *end, |
| int section_length) { |
| const FIRSTPASS_STATS *s = begin; |
| double intra_error = 0.0; |
| double coded_error = 0.0; |
| int i = 0; |
| |
| while (s < end && i < section_length) { |
| intra_error += s->intra_error; |
| coded_error += s->coded_error; |
| ++s; |
| ++i; |
| } |
| |
| return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); |
| } |
| |
| // Calculate the total bits to allocate in this GF/ARF group. |
| static int64_t calculate_total_gf_group_bits(VP10_COMP *cpi, |
| double gf_group_err) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const TWO_PASS *const twopass = &cpi->twopass; |
| const int max_bits = frame_max_bits(rc, &cpi->oxcf); |
| int64_t total_group_bits; |
| |
| // Calculate the bits to be allocated to the group as a whole. |
| if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) { |
| total_group_bits = (int64_t)(twopass->kf_group_bits * |
| (gf_group_err / twopass->kf_group_error_left)); |
| } else { |
| total_group_bits = 0; |
| } |
| |
| // Clamp odd edge cases. |
| total_group_bits = |
| (total_group_bits < 0) ? 0 : (total_group_bits > twopass->kf_group_bits) |
| ? twopass->kf_group_bits |
| : total_group_bits; |
| |
| // Clip based on user supplied data rate variability limit. |
| if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval) |
| total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval; |
| |
| return total_group_bits; |
| } |
| |
| // Calculate the number bits extra to assign to boosted frames in a group. |
| static int calculate_boost_bits(int frame_count, int boost, |
| int64_t total_group_bits) { |
| int allocation_chunks; |
| |
| // return 0 for invalid inputs (could arise e.g. through rounding errors) |
| if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0; |
| |
| allocation_chunks = (frame_count * 100) + boost; |
| |
| // Prevent overflow. |
| if (boost > 1023) { |
| int divisor = boost >> 10; |
| boost /= divisor; |
| allocation_chunks /= divisor; |
| } |
| |
| // Calculate the number of extra bits for use in the boosted frame or frames. |
| return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), |
| 0); |
| } |
| |
| #if !CONFIG_EXT_REFS |
| // Current limit on maximum number of active arfs in a GF/ARF group. |
| #define MAX_ACTIVE_ARFS 2 |
| #define ARF_SLOT1 2 |
| #define ARF_SLOT2 3 |
| // This function indirects the choice of buffers for arfs. |
| // At the moment the values are fixed but this may change as part of |
| // the integration process with other codec features that swap buffers around. |
| static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) { |
| arf_buffer_indices[0] = ARF_SLOT1; |
| arf_buffer_indices[1] = ARF_SLOT2; |
| } |
| #endif |
| |
| static void allocate_gf_group_bits(VP10_COMP *cpi, int64_t gf_group_bits, |
| double group_error, int gf_arf_bits) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| const VP10EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->twopass; |
| GF_GROUP *const gf_group = &twopass->gf_group; |
| FIRSTPASS_STATS frame_stats; |
| int i; |
| int frame_index = 0; |
| int target_frame_size; |
| int key_frame; |
| const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf); |
| int64_t total_group_bits = gf_group_bits; |
| double modified_err = 0.0; |
| double err_fraction; |
| int mid_boost_bits = 0; |
| #if !CONFIG_EXT_REFS |
| int mid_frame_idx; |
| unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS]; |
| #endif |
| #if CONFIG_EXT_REFS |
| // The use of bi-predictive frames are only enabled when following 3 |
| // conditions are met: |
| // (1) Alt-ref is enabled; |
| // (2) The bi-predictive group interval is at least 2; and |
| // (3) The bi-predictive group interval is strictly smaller than the |
| // golden group interval. |
| const int is_bipred_enabled = |
| rc->source_alt_ref_pending && rc->bipred_group_interval && |
| rc->bipred_group_interval <= |
| (rc->baseline_gf_interval - rc->source_alt_ref_pending); |
| int bipred_group_end = 0; |
| int bipred_frame_index = 0; |
| int arf_pos[MAX_EXT_ARFS + 1]; |
| const unsigned char ext_arf_interval = |
| (unsigned char)(rc->baseline_gf_interval / (cpi->num_extra_arfs + 1) - 1); |
| int which_arf = cpi->num_extra_arfs; |
| int subgroup_interval[MAX_EXT_ARFS + 1]; |
| int ext_arf_boost[MAX_EXT_ARFS]; |
| int is_sg_bipred_enabled = is_bipred_enabled; |
| int accumulative_subgroup_interval = 0; |
| #endif // CONFIG_EXT_REFS |
| |
| #if CONFIG_EXT_REFS |
| vp10_zero_array(ext_arf_boost, MAX_EXT_ARFS); |
| #endif |
| |
| key_frame = cpi->common.frame_type == KEY_FRAME; |
| |
| #if !CONFIG_EXT_REFS |
| get_arf_buffer_indices(arf_buffer_indices); |
| #endif |
| |
| // For key frames the frame target rate is already set and it |
| // is also the golden frame. |
| if (!key_frame) { |
| if (rc->source_alt_ref_active) { |
| gf_group->update_type[frame_index] = OVERLAY_UPDATE; |
| gf_group->rf_level[frame_index] = INTER_NORMAL; |
| gf_group->bit_allocation[frame_index] = 0; |
| } else { |
| gf_group->update_type[frame_index] = GF_UPDATE; |
| gf_group->rf_level[frame_index] = GF_ARF_STD; |
| gf_group->bit_allocation[frame_index] = gf_arf_bits; |
| } |
| #if CONFIG_EXT_REFS |
| gf_group->arf_update_idx[frame_index] = 0; |
| gf_group->arf_ref_idx[frame_index] = 0; |
| #else |
| gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0]; |
| gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0]; |
| #endif |
| // Step over the golden frame / overlay frame |
| if (EOF == input_stats(twopass, &frame_stats)) return; |
| } |
| |
| #if CONFIG_EXT_REFS |
| gf_group->bidir_pred_enabled[frame_index] = 0; |
| gf_group->brf_src_offset[frame_index] = 0; |
| #endif // CONFIG_EXT_REFS |
| |
| // Deduct the boost bits for arf (or gf if it is not a key frame) |
| // from the group total. |
| if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits; |
| |
| frame_index++; |
| |
| #if CONFIG_EXT_REFS |
| bipred_frame_index++; |
| #endif // CONFIG_EXT_REFS |
| |
| // Store the bits to spend on the ARF if there is one. |
| if (rc->source_alt_ref_pending) { |
| gf_group->update_type[frame_index] = ARF_UPDATE; |
| gf_group->rf_level[frame_index] = GF_ARF_STD; |
| gf_group->bit_allocation[frame_index] = gf_arf_bits; |
| |
| gf_group->arf_src_offset[frame_index] = |
| (unsigned char)(rc->baseline_gf_interval - 1); |
| |
| #if CONFIG_EXT_REFS |
| gf_group->arf_update_idx[frame_index] = 0; |
| gf_group->arf_ref_idx[frame_index] = 0; |
| #else |
| gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0]; |
| gf_group->arf_ref_idx[frame_index] = |
| arf_buffer_indices[cpi->multi_arf_last_grp_enabled && |
| rc->source_alt_ref_active]; |
| #endif // CONFIG_EXT_REFS && CONFIG_EXT_ARFS |
| #if CONFIG_EXT_REFS |
| gf_group->bidir_pred_enabled[frame_index] = 0; |
| gf_group->brf_src_offset[frame_index] = 0; |
| // NOTE: "bidir_pred_frame_index" stays unchanged for ARF_UPDATE frames. |
| #endif // CONFIG_EXT_REFS |
| |
| #if CONFIG_EXT_REFS |
| // Work out the ARFs' positions in this gf group |
| // NOTE(weitinglin): ALT_REFs' are indexed inversely, but coded in display |
| // order (except for the original ARF). In the example of three ALT_REF's, |
| // We index ALTREF's as: KEY ----- ALT2 ----- ALT1 ----- ALT0 |
| // but code them in the following order: |
| // KEY-ALT0-ALT2 ----- OVERLAY2-ALT1 ----- OVERLAY1 ----- OVERLAY0 |
| arf_pos[0] = |
| frame_index + cpi->num_extra_arfs + gf_group->arf_src_offset[1] + 1; |
| for (i = 0; i < cpi->num_extra_arfs; ++i) { |
| arf_pos[i + 1] = |
| frame_index + (cpi->num_extra_arfs - i) * (ext_arf_interval + 2); |
| subgroup_interval[i] = arf_pos[i] - arf_pos[i + 1] - (i == 0 ? 1 : 2); |
| } |
| subgroup_interval[cpi->num_extra_arfs] = arf_pos[cpi->num_extra_arfs] - |
| frame_index - |
| (cpi->num_extra_arfs == 0 ? 1 : 2); |
| #endif // CONFIG_EXT_REFS |
| |
| ++frame_index; |
| |
| #if CONFIG_EXT_REFS |
| // Insert an extra ARF |
| if (cpi->num_extra_arfs) { |
| gf_group->update_type[frame_index] = ARF_UPDATE; |
| // Note (weitinglin): GF_ARF_LOW is also used as an identifier |
| // for internal ALT_REF's: |
| gf_group->rf_level[frame_index] = GF_ARF_LOW; |
| gf_group->arf_src_offset[frame_index] = ext_arf_interval; |
| gf_group->arf_update_idx[frame_index] = which_arf; |
| gf_group->arf_ref_idx[frame_index] = 0; |
| ++frame_index; |
| } |
| accumulative_subgroup_interval += subgroup_interval[cpi->num_extra_arfs]; |
| #else |
| if (cpi->multi_arf_enabled) { |
| // Set aside a slot for a level 1 arf. |
| gf_group->update_type[frame_index] = ARF_UPDATE; |
| gf_group->rf_level[frame_index] = GF_ARF_LOW; |
| gf_group->arf_src_offset[frame_index] = |
| (unsigned char)((rc->baseline_gf_interval >> 1) - 1); |
| gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1]; |
| gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0]; |
| ++frame_index; |
| } |
| #endif // CONFIG_EXT_ARFS |
| } |
| |
| #if !CONFIG_EXT_REFS |
| // Define middle frame |
| mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1; |
| #endif |
| |
| // Allocate bits to the other frames in the group. |
| for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) { |
| #if !CONFIG_EXT_REFS |
| int arf_idx = 0; |
| #endif |
| if (EOF == input_stats(twopass, &frame_stats)) break; |
| |
| modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats); |
| |
| if (group_error > 0) |
| err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error); |
| else |
| err_fraction = 0.0; |
| |
| target_frame_size = (int)((double)total_group_bits * err_fraction); |
| |
| if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) { |
| mid_boost_bits += (target_frame_size >> 4); |
| target_frame_size -= (target_frame_size >> 4); |
| #if !CONFIG_EXT_REFS |
| if (frame_index <= mid_frame_idx) arf_idx = 1; |
| #endif |
| } |
| #if CONFIG_EXT_REFS |
| gf_group->arf_update_idx[frame_index] = which_arf; |
| gf_group->arf_ref_idx[frame_index] = which_arf; |
| #else |
| gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx]; |
| gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx]; |
| #endif // CONFIG_EXT_REFS |
| target_frame_size = |
| clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits)); |
| |
| #if CONFIG_EXT_REFS |
| // If we are going to have ARFs, check if we can have BWDREF in this |
| // subgroup. |
| if (rc->source_alt_ref_pending) { |
| is_sg_bipred_enabled = |
| is_bipred_enabled && |
| (subgroup_interval[which_arf] > rc->bipred_group_interval); |
| } |
| // NOTE: BIDIR_PRED is only enabled when the length of the bi-predictive |
| // frame group interval is strictly smaller than that of the GOLDEN |
| // FRAME group interval. |
| // TODO(zoeliu): Currently BIDIR_PRED is only enabled when alt-ref is on. |
| if (is_sg_bipred_enabled && !bipred_group_end) { |
| const int cur_brf_src_offset = rc->bipred_group_interval - 1; |
| |
| // --- BRF_UPDATE --- |
| if (bipred_frame_index == 1) { |
| gf_group->update_type[frame_index] = BRF_UPDATE; |
| gf_group->bidir_pred_enabled[frame_index] = 1; |
| gf_group->brf_src_offset[frame_index] = cur_brf_src_offset; |
| // --- LAST_BIPRED_UPDATE --- |
| } else if (bipred_frame_index == rc->bipred_group_interval) { |
| gf_group->update_type[frame_index] = LAST_BIPRED_UPDATE; |
| gf_group->bidir_pred_enabled[frame_index] = 1; |
| gf_group->brf_src_offset[frame_index] = 0; |
| // Reset the bi-predictive frame index. |
| bipred_frame_index = 0; |
| // --- BIPRED_UPDATE --- |
| } else { |
| gf_group->update_type[frame_index] = BIPRED_UPDATE; |
| gf_group->bidir_pred_enabled[frame_index] = 1; |
| gf_group->brf_src_offset[frame_index] = 0; |
| } |
| |
| bipred_frame_index++; |
| // Check whether the next bi-predictive frame group would entirely be |
| // included within the current golden frame group. |
| // In addition, we need to avoid coding a BRF right before an ARF. |
| if (bipred_frame_index == 1 && |
| (i + 2 + cur_brf_src_offset) >= accumulative_subgroup_interval) { |
| bipred_group_end = 1; |
| } |
| } else { |
| #endif // CONFIG_EXT_REFS |
| gf_group->update_type[frame_index] = LF_UPDATE; |
| #if CONFIG_EXT_REFS |
| gf_group->bidir_pred_enabled[frame_index] = 0; |
| gf_group->brf_src_offset[frame_index] = 0; |
| } |
| #endif // CONFIG_EXT_REFS |
| |
| #if CONFIG_EXT_REFS |
| if (gf_group->update_type[frame_index] == BRF_UPDATE) { |
| // Boost up the allocated bits on BWDREF_FRAME |
| gf_group->rf_level[frame_index] = INTER_HIGH; |
| gf_group->bit_allocation[frame_index] = |
| target_frame_size + (target_frame_size >> 2); |
| } else if (gf_group->update_type[frame_index] == LAST_BIPRED_UPDATE) { |
| // Press down the allocated bits on LAST_BIPRED_UPDATE frames |
| gf_group->rf_level[frame_index] = INTER_LOW; |
| gf_group->bit_allocation[frame_index] = |
| target_frame_size - (target_frame_size >> 1); |
| } else if (gf_group->update_type[frame_index] == BIPRED_UPDATE) { |
| // TODO(zoeliu): To investigate whether the allocated bits on |
| // BIPRED_UPDATE frames need to be further adjusted. |
| gf_group->rf_level[frame_index] = INTER_NORMAL; |
| gf_group->bit_allocation[frame_index] = target_frame_size; |
| } else { |
| #endif // CONFIG_EXT_REFS |
| gf_group->rf_level[frame_index] = INTER_NORMAL; |
| gf_group->bit_allocation[frame_index] = target_frame_size; |
| #if CONFIG_EXT_REFS |
| } |
| #endif // CONFIG_EXT_REFS |
| |
| ++frame_index; |
| #if CONFIG_EXT_REFS |
| // Check if we need to update the ARF |
| if (cpi->num_extra_arfs && frame_index > arf_pos[which_arf]) { |
| --which_arf; |
| accumulative_subgroup_interval += subgroup_interval[which_arf] + 1; |
| // Meet the new subgroup. Reset the bipred_group_end flag; |
| bipred_group_end = 0; |
| // Insert another extra ARF after the overlay frame |
| if (which_arf) { |
| gf_group->update_type[frame_index] = ARF_UPDATE; |
| gf_group->rf_level[frame_index] = GF_ARF_LOW; |
| gf_group->arf_src_offset[frame_index] = ext_arf_interval; |
| gf_group->arf_update_idx[frame_index] = which_arf; |
| gf_group->arf_ref_idx[frame_index] = 0; |
| ++frame_index; |
| } |
| } |
| #endif |
| } |
| |
| // Note: |
| // We need to configure the frame at the end of the sequence + 1 that will be |
| // the start frame for the next group. Otherwise prior to the call to |
| // vp10_rc_get_second_pass_params() the data will be undefined. |
| #if CONFIG_EXT_REFS |
| gf_group->arf_update_idx[frame_index] = 0; |
| gf_group->arf_ref_idx[frame_index] = 0; |
| #else |
| gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0]; |
| gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0]; |
| #endif |
| if (rc->source_alt_ref_pending) { |
| gf_group->update_type[frame_index] = OVERLAY_UPDATE; |
| gf_group->rf_level[frame_index] = INTER_NORMAL; |
| |
| #if CONFIG_EXT_REFS |
| if (cpi->num_extra_arfs) { |
| for (i = cpi->num_extra_arfs; i > 0; --i) { |
| int arf_pos_in_gf = (i == cpi->num_extra_arfs ? 2 : arf_pos[i + 1] + 1); |
| gf_group->bit_allocation[arf_pos_in_gf] = |
| gf_group->bit_allocation[arf_pos[i]]; |
| gf_group->update_type[arf_pos[i]] = INTNL_OVERLAY_UPDATE; |
| gf_group->bit_allocation[arf_pos[i]] = 0; |
| gf_group->rf_level[arf_pos[i]] = INTER_LOW; |
| } |
| } |
| #endif |
| #if !CONFIG_EXT_REFS |
| // Final setup for second arf and its overlay. |
| if (cpi->multi_arf_enabled) { |
| gf_group->bit_allocation[2] = |
| gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits; |
| gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE; |
| gf_group->bit_allocation[mid_frame_idx] = 0; |
| } |
| #endif |
| } else { |
| gf_group->update_type[frame_index] = GF_UPDATE; |
| gf_group->rf_level[frame_index] = GF_ARF_STD; |
| } |
| #if CONFIG_EXT_REFS |
| gf_group->bidir_pred_enabled[frame_index] = 0; |
| gf_group->brf_src_offset[frame_index] = 0; |
| #endif // CONFIG_EXT_REFS |
| |
| // Note whether multi-arf was enabled this group for next time. |
| cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled; |
| } |
| // Analyse and define a gf/arf group. |
| static void define_gf_group(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
| VP10_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| VP10EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->twopass; |
| FIRSTPASS_STATS next_frame; |
| const FIRSTPASS_STATS *const start_pos = twopass->stats_in; |
| int i; |
| |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double gf_group_err = 0.0; |
| #if GROUP_ADAPTIVE_MAXQ |
| double gf_group_raw_error = 0.0; |
| #endif |
| double gf_group_skip_pct = 0.0; |
| double gf_group_inactive_zone_rows = 0.0; |
| double gf_first_frame_err = 0.0; |
| double mod_frame_err = 0.0; |
| |
| double mv_ratio_accumulator = 0.0; |
| double decay_accumulator = 1.0; |
| double zero_motion_accumulator = 1.0; |
| |
| double loop_decay_rate = 1.00; |
| double last_loop_decay_rate = 1.00; |
| |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| double mv_ratio_accumulator_thresh; |
| unsigned int allow_alt_ref = is_altref_enabled(cpi); |
| |
| int f_boost = 0; |
| int b_boost = 0; |
| int flash_detected; |
| int active_max_gf_interval; |
| int active_min_gf_interval; |
| int64_t gf_group_bits; |
| double gf_group_error_left; |
| int gf_arf_bits; |
| const int is_key_frame = frame_is_intra_only(cm); |
| const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active; |
| |
| // Reset the GF group data structures unless this is a key |
| // frame in which case it will already have been done. |
| if (is_key_frame == 0) { |
| vp10_zero(twopass->gf_group); |
| } |
| |
| vpx_clear_system_state(); |
| vp10_zero(next_frame); |
| |
| // Load stats for the current frame. |
| mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); |
| |
| // Note the error of the frame at the start of the group. This will be |
| // the GF frame error if we code a normal gf. |
| gf_first_frame_err = mod_frame_err; |
| |
| // If this is a key frame or the overlay from a previous arf then |
| // the error score / cost of this frame has already been accounted for. |
| if (arf_active_or_kf) { |
| gf_group_err -= gf_first_frame_err; |
| #if GROUP_ADAPTIVE_MAXQ |
| gf_group_raw_error -= this_frame->coded_error; |
| #endif |
| gf_group_skip_pct -= this_frame->intra_skip_pct; |
| gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows; |
| } |
| |
| // Motion breakout threshold for loop below depends on image size. |
| mv_ratio_accumulator_thresh = |
| (cpi->initial_height + cpi->initial_width) / 4.0; |
| |
| // Set a maximum and minimum interval for the GF group. |
| // If the image appears almost completely static we can extend beyond this. |
| { |
| int int_max_q = (int)(vp10_convert_qindex_to_q( |
| twopass->active_worst_quality, cpi->common.bit_depth)); |
| int int_lbq = (int)(vp10_convert_qindex_to_q(rc->last_boosted_qindex, |
| cpi->common.bit_depth)); |
| |
| active_min_gf_interval = rc->min_gf_interval + VPXMIN(2, int_max_q / 200); |
| if (active_min_gf_interval > rc->max_gf_interval) |
| active_min_gf_interval = rc->max_gf_interval; |
| |
| if (cpi->multi_arf_allowed) { |
| active_max_gf_interval = rc->max_gf_interval; |
| } else { |
| // The value chosen depends on the active Q range. At low Q we have |
| // bits to spare and are better with a smaller interval and smaller boost. |
| // At high Q when there are few bits to spare we are better with a longer |
| // interval to spread the cost of the GF. |
| active_max_gf_interval = 12 + VPXMIN(4, (int_lbq / 6)); |
| |
| // We have: active_min_gf_interval <= rc->max_gf_interval |
| if (active_max_gf_interval < active_min_gf_interval) |
| active_max_gf_interval = active_min_gf_interval; |
| else if (active_max_gf_interval > rc->max_gf_interval) |
| active_max_gf_interval = rc->max_gf_interval; |
| } |
| } |
| |
| i = 0; |
| while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) { |
| ++i; |
| |
| // Accumulate error score of frames in this gf group. |
| mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); |
| gf_group_err += mod_frame_err; |
| #if GROUP_ADAPTIVE_MAXQ |
| gf_group_raw_error += this_frame->coded_error; |
| #endif |
| gf_group_skip_pct += this_frame->intra_skip_pct; |
| gf_group_inactive_zone_rows += this_frame->inactive_zone_rows; |
| |
| if (EOF == input_stats(twopass, &next_frame)) break; |
| |
| // Test for the case where there is a brief flash but the prediction |
| // quality back to an earlier frame is then restored. |
| flash_detected = detect_flash(twopass, 0); |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats( |
| &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, &mv_ratio_accumulator); |
| |
| // Accumulate the effect of prediction quality decay. |
| if (!flash_detected) { |
| last_loop_decay_rate = loop_decay_rate; |
| loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
| |
| decay_accumulator = decay_accumulator * loop_decay_rate; |
| |
| // Monitor for static sections. |
| zero_motion_accumulator = VPXMIN( |
| zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame)); |
| |
| // Break clause to detect very still sections after motion. For example, |
| // a static image after a fade or other transition. |
| if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, |
| last_loop_decay_rate)) { |
| allow_alt_ref = 0; |
| break; |
| } |
| } |
| |
| // Calculate a boost number for this frame. |
| boost_score += |
| decay_accumulator * |
| calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out, GF_MAX_BOOST); |
| |
| // Break out conditions. |
| if ( |
| // Break at active_max_gf_interval unless almost totally static. |
| (i >= (active_max_gf_interval + arf_active_or_kf) && |
| zero_motion_accumulator < 0.995) || |
| ( |
| // Don't break out with a very short interval. |
| (i >= active_min_gf_interval + arf_active_or_kf) && |
| (!flash_detected) && |
| ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || |
| (abs_mv_in_out_accumulator > 3.0) || |
| (mv_in_out_accumulator < -2.0) || |
| ((boost_score - old_boost_score) < BOOST_BREAKOUT)))) { |
| boost_score = old_boost_score; |
| break; |
| } |
| |
| *this_frame = next_frame; |
| old_boost_score = boost_score; |
| } |
| |
| twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0); |
| |
| // Was the group length constrained by the requirement for a new KF? |
| rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0; |
| |
| // Should we use the alternate reference frame. |
| if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) && |
| (i >= rc->min_gf_interval)) { |
| // Calculate the boost for alt ref. |
| rc->gfu_boost = |
| calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost); |
| rc->source_alt_ref_pending = 1; |
| |
| // Test to see if multi arf is appropriate. |
| cpi->multi_arf_enabled = |
| (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) && |
| (zero_motion_accumulator < 0.995)) |
| ? 1 |
| : 0; |
| } else { |
| rc->gfu_boost = VPXMAX((int)boost_score, MIN_ARF_GF_BOOST); |
| rc->source_alt_ref_pending = 0; |
| } |
| |
| // Set the interval until the next gf. |
| rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending); |
| |
| #if CONFIG_EXT_REFS |
| // Compute how many extra alt_refs we can have |
| cpi->num_extra_arfs = get_number_of_extra_arfs(rc->baseline_gf_interval, |
| rc->source_alt_ref_pending); |
| // Currently at maximum two extra ARFs' are allowed |
| assert(cpi->num_extra_arfs <= 2); |
| #endif |
| |
| rc->frames_till_gf_update_due = rc->baseline_gf_interval; |
| |
| #if CONFIG_EXT_REFS |
| rc->bipred_group_interval = BFG_INTERVAL; |
| // The minimum bi-predictive frame group interval is 2. |
| if (rc->bipred_group_interval < 2) rc->bipred_group_interval = 0; |
| #endif // CONFIG_EXT_REFS |
| |
| // Reset the file position. |
| reset_fpf_position(twopass, start_pos); |
| |
| // Calculate the bits to be allocated to the gf/arf group as a whole |
| gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err); |
| |
| #if GROUP_ADAPTIVE_MAXQ |
| // Calculate an estimate of the maxq needed for the group. |
| // We are more agressive about correcting for sections |
| // where there could be significant overshoot than for easier |
| // sections where we do not wish to risk creating an overshoot |
| // of the allocated bit budget. |
| if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) { |
| const int vbr_group_bits_per_frame = |
| (int)(gf_group_bits / rc->baseline_gf_interval); |
| const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval; |
| const double group_av_skip_pct = |
| gf_group_skip_pct / rc->baseline_gf_interval; |
| const double group_av_inactive_zone = |
| ((gf_group_inactive_zone_rows * 2) / |
| (rc->baseline_gf_interval * (double)cm->mb_rows)); |
| |
| int tmp_q; |
| // rc factor is a weight factor that corrects for local rate control drift. |
| double rc_factor = 1.0; |
| if (rc->rate_error_estimate > 0) { |
| rc_factor = VPXMAX(RC_FACTOR_MIN, |
| (double)(100 - rc->rate_error_estimate) / 100.0); |
| } else { |
| rc_factor = VPXMIN(RC_FACTOR_MAX, |
| (double)(100 - rc->rate_error_estimate) / 100.0); |
| } |
| tmp_q = get_twopass_worst_quality( |
| cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), |
| vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor); |
| twopass->active_worst_quality = |
| VPXMAX(tmp_q, twopass->active_worst_quality >> 1); |
| } |
| #endif |
| |
| // Calculate the extra bits to be used for boosted frame(s) |
| gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost, |
| gf_group_bits); |
| |
| // Adjust KF group bits and error remaining. |
| twopass->kf_group_error_left -= (int64_t)gf_group_err; |
| |
| // If this is an arf update we want to remove the score for the overlay |
| // frame at the end which will usually be very cheap to code. |
| // The overlay frame has already, in effect, been coded so we want to spread |
| // the remaining bits among the other frames. |
| // For normal GFs remove the score for the GF itself unless this is |
| // also a key frame in which case it has already been accounted for. |
| if (rc->source_alt_ref_pending) { |
| gf_group_error_left = gf_group_err - mod_frame_err; |
| } else if (is_key_frame == 0) { |
| gf_group_error_left = gf_group_err - gf_first_frame_err; |
| } else { |
| gf_group_error_left = gf_group_err; |
| } |
| |
| // Allocate bits to each of the frames in the GF group. |
| allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits); |
| |
| // Reset the file position. |
| reset_fpf_position(twopass, start_pos); |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| if (cpi->common.frame_type != KEY_FRAME) { |
| twopass->section_intra_rating = calculate_section_intra_ratio( |
| start_pos, twopass->stats_in_end, rc->baseline_gf_interval); |
| } |
| |
| if (oxcf->resize_mode == RESIZE_DYNAMIC) { |
| // Default to starting GF groups at normal frame size. |
| cpi->rc.next_frame_size_selector = UNSCALED; |
| } |
| } |
| |
| // Threshold for use of the lagging second reference frame. High second ref |
| // usage may point to a transient event like a flash or occlusion rather than |
| // a real scene cut. |
| #define SECOND_REF_USEAGE_THRESH 0.1 |
| // Minimum % intra coding observed in first pass (1.0 = 100%) |
| #define MIN_INTRA_LEVEL 0.25 |
| // Minimum ratio between the % of intra coding and inter coding in the first |
| // pass after discounting neutral blocks (discounting neutral blocks in this |
| // way helps catch scene cuts in clips with very flat areas or letter box |
| // format clips with image padding. |
| #define INTRA_VS_INTER_THRESH 2.0 |
| // Hard threshold where the first pass chooses intra for almost all blocks. |
| // In such a case even if the frame is not a scene cut coding a key frame |
| // may be a good option. |
| #define VERY_LOW_INTER_THRESH 0.05 |
| // Maximum threshold for the relative ratio of intra error score vs best |
| // inter error score. |
| #define KF_II_ERR_THRESHOLD 2.5 |
| // In real scene cuts there is almost always a sharp change in the intra |
| // or inter error score. |
| #define ERR_CHANGE_THRESHOLD 0.4 |
| // For real scene cuts we expect an improvment in the intra inter error |
| // ratio in the next frame. |
| #define II_IMPROVEMENT_THRESHOLD 3.5 |
| #define KF_II_MAX 128.0 |
| |
| static int test_candidate_kf(TWO_PASS *twopass, |
| const FIRSTPASS_STATS *last_frame, |
| const FIRSTPASS_STATS *this_frame, |
| const FIRSTPASS_STATS *next_frame) { |
| int is_viable_kf = 0; |
| double pcnt_intra = 1.0 - this_frame->pcnt_inter; |
| double modified_pcnt_inter = |
| this_frame->pcnt_inter - this_frame->pcnt_neutral; |
| |
| // Does the frame satisfy the primary criteria of a key frame? |
| // See above for an explanation of the test criteria. |
| // If so, then examine how well it predicts subsequent frames. |
| if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && |
| (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) && |
| ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) || |
| ((pcnt_intra > MIN_INTRA_LEVEL) && |
| (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) && |
| ((this_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < |
| KF_II_ERR_THRESHOLD) && |
| ((fabs(last_frame->coded_error - this_frame->coded_error) / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > |
| ERR_CHANGE_THRESHOLD) || |
| (fabs(last_frame->intra_error - this_frame->intra_error) / |
| DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > |
| ERR_CHANGE_THRESHOLD) || |
| ((next_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > |
| II_IMPROVEMENT_THRESHOLD))))) { |
| int i; |
| const FIRSTPASS_STATS *start_pos = twopass->stats_in; |
| FIRSTPASS_STATS local_next_frame = *next_frame; |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double decay_accumulator = 1.0; |
| |
| // Examine how well the key frame predicts subsequent frames. |
| for (i = 0; i < 16; ++i) { |
| double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); |
| |
| if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; |
| |
| // Cumulative effect of decay in prediction quality. |
| if (local_next_frame.pcnt_inter > 0.85) |
| decay_accumulator *= local_next_frame.pcnt_inter; |
| else |
| decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0; |
| |
| // Keep a running total. |
| boost_score += (decay_accumulator * next_iiratio); |
| |
| // Test various breakout clauses. |
| if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || |
| (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < |
| 0.20) && |
| (next_iiratio < 3.0)) || |
| ((boost_score - old_boost_score) < 3.0) || |
| (local_next_frame.intra_error < 200)) { |
| break; |
| } |
| |
| old_boost_score = boost_score; |
| |
| // Get the next frame details |
| if (EOF == input_stats(twopass, &local_next_frame)) break; |
| } |
| |
| // If there is tolerable prediction for at least the next 3 frames then |
| // break out else discard this potential key frame and move on |
| if (boost_score > 30.0 && (i > 3)) { |
| is_viable_kf = 1; |
| } else { |
| // Reset the file position |
| reset_fpf_position(twopass, start_pos); |
| |
| is_viable_kf = 0; |
| } |
| } |
| |
| return is_viable_kf; |
| } |
| |
| #define FRAMES_TO_CHECK_DECAY 8 |
| |
| static void find_next_key_frame(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
| int i, j; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| GF_GROUP *const gf_group = &twopass->gf_group; |
| const VP10EncoderConfig *const oxcf = &cpi->oxcf; |
| const FIRSTPASS_STATS first_frame = *this_frame; |
| const FIRSTPASS_STATS *const start_position = twopass->stats_in; |
| FIRSTPASS_STATS next_frame; |
| FIRSTPASS_STATS last_frame; |
| int kf_bits = 0; |
| int loop_decay_counter = 0; |
| double decay_accumulator = 1.0; |
| double av_decay_accumulator = 0.0; |
| double zero_motion_accumulator = 1.0; |
| double boost_score = 0.0; |
| double kf_mod_err = 0.0; |
| double kf_group_err = 0.0; |
| double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; |
| |
| vp10_zero(next_frame); |
| |
| cpi->common.frame_type = KEY_FRAME; |
| |
| // Reset the GF group data structures. |
| vp10_zero(*gf_group); |
| |
| // Is this a forced key frame by interval. |
| rc->this_key_frame_forced = rc->next_key_frame_forced; |
| |
| // Clear the alt ref active flag and last group multi arf flags as they |
| // can never be set for a key frame. |
| rc->source_alt_ref_active = 0; |
| cpi->multi_arf_last_grp_enabled = 0; |
| |
| // KF is always a GF so clear frames till next gf counter. |
| rc->frames_till_gf_update_due = 0; |
| |
| rc->frames_to_key = 1; |
| |
| twopass->kf_group_bits = 0; // Total bits available to kf group |
| twopass->kf_group_error_left = 0; // Group modified error score. |
| |
| kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame); |
| |
| // Initialize the decay rates for the recent frames to check |
| for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; |
| |
| // Find the next keyframe. |
| i = 0; |
| while (twopass->stats_in < twopass->stats_in_end && |
| rc->frames_to_key < cpi->oxcf.key_freq) { |
| // Accumulate kf group error. |
| kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame); |
| |
| // Load the next frame's stats. |
| last_frame = *this_frame; |
| input_stats(twopass, this_frame); |
| |
| // Provided that we are not at the end of the file... |
| if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) { |
| double loop_decay_rate; |
| |
| // Check for a scene cut. |
| if (test_candidate_kf(twopass, &last_frame, this_frame, |
| twopass->stats_in)) |
| break; |
| |
| // How fast is the prediction quality decaying? |
| loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in); |
| |
| // We want to know something about the recent past... rather than |
| // as used elsewhere where we are concerned with decay in prediction |
| // quality since the last GF or KF. |
| recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate; |
| decay_accumulator = 1.0; |
| for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) |
| decay_accumulator *= recent_loop_decay[j]; |
| |
| // Special check for transition or high motion followed by a |
| // static scene. |
| if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i, |
| loop_decay_rate, decay_accumulator)) |
| break; |
| |
| // Step on to the next frame. |
| ++rc->frames_to_key; |
| |
| // If we don't have a real key frame within the next two |
| // key_freq intervals then break out of the loop. |
| if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break; |
| } else { |
| ++rc->frames_to_key; |
| } |
| ++i; |
| } |
| |
| // If there is a max kf interval set by the user we must obey it. |
| // We already breakout of the loop above at 2x max. |
| // This code centers the extra kf if the actual natural interval |
| // is between 1x and 2x. |
| if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) { |
| FIRSTPASS_STATS tmp_frame = first_frame; |
| |
| rc->frames_to_key /= 2; |
| |
| // Reset to the start of the group. |
| reset_fpf_position(twopass, start_position); |
| |
| kf_group_err = 0.0; |
| |
| // Rescan to get the correct error data for the forced kf group. |
| for (i = 0; i < rc->frames_to_key; ++i) { |
| kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame); |
| input_stats(twopass, &tmp_frame); |
| } |
| rc->next_key_frame_forced = 1; |
| } else if (twopass->stats_in == twopass->stats_in_end || |
| rc->frames_to_key >= cpi->oxcf.key_freq) { |
| rc->next_key_frame_forced = 1; |
| } else { |
| rc->next_key_frame_forced = 0; |
| } |
| |
| // Special case for the last key frame of the file. |
| if (twopass->stats_in >= twopass->stats_in_end) { |
| // Accumulate kf group error. |
| kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame); |
| } |
| |
| // Calculate the number of bits that should be assigned to the kf group. |
| if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) { |
| // Maximum number of bits for a single normal frame (not key frame). |
| const int max_bits = frame_max_bits(rc, &cpi->oxcf); |
| |
| // Maximum number of bits allocated to the key frame group. |
| int64_t max_grp_bits; |
| |
| // Default allocation based on bits left and relative |
| // complexity of the section. |
| twopass->kf_group_bits = (int64_t)( |
| twopass->bits_left * (kf_group_err / twopass->modified_error_left)); |
| |
| // Clip based on maximum per frame rate defined by the user. |
| max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; |
| if (twopass->kf_group_bits > max_grp_bits) |
| twopass->kf_group_bits = max_grp_bits; |
| } else { |
| twopass->kf_group_bits = 0; |
| } |
| twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits); |
| |
| // Reset the first pass file position. |
| reset_fpf_position(twopass, start_position); |
| |
| // Scan through the kf group collating various stats used to determine |
| // how many bits to spend on it. |
| decay_accumulator = 1.0; |
| boost_score = 0.0; |
| for (i = 0; i < (rc->frames_to_key - 1); ++i) { |
| if (EOF == input_stats(twopass, &next_frame)) break; |
| |
| // Monitor for static sections. |
| zero_motion_accumulator = VPXMIN(zero_motion_accumulator, |
| get_zero_motion_factor(cpi, &next_frame)); |
| |
| // Not all frames in the group are necessarily used in calculating boost. |
| if ((i <= rc->max_gf_interval) || |
| ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) { |
| const double frame_boost = |
| calc_frame_boost(cpi, this_frame, 0, KF_MAX_BOOST); |
| |
| // How fast is prediction quality decaying. |
| if (!detect_flash(twopass, 0)) { |
| const double loop_decay_rate = |
| get_prediction_decay_rate(cpi, &next_frame); |
| decay_accumulator *= loop_decay_rate; |
| decay_accumulator = VPXMAX(decay_accumulator, MIN_DECAY_FACTOR); |
| av_decay_accumulator += decay_accumulator; |
| ++loop_decay_counter; |
| } |
| boost_score += (decay_accumulator * frame_boost); |
| } |
| } |
| av_decay_accumulator /= (double)loop_decay_counter; |
| |
| reset_fpf_position(twopass, start_position); |
| |
| // Store the zero motion percentage |
| twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| twopass->section_intra_rating = calculate_section_intra_ratio( |
| start_position, twopass->stats_in_end, rc->frames_to_key); |
| |
| // Apply various clamps for min and max boost |
| rc->kf_boost = (int)(av_decay_accumulator * boost_score); |
| rc->kf_boost = VPXMAX(rc->kf_boost, (rc->frames_to_key * 3)); |
| rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_BOOST); |
| |
| // Work out how many bits to allocate for the key frame itself. |
| kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost, |
| twopass->kf_group_bits); |
| |
| // Work out the fraction of the kf group bits reserved for the inter frames |
| // within the group after discounting the bits for the kf itself. |
| if (twopass->kf_group_bits) { |
| twopass->kfgroup_inter_fraction = |
| (double)(twopass->kf_group_bits - kf_bits) / |
| (double)twopass->kf_group_bits; |
| } else { |
| twopass->kfgroup_inter_fraction = 1.0; |
| } |
| |
| twopass->kf_group_bits -= kf_bits; |
| |
| // Save the bits to spend on the key frame. |
| gf_group->bit_allocation[0] = kf_bits; |
| gf_group->update_type[0] = KF_UPDATE; |
| gf_group->rf_level[0] = KF_STD; |
| |
| // Note the total error score of the kf group minus the key frame itself. |
| twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
| |
| // Adjust the count of total modified error left. |
| // The count of bits left is adjusted elsewhere based on real coded frame |
| // sizes. |
| twopass->modified_error_left -= kf_group_err; |
| |
| if (oxcf->resize_mode == RESIZE_DYNAMIC) { |
| // Default to normal-sized frame on keyframes. |
| cpi->rc.next_frame_size_selector = UNSCALED; |
| } |
| } |
| |
| // Define the reference buffers that will be updated post encode. |
| static void configure_buffer_updates(VP10_COMP *cpi) { |
| TWO_PASS *const twopass = &cpi->twopass; |
| |
| // Wei-Ting: Should we define another function to take care of |
| // cpi->rc.is_$Source_Type to make this function as it is in the comment? |
| |
| cpi->rc.is_src_frame_alt_ref = 0; |
| #if CONFIG_EXT_REFS |
| cpi->rc.is_bwd_ref_frame = 0; |
| cpi->rc.is_last_bipred_frame = 0; |
| cpi->rc.is_bipred_frame = 0; |
| cpi->rc.is_src_frame_ext_arf = 0; |
| #endif // CONFIG_EXT_REFS |
| |
| switch (twopass->gf_group.update_type[twopass->gf_group.index]) { |
| case KF_UPDATE: |
| #if CONFIG_EXT_REFS |
| cpi->refresh_bwd_ref_frame = 1; |
| #endif // CONFIG_EXT_REFS |
| cpi->refresh_last_frame = 1; |
| cpi->refresh_golden_frame = 1; |
| cpi->refresh_alt_ref_frame = 1; |
| break; |
| |
| case LF_UPDATE: |
| #if CONFIG_EXT_REFS |
| // If we have extra ALT_REFs, we can use the farthest ALT (ALT0) as |
| // the BWD_REF. |
| if (cpi->num_extra_arfs) { |
| int tmp = cpi->bwd_fb_idx; |
| |
| cpi->rc.is_bwd_ref_frame = 1; |
| cpi->bwd_fb_idx = cpi->alt_fb_idx; |
| cpi->alt_fb_idx = cpi->arf_map[0]; |
| cpi->arf_map[0] = tmp; |
| } else { |
| cpi->rc.is_bwd_ref_frame = 0; |
| } |
| #endif // CONFIG_EXT_REFS |
| cpi->refresh_last_frame = 1; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_alt_ref_frame = 0; |
| break; |
| |
| case GF_UPDATE: |
| #if CONFIG_EXT_REFS |
| cpi->refresh_bwd_ref_frame = 0; |
| #endif // CONFIG_EXT_REFS |
| cpi->refresh_last_frame = 1; |
| cpi->refresh_golden_frame = 1; |
| cpi->refresh_alt_ref_frame = 0; |
| break; |
| |
| case OVERLAY_UPDATE: |
| cpi->refresh_last_frame = 0; |
| cpi->refresh_golden_frame = 1; |
| #if CONFIG_EXT_REFS |
| cpi->refresh_bwd_ref_frame = 0; |
| #endif // CONFIG_EXT_REFS |
| cpi->refresh_alt_ref_frame = 0; |
| cpi->rc.is_src_frame_alt_ref = 1; |
| break; |
| |
| case ARF_UPDATE: |
| #if CONFIG_EXT_REFS |
| cpi->refresh_bwd_ref_frame = 1; |
| #endif // CONFIG_EXT_REFS |
| cpi->refresh_last_frame = 0; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_alt_ref_frame = 1; |
| break; |
| |
| #if CONFIG_EXT_REFS |
| case BRF_UPDATE: |
| cpi->refresh_last_frame = 0; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_bwd_ref_frame = 1; |
| cpi->refresh_alt_ref_frame = 0; |
| cpi->rc.is_bwd_ref_frame = 1; |
| if (cpi->num_extra_arfs) { |
| // Allow BRF use the farthest ALT_REF (ALT0) as BWD_REF by swapping |
| // the virtual indices. |
| // NOTE: The indices will be swapped back after this frame is encoded |
| // (in vp10_update_reference_frames()). |
| int tmp = cpi->bwd_fb_idx; |
| cpi->bwd_fb_idx = cpi->alt_fb_idx; |
| cpi->alt_fb_idx = cpi->arf_map[0]; |
| cpi->arf_map[0] = tmp; |
| } |
| break; |
| case LAST_BIPRED_UPDATE: |
| cpi->refresh_last_frame = 0; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_bwd_ref_frame = 0; |
| cpi->refresh_alt_ref_frame = 0; |
| cpi->rc.is_last_bipred_frame = 1; |
| break; |
| |
| case BIPRED_UPDATE: |
| cpi->refresh_last_frame = 1; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_bwd_ref_frame = 0; |
| cpi->refresh_alt_ref_frame = 0; |
| cpi->rc.is_bipred_frame = 1; |
| break; |
| |
| case INTNL_OVERLAY_UPDATE: |
| cpi->refresh_last_frame = 1; |
| cpi->refresh_golden_frame = 0; |
| cpi->refresh_bwd_ref_frame = 0; |
| cpi->refresh_alt_ref_frame = 0; |
| cpi->rc.is_src_frame_alt_ref = 1; |
| cpi->rc.is_src_frame_ext_arf = 1; |
| break; |
| #endif // CONFIG_EXT_REFS |
| |
| default: assert(0); break; |
| } |
| } |
| |
| static int is_skippable_frame(const VP10_COMP *cpi) { |
| // If the current frame does not have non-zero motion vector detected in the |
| // first pass, and so do its previous and forward frames, then this frame |
| // can be skipped for partition check, and the partition size is assigned |
| // according to the variance |
| const TWO_PASS *const twopass = &cpi->twopass; |
| |
| return (!frame_is_intra_only(&cpi->common) && |
| twopass->stats_in - 2 > twopass->stats_in_start && |
| twopass->stats_in < twopass->stats_in_end && |
| (twopass->stats_in - 1)->pcnt_inter - |
| (twopass->stats_in - 1)->pcnt_motion == |
| 1 && |
| (twopass->stats_in - 2)->pcnt_inter - |
| (twopass->stats_in - 2)->pcnt_motion == |
| 1 && |
| twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1); |
| } |
| |
| void vp10_rc_get_second_pass_params(VP10_COMP *cpi) { |
| VP10_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->twopass; |
| GF_GROUP *const gf_group = &twopass->gf_group; |
| int frames_left; |
| FIRSTPASS_STATS this_frame; |
| |
| int target_rate; |
| |
| frames_left = (int)(twopass->total_stats.count - cm->current_video_frame); |
| |
| if (!twopass->stats_in) return; |
| |
| // If this is an arf frame then we dont want to read the stats file or |
| // advance the input pointer as we already have what we need. |
| if (gf_group->update_type[gf_group->index] == ARF_UPDATE) { |
| int target_rate; |
| configure_buffer_updates(cpi); |
| target_rate = gf_group->bit_allocation[gf_group->index]; |
| target_rate = vp10_rc_clamp_pframe_target_size(cpi, target_rate); |
| rc->base_frame_target = target_rate; |
| |
| cm->frame_type = INTER_FRAME; |
| |
| // Do the firstpass stats indicate that this frame is skippable for the |
| // partition search? |
| if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) { |
| cpi->partition_search_skippable_frame = is_skippable_frame(cpi); |
| } |
| |
| return; |
| } |
| |
| vpx_clear_system_state(); |
| |
| if (cpi->oxcf.rc_mode == VPX_Q) { |
| twopass->active_worst_quality = cpi->oxcf.cq_level; |
| } else if (cm->current_video_frame == 0) { |
| // Special case code for first frame. |
| const int section_target_bandwidth = |
| (int)(twopass->bits_left / frames_left); |
| const double section_length = twopass->total_left_stats.count; |
| const double section_error = |
| twopass->total_left_stats.coded_error / section_length; |
| const double section_intra_skip = |
| twopass->total_left_stats.intra_skip_pct / section_length; |
| const double section_inactive_zone = |
| (twopass->total_left_stats.inactive_zone_rows * 2) / |
| ((double)cm->mb_rows * section_length); |
| const int tmp_q = get_twopass_worst_quality( |
| cpi, section_error, section_intra_skip + section_inactive_zone, |
| section_target_bandwidth, DEFAULT_GRP_WEIGHT); |
| |
| twopass->active_worst_quality = tmp_q; |
| twopass->baseline_active_worst_quality = tmp_q; |
| rc->ni_av_qi = tmp_q; |
| rc->last_q[INTER_FRAME] = tmp_q; |
| rc->avg_q = vp10_convert_qindex_to_q(tmp_q, cm->bit_depth); |
| rc->avg_frame_qindex[INTER_FRAME] = tmp_q; |
| rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2; |
| rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME]; |
| } |
| |
| vp10_zero(this_frame); |
| if (EOF == input_stats(twopass, &this_frame)) return; |
| |
| // Set the frame content type flag. |
| if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH) |
| twopass->fr_content_type = FC_GRAPHICS_ANIMATION; |
| else |
| twopass->fr_content_type = FC_NORMAL; |
| |
| // Keyframe and section processing. |
| if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) { |
| FIRSTPASS_STATS this_frame_copy; |
| this_frame_copy = this_frame; |
| // Define next KF group and assign bits to it. |
| find_next_key_frame(cpi, &this_frame); |
| this_frame = this_frame_copy; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| |
| // Define a new GF/ARF group. (Should always enter here for key frames). |
| if (rc->frames_till_gf_update_due == 0) { |
| define_gf_group(cpi, &this_frame); |
| |
| rc->frames_till_gf_update_due = rc->baseline_gf_interval; |
| |
| #if ARF_STATS_OUTPUT |
| { |
| FILE *fpfile; |
| fpfile = fopen("arf.stt", "a"); |
| ++arf_count; |
| fprintf(fpfile, "%10d %10ld %10d %10d %10ld\n", cm->current_video_frame, |
| rc->frames_till_gf_update_due, rc->kf_boost, arf_count, |
| rc->gfu_boost); |
| |
| fclose(fpfile); |
| } |
| #endif |
| } |
| |
| configure_buffer_updates(cpi); |
| |
| // Do the firstpass stats indicate that this frame is skippable for the |
| // partition search? |
| if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) { |
| cpi->partition_search_skippable_frame = is_skippable_frame(cpi); |
| } |
| |
| target_rate = gf_group->bit_allocation[gf_group->index]; |
| |
| if (cpi->common.frame_type == KEY_FRAME) |
| target_rate = vp10_rc_clamp_iframe_target_size(cpi, target_rate); |
| else |
| target_rate = vp10_rc_clamp_pframe_target_size(cpi, target_rate); |
| |
| rc->base_frame_target = target_rate; |
| |
| { |
| const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cpi->common.MBs; |
| // The multiplication by 256 reverses a scaling factor of (>> 8) |
| // applied when combining MB error values for the frame. |
| twopass->mb_av_energy = |
| log(((this_frame.intra_error * 256.0) / num_mbs) + 1.0); |
| } |
| |
| // Update the total stats remaining structure. |
| subtract_stats(&twopass->total_left_stats, &this_frame); |
| } |
| |
| #define MINQ_ADJ_LIMIT 48 |
| #define MINQ_ADJ_LIMIT_CQ 20 |
| #define HIGH_UNDERSHOOT_RATIO 2 |
| void vp10_twopass_postencode_update(VP10_COMP *cpi) { |
| TWO_PASS *const twopass = &cpi->twopass; |
| RATE_CONTROL *const rc = &cpi->rc; |
| const int bits_used = rc->base_frame_target; |
| |
| // VBR correction is done through rc->vbr_bits_off_target. Based on the |
| // sign of this value, a limited % adjustment is made to the target rate |
| // of subsequent frames, to try and push it back towards 0. This method |
| // is designed to prevent extreme behaviour at the end of a clip |
| // or group of frames. |
| rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; |
| twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0); |
| |
| // Calculate the pct rc error. |
| if (rc->total_actual_bits) { |
| rc->rate_error_estimate = |
| (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits); |
| rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100); |
| } else { |
| rc->rate_error_estimate = 0; |
| } |
| |
| if (cpi->common.frame_type != KEY_FRAME) { |
| twopass->kf_group_bits -= bits_used; |
| twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; |
| } |
| twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0); |
| |
| // Increment the gf group index ready for the next frame. |
| ++twopass->gf_group.index; |
| |
| // If the rate control is drifting consider adjustment to min or maxq. |
| if ((cpi->oxcf.rc_mode != VPX_Q) && |
| (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) && |
| !cpi->rc.is_src_frame_alt_ref) { |
| const int maxq_adj_limit = |
| rc->worst_quality - twopass->active_worst_quality; |
| const int minq_adj_limit = |
| (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); |
| |
| // Undershoot. |
| if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) { |
| --twopass->extend_maxq; |
| if (rc->rolling_target_bits >= rc->rolling_actual_bits) |
| ++twopass->extend_minq; |
| // Overshoot. |
| } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) { |
| --twopass->extend_minq; |
| if (rc->rolling_target_bits < rc->rolling_actual_bits) |
| ++twopass->extend_maxq; |
| } else { |
| // Adjustment for extreme local overshoot. |
| if (rc->projected_frame_size > (2 * rc->base_frame_target) && |
| rc->projected_frame_size > (2 * rc->avg_frame_bandwidth)) |
| ++twopass->extend_maxq; |
| |
| // Unwind undershoot or overshoot adjustment. |
| if (rc->rolling_target_bits < rc->rolling_actual_bits) |
| --twopass->extend_minq; |
| else if (rc->rolling_target_bits > rc->rolling_actual_bits) |
| --twopass->extend_maxq; |
| } |
| |
| twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit); |
| twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit); |
| |
| // If there is a big and undexpected undershoot then feed the extra |
| // bits back in quickly. One situation where this may happen is if a |
| // frame is unexpectedly almost perfectly predicted by the ARF or GF |
| // but not very well predcited by the previous frame. |
| if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { |
| int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; |
| if (rc->projected_frame_size < fast_extra_thresh) { |
| rc->vbr_bits_off_target_fast += |
| fast_extra_thresh - rc->projected_frame_size; |
| rc->vbr_bits_off_target_fast = |
| VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth)); |
| |
| // Fast adaptation of minQ if necessary to use up the extra bits. |
| if (rc->avg_frame_bandwidth) { |
| twopass->extend_minq_fast = |
| (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth); |
| } |
| twopass->extend_minq_fast = VPXMIN( |
| twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); |
| } else if (rc->vbr_bits_off_target_fast) { |
| twopass->extend_minq_fast = VPXMIN( |
| twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq); |
| } else { |
| twopass->extend_minq_fast = 0; |
| } |
| } |
| } |
| } |