blob: bcb87b770205e7fce9d932d0cf42c454d97d0983 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include "av1/common/cfl.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/warped_motion.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "aom_dsp/aom_dsp_common.h"
#define ACCT_STR __func__
#define DEC_MISMATCH_DEBUG 0
static PREDICTION_MODE read_intra_mode(aom_reader *r, aom_cdf_prob *cdf) {
return (PREDICTION_MODE)aom_read_symbol(r, cdf, INTRA_MODES, ACCT_STR);
}
static void read_cdef(AV1_COMMON *cm, aom_reader *r, MACROBLOCKD *const xd) {
#if CONFIG_SDP
const int skip_txfm = xd->mi[0]->skip_txfm[xd->tree_type == CHROMA_PART];
#else
const int skip_txfm = xd->mi[0]->skip_txfm;
#endif
if (cm->features.coded_lossless) return;
if (cm->features.allow_intrabc) {
assert(cm->cdef_info.cdef_bits == 0);
return;
}
// At the start of a superblock, mark that we haven't yet read CDEF strengths
// for any of the CDEF units contained in this superblock.
const int sb_mask = (cm->seq_params.mib_size - 1);
const int mi_row_in_sb = (xd->mi_row & sb_mask);
const int mi_col_in_sb = (xd->mi_col & sb_mask);
if (mi_row_in_sb == 0 && mi_col_in_sb == 0) {
xd->cdef_transmitted[0] = xd->cdef_transmitted[1] =
xd->cdef_transmitted[2] = xd->cdef_transmitted[3] = false;
}
// CDEF unit size is 64x64 irrespective of the superblock size.
const int cdef_size = 1 << (6 - MI_SIZE_LOG2);
// Find index of this CDEF unit in this superblock.
const int index_mask = cdef_size;
const int cdef_unit_row_in_sb = ((xd->mi_row & index_mask) != 0);
const int cdef_unit_col_in_sb = ((xd->mi_col & index_mask) != 0);
const int index = (cm->seq_params.sb_size == BLOCK_128X128)
? cdef_unit_col_in_sb + 2 * cdef_unit_row_in_sb
: 0;
// Read CDEF strength from the first non-skip coding block in this CDEF unit.
if (!xd->cdef_transmitted[index] && !skip_txfm) {
// CDEF strength for this CDEF unit needs to be read into the MB_MODE_INFO
// of the 1st block in this CDEF unit.
const int first_block_mask = ~(cdef_size - 1);
CommonModeInfoParams *const mi_params = &cm->mi_params;
const int grid_idx =
get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask,
xd->mi_col & first_block_mask);
MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx];
mbmi->cdef_strength =
aom_read_literal(r, cm->cdef_info.cdef_bits, ACCT_STR);
xd->cdef_transmitted[index] = true;
}
}
static int read_delta_qindex(AV1_COMMON *cm, const MACROBLOCKD *xd,
aom_reader *r, MB_MODE_INFO *const mbmi) {
int sign, abs, reduced_delta_qindex = 0;
#if CONFIG_SDP
BLOCK_SIZE bsize = mbmi->sb_type[cm->tree_type == CHROMA_PART];
#else
BLOCK_SIZE bsize = mbmi->sb_type;
#endif
const int b_col = xd->mi_col & (cm->seq_params.mib_size - 1);
const int b_row = xd->mi_row & (cm->seq_params.mib_size - 1);
const int read_delta_q_flag = (b_col == 0 && b_row == 0);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if CONFIG_SDP
if ((bsize != cm->seq_params.sb_size ||
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] == 0) &&
#else
if ((bsize != cm->seq_params.sb_size || mbmi->skip_txfm == 0) &&
#endif
read_delta_q_flag) {
abs = aom_read_symbol(r, ec_ctx->delta_q_cdf, DELTA_Q_PROBS + 1, ACCT_STR);
const int smallval = (abs < DELTA_Q_SMALL);
if (!smallval) {
const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1;
const int thr = (1 << rem_bits) + 1;
abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
}
if (abs) {
sign = aom_read_bit(r, ACCT_STR);
} else {
sign = 1;
}
reduced_delta_qindex = sign ? -abs : abs;
}
return reduced_delta_qindex;
}
static int read_delta_lflevel(const AV1_COMMON *const cm, aom_reader *r,
aom_cdf_prob *const cdf,
const MB_MODE_INFO *const mbmi, int mi_col,
int mi_row) {
int reduced_delta_lflevel = 0;
#if CONFIG_SDP
const BLOCK_SIZE bsize = mbmi->sb_type[cm->tree_type == CHROMA_PART];
#else
const BLOCK_SIZE bsize = mbmi->sb_type;
#endif
const int b_col = mi_col & (cm->seq_params.mib_size - 1);
const int b_row = mi_row & (cm->seq_params.mib_size - 1);
const int read_delta_lf_flag = (b_col == 0 && b_row == 0);
#if CONFIG_SDP
if ((bsize != cm->seq_params.sb_size ||
mbmi->skip_txfm[cm->tree_type != CHROMA_PART ? 0 : 1] == 0) &&
#else
if ((bsize != cm->seq_params.sb_size || mbmi->skip_txfm == 0) &&
#endif
read_delta_lf_flag) {
int abs = aom_read_symbol(r, cdf, DELTA_LF_PROBS + 1, ACCT_STR);
const int smallval = (abs < DELTA_LF_SMALL);
if (!smallval) {
const int rem_bits = aom_read_literal(r, 3, ACCT_STR) + 1;
const int thr = (1 << rem_bits) + 1;
abs = aom_read_literal(r, rem_bits, ACCT_STR) + thr;
}
const int sign = abs ? aom_read_bit(r, ACCT_STR) : 1;
reduced_delta_lflevel = sign ? -abs : abs;
}
return reduced_delta_lflevel;
}
static UV_PREDICTION_MODE read_intra_mode_uv(FRAME_CONTEXT *ec_ctx,
aom_reader *r,
CFL_ALLOWED_TYPE cfl_allowed,
PREDICTION_MODE y_mode) {
const UV_PREDICTION_MODE uv_mode =
aom_read_symbol(r, ec_ctx->uv_mode_cdf[cfl_allowed][y_mode],
UV_INTRA_MODES - !cfl_allowed, ACCT_STR);
return uv_mode;
}
static uint8_t read_cfl_alphas(FRAME_CONTEXT *const ec_ctx, aom_reader *r,
int8_t *signs_out) {
const int8_t joint_sign =
aom_read_symbol(r, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS, "cfl:signs");
uint8_t idx = 0;
// Magnitudes are only coded for nonzero values
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
idx = (uint8_t)aom_read_symbol(r, cdf_u, CFL_ALPHABET_SIZE, "cfl:alpha_u")
<< CFL_ALPHABET_SIZE_LOG2;
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
idx += (uint8_t)aom_read_symbol(r, cdf_v, CFL_ALPHABET_SIZE, "cfl:alpha_v");
}
*signs_out = joint_sign;
return idx;
}
static INTERINTRA_MODE read_interintra_mode(MACROBLOCKD *xd, aom_reader *r,
int size_group) {
const INTERINTRA_MODE ii_mode = (INTERINTRA_MODE)aom_read_symbol(
r, xd->tile_ctx->interintra_mode_cdf[size_group], INTERINTRA_MODES,
ACCT_STR);
return ii_mode;
}
static PREDICTION_MODE read_inter_mode(FRAME_CONTEXT *ec_ctx, aom_reader *r,
int16_t ctx) {
int16_t mode_ctx = ctx & NEWMV_CTX_MASK;
int is_newmv, is_zeromv, is_refmv;
is_newmv = aom_read_symbol(r, ec_ctx->newmv_cdf[mode_ctx], 2, ACCT_STR) == 0;
if (is_newmv) return NEWMV;
mode_ctx = (ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
is_zeromv =
aom_read_symbol(r, ec_ctx->zeromv_cdf[mode_ctx], 2, ACCT_STR) == 0;
if (is_zeromv) return GLOBALMV;
mode_ctx = (ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
is_refmv = aom_read_symbol(r, ec_ctx->refmv_cdf[mode_ctx], 2, ACCT_STR) == 0;
if (is_refmv)
return NEARESTMV;
else
return NEARMV;
}
static void read_drl_idx(FRAME_CONTEXT *ec_ctx, DecoderCodingBlock *dcb,
MB_MODE_INFO *mbmi, aom_reader *r) {
MACROBLOCKD *const xd = &dcb->xd;
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
mbmi->ref_mv_idx = 0;
if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) {
for (int idx = 0; idx < 2; ++idx) {
if (dcb->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(xd->weight[ref_frame_type], idx);
int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR);
mbmi->ref_mv_idx = idx + drl_idx;
if (!drl_idx) return;
}
}
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
// Offset the NEARESTMV mode.
// TODO(jingning): Unify the two syntax decoding loops after the NEARESTMV
// mode is factored in.
for (int idx = 1; idx < 3; ++idx) {
if (dcb->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(xd->weight[ref_frame_type], idx);
int drl_idx = aom_read_symbol(r, ec_ctx->drl_cdf[drl_ctx], 2, ACCT_STR);
mbmi->ref_mv_idx = idx + drl_idx - 1;
if (!drl_idx) return;
}
}
}
}
static MOTION_MODE read_motion_mode(AV1_COMMON *cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, aom_reader *r) {
if (cm->features.switchable_motion_mode == 0) return SIMPLE_TRANSLATION;
if (mbmi->skip_mode) return SIMPLE_TRANSLATION;
const MOTION_MODE last_motion_mode_allowed = motion_mode_allowed(
xd->global_motion, xd, mbmi, cm->features.allow_warped_motion);
int motion_mode;
if (last_motion_mode_allowed == SIMPLE_TRANSLATION) return SIMPLE_TRANSLATION;
if (last_motion_mode_allowed == OBMC_CAUSAL) {
#if CONFIG_SDP
motion_mode = aom_read_symbol(
r, xd->tile_ctx->obmc_cdf[mbmi->sb_type[PLANE_TYPE_Y]], 2, ACCT_STR);
#else
motion_mode =
aom_read_symbol(r, xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2, ACCT_STR);
#endif
return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
} else {
#if CONFIG_SDP
motion_mode = aom_read_symbol(
r, xd->tile_ctx->motion_mode_cdf[mbmi->sb_type[PLANE_TYPE_Y]],
MOTION_MODES, ACCT_STR);
#else
motion_mode =
aom_read_symbol(r, xd->tile_ctx->motion_mode_cdf[mbmi->sb_type],
MOTION_MODES, ACCT_STR);
#endif
return (MOTION_MODE)(SIMPLE_TRANSLATION + motion_mode);
}
}
static PREDICTION_MODE read_inter_compound_mode(MACROBLOCKD *xd, aom_reader *r,
int16_t ctx) {
const int mode =
aom_read_symbol(r, xd->tile_ctx->inter_compound_mode_cdf[ctx],
INTER_COMPOUND_MODES, ACCT_STR);
assert(is_inter_compound_mode(NEAREST_NEARESTMV + mode));
return NEAREST_NEARESTMV + mode;
}
int av1_neg_deinterleave(int diff, int ref, int max) {
if (!ref) return diff;
if (ref >= (max - 1)) return max - diff - 1;
if (2 * ref < max) {
if (diff <= 2 * ref) {
if (diff & 1)
return ref + ((diff + 1) >> 1);
else
return ref - (diff >> 1);
}
return diff;
} else {
if (diff <= 2 * (max - ref - 1)) {
if (diff & 1)
return ref + ((diff + 1) >> 1);
else
return ref - (diff >> 1);
}
return max - (diff + 1);
}
}
static int read_segment_id(AV1_COMMON *const cm, const MACROBLOCKD *const xd,
aom_reader *r, int skip) {
int cdf_num;
const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num);
if (skip) return pred;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &ec_ctx->seg;
aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
const int coded_id = aom_read_symbol(r, pred_cdf, MAX_SEGMENTS, ACCT_STR);
const int segment_id =
av1_neg_deinterleave(coded_id, pred, seg->last_active_segid + 1);
if (segment_id < 0 || segment_id > seg->last_active_segid) {
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Corrupted segment_ids");
}
return segment_id;
}
static int dec_get_segment_id(const AV1_COMMON *cm, const uint8_t *segment_ids,
int mi_offset, int x_mis, int y_mis) {
int segment_id = INT_MAX;
for (int y = 0; y < y_mis; y++)
for (int x = 0; x < x_mis; x++)
segment_id = AOMMIN(
segment_id, segment_ids[mi_offset + y * cm->mi_params.mi_cols + x]);
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
return segment_id;
}
static void set_segment_id(AV1_COMMON *cm, int mi_offset, int x_mis, int y_mis,
int segment_id) {
assert(segment_id >= 0 && segment_id < MAX_SEGMENTS);
for (int y = 0; y < y_mis; y++)
for (int x = 0; x < x_mis; x++)
cm->cur_frame->seg_map[mi_offset + y * cm->mi_params.mi_cols + x] =
segment_id;
}
static int read_intra_segment_id(AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int bsize,
aom_reader *r, int skip) {
struct segmentation *const seg = &cm->seg;
if (!seg->enabled) return 0; // Default for disabled segmentation
assert(seg->update_map && !seg->temporal_update);
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int x_mis = AOMMIN(mi_params->mi_cols - mi_col, bw);
const int y_mis = AOMMIN(mi_params->mi_rows - mi_row, bh);
const int segment_id = read_segment_id(cm, xd, r, skip);
set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
return segment_id;
}
static void copy_segment_id(const CommonModeInfoParams *const mi_params,
const uint8_t *last_segment_ids,
uint8_t *current_segment_ids, int mi_offset,
int x_mis, int y_mis) {
for (int y = 0; y < y_mis; y++)
for (int x = 0; x < x_mis; x++)
current_segment_ids[mi_offset + y * mi_params->mi_cols + x] =
last_segment_ids
? last_segment_ids[mi_offset + y * mi_params->mi_cols + x]
: 0;
}
static int get_predicted_segment_id(AV1_COMMON *const cm, int mi_offset,
int x_mis, int y_mis) {
return cm->last_frame_seg_map ? dec_get_segment_id(cm, cm->last_frame_seg_map,
mi_offset, x_mis, y_mis)
: 0;
}
static int read_inter_segment_id(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int preskip, aom_reader *r) {
struct segmentation *const seg = &cm->seg;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int mi_offset = mi_row * mi_params->mi_cols + mi_col;
#if CONFIG_SDP
const int bw = mi_size_wide[mbmi->sb_type[PLANE_TYPE_Y]];
const int bh = mi_size_high[mbmi->sb_type[PLANE_TYPE_Y]];
#else
const int bw = mi_size_wide[mbmi->sb_type];
const int bh = mi_size_high[mbmi->sb_type];
#endif
// TODO(slavarnway): move x_mis, y_mis into xd ?????
const int x_mis = AOMMIN(mi_params->mi_cols - mi_col, bw);
const int y_mis = AOMMIN(mi_params->mi_rows - mi_row, bh);
if (!seg->enabled) return 0; // Default for disabled segmentation
if (!seg->update_map) {
copy_segment_id(mi_params, cm->last_frame_seg_map, cm->cur_frame->seg_map,
mi_offset, x_mis, y_mis);
return get_predicted_segment_id(cm, mi_offset, x_mis, y_mis);
}
int segment_id;
if (preskip) {
if (!seg->segid_preskip) return 0;
} else {
#if CONFIG_SDP
if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) {
#else
if (mbmi->skip_txfm) {
#endif
if (seg->temporal_update) {
mbmi->seg_id_predicted = 0;
}
segment_id = read_segment_id(cm, xd, r, 1);
set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
return segment_id;
}
}
if (seg->temporal_update) {
const int ctx = av1_get_pred_context_seg_id(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
struct segmentation_probs *const segp = &ec_ctx->seg;
aom_cdf_prob *pred_cdf = segp->pred_cdf[ctx];
mbmi->seg_id_predicted = aom_read_symbol(r, pred_cdf, 2, ACCT_STR);
if (mbmi->seg_id_predicted) {
segment_id = get_predicted_segment_id(cm, mi_offset, x_mis, y_mis);
} else {
segment_id = read_segment_id(cm, xd, r, 0);
}
} else {
segment_id = read_segment_id(cm, xd, r, 0);
}
set_segment_id(cm, mi_offset, x_mis, y_mis, segment_id);
return segment_id;
}
static int read_skip_mode(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
aom_reader *r) {
if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 0;
}
#if CONFIG_SDP
if (!is_comp_ref_allowed(xd->mi[0]->sb_type[xd->tree_type == CHROMA_PART]))
return 0;
#else
if (!is_comp_ref_allowed(xd->mi[0]->sb_type)) return 0;
#endif
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) ||
segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
// These features imply single-reference mode, while skip mode implies
// compound reference. Hence, the two are mutually exclusive.
// In other words, skip_mode is implicitly 0 here.
return 0;
}
const int ctx = av1_get_skip_mode_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int skip_mode =
aom_read_symbol(r, ec_ctx->skip_mode_cdfs[ctx], 2, ACCT_STR);
return skip_mode;
}
static int read_skip_txfm(AV1_COMMON *cm, const MACROBLOCKD *xd, int segment_id,
aom_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int ctx = av1_get_skip_txfm_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int skip_txfm =
aom_read_symbol(r, ec_ctx->skip_txfm_cdfs[ctx], 2, ACCT_STR);
return skip_txfm;
}
}
// Merge the sorted list of cached colors(cached_colors[0...n_cached_colors-1])
// and the sorted list of transmitted colors(colors[n_cached_colors...n-1]) into
// one single sorted list(colors[...]).
static void merge_colors(uint16_t *colors, uint16_t *cached_colors,
int n_colors, int n_cached_colors) {
if (n_cached_colors == 0) return;
int cache_idx = 0, trans_idx = n_cached_colors;
for (int i = 0; i < n_colors; ++i) {
if (cache_idx < n_cached_colors &&
(trans_idx >= n_colors ||
cached_colors[cache_idx] <= colors[trans_idx])) {
colors[i] = cached_colors[cache_idx++];
} else {
assert(trans_idx < n_colors);
colors[i] = colors[trans_idx++];
}
}
}
static void read_palette_colors_y(MACROBLOCKD *const xd, int bit_depth,
PALETTE_MODE_INFO *const pmi, aom_reader *r) {
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
uint16_t cached_colors[PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
const int n = pmi->palette_size[0];
int idx = 0;
for (int i = 0; i < n_cache && idx < n; ++i)
if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i];
if (idx < n) {
const int n_cached_colors = idx;
pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
if (idx < n) {
const int min_bits = bit_depth - 3;
int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
int range = (1 << bit_depth) - pmi->palette_colors[idx - 1] - 1;
for (; idx < n; ++idx) {
assert(range >= 0);
const int delta = aom_read_literal(r, bits, ACCT_STR) + 1;
pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
0, (1 << bit_depth) - 1);
range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
merge_colors(pmi->palette_colors, cached_colors, n, n_cached_colors);
} else {
memcpy(pmi->palette_colors, cached_colors, n * sizeof(cached_colors[0]));
}
}
static void read_palette_colors_uv(MACROBLOCKD *const xd, int bit_depth,
PALETTE_MODE_INFO *const pmi,
aom_reader *r) {
const int n = pmi->palette_size[1];
// U channel colors.
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
uint16_t cached_colors[PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
int idx = 0;
for (int i = 0; i < n_cache && idx < n; ++i)
if (aom_read_bit(r, ACCT_STR)) cached_colors[idx++] = color_cache[i];
if (idx < n) {
const int n_cached_colors = idx;
idx += PALETTE_MAX_SIZE;
pmi->palette_colors[idx++] = aom_read_literal(r, bit_depth, ACCT_STR);
if (idx < PALETTE_MAX_SIZE + n) {
const int min_bits = bit_depth - 3;
int bits = min_bits + aom_read_literal(r, 2, ACCT_STR);
int range = (1 << bit_depth) - pmi->palette_colors[idx - 1];
for (; idx < PALETTE_MAX_SIZE + n; ++idx) {
assert(range >= 0);
const int delta = aom_read_literal(r, bits, ACCT_STR);
pmi->palette_colors[idx] = clamp(pmi->palette_colors[idx - 1] + delta,
0, (1 << bit_depth) - 1);
range -= (pmi->palette_colors[idx] - pmi->palette_colors[idx - 1]);
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
merge_colors(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors, n,
n_cached_colors);
} else {
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, cached_colors,
n * sizeof(cached_colors[0]));
}
// V channel colors.
if (aom_read_bit(r, ACCT_STR)) { // Delta encoding.
const int min_bits_v = bit_depth - 4;
const int max_val = 1 << bit_depth;
int bits = min_bits_v + aom_read_literal(r, 2, ACCT_STR);
pmi->palette_colors[2 * PALETTE_MAX_SIZE] =
aom_read_literal(r, bit_depth, ACCT_STR);
for (int i = 1; i < n; ++i) {
int delta = aom_read_literal(r, bits, ACCT_STR);
if (delta && aom_read_bit(r, ACCT_STR)) delta = -delta;
int val = (int)pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1] + delta;
if (val < 0) val += max_val;
if (val >= max_val) val -= max_val;
pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] = val;
}
} else {
for (int i = 0; i < n; ++i) {
pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] =
aom_read_literal(r, bit_depth, ACCT_STR);
}
}
}
static void read_palette_mode_info(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r) {
const int num_planes = av1_num_planes(cm);
MB_MODE_INFO *const mbmi = xd->mi[0];
#if CONFIG_SDP
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
#else
const BLOCK_SIZE bsize = mbmi->sb_type;
#endif
assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize));
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
#if CONFIG_SDP
if (mbmi->mode == DC_PRED && xd->tree_type != CHROMA_PART) {
#else
if (mbmi->mode == DC_PRED) {
#endif
const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
const int modev = aom_read_symbol(
r, xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_mode_ctx], 2,
ACCT_STR);
if (modev) {
pmi->palette_size[0] =
aom_read_symbol(r, xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
PALETTE_SIZES, ACCT_STR) +
2;
read_palette_colors_y(xd, cm->seq_params.bit_depth, pmi, r);
}
}
if (num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref) {
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
const int modev = aom_read_symbol(
r, xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2, ACCT_STR);
if (modev) {
pmi->palette_size[1] =
aom_read_symbol(r, xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
PALETTE_SIZES, ACCT_STR) +
2;
read_palette_colors_uv(xd, cm->seq_params.bit_depth, pmi, r);
}
}
}
static int read_angle_delta(aom_reader *r, aom_cdf_prob *cdf) {
const int sym = aom_read_symbol(r, cdf, 2 * MAX_ANGLE_DELTA + 1, ACCT_STR);
return sym - MAX_ANGLE_DELTA;
}
static void read_filter_intra_mode_info(const AV1_COMMON *const cm,
MACROBLOCKD *const xd, aom_reader *r) {
MB_MODE_INFO *const mbmi = xd->mi[0];
FILTER_INTRA_MODE_INFO *filter_intra_mode_info =
&mbmi->filter_intra_mode_info;
#if CONFIG_SDP
if (av1_filter_intra_allowed(cm, mbmi) && cm->tree_type != CHROMA_PART) {
#else
if (av1_filter_intra_allowed(cm, mbmi)) {
#endif
#if CONFIG_SDP
filter_intra_mode_info->use_filter_intra = aom_read_symbol(
r, xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type[PLANE_TYPE_Y]], 2,
ACCT_STR);
#else
filter_intra_mode_info->use_filter_intra = aom_read_symbol(
r, xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type], 2, ACCT_STR);
#endif
if (filter_intra_mode_info->use_filter_intra) {
filter_intra_mode_info->filter_intra_mode = aom_read_symbol(
r, xd->tile_ctx->filter_intra_mode_cdf, FILTER_INTRA_MODES, ACCT_STR);
}
} else {
filter_intra_mode_info->use_filter_intra = 0;
}
}
void av1_read_tx_type(const AV1_COMMON *const cm, MACROBLOCKD *xd, int blk_row,
int blk_col, TX_SIZE tx_size, aom_reader *r) {
MB_MODE_INFO *mbmi = xd->mi[0];
uint8_t *tx_type =
&xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
*tx_type = DCT_DCT;
// No need to read transform type if block is skipped.
#if CONFIG_SDP
if (mbmi->skip_txfm[xd->tree_type == CHROMA_PART] ||
#else
if (mbmi->skip_txfm ||
#endif
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
return;
// No need to read transform type for lossless mode(qindex==0).
const int qindex = xd->qindex[mbmi->segment_id];
if (qindex == 0) return;
const int inter_block = is_inter_block(mbmi);
if (get_ext_tx_types(tx_size, inter_block, cm->features.reduced_tx_set_used) >
1) {
const TxSetType tx_set_type = av1_get_ext_tx_set_type(
tx_size, inter_block, cm->features.reduced_tx_set_used);
const int eset =
get_ext_tx_set(tx_size, inter_block, cm->features.reduced_tx_set_used);
// eset == 0 should correspond to a set with only DCT_DCT and
// there is no need to read the tx_type
assert(eset != 0);
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (inter_block) {
*tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
r, ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
} else {
const PREDICTION_MODE intra_mode =
mbmi->filter_intra_mode_info.use_filter_intra
? fimode_to_intradir[mbmi->filter_intra_mode_info
.filter_intra_mode]
: mbmi->mode;
*tx_type = av1_ext_tx_inv[tx_set_type][aom_read_symbol(
r, ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_mode],
av1_num_ext_tx_set[tx_set_type], ACCT_STR)];
}
}
}
static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref,
nmv_context *ctx, MvSubpelPrecision precision);
static INLINE int is_mv_valid(const MV *mv);
static INLINE int assign_dv(AV1_COMMON *cm, MACROBLOCKD *xd, int_mv *mv,
const int_mv *ref_mv, int mi_row, int mi_col,
BLOCK_SIZE bsize, aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
read_mv(r, &mv->as_mv, &ref_mv->as_mv, &ec_ctx->ndvc, MV_SUBPEL_NONE);
// DV should not have sub-pel.
assert((mv->as_mv.col & 7) == 0);
assert((mv->as_mv.row & 7) == 0);
mv->as_mv.col = (mv->as_mv.col >> 3) * 8;
mv->as_mv.row = (mv->as_mv.row >> 3) * 8;
int valid = is_mv_valid(&mv->as_mv) &&
av1_is_dv_valid(mv->as_mv, cm, xd, mi_row, mi_col, bsize,
cm->seq_params.mib_size_log2);
return valid;
}
static void read_intrabc_info(AV1_COMMON *const cm, DecoderCodingBlock *dcb,
aom_reader *r) {
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *const mbmi = xd->mi[0];
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
#if CONFIG_SDP
assert(xd->tree_type != CHROMA_PART);
mbmi->use_intrabc[xd->tree_type == CHROMA_PART] =
aom_read_symbol(r, ec_ctx->intrabc_cdf, 2, ACCT_STR);
if (xd->tree_type == CHROMA_PART)
assert(mbmi->use_intrabc[PLANE_TYPE_UV] == 0);
if (mbmi->use_intrabc[xd->tree_type == CHROMA_PART]) {
#else
mbmi->use_intrabc = aom_read_symbol(r, ec_ctx->intrabc_cdf, 2, ACCT_STR);
if (mbmi->use_intrabc) {
#endif
#if CONFIG_SDP
BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
#else
BLOCK_SIZE bsize = mbmi->sb_type;
#endif
mbmi->mode = DC_PRED;
mbmi->uv_mode = UV_DC_PRED;
#if CONFIG_REMOVE_DUAL_FILTER
mbmi->interp_fltr = BILINEAR;
#else
mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
#endif // CONFIG_REMOVE_DUAL_FILTER
mbmi->motion_mode = SIMPLE_TRANSLATION;
int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
int_mv ref_mvs[INTRA_FRAME + 1][MAX_MV_REF_CANDIDATES];
av1_find_mv_refs(cm, xd, mbmi, INTRA_FRAME, dcb->ref_mv_count,
xd->ref_mv_stack, xd->weight, ref_mvs, /*global_mvs=*/NULL,
inter_mode_ctx);
int_mv nearestmv, nearmv;
av1_find_best_ref_mvs(0, ref_mvs[INTRA_FRAME], &nearestmv, &nearmv, 0);
int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
if (dv_ref.as_int == 0)
av1_find_ref_dv(&dv_ref, &xd->tile, cm->seq_params.mib_size, xd->mi_row);
// Ref DV should not have sub-pel.
int valid_dv = (dv_ref.as_mv.col & 7) == 0 && (dv_ref.as_mv.row & 7) == 0;
dv_ref.as_mv.col = (dv_ref.as_mv.col >> 3) * 8;
dv_ref.as_mv.row = (dv_ref.as_mv.row >> 3) * 8;
valid_dv = valid_dv && assign_dv(cm, xd, &mbmi->mv[0], &dv_ref, xd->mi_row,
xd->mi_col, bsize, r);
if (!valid_dv) {
// Intra bc motion vectors are not valid - signal corrupt frame
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid intrabc dv");
}
}
}
// If delta q is present, reads delta_q index.
// Also reads delta_q loop filter levels, if present.
static void read_delta_q_params(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r) {
DeltaQInfo *const delta_q_info = &cm->delta_q_info;
if (delta_q_info->delta_q_present_flag) {
MB_MODE_INFO *const mbmi = xd->mi[0];
xd->current_base_qindex +=
read_delta_qindex(cm, xd, r, mbmi) * delta_q_info->delta_q_res;
/* Normative: Clamp to [1,MAXQ] to not interfere with lossless mode */
xd->current_base_qindex = clamp(xd->current_base_qindex, 1, MAXQ);
FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
if (delta_q_info->delta_lf_present_flag) {
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (delta_q_info->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
const int tmp_lvl =
xd->delta_lf[lf_id] +
read_delta_lflevel(cm, r, ec_ctx->delta_lf_multi_cdf[lf_id], mbmi,
mi_col, mi_row) *
delta_q_info->delta_lf_res;
mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id] =
clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
}
} else {
const int tmp_lvl = xd->delta_lf_from_base +
read_delta_lflevel(cm, r, ec_ctx->delta_lf_cdf,
mbmi, mi_col, mi_row) *
delta_q_info->delta_lf_res;
mbmi->delta_lf_from_base = xd->delta_lf_from_base =
clamp(tmp_lvl, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
}
}
}
}
static void read_intra_frame_mode_info(AV1_COMMON *const cm,
DecoderCodingBlock *dcb, aom_reader *r) {
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const MB_MODE_INFO *above_mi = xd->above_mbmi;
const MB_MODE_INFO *left_mi = xd->left_mbmi;
#if CONFIG_SDP
const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART];
#else
const BLOCK_SIZE bsize = mbmi->sb_type;
#endif
struct segmentation *const seg = &cm->seg;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (seg->segid_preskip)
mbmi->segment_id = read_intra_segment_id(cm, xd, bsize, r, 0);
#if CONFIG_SDP
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] =
read_skip_txfm(cm, xd, mbmi->segment_id, r);
#else
mbmi->skip_txfm = read_skip_txfm(cm, xd, mbmi->segment_id, r);
#endif
if (!seg->segid_preskip)
#if CONFIG_SDP
mbmi->segment_id = read_intra_segment_id(
cm, xd, bsize, r, mbmi->skip_txfm[xd->tree_type == CHROMA_PART]);
#else
mbmi->segment_id = read_intra_segment_id(cm, xd, bsize, r, mbmi->skip_txfm);
#endif
#if CONFIG_SDP
if (xd->tree_type != CHROMA_PART)
#endif
read_cdef(cm, r, xd);
read_delta_q_params(cm, xd, r);
mbmi->current_qindex = xd->current_base_qindex;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
#if CONFIG_SDP
if (xd->tree_type != CHROMA_PART)
#endif
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
xd->above_txfm_context = cm->above_contexts.txfm[xd->tile.tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
if (av1_allow_intrabc(cm)) {
read_intrabc_info(cm, dcb, r);
if (is_intrabc_block(mbmi)) return;
}
const int use_angle_delta = av1_use_angle_delta(bsize);
#if CONFIG_SDP
if (cm->tree_type != CHROMA_PART) {
mbmi->mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, above_mi, left_mi));
mbmi->angle_delta[PLANE_TYPE_Y] =
(use_angle_delta && av1_is_directional_mode(mbmi->mode))
? read_angle_delta(
r, ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][mbmi->mode - V_PRED])
: 0;
}
#else
mbmi->mode = read_intra_mode(r, get_y_mode_cdf(ec_ctx, above_mi, left_mi));
mbmi->angle_delta[PLANE_TYPE_Y] =
(use_angle_delta && av1_is_directional_mode(mbmi->mode))
? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED])
: 0;
#endif
#if CONFIG_SDP
if (cm->tree_type != LUMA_PART) {
#endif
if (!cm->seq_params.monochrome && xd->is_chroma_ref) {
mbmi->uv_mode =
read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode);
if (mbmi->uv_mode == UV_CFL_PRED) {
mbmi->cfl_alpha_idx =
read_cfl_alphas(ec_ctx, r, &mbmi->cfl_alpha_signs);
}
#if CONFIG_SDP
mbmi->angle_delta[PLANE_TYPE_UV] =
(use_angle_delta &&
av1_is_directional_mode(get_uv_mode(mbmi->uv_mode)))
? read_angle_delta(
r, ec_ctx->angle_delta_cdf[PLANE_TYPE_UV]
[mbmi->uv_mode - V_PRED])
: 0;
#else
mbmi->angle_delta[PLANE_TYPE_UV] =
(use_angle_delta && av1_is_directional_mode(get_uv_mode(mbmi->uv_mode)))
? read_angle_delta(r,
ec_ctx->angle_delta_cdf[mbmi->uv_mode - V_PRED])
: 0;
#endif
} else {
// Avoid decoding angle_info if there is is no chroma prediction
mbmi->uv_mode = UV_DC_PRED;
}
xd->cfl.store_y = store_cfl_required(cm, xd);
#if CONFIG_SDP
} else {
// Avoid decoding angle_info if there is is no chroma prediction
mbmi->uv_mode = UV_DC_PRED;
}
#endif
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize))
read_palette_mode_info(cm, xd, r);
read_filter_intra_mode_info(cm, xd, r);
}
static int read_mv_component(aom_reader *r, nmv_component *mvcomp,
int use_subpel, int usehp) {
int mag, d, fr, hp;
const int sign = aom_read_symbol(r, mvcomp->sign_cdf, 2, ACCT_STR);
const int mv_class =
aom_read_symbol(r, mvcomp->classes_cdf, MV_CLASSES, ACCT_STR);
const int class0 = mv_class == MV_CLASS_0;
// Integer part
if (class0) {
d = aom_read_symbol(r, mvcomp->class0_cdf, CLASS0_SIZE, ACCT_STR);
mag = 0;
} else {
const int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
for (int i = 0; i < n; ++i)
d |= aom_read_symbol(r, mvcomp->bits_cdf[i], 2, ACCT_STR) << i;
mag = CLASS0_SIZE << (mv_class + 2);
}
if (use_subpel) {
// Fractional part
fr = aom_read_symbol(r, class0 ? mvcomp->class0_fp_cdf[d] : mvcomp->fp_cdf,
MV_FP_SIZE, ACCT_STR);
// High precision part (if hp is not used, the default value of the hp is 1)
hp = usehp ? aom_read_symbol(
r, class0 ? mvcomp->class0_hp_cdf : mvcomp->hp_cdf, 2,
ACCT_STR)
: 1;
} else {
fr = 3;
hp = 1;
}
// Result
mag += ((d << 3) | (fr << 1) | hp) + 1;
return sign ? -mag : mag;
}
static INLINE void read_mv(aom_reader *r, MV *mv, const MV *ref,
nmv_context *ctx, MvSubpelPrecision precision) {
MV diff = kZeroMv;
const MV_JOINT_TYPE joint_type =
(MV_JOINT_TYPE)aom_read_symbol(r, ctx->joints_cdf, MV_JOINTS, ACCT_STR);
if (mv_joint_vertical(joint_type))
diff.row = read_mv_component(r, &ctx->comps[0], precision > MV_SUBPEL_NONE,
precision > MV_SUBPEL_LOW_PRECISION);
if (mv_joint_horizontal(joint_type))
diff.col = read_mv_component(r, &ctx->comps[1], precision > MV_SUBPEL_NONE,
precision > MV_SUBPEL_LOW_PRECISION);
mv->row = ref->row + diff.row;
mv->col = ref->col + diff.col;
}
static REFERENCE_MODE read_block_reference_mode(AV1_COMMON *cm,
const MACROBLOCKD *xd,
aom_reader *r) {
#if CONFIG_SDP
if (!is_comp_ref_allowed(xd->mi[0]->sb_type[PLANE_TYPE_Y]))
return SINGLE_REFERENCE;
#else
if (!is_comp_ref_allowed(xd->mi[0]->sb_type)) return SINGLE_REFERENCE;
#endif
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) {
const int ctx = av1_get_reference_mode_context(xd);
const REFERENCE_MODE mode = (REFERENCE_MODE)aom_read_symbol(
r, xd->tile_ctx->comp_inter_cdf[ctx], 2, ACCT_STR);
return mode; // SINGLE_REFERENCE or COMPOUND_REFERENCE
} else {
assert(cm->current_frame.reference_mode == SINGLE_REFERENCE);
return cm->current_frame.reference_mode;
}
}
#define READ_REF_BIT(pname) \
aom_read_symbol(r, av1_get_pred_cdf_##pname(xd), 2, ACCT_STR)
static COMP_REFERENCE_TYPE read_comp_reference_type(const MACROBLOCKD *xd,
aom_reader *r) {
const int ctx = av1_get_comp_reference_type_context(xd);
const COMP_REFERENCE_TYPE comp_ref_type =
(COMP_REFERENCE_TYPE)aom_read_symbol(
r, xd->tile_ctx->comp_ref_type_cdf[ctx], 2, ACCT_STR);
return comp_ref_type; // UNIDIR_COMP_REFERENCE or BIDIR_COMP_REFERENCE
}
static void set_ref_frames_for_skip_mode(AV1_COMMON *const cm,
MV_REFERENCE_FRAME ref_frame[2]) {
ref_frame[0] = LAST_FRAME + cm->current_frame.skip_mode_info.ref_frame_idx_0;
ref_frame[1] = LAST_FRAME + cm->current_frame.skip_mode_info.ref_frame_idx_1;
}
// Read the referncence frame
static void read_ref_frames(AV1_COMMON *const cm, MACROBLOCKD *const xd,
aom_reader *r, int segment_id,
MV_REFERENCE_FRAME ref_frame[2]) {
if (xd->mi[0]->skip_mode) {
set_ref_frames_for_skip_mode(cm, ref_frame);
return;
}
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
ref_frame[0] = (MV_REFERENCE_FRAME)get_segdata(&cm->seg, segment_id,
SEG_LVL_REF_FRAME);
ref_frame[1] = NONE_FRAME;
} else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
ref_frame[0] = LAST_FRAME;
ref_frame[1] = NONE_FRAME;
} else {
const REFERENCE_MODE mode = read_block_reference_mode(cm, xd, r);
if (mode == COMPOUND_REFERENCE) {
const COMP_REFERENCE_TYPE comp_ref_type = read_comp_reference_type(xd, r);
if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
const int bit = READ_REF_BIT(uni_comp_ref_p);
if (bit) {
ref_frame[0] = BWDREF_FRAME;
ref_frame[1] = ALTREF_FRAME;
} else {
const int bit1 = READ_REF_BIT(uni_comp_ref_p1);
if (bit1) {
const int bit2 = READ_REF_BIT(uni_comp_ref_p2);
if (bit2) {
ref_frame[0] = LAST_FRAME;
ref_frame[1] = GOLDEN_FRAME;
} else {
ref_frame[0] = LAST_FRAME;
ref_frame[1] = LAST3_FRAME;
}
} else {
ref_frame[0] = LAST_FRAME;
ref_frame[1] = LAST2_FRAME;
}
}
return;
}
assert(comp_ref_type == BIDIR_COMP_REFERENCE);
const int idx = 1;
const int bit = READ_REF_BIT(comp_ref_p);
// Decode forward references.
if (!bit) {
const int bit1 = READ_REF_BIT(comp_ref_p1);
ref_frame[!idx] = bit1 ? LAST2_FRAME : LAST_FRAME;
} else {
const int bit2 = READ_REF_BIT(comp_ref_p2);
ref_frame[!idx] = bit2 ? GOLDEN_FRAME : LAST3_FRAME;
}
// Decode backward references.
const int bit_bwd = READ_REF_BIT(comp_bwdref_p);
if (!bit_bwd) {
const int bit1_bwd = READ_REF_BIT(comp_bwdref_p1);
ref_frame[idx] = bit1_bwd ? ALTREF2_FRAME : BWDREF_FRAME;
} else {
ref_frame[idx] = ALTREF_FRAME;
}
} else if (mode == SINGLE_REFERENCE) {
const int bit0 = READ_REF_BIT(single_ref_p1);
if (bit0) {
const int bit1 = READ_REF_BIT(single_ref_p2);
if (!bit1) {
const int bit5 = READ_REF_BIT(single_ref_p6);
ref_frame[0] = bit5 ? ALTREF2_FRAME : BWDREF_FRAME;
} else {
ref_frame[0] = ALTREF_FRAME;
}
} else {
const int bit2 = READ_REF_BIT(single_ref_p3);
if (bit2) {
const int bit4 = READ_REF_BIT(single_ref_p5);
ref_frame[0] = bit4 ? GOLDEN_FRAME : LAST3_FRAME;
} else {
const int bit3 = READ_REF_BIT(single_ref_p4);
ref_frame[0] = bit3 ? LAST2_FRAME : LAST_FRAME;
}
}
ref_frame[1] = NONE_FRAME;
} else {
assert(0 && "Invalid prediction mode.");
}
}
}
static INLINE void read_mb_interp_filter(const MACROBLOCKD *const xd,
InterpFilter interp_filter,
#if !CONFIG_REMOVE_DUAL_FILTER
bool enable_dual_filter,
#endif // !CONFIG_REMOVE_DUAL_FILTER
MB_MODE_INFO *const mbmi,
aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!av1_is_interp_needed(xd)) {
set_default_interp_filters(mbmi, interp_filter);
return;
}
if (interp_filter != SWITCHABLE) {
#if CONFIG_REMOVE_DUAL_FILTER
mbmi->interp_fltr = interp_filter;
#else
mbmi->interp_filters = av1_broadcast_interp_filter(interp_filter);
#endif // CONFIG_REMOVE_DUAL_FILTER
} else {
#if CONFIG_REMOVE_DUAL_FILTER
const int ctx = av1_get_pred_context_switchable_interp(xd, 0);
const InterpFilter filter = (InterpFilter)aom_read_symbol(
r, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS, ACCT_STR);
mbmi->interp_fltr = filter;
#else
InterpFilter ref0_filter[2] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR };
for (int dir = 0; dir < 2; ++dir) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
ref0_filter[dir] = (InterpFilter)aom_read_symbol(
r, ec_ctx->switchable_interp_cdf[ctx], SWITCHABLE_FILTERS, ACCT_STR);
if (!enable_dual_filter) {
ref0_filter[1] = ref0_filter[0];
break;
}
}
// The index system works as: (0, 1) -> (vertical, horizontal) filter types
mbmi->interp_filters.as_filters.x_filter = ref0_filter[1];
mbmi->interp_filters.as_filters.y_filter = ref0_filter[0];
#endif // CONFIG_REMOVE_DUAL_FILTER
}
}
static void read_intra_block_mode_info(AV1_COMMON *const cm,
MACROBLOCKD *const xd,
MB_MODE_INFO *const mbmi,
aom_reader *r) {
#if CONFIG_SDP
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
#else
const BLOCK_SIZE bsize = mbmi->sb_type;
#endif
const int use_angle_delta = av1_use_angle_delta(bsize);
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
mbmi->mode = read_intra_mode(r, ec_ctx->y_mode_cdf[size_group_lookup[bsize]]);
#if CONFIG_SDP
mbmi->angle_delta[PLANE_TYPE_Y] =
use_angle_delta && av1_is_directional_mode(mbmi->mode)
? read_angle_delta(
r, ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][mbmi->mode - V_PRED])
: 0;
#else
mbmi->angle_delta[PLANE_TYPE_Y] =
use_angle_delta && av1_is_directional_mode(mbmi->mode)
? read_angle_delta(r, ec_ctx->angle_delta_cdf[mbmi->mode - V_PRED])
: 0;
#endif
if (!cm->seq_params.monochrome && xd->is_chroma_ref) {
mbmi->uv_mode =
read_intra_mode_uv(ec_ctx, r, is_cfl_allowed(xd), mbmi->mode);
if (mbmi->uv_mode == UV_CFL_PRED) {
mbmi->cfl_alpha_idx =
read_cfl_alphas(xd->tile_ctx, r, &mbmi->cfl_alpha_signs);
}
#if CONFIG_SDP
mbmi->angle_delta[PLANE_TYPE_UV] =
use_angle_delta && av1_is_directional_mode(get_uv_mode(mbmi->uv_mode))
? read_angle_delta(r,
ec_ctx->angle_delta_cdf[PLANE_TYPE_UV]
[mbmi->uv_mode - V_PRED])
: 0;
#else
mbmi->angle_delta[PLANE_TYPE_UV] =
use_angle_delta && av1_is_directional_mode(get_uv_mode(mbmi->uv_mode))
? read_angle_delta(r,
ec_ctx->angle_delta_cdf[mbmi->uv_mode - V_PRED])
: 0;
#endif
} else {
// Avoid decoding angle_info if there is is no chroma prediction
mbmi->uv_mode = UV_DC_PRED;
}
#if CONFIG_SDP
if (cm->tree_type != LUMA_PART)
#endif
xd->cfl.store_y = store_cfl_required(cm, xd);
#if CONFIG_SDP
if (xd->tree_type != CHROMA_PART)
#endif
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize))
read_palette_mode_info(cm, xd, r);
read_filter_intra_mode_info(cm, xd, r);
}
static INLINE int is_mv_valid(const MV *mv) {
return mv->row > MV_LOW && mv->row < MV_UPP && mv->col > MV_LOW &&
mv->col < MV_UPP;
}
static INLINE int assign_mv(AV1_COMMON *cm, MACROBLOCKD *xd,
PREDICTION_MODE mode,
MV_REFERENCE_FRAME ref_frame[2], int_mv mv[2],
int_mv ref_mv[2], int_mv nearest_mv[2],
int_mv near_mv[2], int is_compound, int allow_hp,
aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
MB_MODE_INFO *mbmi = xd->mi[0];
#if CONFIG_SDP
BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
#else
BLOCK_SIZE bsize = mbmi->sb_type;
#endif
FeatureFlags *const features = &cm->features;
if (features->cur_frame_force_integer_mv) {
allow_hp = MV_SUBPEL_NONE;
}
switch (mode) {
case NEWMV: {
nmv_context *const nmvc = &ec_ctx->nmvc;
read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp);
break;
}
case NEARESTMV: {
mv[0].as_int = nearest_mv[0].as_int;
break;
}
case NEARMV: {
mv[0].as_int = near_mv[0].as_int;
break;
}
case GLOBALMV: {
mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]],
features->allow_high_precision_mv,
bsize, xd->mi_col, xd->mi_row,
features->cur_frame_force_integer_mv)
.as_int;
break;
}
case NEW_NEWMV: {
assert(is_compound);
for (int i = 0; i < 2; ++i) {
nmv_context *const nmvc = &ec_ctx->nmvc;
read_mv(r, &mv[i].as_mv, &ref_mv[i].as_mv, nmvc, allow_hp);
}
break;
}
case NEAREST_NEARESTMV: {
assert(is_compound);
mv[0].as_int = nearest_mv[0].as_int;
mv[1].as_int = nearest_mv[1].as_int;
break;
}
case NEAR_NEARMV: {
assert(is_compound);
mv[0].as_int = near_mv[0].as_int;
mv[1].as_int = near_mv[1].as_int;
break;
}
case NEW_NEARESTMV: {
nmv_context *const nmvc = &ec_ctx->nmvc;
read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp);
assert(is_compound);
mv[1].as_int = nearest_mv[1].as_int;
break;
}
case NEAREST_NEWMV: {
nmv_context *const nmvc = &ec_ctx->nmvc;
mv[0].as_int = nearest_mv[0].as_int;
read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, allow_hp);
assert(is_compound);
break;
}
case NEAR_NEWMV: {
nmv_context *const nmvc = &ec_ctx->nmvc;
mv[0].as_int = near_mv[0].as_int;
read_mv(r, &mv[1].as_mv, &ref_mv[1].as_mv, nmvc, allow_hp);
assert(is_compound);
break;
}
case NEW_NEARMV: {
nmv_context *const nmvc = &ec_ctx->nmvc;
read_mv(r, &mv[0].as_mv, &ref_mv[0].as_mv, nmvc, allow_hp);
assert(is_compound);
mv[1].as_int = near_mv[1].as_int;
break;
}
case GLOBAL_GLOBALMV: {
assert(is_compound);
mv[0].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[0]],
features->allow_high_precision_mv,
bsize, xd->mi_col, xd->mi_row,
features->cur_frame_force_integer_mv)
.as_int;
mv[1].as_int = gm_get_motion_vector(&cm->global_motion[ref_frame[1]],
features->allow_high_precision_mv,
bsize, xd->mi_col, xd->mi_row,
features->cur_frame_force_integer_mv)
.as_int;
break;
}
default: { return 0; }
}
int ret = is_mv_valid(&mv[0].as_mv);
if (is_compound) {
ret = ret && is_mv_valid(&mv[1].as_mv);
}
return ret;
}
static int read_is_inter_block(AV1_COMMON *const cm, MACROBLOCKD *const xd,
int segment_id, aom_reader *r) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
const int frame = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
if (frame < LAST_FRAME) return 0;
return frame != INTRA_FRAME;
}
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
return 1;
}
const int ctx = av1_get_intra_inter_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int is_inter =
aom_read_symbol(r, ec_ctx->intra_inter_cdf[ctx], 2, ACCT_STR);
return is_inter;
}
#if DEC_MISMATCH_DEBUG
static void dec_dump_logs(AV1_COMMON *cm, MB_MODE_INFO *const mbmi, int mi_row,
int mi_col, int16_t mode_ctx) {
int_mv mv[2] = { { 0 } };
for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref)
mv[ref].as_mv = mbmi->mv[ref].as_mv;
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
int16_t zeromv_ctx = -1;
int16_t refmv_ctx = -1;
if (mbmi->mode != NEWMV) {
zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mbmi->mode != GLOBALMV)
refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
}
#define FRAME_TO_CHECK 11
if (cm->current_frame.frame_number == FRAME_TO_CHECK && cm->show_frame == 1) {
printf(
"=== DECODER ===: "
"Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
"show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
"ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
"newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode,
mbmi->mode, mbmi->sb_type, cm->show_frame, mv[0].as_mv.row,
mv[0].as_mv.col, mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, zeromv_ctx,
refmv_ctx, mbmi->tx_size);
}
}
#endif // DEC_MISMATCH_DEBUG
static void read_inter_block_mode_info(AV1Decoder *const pbi,
DecoderCodingBlock *dcb,
MB_MODE_INFO *const mbmi,
aom_reader *r) {
AV1_COMMON *const cm = &pbi->common;
FeatureFlags *const features = &cm->features;
#if CONFIG_SDP
const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y];
#else
const BLOCK_SIZE bsize = mbmi->sb_type;
#endif
const int allow_hp = features->allow_high_precision_mv;
int_mv nearestmv[2], nearmv[2];
int_mv ref_mvs[MODE_CTX_REF_FRAMES][MAX_MV_REF_CANDIDATES] = { { { 0 } } };
int16_t inter_mode_ctx[MODE_CTX_REF_FRAMES];
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
MACROBLOCKD *const xd = &dcb->xd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
mbmi->uv_mode = UV_DC_PRED;
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
av1_collect_neighbors_ref_counts(xd);
read_ref_frames(cm, xd, r, mbmi->segment_id, mbmi->ref_frame);
const int is_compound = has_second_ref(mbmi);
const MV_REFERENCE_FRAME ref_frame = av1_ref_frame_type(mbmi->ref_frame);
av1_find_mv_refs(cm, xd, mbmi, ref_frame, dcb->ref_mv_count, xd->ref_mv_stack,
xd->weight, ref_mvs, /*global_mvs=*/NULL, inter_mode_ctx);
mbmi->ref_mv_idx = 0;
if (mbmi->skip_mode) {
assert(is_compound);
mbmi->mode = NEAREST_NEARESTMV;
} else {
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) ||
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_GLOBALMV)) {
mbmi->mode = GLOBALMV;
} else {
const int mode_ctx =
av1_mode_context_analyzer(inter_mode_ctx, mbmi->ref_frame);
if (is_compound)
mbmi->mode = read_inter_compound_mode(xd, r, mode_ctx);
else
mbmi->mode = read_inter_mode(ec_ctx, r, mode_ctx);
if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV ||
have_nearmv_in_inter_mode(mbmi->mode))
read_drl_idx(ec_ctx, dcb, mbmi, r);
}
}
if (is_compound != is_inter_compound_mode(mbmi->mode)) {
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Prediction mode %d invalid with ref frame %d %d",
mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
}
if (!is_compound && mbmi->mode != GLOBALMV) {
av1_find_best_ref_mvs(allow_hp, ref_mvs[mbmi->ref_frame[0]], &nearestmv[0],
&nearmv[0], features->cur_frame_force_integer_mv);
}
if (is_compound && mbmi->mode != GLOBAL_GLOBALMV) {
const int ref_mv_idx = mbmi->ref_mv_idx + 1;
nearestmv[0] = xd->ref_mv_stack[ref_frame][0].this_mv;
nearestmv[1] = xd->ref_mv_stack[ref_frame][0].comp_mv;
nearmv[0] = xd->ref_mv_stack[ref_frame][ref_mv_idx].this_mv;
nearmv[1] = xd->ref_mv_stack[ref_frame][ref_mv_idx].comp_mv;
lower_mv_precision(&nearestmv[0].as_mv, allow_hp,
features->cur_frame_force_integer_mv);
lower_mv_precision(&nearestmv[1].as_mv, allow_hp,
features->cur_frame_force_integer_mv);
lower_mv_precision(&nearmv[0].as_mv, allow_hp,
features->cur_frame_force_integer_mv);
lower_mv_precision(&nearmv[1].as_mv, allow_hp,
features->cur_frame_force_integer_mv);
} else if (mbmi->ref_mv_idx > 0 && mbmi->mode == NEARMV) {
nearmv[0] =
xd->ref_mv_stack[mbmi->ref_frame[0]][1 + mbmi->ref_mv_idx].this_mv;
}
int_mv ref_mv[2] = { nearestmv[0], nearestmv[1] };
if (is_compound) {
int ref_mv_idx = mbmi->ref_mv_idx;
// Special case: NEAR_NEWMV and NEW_NEARMV modes use
// 1 + mbmi->ref_mv_idx (like NEARMV) instead of
// mbmi->ref_mv_idx (like NEWMV)
if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV)
ref_mv_idx = 1 + mbmi->ref_mv_idx;
// TODO(jingning, yunqing): Do we need a lower_mv_precision() call here?
if (compound_ref0_mode(mbmi->mode) == NEWMV)
ref_mv[0] = xd->ref_mv_stack[ref_frame][ref_mv_idx].this_mv;
if (compound_ref1_mode(mbmi->mode) == NEWMV)
ref_mv[1] = xd->ref_mv_stack[ref_frame][ref_mv_idx].comp_mv;
} else {
if (mbmi->mode == NEWMV) {
if (dcb->ref_mv_count[ref_frame] > 1)
ref_mv[0] = xd->ref_mv_stack[ref_frame][mbmi->ref_mv_idx].this_mv;
}
}
if (mbmi->skip_mode) assert(mbmi->mode == NEAREST_NEARESTMV);
const int mv_corrupted_flag =
!assign_mv(cm, xd, mbmi->mode, mbmi->ref_frame, mbmi->mv, ref_mv,
nearestmv, nearmv, is_compound, allow_hp, r);
aom_merge_corrupted_flag(&dcb->corrupted, mv_corrupted_flag);
mbmi->use_wedge_interintra = 0;
if (cm->seq_params.enable_interintra_compound && !mbmi->skip_mode &&
is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
const int interintra =
aom_read_symbol(r, ec_ctx->interintra_cdf[bsize_group], 2, ACCT_STR);
assert(mbmi->ref_frame[1] == NONE_FRAME);
if (interintra) {
const INTERINTRA_MODE interintra_mode =
read_interintra_mode(xd, r, bsize_group);
mbmi->ref_frame[1] = INTRA_FRAME;
mbmi->interintra_mode = interintra_mode;
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
if (av1_is_wedge_used(bsize)) {
mbmi->use_wedge_interintra = aom_read_symbol(
r, ec_ctx->wedge_interintra_cdf[bsize], 2, ACCT_STR);
if (mbmi->use_wedge_interintra) {
mbmi->interintra_wedge_index = (int8_t)aom_read_symbol(
r, ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES, ACCT_STR);
}
}
}
}
for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
xd->block_ref_scale_factors[ref] = get_ref_scale_factors_const(cm, frame);
}
mbmi->motion_mode = SIMPLE_TRANSLATION;
#if CONFIG_SDP
if (is_motion_variation_allowed_bsize(mbmi->sb_type[PLANE_TYPE_Y]) &&
!mbmi->skip_mode && !has_second_ref(mbmi)) {
#else
if (is_motion_variation_allowed_bsize(mbmi->sb_type) && !mbmi->skip_mode &&
!has_second_ref(mbmi)) {
#endif
mbmi->num_proj_ref = av1_findSamples(cm, xd, pts, pts_inref);
}
av1_count_overlappable_neighbors(cm, xd);
if (mbmi->ref_frame[1] != INTRA_FRAME)
mbmi->motion_mode = read_motion_mode(cm, xd, mbmi, r);
// init
mbmi->comp_group_idx = 0;
mbmi->compound_idx = 1;
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
if (has_second_ref(mbmi) && !mbmi->skip_mode) {
// Read idx to indicate current compound inter prediction mode group
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params.enable_masked_compound;
if (masked_compound_used) {
const int ctx_comp_group_idx = get_comp_group_idx_context(cm, xd);
mbmi->comp_group_idx = (uint8_t)aom_read_symbol(
r, ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2, ACCT_STR);
}
if (mbmi->comp_group_idx == 0) {
#if !CONFIG_REMOVE_DIST_WTD_COMP
if (cm->seq_params.order_hint_info.enable_dist_wtd_comp) {
const int comp_index_ctx = get_comp_index_context(cm, xd);
mbmi->compound_idx = (uint8_t)aom_read_symbol(
r, ec_ctx->compound_index_cdf[comp_index_ctx], 2, ACCT_STR);
mbmi->interinter_comp.type =
mbmi->compound_idx ? COMPOUND_AVERAGE : COMPOUND_DISTWTD;
} else {
#endif // !CONFIG_REMOVE_DIST_WTD_COMP
// Distance-weighted compound is disabled, so always use average
mbmi->compound_idx = 1;
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
#if !CONFIG_REMOVE_DIST_WTD_COMP
}
#endif // !CONFIG_REMOVE_DIST_WTD_COMP
} else {
assert(cm->current_frame.reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION);
assert(masked_compound_used);
// compound_diffwtd, wedge
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
mbmi->interinter_comp.type =
COMPOUND_WEDGE + aom_read_symbol(r,
ec_ctx->compound_type_cdf[bsize],
MASKED_COMPOUND_TYPES, ACCT_STR);
} else {
mbmi->interinter_comp.type = COMPOUND_DIFFWTD;
}
if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
mbmi->interinter_comp.wedge_index = (int8_t)aom_read_symbol(
r, ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES, ACCT_STR);
mbmi->interinter_comp.wedge_sign = (int8_t)aom_read_bit(r, ACCT_STR);
} else {
assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD);
mbmi->interinter_comp.mask_type =
aom_read_literal(r, MAX_DIFFWTD_MASK_BITS, ACCT_STR);
}
}
}
read_mb_interp_filter(xd, features->interp_filter,
#if !CONFIG_REMOVE_DUAL_FILTER
cm->seq_params.enable_dual_filter,
#endif // !CONFIG_REMOVE_DUAL_FILTER
mbmi, r);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
if (mbmi->motion_mode == WARPED_CAUSAL) {
mbmi->wm_params.wmtype = DEFAULT_WMTYPE;
mbmi->wm_params.invalid = 0;
if (mbmi->num_proj_ref > 1) {
mbmi->num_proj_ref = av1_selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref,
mbmi->num_proj_ref, bsize);
}
if (av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
&mbmi->wm_params, mi_row, mi_col)) {
#if WARPED_MOTION_DEBUG
printf("Warning: unexpected warped model from aomenc\n");
#endif
mbmi->wm_params.invalid = 1;
}
}
#if CONFIG_SDP
if (cm->tree_type != LUMA_PART)
#endif
xd->cfl.store_y = store_cfl_required(cm, xd);
#if DEC_MISMATCH_DEBUG
dec_dump_logs(cm, mi, mi_row, mi_col, mode_ctx);
#endif // DEC_MISMATCH_DEBUG
}
static void read_inter_frame_mode_info(AV1Decoder *const pbi,
DecoderCodingBlock *dcb, aom_reader *r) {
AV1_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *const mbmi = xd->mi[0];
int inter_block = 1;
mbmi->mv[0].as_int = 0;
mbmi->mv[1].as_int = 0;
mbmi->segment_id = read_inter_segment_id(cm, xd, 1, r);
mbmi->skip_mode = read_skip_mode(cm, xd, mbmi->segment_id, r);
#if CONFIG_SDP
if (mbmi->skip_mode)
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] = 1;
else
mbmi->skip_txfm[xd->tree_type == CHROMA_PART] =
read_skip_txfm(cm, xd, mbmi->segment_id, r);
#else
if (mbmi->skip_mode)
mbmi->skip_txfm = 1;
else
mbmi->skip_txfm = read_skip_txfm(cm, xd, mbmi->segment_id, r);
#endif
if (!cm->seg.segid_preskip)
mbmi->segment_id = read_inter_segment_id(cm, xd, 0, r);
read_cdef(cm, r, xd);
read_delta_q_params(cm, xd, r);
if (!mbmi->skip_mode)
inter_block = read_is_inter_block(cm, xd, mbmi->segment_id, r);
mbmi->current_qindex = xd->current_base_qindex;
xd->above_txfm_context =
cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK);
if (inter_block)
read_inter_block_mode_info(pbi, dcb, mbmi, r);
else
read_intra_block_mode_info(cm, xd, mbmi, r);
}
static void intra_copy_frame_mvs(AV1_COMMON *const cm, int mi_row, int mi_col,
int x_mis, int y_mis) {
const int frame_mvs_stride = ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, 1);
MV_REF *frame_mvs =
cm->cur_frame->mvs + (mi_row >> 1) * frame_mvs_stride + (mi_col >> 1);
x_mis = ROUND_POWER_OF_TWO(x_mis, 1);
y_mis = ROUND_POWER_OF_TWO(y_mis, 1);
for (int h = 0; h < y_mis; h++) {
MV_REF *mv = frame_mvs;
for (int w = 0; w < x_mis; w++) {
mv->ref_frame = NONE_FRAME;
mv++;
}
frame_mvs += frame_mvs_stride;
}
}
void av1_read_mode_info(AV1Decoder *const pbi, DecoderCodingBlock *dcb,
aom_reader *r, int x_mis, int y_mis) {
AV1_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &dcb->xd;
MB_MODE_INFO *const mi = xd->mi[0];
#if CONFIG_SDP
mi->tree_type = xd->tree_type;
mi->use_intrabc[xd->tree_type == CHROMA_PART] = 0;
#else
mi->use_intrabc = 0;
#endif
#if CONFIG_SDP
if (xd->tree_type == SHARED_PART)
mi->sb_type[PLANE_TYPE_UV] = mi->sb_type[PLANE_TYPE_Y];
#endif
if (frame_is_intra_only(cm)) {
read_intra_frame_mode_info(cm, dcb, r);
if (cm->seq_params.order_hint_info.enable_ref_frame_mvs)
intra_copy_frame_mvs(cm, xd->mi_row, xd->mi_col, x_mis, y_mis);
} else {
read_inter_frame_mode_info(pbi, dcb, r);
if (cm->seq_params.order_hint_info.enable_ref_frame_mvs)
av1_copy_frame_mvs(cm, mi, xd->mi_row, xd->mi_col, x_mis, y_mis);
}
}