| /* |
| Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include "vp9/decoder/vp9_treereader.h" |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/decoder/vp9_onyxd_int.h" |
| #include "vp9/common/vp9_findnearmv.h" |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/decoder/vp9_decodemv.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #if CONFIG_DEBUG |
| #include <assert.h> |
| #endif |
| |
| // #define DEBUG_DEC_MV |
| #ifdef DEBUG_DEC_MV |
| int dec_mvcount = 0; |
| #endif |
| |
| // #define DEC_DEBUG |
| #ifdef DEC_DEBUG |
| extern int dec_debug; |
| #endif |
| |
| static B_PREDICTION_MODE read_bmode(vp9_reader *r, const vp9_prob *p) { |
| B_PREDICTION_MODE m = treed_read(r, vp9_bmode_tree, p); |
| return m; |
| } |
| |
| static B_PREDICTION_MODE read_kf_bmode(vp9_reader *r, const vp9_prob *p) { |
| return (B_PREDICTION_MODE)treed_read(r, vp9_kf_bmode_tree, p); |
| } |
| |
| static MB_PREDICTION_MODE read_ymode(vp9_reader *r, const vp9_prob *p) { |
| return (MB_PREDICTION_MODE)treed_read(r, vp9_ymode_tree, p); |
| } |
| |
| static MB_PREDICTION_MODE read_sb_ymode(vp9_reader *r, const vp9_prob *p) { |
| return (MB_PREDICTION_MODE)treed_read(r, vp9_sb_ymode_tree, p); |
| } |
| |
| static MB_PREDICTION_MODE read_kf_sb_ymode(vp9_reader *r, const vp9_prob *p) { |
| return (MB_PREDICTION_MODE)treed_read(r, vp9_uv_mode_tree, p); |
| } |
| |
| static MB_PREDICTION_MODE read_kf_mb_ymode(vp9_reader *r, const vp9_prob *p) { |
| return (MB_PREDICTION_MODE)treed_read(r, vp9_kf_ymode_tree, p); |
| } |
| |
| static MB_PREDICTION_MODE read_uv_mode(vp9_reader *r, const vp9_prob *p) { |
| return (MB_PREDICTION_MODE)treed_read(r, vp9_uv_mode_tree, p); |
| } |
| |
| static int read_mb_segid(vp9_reader *r, MACROBLOCKD *xd) { |
| return treed_read(r, vp9_segment_tree, xd->mb_segment_tree_probs); |
| } |
| |
| static void set_segment_id(VP9_COMMON *cm, MB_MODE_INFO *mbmi, |
| int mi_row, int mi_col, int segment_id) { |
| const int mi_index = mi_row * cm->mi_cols + mi_col; |
| const BLOCK_SIZE_TYPE sb_type = mbmi->sb_type; |
| const int bw = 1 << mi_width_log2(sb_type); |
| const int bh = 1 << mi_height_log2(sb_type); |
| const int ymis = MIN(cm->mi_rows - mi_row, bh); |
| const int xmis = MIN(cm->mi_cols - mi_col, bw); |
| int x, y; |
| |
| for (y = 0; y < ymis; y++) { |
| for (x = 0; x < xmis; x++) { |
| const int index = mi_index + (y * cm->mi_cols + x); |
| cm->last_frame_seg_map[index] = segment_id; |
| } |
| } |
| } |
| |
| static TX_SIZE select_txfm_size(VP9_COMMON *cm, vp9_reader *r, |
| int allow_16x16, int allow_32x32) { |
| TX_SIZE txfm_size = vp9_read(r, cm->prob_tx[0]); // TX_4X4 or >TX_4X4 |
| if (txfm_size != TX_4X4 && allow_16x16) { |
| txfm_size += vp9_read(r, cm->prob_tx[1]); // TX_8X8 or >TX_8X8 |
| if (txfm_size != TX_8X8 && allow_32x32) |
| txfm_size += vp9_read(r, cm->prob_tx[2]); // TX_16X16 or >TX_16X16 |
| } |
| return txfm_size; |
| } |
| |
| |
| static void kfread_modes(VP9D_COMP *pbi, MODE_INFO *m, |
| int mi_row, int mi_col, |
| vp9_reader *r) { |
| VP9_COMMON *const cm = &pbi->common; |
| MACROBLOCKD *const xd = &pbi->mb; |
| const int mis = cm->mode_info_stride; |
| m->mbmi.ref_frame = INTRA_FRAME; |
| |
| // Read segmentation map if it is being updated explicitly this frame |
| m->mbmi.segment_id = 0; |
| if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { |
| m->mbmi.segment_id = read_mb_segid(r, xd); |
| set_segment_id(cm, &m->mbmi, mi_row, mi_col, m->mbmi.segment_id); |
| } |
| |
| m->mbmi.mb_skip_coeff = vp9_segfeature_active(xd, m->mbmi.segment_id, |
| SEG_LVL_SKIP); |
| if (!m->mbmi.mb_skip_coeff) |
| m->mbmi.mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP)); |
| |
| // luma mode |
| if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) { |
| const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis); |
| const MB_PREDICTION_MODE L = xd->left_available ? |
| left_block_mode(m, 0) : DC_PRED; |
| m->mbmi.mode = read_kf_bmode(r, cm->kf_bmode_prob[A][L]); |
| } else { |
| m->mbmi.mode = I4X4_PRED; |
| } |
| |
| m->mbmi.ref_frame = INTRA_FRAME; |
| |
| if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) { |
| int idx, idy; |
| int bw = 1 << b_width_log2(m->mbmi.sb_type); |
| int bh = 1 << b_height_log2(m->mbmi.sb_type); |
| |
| for (idy = 0; idy < 2; idy += bh) { |
| for (idx = 0; idx < 2; idx += bw) { |
| int ib = idy * 2 + idx; |
| int k; |
| const MB_PREDICTION_MODE A = above_block_mode(m, ib, mis); |
| const MB_PREDICTION_MODE L = (xd->left_available || idx) ? |
| left_block_mode(m, ib) : DC_PRED; |
| m->bmi[ib].as_mode.first = |
| read_kf_bmode(r, cm->kf_bmode_prob[A][L]); |
| for (k = 1; k < bh; ++k) |
| m->bmi[ib + k * 2].as_mode.first = m->bmi[ib].as_mode.first; |
| for (k = 1; k < bw; ++k) |
| m->bmi[ib + k].as_mode.first = m->bmi[ib].as_mode.first; |
| } |
| } |
| } |
| |
| m->mbmi.uv_mode = read_uv_mode(r, cm->kf_uv_mode_prob[m->mbmi.mode]); |
| |
| if (cm->txfm_mode == TX_MODE_SELECT && |
| m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) { |
| const int allow_16x16 = m->mbmi.sb_type >= BLOCK_SIZE_MB16X16; |
| const int allow_32x32 = m->mbmi.sb_type >= BLOCK_SIZE_SB32X32; |
| m->mbmi.txfm_size = select_txfm_size(cm, r, allow_16x16, allow_32x32); |
| } else if (cm->txfm_mode >= ALLOW_32X32 && |
| m->mbmi.sb_type >= BLOCK_SIZE_SB32X32) { |
| m->mbmi.txfm_size = TX_32X32; |
| } else if (cm->txfm_mode >= ALLOW_16X16 && |
| m->mbmi.sb_type >= BLOCK_SIZE_MB16X16 && |
| m->mbmi.mode <= TM_PRED) { |
| m->mbmi.txfm_size = TX_16X16; |
| } else if (cm->txfm_mode >= ALLOW_8X8 && |
| m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) { |
| m->mbmi.txfm_size = TX_8X8; |
| } else { |
| m->mbmi.txfm_size = TX_4X4; |
| } |
| } |
| |
| static int read_mv_component(vp9_reader *r, |
| const nmv_component *mvcomp, int usehp) { |
| |
| int mag, d, fr, hp; |
| const int sign = vp9_read(r, mvcomp->sign); |
| const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes); |
| |
| // Integer part |
| if (mv_class == MV_CLASS_0) { |
| d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0); |
| } else { |
| int i; |
| const int n = mv_class + CLASS0_BITS - 1; // number of bits |
| |
| d = 0; |
| for (i = 0; i < n; ++i) |
| d |= vp9_read(r, mvcomp->bits[i]) << i; |
| } |
| |
| // Fractional part |
| fr = treed_read(r, vp9_mv_fp_tree, |
| mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp); |
| |
| |
| // High precision part (if hp is not used, the default value of the hp is 1) |
| hp = usehp ? vp9_read(r, |
| mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp) |
| : 1; |
| |
| // result |
| mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1; |
| return sign ? -mag : mag; |
| } |
| |
| static void update_nmv(vp9_reader *r, vp9_prob *const p, |
| const vp9_prob upd_p) { |
| if (vp9_read(r, upd_p)) { |
| #ifdef LOW_PRECISION_MV_UPDATE |
| *p = (vp9_read_literal(r, 7) << 1) | 1; |
| #else |
| *p = (vp9_read_literal(r, 8)); |
| #endif |
| } |
| } |
| |
| static void read_nmvprobs(vp9_reader *r, nmv_context *mvctx, |
| int usehp) { |
| int i, j, k; |
| |
| #ifdef MV_GROUP_UPDATE |
| if (!vp9_read_bit(r)) |
| return; |
| #endif |
| for (j = 0; j < MV_JOINTS - 1; ++j) |
| update_nmv(r, &mvctx->joints[j], VP9_NMV_UPDATE_PROB); |
| |
| for (i = 0; i < 2; ++i) { |
| update_nmv(r, &mvctx->comps[i].sign, VP9_NMV_UPDATE_PROB); |
| for (j = 0; j < MV_CLASSES - 1; ++j) |
| update_nmv(r, &mvctx->comps[i].classes[j], VP9_NMV_UPDATE_PROB); |
| |
| for (j = 0; j < CLASS0_SIZE - 1; ++j) |
| update_nmv(r, &mvctx->comps[i].class0[j], VP9_NMV_UPDATE_PROB); |
| |
| for (j = 0; j < MV_OFFSET_BITS; ++j) |
| update_nmv(r, &mvctx->comps[i].bits[j], VP9_NMV_UPDATE_PROB); |
| } |
| |
| for (i = 0; i < 2; ++i) { |
| for (j = 0; j < CLASS0_SIZE; ++j) |
| for (k = 0; k < 3; ++k) |
| update_nmv(r, &mvctx->comps[i].class0_fp[j][k], VP9_NMV_UPDATE_PROB); |
| |
| for (j = 0; j < 3; ++j) |
| update_nmv(r, &mvctx->comps[i].fp[j], VP9_NMV_UPDATE_PROB); |
| } |
| |
| if (usehp) { |
| for (i = 0; i < 2; ++i) { |
| update_nmv(r, &mvctx->comps[i].class0_hp, VP9_NMV_UPDATE_PROB); |
| update_nmv(r, &mvctx->comps[i].hp, VP9_NMV_UPDATE_PROB); |
| } |
| } |
| } |
| |
| // Read the referncence frame |
| static MV_REFERENCE_FRAME read_ref_frame(VP9D_COMP *pbi, |
| vp9_reader *r, |
| int segment_id) { |
| MV_REFERENCE_FRAME ref_frame; |
| VP9_COMMON *const cm = &pbi->common; |
| MACROBLOCKD *const xd = &pbi->mb; |
| |
| int seg_ref_count = 0; |
| const int seg_ref_active = vp9_segfeature_active(xd, segment_id, |
| SEG_LVL_REF_FRAME); |
| |
| const int intra = vp9_check_segref(xd, segment_id, INTRA_FRAME); |
| const int last = vp9_check_segref(xd, segment_id, LAST_FRAME); |
| const int golden = vp9_check_segref(xd, segment_id, GOLDEN_FRAME); |
| const int altref = vp9_check_segref(xd, segment_id, ALTREF_FRAME); |
| |
| // If segment coding enabled does the segment allow for more than one |
| // possible reference frame |
| if (seg_ref_active) |
| seg_ref_count = intra + last + golden + altref; |
| |
| // Segment reference frame features not available or allows for |
| // multiple reference frame options |
| if (!seg_ref_active || seg_ref_count > 1) { |
| // Values used in prediction model coding |
| MV_REFERENCE_FRAME pred_ref; |
| |
| // Get the context probability the prediction flag |
| vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF); |
| |
| // Read the prediction status flag |
| unsigned char prediction_flag = vp9_read(r, pred_prob); |
| |
| // Store the prediction flag. |
| vp9_set_pred_flag(xd, PRED_REF, prediction_flag); |
| |
| // Get the predicted reference frame. |
| pred_ref = vp9_get_pred_ref(cm, xd); |
| |
| // If correctly predicted then use the predicted value |
| if (prediction_flag) { |
| ref_frame = pred_ref; |
| } else { |
| // decode the explicitly coded value |
| vp9_prob mod_refprobs[PREDICTION_PROBS]; |
| vpx_memcpy(mod_refprobs, cm->mod_refprobs[pred_ref], |
| sizeof(mod_refprobs)); |
| |
| // If segment coding enabled blank out options that cant occur by |
| // setting the branch probability to 0. |
| if (seg_ref_active) { |
| mod_refprobs[INTRA_FRAME] *= intra; |
| mod_refprobs[LAST_FRAME] *= last; |
| mod_refprobs[GOLDEN_FRAME] *= golden * altref; |
| } |
| |
| // Default to INTRA_FRAME (value 0) |
| ref_frame = INTRA_FRAME; |
| |
| // Do we need to decode the Intra/Inter branch |
| if (mod_refprobs[0]) |
| ref_frame = vp9_read(r, mod_refprobs[0]); |
| else |
| ref_frame++; |
| |
| if (ref_frame) { |
| // Do we need to decode the Last/Gf_Arf branch |
| if (mod_refprobs[1]) |
| ref_frame += vp9_read(r, mod_refprobs[1]); |
| else |
| ref_frame++; |
| |
| if (ref_frame > 1) { |
| // Do we need to decode the GF/Arf branch |
| if (mod_refprobs[2]) { |
| ref_frame += vp9_read(r, mod_refprobs[2]); |
| } else { |
| if (seg_ref_active) |
| ref_frame = pred_ref == GOLDEN_FRAME || !golden ? ALTREF_FRAME |
| : GOLDEN_FRAME; |
| else |
| ref_frame = pred_ref == GOLDEN_FRAME ? ALTREF_FRAME |
| : GOLDEN_FRAME; |
| } |
| } |
| } |
| } |
| } else { |
| // Segment reference frame features are enabled |
| // The reference frame for the mb is considered as correclty predicted |
| // if it is signaled at the segment level for the purposes of the |
| // common prediction model |
| vp9_set_pred_flag(xd, PRED_REF, 1); |
| ref_frame = vp9_get_pred_ref(cm, xd); |
| } |
| |
| return ref_frame; |
| } |
| |
| static MB_PREDICTION_MODE read_sb_mv_ref(vp9_reader *r, const vp9_prob *p) { |
| return (MB_PREDICTION_MODE) treed_read(r, vp9_sb_mv_ref_tree, p); |
| } |
| |
| static MB_PREDICTION_MODE read_mv_ref(vp9_reader *r, const vp9_prob *p) { |
| return (MB_PREDICTION_MODE) treed_read(r, vp9_mv_ref_tree, p); |
| } |
| |
| static B_PREDICTION_MODE read_sub_mv_ref(vp9_reader *r, const vp9_prob *p) { |
| return (B_PREDICTION_MODE) treed_read(r, vp9_sub_mv_ref_tree, p); |
| } |
| |
| #ifdef VPX_MODE_COUNT |
| unsigned int vp9_mv_cont_count[5][4] = { |
| { 0, 0, 0, 0 }, |
| { 0, 0, 0, 0 }, |
| { 0, 0, 0, 0 }, |
| { 0, 0, 0, 0 }, |
| { 0, 0, 0, 0 } |
| }; |
| #endif |
| |
| static void read_switchable_interp_probs(VP9D_COMP* const pbi, vp9_reader *r) { |
| VP9_COMMON *const cm = &pbi->common; |
| int i, j; |
| for (j = 0; j < VP9_SWITCHABLE_FILTERS + 1; ++j) |
| for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) |
| cm->fc.switchable_interp_prob[j][i] = vp9_read_prob(r); |
| } |
| |
| static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) { |
| COMPPREDMODE_TYPE mode = vp9_read_bit(r); |
| if (mode) |
| mode += vp9_read_bit(r); |
| return mode; |
| } |
| |
| static void mb_mode_mv_init(VP9D_COMP *pbi, vp9_reader *r) { |
| VP9_COMMON *const cm = &pbi->common; |
| |
| if (cm->frame_type == KEY_FRAME) { |
| if (!cm->kf_ymode_probs_update) |
| cm->kf_ymode_probs_index = vp9_read_literal(r, 3); |
| } else { |
| nmv_context *const nmvc = &pbi->common.fc.nmvc; |
| MACROBLOCKD *const xd = &pbi->mb; |
| int i, j; |
| |
| if (cm->mcomp_filter_type == SWITCHABLE) |
| read_switchable_interp_probs(pbi, r); |
| |
| // Baseline probabilities for decoding reference frame |
| cm->prob_intra_coded = vp9_read_prob(r); |
| cm->prob_last_coded = vp9_read_prob(r); |
| cm->prob_gf_coded = vp9_read_prob(r); |
| |
| // Computes a modified set of probabilities for use when reference |
| // frame prediction fails. |
| vp9_compute_mod_refprobs(cm); |
| |
| cm->comp_pred_mode = read_comp_pred_mode(r); |
| if (cm->comp_pred_mode == HYBRID_PREDICTION) |
| for (i = 0; i < COMP_PRED_CONTEXTS; i++) |
| cm->prob_comppred[i] = vp9_read_prob(r); |
| |
| // VP9_YMODES |
| if (vp9_read_bit(r)) |
| for (i = 0; i < VP9_YMODES - 1; ++i) |
| cm->fc.ymode_prob[i] = vp9_read_prob(r); |
| |
| // VP9_I32X32_MODES |
| if (vp9_read_bit(r)) |
| for (i = 0; i < VP9_I32X32_MODES - 1; ++i) |
| cm->fc.sb_ymode_prob[i] = vp9_read_prob(r); |
| |
| for (j = 0; j < NUM_PARTITION_CONTEXTS; ++j) |
| if (vp9_read_bit(r)) |
| for (i = 0; i < PARTITION_TYPES - 1; ++i) |
| cm->fc.partition_prob[j][i] = vp9_read_prob(r); |
| |
| read_nmvprobs(r, nmvc, xd->allow_high_precision_mv); |
| } |
| } |
| |
| // This function either reads the segment id for the current macroblock from |
| // the bitstream or if the value is temporally predicted asserts the predicted |
| // value |
| static int read_mb_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col, |
| vp9_reader *r) { |
| VP9_COMMON *const cm = &pbi->common; |
| MACROBLOCKD *const xd = &pbi->mb; |
| MODE_INFO *const mi = xd->mode_info_context; |
| MB_MODE_INFO *const mbmi = &mi->mbmi; |
| |
| if (!xd->segmentation_enabled) |
| return 0; // Default for disabled segmentation |
| |
| if (xd->update_mb_segmentation_map) { |
| int segment_id; |
| |
| if (cm->temporal_update) { |
| // Temporal coding of the segment id for this mb is enabled. |
| // Get the context based probability for reading the |
| // prediction status flag |
| const vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_SEG_ID); |
| const int pred_flag = vp9_read(r, pred_prob); |
| vp9_set_pred_flag(xd, PRED_SEG_ID, pred_flag); |
| |
| // If the value is flagged as correctly predicted |
| // then use the predicted value, otherwise decode it explicitly |
| segment_id = pred_flag ? vp9_get_pred_mi_segid(cm, mbmi->sb_type, |
| mi_row, mi_col) |
| : read_mb_segid(r, xd); |
| } else { |
| segment_id = read_mb_segid(r, xd); // Normal unpredicted coding mode |
| } |
| |
| set_segment_id(cm, mbmi, mi_row, mi_col, segment_id); // Side effect |
| return segment_id; |
| } else { |
| return vp9_get_pred_mi_segid(cm, mbmi->sb_type, mi_row, mi_col); |
| } |
| } |
| |
| |
| static INLINE void assign_and_clamp_mv(int_mv *dst, const int_mv *src, |
| int mb_to_left_edge, |
| int mb_to_right_edge, |
| int mb_to_top_edge, |
| int mb_to_bottom_edge) { |
| dst->as_int = src->as_int; |
| clamp_mv(dst, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, |
| mb_to_bottom_edge); |
| } |
| |
| static INLINE void decode_mv(vp9_reader *r, MV *mv, const MV *ref, |
| const nmv_context *ctx, |
| nmv_context_counts *counts, |
| int usehp) { |
| const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, ctx->joints); |
| MV diff = {0, 0}; |
| |
| usehp = usehp && vp9_use_nmv_hp(ref); |
| if (mv_joint_vertical(j)) |
| diff.row = read_mv_component(r, &ctx->comps[0], usehp); |
| |
| if (mv_joint_horizontal(j)) |
| diff.col = read_mv_component(r, &ctx->comps[1], usehp); |
| |
| vp9_increment_nmv(&diff, ref, counts, usehp); |
| |
| mv->row = diff.row + ref->row; |
| mv->col = diff.col + ref->col; |
| } |
| |
| static INLINE INTERPOLATIONFILTERTYPE read_switchable_filter_type( |
| VP9D_COMP *pbi, vp9_reader *r) { |
| const int index = treed_read(r, vp9_switchable_interp_tree, |
| vp9_get_pred_probs(&pbi->common, &pbi->mb, |
| PRED_SWITCHABLE_INTERP)); |
| return vp9_switchable_interp[index]; |
| } |
| |
| static void read_mb_modes_mv(VP9D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi, |
| int mi_row, int mi_col, |
| vp9_reader *r) { |
| VP9_COMMON *const cm = &pbi->common; |
| nmv_context *const nmvc = &cm->fc.nmvc; |
| const int mis = cm->mode_info_stride; |
| MACROBLOCKD *const xd = &pbi->mb; |
| |
| int_mv *const mv0 = &mbmi->mv[0]; |
| int_mv *const mv1 = &mbmi->mv[1]; |
| BLOCK_SIZE_TYPE bsize = mi->mbmi.sb_type; |
| int bw = 1 << b_width_log2(bsize); |
| int bh = 1 << b_height_log2(bsize); |
| |
| const int use_prev_in_find_mv_refs = cm->width == cm->last_width && |
| cm->height == cm->last_height && |
| !cm->error_resilient_mode && |
| cm->last_show_frame; |
| |
| int mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge; |
| int j, idx, idy; |
| |
| mbmi->need_to_clamp_mvs = 0; |
| mbmi->need_to_clamp_secondmv = 0; |
| mbmi->second_ref_frame = NONE; |
| |
| // Make sure the MACROBLOCKD mode info pointer is pointed at the |
| // correct entry for the current macroblock. |
| xd->mode_info_context = mi; |
| |
| // Distance of Mb to the various image edges. |
| // These specified to 8th pel as they are always compared to MV values |
| // that are in 1/8th pel units |
| set_mi_row_col(cm, xd, mi_row, 1 << mi_height_log2(bsize), |
| mi_col, 1 << mi_width_log2(bsize)); |
| |
| mb_to_top_edge = xd->mb_to_top_edge - LEFT_TOP_MARGIN; |
| mb_to_bottom_edge = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; |
| mb_to_left_edge = xd->mb_to_left_edge - LEFT_TOP_MARGIN; |
| mb_to_right_edge = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; |
| |
| // Read the macroblock segment id. |
| mbmi->segment_id = read_mb_segment_id(pbi, mi_row, mi_col, r); |
| |
| mbmi->mb_skip_coeff = vp9_segfeature_active(xd, mbmi->segment_id, |
| SEG_LVL_SKIP); |
| if (!mbmi->mb_skip_coeff) |
| mbmi->mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP)); |
| |
| // Read the reference frame |
| mbmi->ref_frame = read_ref_frame(pbi, r, mbmi->segment_id); |
| |
| // If reference frame is an Inter frame |
| if (mbmi->ref_frame) { |
| int_mv nearest, nearby, best_mv; |
| int_mv nearest_second, nearby_second, best_mv_second; |
| vp9_prob mv_ref_p[VP9_MVREFS - 1]; |
| |
| const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame; |
| struct scale_factors *sf0 = &xd->scale_factor[0]; |
| *sf0 = cm->active_ref_scale[mbmi->ref_frame - 1]; |
| |
| { |
| // Select the appropriate reference frame for this MB |
| const int ref_fb_idx = cm->active_ref_idx[ref_frame - 1]; |
| |
| setup_pre_planes(xd, &cm->yv12_fb[ref_fb_idx], NULL, |
| mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv); |
| |
| #ifdef DEC_DEBUG |
| if (dec_debug) |
| printf("%d %d\n", xd->mode_info_context->mbmi.mv[0].as_mv.row, |
| xd->mode_info_context->mbmi.mv[0].as_mv.col); |
| #endif |
| vp9_find_mv_refs(cm, xd, mi, use_prev_in_find_mv_refs ? |
| xd->prev_mode_info_context : NULL, |
| ref_frame, mbmi->ref_mvs[ref_frame], |
| cm->ref_frame_sign_bias); |
| |
| vp9_mv_ref_probs(cm, mv_ref_p, mbmi->mb_mode_context[ref_frame]); |
| |
| // If the segment level skip mode enabled |
| if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP)) { |
| mbmi->mode = ZEROMV; |
| } else { |
| if (bsize >= BLOCK_SIZE_SB8X8) |
| mbmi->mode = read_sb_mv_ref(r, mv_ref_p); |
| else |
| mbmi->mode = SPLITMV; |
| vp9_accum_mv_refs(cm, mbmi->mode, mbmi->mb_mode_context[ref_frame]); |
| } |
| |
| if (mbmi->mode != ZEROMV) { |
| vp9_find_best_ref_mvs(xd, |
| mbmi->ref_mvs[ref_frame], |
| &nearest, &nearby); |
| |
| best_mv.as_int = mbmi->ref_mvs[ref_frame][0].as_int; |
| } |
| |
| #ifdef DEC_DEBUG |
| if (dec_debug) |
| printf("[D %d %d] %d %d %d %d\n", ref_frame, |
| mbmi->mb_mode_context[ref_frame], |
| mv_ref_p[0], mv_ref_p[1], mv_ref_p[2], mv_ref_p[3]); |
| #endif |
| } |
| |
| mbmi->interp_filter = cm->mcomp_filter_type == SWITCHABLE |
| ? read_switchable_filter_type(pbi, r) |
| : cm->mcomp_filter_type; |
| |
| if (cm->comp_pred_mode == COMP_PREDICTION_ONLY || |
| (cm->comp_pred_mode == HYBRID_PREDICTION && |
| vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_COMP)))) { |
| /* Since we have 3 reference frames, we can only have 3 unique |
| * combinations of combinations of 2 different reference frames |
| * (A-G, G-L or A-L). In the bitstream, we use this to simply |
| * derive the second reference frame from the first reference |
| * frame, by saying it's the next one in the enumerator, and |
| * if that's > n_refs, then the second reference frame is the |
| * first one in the enumerator. */ |
| mbmi->second_ref_frame = mbmi->ref_frame + 1; |
| if (mbmi->second_ref_frame == 4) |
| mbmi->second_ref_frame = 1; |
| if (mbmi->second_ref_frame > 0) { |
| const MV_REFERENCE_FRAME second_ref_frame = mbmi->second_ref_frame; |
| struct scale_factors *sf1 = &xd->scale_factor[1]; |
| const int second_ref_fb_idx = cm->active_ref_idx[second_ref_frame - 1]; |
| *sf1 = cm->active_ref_scale[second_ref_frame - 1]; |
| |
| setup_pre_planes(xd, NULL, &cm->yv12_fb[second_ref_fb_idx], |
| mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv); |
| |
| vp9_find_mv_refs(cm, xd, mi, |
| use_prev_in_find_mv_refs ? |
| xd->prev_mode_info_context : NULL, |
| second_ref_frame, mbmi->ref_mvs[second_ref_frame], |
| cm->ref_frame_sign_bias); |
| |
| if (mbmi->mode != ZEROMV) { |
| vp9_find_best_ref_mvs(xd, |
| mbmi->ref_mvs[second_ref_frame], |
| &nearest_second, |
| &nearby_second); |
| best_mv_second.as_int = mbmi->ref_mvs[second_ref_frame][0].as_int; |
| } |
| } |
| |
| } |
| |
| mbmi->uv_mode = DC_PRED; |
| switch (mbmi->mode) { |
| case SPLITMV: |
| mbmi->need_to_clamp_mvs = 0; |
| for (idy = 0; idy < 2; idy += bh) { |
| for (idx = 0; idx < 2; idx += bw) { |
| int_mv leftmv, abovemv, second_leftmv, second_abovemv; |
| int_mv blockmv, secondmv; |
| int mv_contz; |
| int blockmode; |
| int i, k; |
| j = idy * 2 + idx; |
| k = j; |
| |
| leftmv.as_int = left_block_mv(xd, mi, k); |
| abovemv.as_int = above_block_mv(mi, k, mis); |
| second_leftmv.as_int = 0; |
| second_abovemv.as_int = 0; |
| if (mbmi->second_ref_frame > 0) { |
| second_leftmv.as_int = left_block_second_mv(xd, mi, k); |
| second_abovemv.as_int = above_block_second_mv(mi, k, mis); |
| } |
| mv_contz = vp9_mv_cont(&leftmv, &abovemv); |
| blockmode = read_sub_mv_ref(r, cm->fc.sub_mv_ref_prob[mv_contz]); |
| cm->fc.sub_mv_ref_counts[mv_contz][blockmode - LEFT4X4]++; |
| |
| switch (blockmode) { |
| case NEW4X4: |
| decode_mv(r, &blockmv.as_mv, &best_mv.as_mv, nmvc, |
| &cm->fc.NMVcount, xd->allow_high_precision_mv); |
| |
| if (mbmi->second_ref_frame > 0) |
| decode_mv(r, &secondmv.as_mv, &best_mv_second.as_mv, nmvc, |
| &cm->fc.NMVcount, xd->allow_high_precision_mv); |
| |
| #ifdef VPX_MODE_COUNT |
| vp9_mv_cont_count[mv_contz][3]++; |
| #endif |
| break; |
| case LEFT4X4: |
| blockmv.as_int = leftmv.as_int; |
| if (mbmi->second_ref_frame > 0) |
| secondmv.as_int = second_leftmv.as_int; |
| #ifdef VPX_MODE_COUNT |
| vp9_mv_cont_count[mv_contz][0]++; |
| #endif |
| break; |
| case ABOVE4X4: |
| blockmv.as_int = abovemv.as_int; |
| if (mbmi->second_ref_frame > 0) |
| secondmv.as_int = second_abovemv.as_int; |
| #ifdef VPX_MODE_COUNT |
| vp9_mv_cont_count[mv_contz][1]++; |
| #endif |
| break; |
| case ZERO4X4: |
| blockmv.as_int = 0; |
| if (mbmi->second_ref_frame > 0) |
| secondmv.as_int = 0; |
| #ifdef VPX_MODE_COUNT |
| vp9_mv_cont_count[mv_contz][2]++; |
| #endif |
| break; |
| default: |
| break; |
| } |
| mi->bmi[j].as_mv[0].as_int = blockmv.as_int; |
| if (mbmi->second_ref_frame > 0) |
| mi->bmi[j].as_mv[1].as_int = secondmv.as_int; |
| |
| for (i = 1; i < bh; ++i) |
| vpx_memcpy(&mi->bmi[j + i * 2], &mi->bmi[j], sizeof(mi->bmi[j])); |
| for (i = 1; i < bw; ++i) |
| vpx_memcpy(&mi->bmi[j + i], &mi->bmi[j], sizeof(mi->bmi[j])); |
| } |
| } |
| |
| mv0->as_int = mi->bmi[3].as_mv[0].as_int; |
| mv1->as_int = mi->bmi[3].as_mv[1].as_int; |
| break; /* done with SPLITMV */ |
| |
| case NEARMV: |
| // Clip "next_nearest" so that it does not extend to far out of image |
| assign_and_clamp_mv(mv0, &nearby, mb_to_left_edge, |
| mb_to_right_edge, |
| mb_to_top_edge, |
| mb_to_bottom_edge); |
| if (mbmi->second_ref_frame > 0) |
| assign_and_clamp_mv(mv1, &nearby_second, mb_to_left_edge, |
| mb_to_right_edge, |
| mb_to_top_edge, |
| mb_to_bottom_edge); |
| break; |
| |
| case NEARESTMV: |
| // Clip "next_nearest" so that it does not extend to far out of image |
| assign_and_clamp_mv(mv0, &nearest, mb_to_left_edge, |
| mb_to_right_edge, |
| mb_to_top_edge, |
| mb_to_bottom_edge); |
| if (mbmi->second_ref_frame > 0) |
| assign_and_clamp_mv(mv1, &nearest_second, mb_to_left_edge, |
| mb_to_right_edge, |
| mb_to_top_edge, |
| mb_to_bottom_edge); |
| break; |
| |
| case ZEROMV: |
| mv0->as_int = 0; |
| if (mbmi->second_ref_frame > 0) |
| mv1->as_int = 0; |
| break; |
| |
| case NEWMV: |
| decode_mv(r, &mv0->as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount, |
| xd->allow_high_precision_mv); |
| mbmi->need_to_clamp_mvs = check_mv_bounds(mv0, |
| mb_to_left_edge, |
| mb_to_right_edge, |
| mb_to_top_edge, |
| mb_to_bottom_edge); |
| |
| if (mbmi->second_ref_frame > 0) { |
| decode_mv(r, &mv1->as_mv, &best_mv_second.as_mv, nmvc, |
| &cm->fc.NMVcount, xd->allow_high_precision_mv); |
| mbmi->need_to_clamp_secondmv = check_mv_bounds(mv1, |
| mb_to_left_edge, |
| mb_to_right_edge, |
| mb_to_top_edge, |
| mb_to_bottom_edge); |
| } |
| break; |
| default: |
| ; |
| #if CONFIG_DEBUG |
| assert(0); |
| #endif |
| } |
| } else { |
| // required for left and above block mv |
| mv0->as_int = 0; |
| |
| if (bsize >= BLOCK_SIZE_SB8X8) { |
| mbmi->mode = read_sb_ymode(r, cm->fc.sb_ymode_prob); |
| cm->fc.sb_ymode_counts[mbmi->mode]++; |
| } else { |
| mbmi->mode = I4X4_PRED; |
| } |
| |
| // If MB mode is I4X4_PRED read the block modes |
| if (bsize < BLOCK_SIZE_SB8X8) { |
| int idx, idy; |
| for (idy = 0; idy < 2; idy += bh) { |
| for (idx = 0; idx < 2; idx += bw) { |
| int ib = idy * 2 + idx, k; |
| int m = read_sb_ymode(r, cm->fc.sb_ymode_prob); |
| mi->bmi[ib].as_mode.first = m; |
| cm->fc.sb_ymode_counts[m]++; |
| for (k = 1; k < bh; ++k) |
| mi->bmi[ib + k * 2].as_mode.first = m; |
| for (k = 1; k < bw; ++k) |
| mi->bmi[ib + k].as_mode.first = m; |
| } |
| } |
| } |
| |
| mbmi->uv_mode = read_uv_mode(r, cm->fc.uv_mode_prob[mbmi->mode]); |
| cm->fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++; |
| } |
| |
| if (cm->txfm_mode == TX_MODE_SELECT && |
| (mbmi->mb_skip_coeff == 0 || mbmi->ref_frame == INTRA_FRAME) && |
| bsize >= BLOCK_SIZE_SB8X8) { |
| const int allow_16x16 = bsize >= BLOCK_SIZE_MB16X16; |
| const int allow_32x32 = bsize >= BLOCK_SIZE_SB32X32; |
| mbmi->txfm_size = select_txfm_size(cm, r, allow_16x16, allow_32x32); |
| } else if (bsize >= BLOCK_SIZE_SB32X32 && |
| cm->txfm_mode >= ALLOW_32X32) { |
| mbmi->txfm_size = TX_32X32; |
| } else if (cm->txfm_mode >= ALLOW_16X16 && |
| bsize >= BLOCK_SIZE_MB16X16) { |
| mbmi->txfm_size = TX_16X16; |
| } else if (cm->txfm_mode >= ALLOW_8X8 && (bsize >= BLOCK_SIZE_SB8X8)) { |
| mbmi->txfm_size = TX_8X8; |
| } else { |
| mbmi->txfm_size = TX_4X4; |
| } |
| } |
| |
| void vp9_decode_mode_mvs_init(VP9D_COMP* const pbi, vp9_reader *r) { |
| VP9_COMMON *cm = &pbi->common; |
| int k; |
| |
| // TODO(jkoleszar): does this clear more than MBSKIP_CONTEXTS? Maybe remove. |
| vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs)); |
| for (k = 0; k < MBSKIP_CONTEXTS; ++k) |
| cm->mbskip_pred_probs[k] = vp9_read_prob(r); |
| |
| mb_mode_mv_init(pbi, r); |
| } |
| |
| void vp9_decode_mb_mode_mv(VP9D_COMP* const pbi, |
| MACROBLOCKD* const xd, |
| int mi_row, |
| int mi_col, |
| vp9_reader *r) { |
| VP9_COMMON *const cm = &pbi->common; |
| MODE_INFO *mi = xd->mode_info_context; |
| MB_MODE_INFO *const mbmi = &mi->mbmi; |
| |
| if (cm->frame_type == KEY_FRAME) { |
| kfread_modes(pbi, mi, mi_row, mi_col, r); |
| } else { |
| read_mb_modes_mv(pbi, mi, &mi->mbmi, mi_row, mi_col, r); |
| set_scale_factors(xd, |
| mi->mbmi.ref_frame - 1, mi->mbmi.second_ref_frame - 1, |
| cm->active_ref_scale); |
| } |
| |
| if (1) { |
| const int bw = 1 << mi_width_log2(mbmi->sb_type); |
| const int bh = 1 << mi_height_log2(mbmi->sb_type); |
| const int y_mis = MIN(bh, cm->mi_rows - mi_row); |
| const int x_mis = MIN(bw, cm->mi_cols - mi_col); |
| const int mis = cm->mode_info_stride; |
| int x, y; |
| |
| for (y = 0; y < y_mis; y++) |
| for (x = !y; x < x_mis; x++) |
| mi[y * mis + x] = *mi; |
| } |
| } |