blob: a413f644a43fe53aad9859cacd7cac2b5cb9da95 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
// NOTE: To build this utility in libaom please configure and build with
// -DCONFIG_TENSORFLOW_LITE=1 cmake flag.
#include <cstdio>
#include <memory>
#include <vector>
#include "common/tf_lite_includes.h"
#define CFG_MAX_LEN 256
#define NUM_MODELS 6
#define NUM_LEVELS 3
#define Y4M_HDR_MAX_LEN 256
#define Y4M_HDR_MAX_WORDS 16
#define NUM_THREADS 8
#define USE_XNNPACK 0
#define MAX(a, b) ((a) < (b) ? (b) : (a))
// Usage:
// cnn_restore_y4m
// <y4m_input>
// <num_frames>
// <upsampling_ratio>
// <y4m_output>
namespace {
#include "examples/cnn_restore/sr2by1_tflite.h"
#include "examples/cnn_restore/sr2by1_1_tflite.h"
#include "examples/cnn_restore/sr2by1_2_tflite.h"
#include "examples/cnn_restore/sr3by2_tflite.h"
#include "examples/cnn_restore/sr3by2_1_tflite.h"
#include "examples/cnn_restore/sr3by2_2_tflite.h"
#include "examples/cnn_restore/sr4by3_tflite.h"
#include "examples/cnn_restore/sr4by3_1_tflite.h"
#include "examples/cnn_restore/sr4by3_2_tflite.h"
#include "examples/cnn_restore/sr5by4_tflite.h"
#include "examples/cnn_restore/sr5by4_1_tflite.h"
#include "examples/cnn_restore/sr5by4_2_tflite.h"
#include "examples/cnn_restore/sr6by5_tflite.h"
#include "examples/cnn_restore/sr6by5_1_tflite.h"
#include "examples/cnn_restore/sr6by5_2_tflite.h"
#include "examples/cnn_restore/sr7by6_tflite.h"
#include "examples/cnn_restore/sr7by6_1_tflite.h"
#include "examples/cnn_restore/sr7by6_2_tflite.h"
void RegisterSelectedOps(::tflite::MutableOpResolver *resolver) {
resolver->AddBuiltin(::tflite::BuiltinOperator_ADD,
::tflite::ops::builtin::Register_ADD());
resolver->AddBuiltin(::tflite::BuiltinOperator_CONV_2D,
::tflite::ops::builtin::Register_CONV_2D());
resolver->AddBuiltin(::tflite::BuiltinOperator_DEPTHWISE_CONV_2D,
::tflite::ops::builtin::Register_DEPTHWISE_CONV_2D());
resolver->AddBuiltin(::tflite::BuiltinOperator_MIRROR_PAD,
::tflite::ops::builtin::Register_MIRROR_PAD());
}
} // namespace
static void usage_and_exit(char *prog) {
printf("Usage:\n");
printf(" %s\n", prog);
printf(" <y4m_input>\n");
printf(" <num_frames>\n");
printf(" <upsampling_ratio>\n");
printf(" in form <p>:<q>[:<c>] where <p>/<q> is the upsampling\n");
printf(" ratio with <p> greater than <q>.\n");
printf(" <c> is optional compression level in [0, 1, 2]\n");
printf(" 0: no compression (default)\n");
printf(" 1: light compression\n");
printf(" 2: heavy compression\n");
printf(" <y4m_output>\n");
printf(" \n");
exit(EXIT_FAILURE);
}
static int split_words(char *buf, char delim, int nmax, char **words) {
char *y = buf;
char *x;
int n = 0;
while ((x = strchr(y, delim)) != NULL) {
*x = 0;
words[n++] = y;
if (n == nmax) return n;
y = x + 1;
}
words[n++] = y;
assert(n > 0 && n <= nmax);
return n;
}
static int parse_rational_config(char *cfg, int *p, int *q, int *c) {
char cfgbuf[CFG_MAX_LEN];
strncpy(cfgbuf, cfg, CFG_MAX_LEN - 1);
cfgbuf[CFG_MAX_LEN - 1] = '\0';
char *cfgwords[3];
const int ncfgwords = split_words(cfgbuf, ':', 3, cfgwords);
if (ncfgwords < 2) return 0;
*p = atoi(cfgwords[0]);
*q = atoi(cfgwords[1]);
if (*p <= 0 || *q <= 0 || *p < *q) return 0;
*c = 0;
if (ncfgwords < 3) return 1;
*c = atoi(cfgwords[2]);
if (*c < 0 || *c >= NUM_LEVELS) return 0;
return 1;
}
static int parse_info(char *hdrwords[], int nhdrwords, int *width, int *height,
int *bitdepth, int *subx, int *suby) {
*bitdepth = 8;
*subx = 1;
*suby = 1;
if (nhdrwords < 4) return 0;
if (strcmp(hdrwords[0], "YUV4MPEG2")) return 0;
if (sscanf(hdrwords[1], "W%d", width) != 1) return 0;
if (sscanf(hdrwords[2], "H%d", height) != 1) return 0;
if (hdrwords[3][0] != 'F') return 0;
for (int i = 4; i < nhdrwords; ++i) {
if (!strncmp(hdrwords[i], "C420", 4)) {
*subx = 1;
*suby = 1;
if (hdrwords[i][4] == 'p') *bitdepth = atoi(&hdrwords[i][5]);
} else if (!strncmp(hdrwords[i], "C422", 4)) {
*subx = 1;
*suby = 0;
if (hdrwords[i][4] == 'p') *bitdepth = atoi(&hdrwords[i][5]);
} else if (!strncmp(hdrwords[i], "C444", 4)) {
*subx = 0;
*suby = 0;
if (hdrwords[i][4] == 'p') *bitdepth = atoi(&hdrwords[i][5]);
}
}
return 1;
}
static const double model_ratios[NUM_MODELS] = { 2.0 / 1.0, 3.0 / 2.0,
4.0 / 3.0, 5.0 / 4.0,
6.0 / 5.0, 7.0 / 6.0 };
const unsigned char *tflite_data[NUM_MODELS][NUM_LEVELS] = {
{ _tmp_sr2by1_tflite, _tmp_sr2by1_1_tflite, _tmp_sr2by1_2_tflite },
{ _tmp_sr3by2_tflite, _tmp_sr3by2_1_tflite, _tmp_sr3by2_2_tflite },
{ _tmp_sr4by3_tflite, _tmp_sr4by3_1_tflite, _tmp_sr4by3_2_tflite },
{ _tmp_sr5by4_tflite, _tmp_sr5by4_1_tflite, _tmp_sr5by4_2_tflite },
{ _tmp_sr6by5_tflite, _tmp_sr6by5_1_tflite, _tmp_sr6by5_2_tflite },
{ _tmp_sr7by6_tflite, _tmp_sr7by6_1_tflite, _tmp_sr7by6_2_tflite },
};
static const unsigned char *get_model(int code, int level) {
if (code == -1 || code >= NUM_MODELS) return NULL;
if (level < 0 || level >= NUM_LEVELS) return NULL;
return tflite_data[code][level];
}
static int search_best_model(int p, int q) {
if (p == q) return -1;
double ratio = (double)p / q;
// assume -1 corresponds to ratio of 1
int mini = -1;
double minerr = fabs(ratio - 1.0);
for (int i = 0; i < NUM_MODELS; ++i) {
double err = fabs(ratio - model_ratios[i]);
if (err < minerr) {
mini = i;
minerr = err;
}
}
return mini;
}
#if USE_XNNPACK
static TfLiteDelegate *get_tflite_xnnpack_delegate(int num_threads) {
TfLiteXNNPackDelegateOptions xnnpack_options =
TfLiteXNNPackDelegateOptionsDefault();
xnnpack_options.num_threads = MAX(num_threads, 1);
return TfLiteXNNPackDelegateCreate(&xnnpack_options);
}
#endif // USE_XNNPACK
// Builds and returns the TFlite interpreter.
static std::unique_ptr<tflite::Interpreter> get_tflite_interpreter(
int code, int level, int width, int height, int num_threads
#if USE_XNNPACK
,
TfLiteDelegate *xnnpack_delegate
#endif // USE_XNNPACK
) {
const unsigned char *const model_tflite_data = get_model(code, level);
if (model_tflite_data == NULL) return nullptr;
auto model = tflite::GetModel(model_tflite_data);
tflite::MutableOpResolver resolver;
RegisterSelectedOps(&resolver);
tflite::InterpreterBuilder builder(model, resolver);
std::unique_ptr<tflite::Interpreter> interpreter;
builder(&interpreter);
interpreter->SetNumThreads(MAX(num_threads, 1));
tflite::ErrorReporter *reporter = tflite::DefaultErrorReporter();
// Dimension order: batch_size, height, width, num_channels.
// Note: height comes before width here!
const std::vector<int> in_out_dims = { 1, height, width, 1 };
// We only need to resize the input tensor. All other tensors (including
// output tensor) will be resized automatically.
if (interpreter->ResizeInputTensor(interpreter->inputs()[0], in_out_dims) !=
kTfLiteOk) {
reporter->Report("Failed at input tensor resize");
return nullptr;
}
if (interpreter->AllocateTensors() != kTfLiteOk) {
reporter->Report("Failed at tensor allocation");
return nullptr;
}
#if USE_XNNPACK
if (interpreter->ModifyGraphWithDelegate(xnnpack_delegate) != kTfLiteOk) {
reporter->Report("Failed at modifying graph with XNNPack delegate");
return nullptr;
}
#endif // USE_XNNPACK
return interpreter;
}
static inline uint8_t clip_pixel(int x) {
return (x < 0 ? 0 : x > 255 ? 255 : x);
}
static inline uint16_t clip_pixel_highbd(int x, int bd) {
const int high = (1 << bd) - 1;
return (uint16_t)(x < 0 ? 0 : x > high ? high : x);
}
static int restore_cnn_img_tflite_lowbd(
const std::unique_ptr<tflite::Interpreter> &interpreter, const uint8_t *dgd,
int width, int height, int dgd_stride, uint8_t *rst, int rst_stride) {
if (interpreter == nullptr) return 0;
// Prepare input.
const float max_val = 255.0f;
const int in_stride = width;
auto input = interpreter->typed_input_tensor<float>(0);
for (int r = 0; r < height; ++r) {
for (int c = 0; c < width; ++c) {
input[r * in_stride + c] =
static_cast<float>(dgd[r * dgd_stride + c]) / max_val;
assert(input[r * in_stride + c] >= 0.0f);
assert(input[r * in_stride + c] <= 1.0f);
}
}
// Invoke TFlite inference.
tflite::ErrorReporter *reporter = tflite::DefaultErrorReporter();
auto status = interpreter->Invoke();
if (status != kTfLiteOk) {
reporter->Report("Failed at interpreter invocation");
return 0;
}
// Use the output to restore 'dgd' and store in 'rst'.
const auto output = interpreter->typed_output_tensor<float>(0);
const int out_stride = width;
for (int r = 0; r < height; ++r) {
for (int c = 0; c < width; ++c) {
const int residue =
static_cast<int>(output[r * out_stride + c] * max_val + 0.5);
rst[r * rst_stride + c] = clip_pixel(dgd[r * dgd_stride + c] + residue);
}
}
return 1;
}
static int restore_cnn_img_tflite_highbd(
const std::unique_ptr<tflite::Interpreter> &interpreter,
const uint16_t *dgd, int width, int height, int dgd_stride, uint16_t *rst,
int rst_stride, int bit_depth) {
if (interpreter == nullptr) return 0;
// Prepare input.
const auto max_val = static_cast<float>((1 << bit_depth) - 1);
const int in_stride = width;
auto input = interpreter->typed_input_tensor<float>(0);
for (int r = 0; r < height; ++r) {
for (int c = 0; c < width; ++c) {
input[r * in_stride + c] =
static_cast<float>(dgd[r * dgd_stride + c]) / max_val;
assert(input[r * in_stride + c] >= 0.0f);
assert(input[r * in_stride + c] <= 1.0f);
}
}
// Invoke TFlite inference.
tflite::ErrorReporter *reporter = tflite::DefaultErrorReporter();
auto status = interpreter->Invoke();
if (status != kTfLiteOk) {
reporter->Report("Failed at interpreter invocation");
return 0;
}
// Use the output to restore 'dgd' and store in 'rst'.
const auto output = interpreter->typed_output_tensor<float>(0);
const int out_stride = width;
for (int r = 0; r < height; ++r) {
for (int c = 0; c < width; ++c) {
const int residue =
static_cast<int>(output[r * out_stride + c] * max_val + 0.5);
rst[r * rst_stride + c] =
clip_pixel_highbd(dgd[r * dgd_stride + c] + residue, bit_depth);
}
}
return 1;
}
int main(int argc, char *argv[]) {
int ywidth, yheight;
if (argc < 5) {
printf("Not enough arguments\n");
usage_and_exit(argv[0]);
}
if (!strcmp(argv[1], "-help") || !strcmp(argv[1], "-h") ||
!strcmp(argv[1], "--help") || !strcmp(argv[1], "--h"))
usage_and_exit(argv[0]);
char *y4m_input = argv[1];
char *y4m_output = argv[4];
char hdr[Y4M_HDR_MAX_LEN], ohdr[Y4M_HDR_MAX_LEN];
int nhdrwords;
char *hdrwords[Y4M_HDR_MAX_WORDS];
FILE *fin = fopen(y4m_input, "rb");
if (!fgets(hdr, sizeof(hdr), fin)) {
printf("Invalid y4m file %s\n", y4m_input);
usage_and_exit(argv[0]);
}
strncpy(ohdr, hdr, Y4M_HDR_MAX_LEN - 1);
ohdr[CFG_MAX_LEN - 1] = '\0';
nhdrwords = split_words(hdr, ' ', Y4M_HDR_MAX_WORDS, hdrwords);
int subx, suby;
int bitdepth;
if (!parse_info(hdrwords, nhdrwords, &ywidth, &yheight, &bitdepth, &suby,
&subx)) {
printf("Could not parse header from %s\n", y4m_input);
usage_and_exit(argv[0]);
}
const int bytes_per_pel = (bitdepth + 7) / 8;
int num_frames = atoi(argv[2]);
int p, q, restore_level;
if (!parse_rational_config(argv[3], &p, &q, &restore_level)) {
printf("Could not parse upsampling factor/level from %s\n", argv[3]);
usage_and_exit(argv[0]);
}
const int restore_code = search_best_model(p, q);
printf("best_model = %d (ratio %f), level = %d\n", restore_code,
restore_code == -1 ? 1.0 : model_ratios[restore_code], restore_level);
const int uvwidth = subx ? (ywidth + 1) >> 1 : ywidth;
const int uvheight = suby ? (yheight + 1) >> 1 : yheight;
const int ysize = ywidth * yheight;
const int uvsize = uvwidth * uvheight;
FILE *fout = fopen(y4m_output, "wb");
fwrite(ohdr, strlen(ohdr), 1, fout);
uint8_t *inbuf =
(uint8_t *)malloc((ysize + 2 * uvsize) * bytes_per_pel * sizeof(uint8_t));
uint8_t *outbuf =
(uint8_t *)malloc((ysize + 2 * uvsize) * bytes_per_pel * sizeof(uint8_t));
#if USE_XNNPACK
TfLiteDelegate *xnnpack_delegate = get_tflite_xnnpack_delegate(NUM_THREADS);
#endif // USE_XNNPACK
std::unique_ptr<tflite::Interpreter> interpreter = get_tflite_interpreter(
restore_code, restore_level, ywidth, yheight, NUM_THREADS
#if USE_XNNPACK
,
xnnpack_delegate
#endif // USE_XNNPACK
);
char frametag[] = "FRAME\n";
for (int n = 0; n < num_frames; ++n) {
char intag[8];
if (fread(intag, 6, 1, fin) != 1) break;
intag[6] = 0;
if (strcmp(intag, frametag)) {
printf("could not read frame from %s\n", y4m_input);
break;
}
if (fread(inbuf, (ysize + 2 * uvsize) * bytes_per_pel, 1, fin) != 1) break;
if (bytes_per_pel == 1) {
if (interpreter != nullptr) {
restore_cnn_img_tflite_lowbd(interpreter, inbuf, ywidth, yheight,
ywidth, outbuf, ywidth);
} else {
memcpy(outbuf, inbuf, ysize * bytes_per_pel);
}
memcpy(outbuf + ysize * bytes_per_pel, inbuf + ysize * bytes_per_pel,
2 * uvsize * bytes_per_pel);
} else {
if (interpreter != nullptr) {
restore_cnn_img_tflite_highbd(interpreter, (uint16_t *)inbuf, ywidth,
yheight, ywidth, (uint16_t *)outbuf,
ywidth, bitdepth);
} else {
memcpy(outbuf, inbuf, ysize * bytes_per_pel);
}
memcpy(outbuf + ysize * bytes_per_pel, inbuf + ysize * bytes_per_pel,
2 * uvsize * bytes_per_pel);
}
fwrite(frametag, 6, 1, fout);
fwrite(outbuf, (ysize + 2 * uvsize) * bytes_per_pel, 1, fout);
}
// IMPORTANT: release the interpreter before destroying the delegate.
interpreter.reset();
#if USE_XNNPACK
TfLiteXNNPackDelegateDelete(xnnpack_delegate);
#endif // USE_XNNPACK
fclose(fin);
fclose(fout);
free(inbuf);
free(outbuf);
return EXIT_SUCCESS;
}