blob: ef275dbb611822bea958eba77347fc3a94fa5cc7 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <tuple>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "config/av1_rtcd.h"
#include "test/acm_random.h"
#include "test/av1_txfm_test.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/enums.h"
#include "av1/common/scan.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
namespace {
using libaom_test::ACMRandom;
using std::tuple;
typedef void (*HbdHtFunc)(const int16_t *input, int32_t *output, int stride,
TX_TYPE tx_type, int bd);
typedef void (*IHbdHtFunc)(const int32_t *coeff, uint16_t *output, int stride,
TX_TYPE tx_type, int bd);
static const char *tx_type_name[] = {
"DCT_DCT",
"ADST_DCT",
"DCT_ADST",
"ADST_ADST",
"FLIPADST_DCT",
"DCT_FLIPADST",
"FLIPADST_FLIPADST",
"ADST_FLIPADST",
"FLIPADST_ADST",
"IDTX",
"V_DCT",
"H_DCT",
"V_ADST",
"H_ADST",
"V_FLIPADST",
"H_FLIPADST",
};
// Test parameter argument list:
// <transform reference function,
// optimized inverse transform function,
// inverse transform reference function,
// num_coeffs,
// tx_type,
// bit_depth>
typedef tuple<HbdHtFunc, IHbdHtFunc, IHbdHtFunc, int, TX_TYPE, int> IHbdHtParam;
class AV1HighbdInvHTNxN : public ::testing::TestWithParam<IHbdHtParam> {
public:
virtual ~AV1HighbdInvHTNxN() {}
virtual void SetUp() {
txfm_ref_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
inv_txfm_ref_ = GET_PARAM(2);
num_coeffs_ = GET_PARAM(3);
tx_type_ = GET_PARAM(4);
bit_depth_ = GET_PARAM(5);
input_ = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(input_[0]) * num_coeffs_));
// Note:
// Inverse transform input buffer is 32-byte aligned
// Refer to <root>/av1/encoder/context_tree.c, function,
// void alloc_mode_context().
coeffs_ = reinterpret_cast<int32_t *>(
aom_memalign(32, sizeof(coeffs_[0]) * num_coeffs_));
output_ = reinterpret_cast<uint16_t *>(
aom_memalign(32, sizeof(output_[0]) * num_coeffs_));
output_ref_ = reinterpret_cast<uint16_t *>(
aom_memalign(32, sizeof(output_ref_[0]) * num_coeffs_));
}
virtual void TearDown() {
aom_free(input_);
aom_free(coeffs_);
aom_free(output_);
aom_free(output_ref_);
libaom_test::ClearSystemState();
}
protected:
void RunBitexactCheck();
private:
int GetStride() const {
if (16 == num_coeffs_) {
return 4;
} else if (64 == num_coeffs_) {
return 8;
} else if (256 == num_coeffs_) {
return 16;
} else if (1024 == num_coeffs_) {
return 32;
} else if (4096 == num_coeffs_) {
return 64;
} else {
return 0;
}
}
HbdHtFunc txfm_ref_;
IHbdHtFunc inv_txfm_;
IHbdHtFunc inv_txfm_ref_;
int num_coeffs_;
TX_TYPE tx_type_;
int bit_depth_;
int16_t *input_;
int32_t *coeffs_;
uint16_t *output_;
uint16_t *output_ref_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdInvHTNxN);
void AV1HighbdInvHTNxN::RunBitexactCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int stride = GetStride();
const int num_tests = 20000;
const uint16_t mask = (1 << bit_depth_) - 1;
for (int i = 0; i < num_tests; ++i) {
for (int j = 0; j < num_coeffs_; ++j) {
input_[j] = (rnd.Rand16() & mask) - (rnd.Rand16() & mask);
output_ref_[j] = rnd.Rand16() & mask;
output_[j] = output_ref_[j];
}
txfm_ref_(input_, coeffs_, stride, tx_type_, bit_depth_);
inv_txfm_ref_(coeffs_, output_ref_, stride, tx_type_, bit_depth_);
ASM_REGISTER_STATE_CHECK(
inv_txfm_(coeffs_, output_, stride, tx_type_, bit_depth_));
for (int j = 0; j < num_coeffs_; ++j) {
EXPECT_EQ(output_ref_[j], output_[j])
<< "Not bit-exact result at index: " << j << " At test block: " << i;
}
}
}
TEST_P(AV1HighbdInvHTNxN, InvTransResultCheck) { RunBitexactCheck(); }
using std::make_tuple;
#if HAVE_SSE4_1
#define PARAM_LIST_4X4 \
&av1_fwd_txfm2d_4x4_c, &av1_inv_txfm2d_add_4x4_sse4_1, \
&av1_inv_txfm2d_add_4x4_c, 16
const IHbdHtParam kArrayIhtParam[] = {
// 4x4
make_tuple(PARAM_LIST_4X4, DCT_DCT, 10),
make_tuple(PARAM_LIST_4X4, DCT_DCT, 12),
make_tuple(PARAM_LIST_4X4, ADST_DCT, 10),
make_tuple(PARAM_LIST_4X4, ADST_DCT, 12),
make_tuple(PARAM_LIST_4X4, DCT_ADST, 10),
make_tuple(PARAM_LIST_4X4, DCT_ADST, 12),
make_tuple(PARAM_LIST_4X4, ADST_ADST, 10),
make_tuple(PARAM_LIST_4X4, ADST_ADST, 12),
make_tuple(PARAM_LIST_4X4, FLIPADST_DCT, 10),
make_tuple(PARAM_LIST_4X4, FLIPADST_DCT, 12),
make_tuple(PARAM_LIST_4X4, DCT_FLIPADST, 10),
make_tuple(PARAM_LIST_4X4, DCT_FLIPADST, 12),
make_tuple(PARAM_LIST_4X4, FLIPADST_FLIPADST, 10),
make_tuple(PARAM_LIST_4X4, FLIPADST_FLIPADST, 12),
make_tuple(PARAM_LIST_4X4, ADST_FLIPADST, 10),
make_tuple(PARAM_LIST_4X4, ADST_FLIPADST, 12),
make_tuple(PARAM_LIST_4X4, FLIPADST_ADST, 10),
make_tuple(PARAM_LIST_4X4, FLIPADST_ADST, 12),
};
INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1HighbdInvHTNxN,
::testing::ValuesIn(kArrayIhtParam));
#endif // HAVE_SSE4_1
typedef void (*HighbdInvTxfm2dFunc)(const int32_t *input, uint8_t *output,
int stride, const TxfmParam *txfm_param);
typedef std::tuple<const HighbdInvTxfm2dFunc> AV1HighbdInvTxfm2dParam;
class AV1HighbdInvTxfm2d
: public ::testing::TestWithParam<AV1HighbdInvTxfm2dParam> {
public:
virtual void SetUp() { target_func_ = GET_PARAM(0); }
void RunAV1InvTxfm2dTest(TX_TYPE tx_type, TX_SIZE tx_size, int run_times,
int bit_depth, int gt_int16 = 0);
private:
HighbdInvTxfm2dFunc target_func_;
};
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdInvTxfm2d);
void AV1HighbdInvTxfm2d::RunAV1InvTxfm2dTest(TX_TYPE tx_type_, TX_SIZE tx_size_,
int run_times, int bit_depth_,
int gt_int16) {
FwdTxfm2dFunc fwd_func_ = libaom_test::fwd_txfm_func_ls[tx_size_];
TxfmParam txfm_param;
const int BLK_WIDTH = 64;
const int BLK_SIZE = BLK_WIDTH * BLK_WIDTH;
DECLARE_ALIGNED(16, int16_t, input[BLK_SIZE]) = { 0 };
DECLARE_ALIGNED(32, int32_t, inv_input[BLK_SIZE]) = { 0 };
DECLARE_ALIGNED(32, uint16_t, output[BLK_SIZE]) = { 0 };
DECLARE_ALIGNED(32, uint16_t, ref_output[BLK_SIZE]) = { 0 };
int stride = BLK_WIDTH;
int rows = tx_size_high[tx_size_];
int cols = tx_size_wide[tx_size_];
const int rows_nonezero = AOMMIN(32, rows);
const int cols_nonezero = AOMMIN(32, cols);
const uint16_t mask = (1 << bit_depth_) - 1;
run_times /= (rows * cols);
run_times = AOMMAX(1, run_times);
const SCAN_ORDER *scan_order = get_default_scan(tx_size_, tx_type_);
const int16_t *scan = scan_order->scan;
const int16_t eobmax = rows_nonezero * cols_nonezero;
ACMRandom rnd(ACMRandom::DeterministicSeed());
int randTimes = run_times == 1 ? (eobmax) : 1;
txfm_param.tx_type = tx_type_;
txfm_param.tx_size = tx_size_;
txfm_param.lossless = 0;
txfm_param.bd = bit_depth_;
#if CONFIG_DDT_INTER
txfm_param.tx_set_type = EXT_TX_SET_ALL24;
#else
txfm_param.tx_set_type = EXT_TX_SET_ALL16;
#endif // CONFIG_DDT_INTER
for (int cnt = 0; cnt < randTimes; ++cnt) {
for (int r = 0; r < BLK_WIDTH; ++r) {
for (int c = 0; c < BLK_WIDTH; ++c) {
input[r * cols + c] = (rnd.Rand16() & mask) - (rnd.Rand16() & mask);
output[r * stride + c] = rnd.Rand16() & mask;
ref_output[r * stride + c] = output[r * stride + c];
}
}
fwd_func_(input, inv_input, stride, tx_type_, bit_depth_);
// produce eob input by setting high freq coeffs to zero
const int eob = AOMMIN(cnt + 1, eobmax);
for (int i = eob; i < eobmax; i++) {
inv_input[scan[i]] = 0;
}
txfm_param.eob = eob;
if (gt_int16) {
const uint16_t inv_input_mask =
static_cast<uint16_t>((1 << (bit_depth_ + 7)) - 1);
for (int i = 0; i < eob; i++) {
inv_input[scan[i]] = (rnd.Rand31() & inv_input_mask);
}
}
aom_usec_timer ref_timer, test_timer;
aom_usec_timer_start(&ref_timer);
for (int i = 0; i < run_times; ++i) {
av1_highbd_inv_txfm_add_c(inv_input, CONVERT_TO_BYTEPTR(ref_output),
stride, &txfm_param);
}
aom_usec_timer_mark(&ref_timer);
const int elapsed_time_c =
static_cast<int>(aom_usec_timer_elapsed(&ref_timer));
aom_usec_timer_start(&test_timer);
for (int i = 0; i < run_times; ++i) {
target_func_(inv_input, CONVERT_TO_BYTEPTR(output), stride, &txfm_param);
}
aom_usec_timer_mark(&test_timer);
const int elapsed_time_simd =
static_cast<int>(aom_usec_timer_elapsed(&test_timer));
if (run_times > 10) {
printf(
"txfm_size[%d] \t txfm_type[%d] \t c_time=%d \t simd_time=%d \t "
"gain=%d \n",
tx_size_, tx_type_, elapsed_time_c, elapsed_time_simd,
(elapsed_time_c / elapsed_time_simd));
} else {
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
ASSERT_EQ(ref_output[r * stride + c], output[r * stride + c])
<< "[" << r << "," << c << "] " << cnt
<< " tx_size: " << static_cast<int>(tx_size_)
<< " bit_depth_: " << bit_depth_
<< " tx_type: " << tx_type_name[tx_type_] << " eob " << eob;
}
}
}
}
}
TEST_P(AV1HighbdInvTxfm2d, match) {
int bitdepth_ar[3] = { 8, 10, 12 };
for (int k = 0; k < 3; ++k) {
int bd = bitdepth_ar[k];
for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) {
for (int i = 0; i < (int)TX_TYPES; ++i) {
if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(j),
static_cast<TX_TYPE>(i))) {
RunAV1InvTxfm2dTest(static_cast<TX_TYPE>(i), static_cast<TX_SIZE>(j),
1, bd);
}
}
}
}
}
TEST_P(AV1HighbdInvTxfm2d, gt_int16) {
int bitdepth_ar[3] = { 8, 10, 12 };
static const TX_TYPE types[] = {
DCT_DCT, ADST_DCT, FLIPADST_DCT, IDTX, V_DCT, H_DCT, H_ADST, H_FLIPADST
};
for (int k = 0; k < 3; ++k) {
int bd = bitdepth_ar[k];
for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) {
const TX_SIZE sz = static_cast<TX_SIZE>(j);
for (uint8_t i = 0; i < sizeof(types) / sizeof(TX_TYPE); ++i) {
const TX_TYPE tp = types[i];
if (libaom_test::IsTxSizeTypeValid(sz, tp)) {
RunAV1InvTxfm2dTest(tp, sz, 1, bd, 1);
}
}
}
}
}
TEST_P(AV1HighbdInvTxfm2d, DISABLED_Speed) {
int bitdepth_ar[2] = { 10, 12 };
for (int k = 0; k < 2; ++k) {
int bd = bitdepth_ar[k];
for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) {
for (int i = 0; i < (int)TX_TYPES; ++i) {
if (libaom_test::IsTxSizeTypeValid(static_cast<TX_SIZE>(j),
static_cast<TX_TYPE>(i))) {
RunAV1InvTxfm2dTest(static_cast<TX_TYPE>(i), static_cast<TX_SIZE>(j),
1000000, bd);
}
}
}
}
}
#if HAVE_SSE4_1
INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1HighbdInvTxfm2d,
::testing::Values(av1_highbd_inv_txfm_add_sse4_1));
#endif
#if HAVE_AVX2
INSTANTIATE_TEST_SUITE_P(AVX2, AV1HighbdInvTxfm2d,
::testing::Values(av1_highbd_inv_txfm_add_avx2));
#endif
#if HAVE_NEON
INSTANTIATE_TEST_SUITE_P(NEON, AV1HighbdInvTxfm2d,
::testing::Values(av1_highbd_inv_txfm_add_neon));
#endif
} // namespace