blob: f4077d44f89f766dbb970364b73fb07128af0f45 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <string.h>
#include <tuple>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "av1/common/filter.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
namespace {
static const unsigned int kMaxDimension = MAX_SB_SIZE;
typedef void (*ConvolveFunc)(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int filter_x_stride,
const int16_t *filter_y, int filter_y_stride,
int w, int h);
struct ConvolveFunctions {
ConvolveFunctions(ConvolveFunc h8, ConvolveFunc v8, int bd)
: h8_(h8), v8_(v8), use_highbd_(bd) {}
ConvolveFunc h8_;
ConvolveFunc v8_;
int use_highbd_; // 0 if high bitdepth not used, else the actual bit depth.
};
typedef std::tuple<int, int, const ConvolveFunctions *> ConvolveParam;
#define ALL_SIZES_64(convolve_fn) \
make_tuple(4, 4, &convolve_fn), make_tuple(8, 4, &convolve_fn), \
make_tuple(4, 8, &convolve_fn), make_tuple(8, 8, &convolve_fn), \
make_tuple(16, 8, &convolve_fn), make_tuple(8, 16, &convolve_fn), \
make_tuple(16, 16, &convolve_fn), make_tuple(32, 16, &convolve_fn), \
make_tuple(16, 32, &convolve_fn), make_tuple(32, 32, &convolve_fn), \
make_tuple(64, 32, &convolve_fn), make_tuple(32, 64, &convolve_fn), \
make_tuple(64, 64, &convolve_fn)
#define ALL_SIZES(convolve_fn) \
make_tuple(128, 64, &convolve_fn), make_tuple(64, 128, &convolve_fn), \
make_tuple(128, 128, &convolve_fn), ALL_SIZES_64(convolve_fn)
// Reference 8-tap subpixel filter, slightly modified to fit into this test.
#define AV1_FILTER_WEIGHT 128
#define AV1_FILTER_SHIFT 7
uint8_t clip_pixel(int x) { return x < 0 ? 0 : x > 255 ? 255 : x; }
void filter_block2d_8_c(const uint8_t *src_ptr, unsigned int src_stride,
const int16_t *HFilter, const int16_t *VFilter,
uint8_t *dst_ptr, unsigned int dst_stride,
unsigned int output_width, unsigned int output_height) {
// Between passes, we use an intermediate buffer whose height is extended to
// have enough horizontally filtered values as input for the vertical pass.
// This buffer is allocated to be big enough for the largest block type we
// support.
const int kInterp_Extend = 4;
const unsigned int intermediate_height =
(kInterp_Extend - 1) + output_height + kInterp_Extend;
unsigned int i, j;
assert(intermediate_height > 7);
// Size of intermediate_buffer is max_intermediate_height * filter_max_width,
// where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height
// + kInterp_Extend
// = 3 + 16 + 4
// = 23
// and filter_max_width = 16
//
uint8_t intermediate_buffer[(kMaxDimension + 8) * kMaxDimension];
const int intermediate_next_stride =
1 - static_cast<int>(intermediate_height * output_width);
// Horizontal pass (src -> transposed intermediate).
uint8_t *output_ptr = intermediate_buffer;
const int src_next_row_stride = src_stride - output_width;
src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1);
for (i = 0; i < intermediate_height; ++i) {
for (j = 0; j < output_width; ++j) {
// Apply filter...
const int temp = (src_ptr[0] * HFilter[0]) + (src_ptr[1] * HFilter[1]) +
(src_ptr[2] * HFilter[2]) + (src_ptr[3] * HFilter[3]) +
(src_ptr[4] * HFilter[4]) + (src_ptr[5] * HFilter[5]) +
(src_ptr[6] * HFilter[6]) + (src_ptr[7] * HFilter[7]) +
(AV1_FILTER_WEIGHT >> 1); // Rounding
// Normalize back to 0-255...
*output_ptr = clip_pixel(temp >> AV1_FILTER_SHIFT);
++src_ptr;
output_ptr += intermediate_height;
}
src_ptr += src_next_row_stride;
output_ptr += intermediate_next_stride;
}
// Vertical pass (transposed intermediate -> dst).
src_ptr = intermediate_buffer;
const int dst_next_row_stride = dst_stride - output_width;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
// Apply filter...
const int temp = (src_ptr[0] * VFilter[0]) + (src_ptr[1] * VFilter[1]) +
(src_ptr[2] * VFilter[2]) + (src_ptr[3] * VFilter[3]) +
(src_ptr[4] * VFilter[4]) + (src_ptr[5] * VFilter[5]) +
(src_ptr[6] * VFilter[6]) + (src_ptr[7] * VFilter[7]) +
(AV1_FILTER_WEIGHT >> 1); // Rounding
// Normalize back to 0-255...
*dst_ptr++ = clip_pixel(temp >> AV1_FILTER_SHIFT);
src_ptr += intermediate_height;
}
src_ptr += intermediate_next_stride;
dst_ptr += dst_next_row_stride;
}
}
void block2d_average_c(uint8_t *src, unsigned int src_stride,
uint8_t *output_ptr, unsigned int output_stride,
unsigned int output_width, unsigned int output_height) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1;
}
output_ptr += output_stride;
}
}
void filter_average_block2d_8_c(const uint8_t *src_ptr,
const unsigned int src_stride,
const int16_t *HFilter, const int16_t *VFilter,
uint8_t *dst_ptr, unsigned int dst_stride,
unsigned int output_width,
unsigned int output_height) {
uint8_t tmp[kMaxDimension * kMaxDimension];
assert(output_width <= kMaxDimension);
assert(output_height <= kMaxDimension);
filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, kMaxDimension,
output_width, output_height);
block2d_average_c(tmp, kMaxDimension, dst_ptr, dst_stride, output_width,
output_height);
}
void highbd_filter_block2d_8_c(const uint16_t *src_ptr,
const unsigned int src_stride,
const int16_t *HFilter, const int16_t *VFilter,
uint16_t *dst_ptr, unsigned int dst_stride,
unsigned int output_width,
unsigned int output_height, int bd) {
// Between passes, we use an intermediate buffer whose height is extended to
// have enough horizontally filtered values as input for the vertical pass.
// This buffer is allocated to be big enough for the largest block type we
// support.
const int kInterp_Extend = 4;
const unsigned int intermediate_height =
(kInterp_Extend - 1) + output_height + kInterp_Extend;
/* Size of intermediate_buffer is max_intermediate_height * filter_max_width,
* where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height
* + kInterp_Extend
* = 3 + 16 + 4
* = 23
* and filter_max_width = 16
*/
uint16_t intermediate_buffer[(kMaxDimension + 8) * kMaxDimension] = { 0 };
const int intermediate_next_stride =
1 - static_cast<int>(intermediate_height * output_width);
// Horizontal pass (src -> transposed intermediate).
{
uint16_t *output_ptr = intermediate_buffer;
const int src_next_row_stride = src_stride - output_width;
unsigned int i, j;
src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1);
for (i = 0; i < intermediate_height; ++i) {
for (j = 0; j < output_width; ++j) {
// Apply filter...
const int temp = (src_ptr[0] * HFilter[0]) + (src_ptr[1] * HFilter[1]) +
(src_ptr[2] * HFilter[2]) + (src_ptr[3] * HFilter[3]) +
(src_ptr[4] * HFilter[4]) + (src_ptr[5] * HFilter[5]) +
(src_ptr[6] * HFilter[6]) + (src_ptr[7] * HFilter[7]) +
(AV1_FILTER_WEIGHT >> 1); // Rounding
// Normalize back to 0-255...
*output_ptr = clip_pixel_highbd(temp >> AV1_FILTER_SHIFT, bd);
++src_ptr;
output_ptr += intermediate_height;
}
src_ptr += src_next_row_stride;
output_ptr += intermediate_next_stride;
}
}
// Vertical pass (transposed intermediate -> dst).
{
const uint16_t *interm_ptr = intermediate_buffer;
const int dst_next_row_stride = dst_stride - output_width;
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
// Apply filter...
const int temp =
(interm_ptr[0] * VFilter[0]) + (interm_ptr[1] * VFilter[1]) +
(interm_ptr[2] * VFilter[2]) + (interm_ptr[3] * VFilter[3]) +
(interm_ptr[4] * VFilter[4]) + (interm_ptr[5] * VFilter[5]) +
(interm_ptr[6] * VFilter[6]) + (interm_ptr[7] * VFilter[7]) +
(AV1_FILTER_WEIGHT >> 1); // Rounding
// Normalize back to 0-255...
*dst_ptr++ = clip_pixel_highbd(temp >> AV1_FILTER_SHIFT, bd);
interm_ptr += intermediate_height;
}
interm_ptr += intermediate_next_stride;
dst_ptr += dst_next_row_stride;
}
}
}
void highbd_block2d_average_c(uint16_t *src, unsigned int src_stride,
uint16_t *output_ptr, unsigned int output_stride,
unsigned int output_width,
unsigned int output_height) {
unsigned int i, j;
for (i = 0; i < output_height; ++i) {
for (j = 0; j < output_width; ++j) {
output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1;
}
output_ptr += output_stride;
}
}
void highbd_filter_average_block2d_8_c(
const uint16_t *src_ptr, unsigned int src_stride, const int16_t *HFilter,
const int16_t *VFilter, uint16_t *dst_ptr, unsigned int dst_stride,
unsigned int output_width, unsigned int output_height, int bd) {
uint16_t tmp[kMaxDimension * kMaxDimension];
assert(output_width <= kMaxDimension);
assert(output_height <= kMaxDimension);
highbd_filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp,
kMaxDimension, output_width, output_height, bd);
highbd_block2d_average_c(tmp, kMaxDimension, dst_ptr, dst_stride,
output_width, output_height);
}
class ConvolveTest : public ::testing::TestWithParam<ConvolveParam> {
public:
static void SetUpTestSuite() {
// Force input_ to be unaligned, output to be 16 byte aligned.
input_ = reinterpret_cast<uint8_t *>(
aom_memalign(kDataAlignment, kInputBufferSize + 1)) +
1;
ref8_ = reinterpret_cast<uint8_t *>(
aom_memalign(kDataAlignment, kOutputStride * kMaxDimension));
output_ = reinterpret_cast<uint8_t *>(
aom_memalign(kDataAlignment, kOutputBufferSize));
output_ref_ = reinterpret_cast<uint8_t *>(
aom_memalign(kDataAlignment, kOutputBufferSize));
input16_ = reinterpret_cast<uint16_t *>(aom_memalign(
kDataAlignment, (kInputBufferSize + 1) * sizeof(uint16_t))) +
1;
ref16_ = reinterpret_cast<uint16_t *>(aom_memalign(
kDataAlignment, kOutputStride * kMaxDimension * sizeof(uint16_t)));
output16_ = reinterpret_cast<uint16_t *>(
aom_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t)));
output16_ref_ = reinterpret_cast<uint16_t *>(
aom_memalign(kDataAlignment, (kOutputBufferSize) * sizeof(uint16_t)));
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
static void TearDownTestSuite() {
aom_free(input_ - 1);
input_ = NULL;
aom_free(ref8_);
ref8_ = NULL;
aom_free(output_);
output_ = NULL;
aom_free(output_ref_);
output_ref_ = NULL;
aom_free(input16_ - 1);
input16_ = NULL;
aom_free(ref16_);
ref16_ = NULL;
aom_free(output16_);
output16_ = NULL;
aom_free(output16_ref_);
output16_ref_ = NULL;
}
protected:
static const int kDataAlignment = 16;
static const int kOuterBlockSize = 4 * kMaxDimension;
static const int kInputStride = kOuterBlockSize;
static const int kOutputStride = kOuterBlockSize;
static const int kInputBufferSize = kOuterBlockSize * kOuterBlockSize;
static const int kOutputBufferSize = kOuterBlockSize * kOuterBlockSize;
int Width() const { return GET_PARAM(0); }
int Height() const { return GET_PARAM(1); }
int BorderLeft() const {
const int center = (kOuterBlockSize - Width()) / 2;
return (center + (kDataAlignment - 1)) & ~(kDataAlignment - 1);
}
int BorderTop() const { return (kOuterBlockSize - Height()) / 2; }
bool IsIndexInBorder(int i) {
return (i < BorderTop() * kOuterBlockSize ||
i >= (BorderTop() + Height()) * kOuterBlockSize ||
i % kOuterBlockSize < BorderLeft() ||
i % kOuterBlockSize >= (BorderLeft() + Width()));
}
virtual void SetUp() {
UUT_ = GET_PARAM(2);
if (UUT_->use_highbd_ != 0)
mask_ = (1 << UUT_->use_highbd_) - 1;
else
mask_ = 255;
/* Set up guard blocks for an inner block centered in the outer block */
for (int i = 0; i < kOutputBufferSize; ++i) {
if (IsIndexInBorder(i)) {
output_[i] = 255;
output16_[i] = mask_;
} else {
output_[i] = 0;
output16_[i] = 0;
}
}
::libaom_test::ACMRandom prng;
for (int i = 0; i < kInputBufferSize; ++i) {
if (i & 1) {
input_[i] = 255;
input16_[i] = mask_;
} else {
input_[i] = prng.Rand8Extremes();
input16_[i] = prng.Rand16() & mask_;
}
}
}
void SetConstantInput(int value) {
memset(input_, value, kInputBufferSize);
aom_memset16(input16_, value, kInputBufferSize);
}
void CopyOutputToRef() {
memcpy(output_ref_, output_, kOutputBufferSize);
// Copy 16-bit pixels values. The effective number of bytes is double.
memcpy(output16_ref_, output16_, sizeof(output16_[0]) * kOutputBufferSize);
}
void CheckGuardBlocks() {
for (int i = 0; i < kOutputBufferSize; ++i) {
if (IsIndexInBorder(i)) {
EXPECT_EQ(255, output_[i]);
}
}
}
uint8_t *input() const {
const int offset = BorderTop() * kOuterBlockSize + BorderLeft();
if (UUT_->use_highbd_ == 0) {
return input_ + offset;
} else {
return CONVERT_TO_BYTEPTR(input16_) + offset;
}
}
uint8_t *output() const {
const int offset = BorderTop() * kOuterBlockSize + BorderLeft();
if (UUT_->use_highbd_ == 0) {
return output_ + offset;
} else {
return CONVERT_TO_BYTEPTR(output16_) + offset;
}
}
uint8_t *output_ref() const {
const int offset = BorderTop() * kOuterBlockSize + BorderLeft();
if (UUT_->use_highbd_ == 0) {
return output_ref_ + offset;
} else {
return CONVERT_TO_BYTEPTR(output16_ref_) + offset;
}
}
uint16_t lookup(uint8_t *list, int index) const {
if (UUT_->use_highbd_ == 0) {
return list[index];
} else {
return CONVERT_TO_SHORTPTR(list)[index];
}
}
void assign_val(uint8_t *list, int index, uint16_t val) const {
if (UUT_->use_highbd_ == 0) {
list[index] = (uint8_t)val;
} else {
CONVERT_TO_SHORTPTR(list)[index] = val;
}
}
void wrapper_filter_average_block2d_8_c(
const uint8_t *src_ptr, unsigned int src_stride, const int16_t *HFilter,
const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride,
unsigned int output_width, unsigned int output_height) {
if (UUT_->use_highbd_ == 0) {
filter_average_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, dst_ptr,
dst_stride, output_width, output_height);
} else {
highbd_filter_average_block2d_8_c(
CONVERT_TO_SHORTPTR(src_ptr), src_stride, HFilter, VFilter,
CONVERT_TO_SHORTPTR(dst_ptr), dst_stride, output_width, output_height,
UUT_->use_highbd_);
}
}
void wrapper_filter_block2d_8_c(
const uint8_t *src_ptr, unsigned int src_stride, const int16_t *HFilter,
const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride,
unsigned int output_width, unsigned int output_height) {
if (UUT_->use_highbd_ == 0) {
filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, dst_ptr,
dst_stride, output_width, output_height);
} else {
highbd_filter_block2d_8_c(CONVERT_TO_SHORTPTR(src_ptr), src_stride,
HFilter, VFilter, CONVERT_TO_SHORTPTR(dst_ptr),
dst_stride, output_width, output_height,
UUT_->use_highbd_);
}
}
const ConvolveFunctions *UUT_;
static uint8_t *input_;
static uint8_t *ref8_;
static uint8_t *output_;
static uint8_t *output_ref_;
static uint16_t *input16_;
static uint16_t *ref16_;
static uint16_t *output16_;
static uint16_t *output16_ref_;
int mask_;
};
uint8_t *ConvolveTest::input_ = NULL;
uint8_t *ConvolveTest::ref8_ = NULL;
uint8_t *ConvolveTest::output_ = NULL;
uint8_t *ConvolveTest::output_ref_ = NULL;
uint16_t *ConvolveTest::input16_ = NULL;
uint16_t *ConvolveTest::ref16_ = NULL;
uint16_t *ConvolveTest::output16_ = NULL;
uint16_t *ConvolveTest::output16_ref_ = NULL;
TEST_P(ConvolveTest, GuardBlocks) { CheckGuardBlocks(); }
const int kNumFilterBanks = SWITCHABLE_FILTERS;
const int kNumFilters = 16;
TEST(ConvolveTest, FiltersWontSaturateWhenAddedPairwise) {
int subpel_search;
for (subpel_search = USE_4_TAPS; subpel_search <= USE_8_TAPS;
++subpel_search) {
for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) {
const InterpFilter filter = (InterpFilter)filter_bank;
const InterpKernel *filters =
(const InterpKernel *)av1_get_interp_filter_kernel(filter,
subpel_search);
for (int i = 0; i < kNumFilters; i++) {
const int p0 = filters[i][0] + filters[i][1];
const int p1 = filters[i][2] + filters[i][3];
const int p2 = filters[i][4] + filters[i][5];
const int p3 = filters[i][6] + filters[i][7];
EXPECT_LE(p0, 128);
EXPECT_LE(p1, 128);
EXPECT_LE(p2, 128);
EXPECT_LE(p3, 128);
EXPECT_LE(p0 + p3, 128);
EXPECT_LE(p0 + p3 + p1, 128);
EXPECT_LE(p0 + p3 + p1 + p2, 128);
EXPECT_EQ(p0 + p1 + p2 + p3, 128);
}
}
}
}
const int16_t kInvalidFilter[8] = { 0 };
TEST_P(ConvolveTest, MatchesReferenceSubpixelFilter) {
uint8_t *const in = input();
uint8_t *const out = output();
uint8_t *ref;
if (UUT_->use_highbd_ == 0) {
ref = ref8_;
} else {
ref = CONVERT_TO_BYTEPTR(ref16_);
}
int subpel_search;
for (subpel_search = USE_4_TAPS; subpel_search <= USE_8_TAPS;
++subpel_search) {
for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) {
const InterpFilter filter = (InterpFilter)filter_bank;
const InterpKernel *filters =
(const InterpKernel *)av1_get_interp_filter_kernel(filter,
subpel_search);
for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) {
for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) {
wrapper_filter_block2d_8_c(in, kInputStride, filters[filter_x],
filters[filter_y], ref, kOutputStride,
Width(), Height());
if (filter_x && filter_y)
continue;
else if (filter_y)
ASM_REGISTER_STATE_CHECK(
UUT_->v8_(in, kInputStride, out, kOutputStride, kInvalidFilter,
16, filters[filter_y], 16, Width(), Height()));
else if (filter_x)
ASM_REGISTER_STATE_CHECK(UUT_->h8_(
in, kInputStride, out, kOutputStride, filters[filter_x], 16,
kInvalidFilter, 16, Width(), Height()));
else
continue;
CheckGuardBlocks();
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(lookup(ref, y * kOutputStride + x),
lookup(out, y * kOutputStride + x))
<< "mismatch at (" << x << "," << y << "), "
<< "filters (" << filter_bank << "," << filter_x << ","
<< filter_y << ")";
}
}
}
}
}
TEST_P(ConvolveTest, FilterExtremes) {
uint8_t *const in = input();
uint8_t *const out = output();
uint8_t *ref;
if (UUT_->use_highbd_ == 0) {
ref = ref8_;
} else {
ref = CONVERT_TO_BYTEPTR(ref16_);
}
// Populate ref and out with some random data
::libaom_test::ACMRandom prng;
for (int y = 0; y < Height(); ++y) {
for (int x = 0; x < Width(); ++x) {
uint16_t r;
if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) {
r = prng.Rand8Extremes();
} else {
r = prng.Rand16() & mask_;
}
assign_val(out, y * kOutputStride + x, r);
assign_val(ref, y * kOutputStride + x, r);
}
}
for (int axis = 0; axis < 2; axis++) {
int seed_val = 0;
while (seed_val < 256) {
for (int y = 0; y < 8; ++y) {
for (int x = 0; x < 8; ++x) {
assign_val(in, y * kOutputStride + x - SUBPEL_TAPS / 2 + 1,
((seed_val >> (axis ? y : x)) & 1) * mask_);
if (axis) seed_val++;
}
if (axis)
seed_val -= 8;
else
seed_val++;
}
if (axis) seed_val += 8;
int subpel_search;
for (subpel_search = USE_4_TAPS; subpel_search <= USE_8_TAPS;
++subpel_search) {
for (int filter_bank = 0; filter_bank < kNumFilterBanks;
++filter_bank) {
const InterpFilter filter = (InterpFilter)filter_bank;
const InterpKernel *filters =
(const InterpKernel *)av1_get_interp_filter_kernel(filter,
subpel_search);
for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) {
for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) {
wrapper_filter_block2d_8_c(in, kInputStride, filters[filter_x],
filters[filter_y], ref, kOutputStride,
Width(), Height());
if (filter_x && filter_y)
continue;
else if (filter_y)
ASM_REGISTER_STATE_CHECK(UUT_->v8_(
in, kInputStride, out, kOutputStride, kInvalidFilter, 16,
filters[filter_y], 16, Width(), Height()));
else if (filter_x)
ASM_REGISTER_STATE_CHECK(UUT_->h8_(
in, kInputStride, out, kOutputStride, filters[filter_x], 16,
kInvalidFilter, 16, Width(), Height()));
else
continue;
for (int y = 0; y < Height(); ++y)
for (int x = 0; x < Width(); ++x)
ASSERT_EQ(lookup(ref, y * kOutputStride + x),
lookup(out, y * kOutputStride + x))
<< "mismatch at (" << x << "," << y << "), "
<< "filters (" << filter_bank << "," << filter_x << ","
<< filter_y << ")";
}
}
}
}
}
}
}
TEST_P(ConvolveTest, DISABLED_Speed) {
uint8_t *const in = input();
uint8_t *const out = output();
uint8_t *ref;
if (UUT_->use_highbd_ == 0) {
ref = ref8_;
} else {
ref = CONVERT_TO_BYTEPTR(ref16_);
}
// Populate ref and out with some random data
::libaom_test::ACMRandom prng;
for (int y = 0; y < Height(); ++y) {
for (int x = 0; x < Width(); ++x) {
uint16_t r;
if (UUT_->use_highbd_ == 0 || UUT_->use_highbd_ == 8) {
r = prng.Rand8Extremes();
} else {
r = prng.Rand16() & mask_;
}
assign_val(out, y * kOutputStride + x, r);
assign_val(ref, y * kOutputStride + x, r);
}
}
const InterpFilter filter = (InterpFilter)1;
const InterpKernel *filters =
(const InterpKernel *)av1_get_interp_filter_kernel(filter, USE_8_TAPS);
wrapper_filter_average_block2d_8_c(in, kInputStride, filters[1], filters[1],
out, kOutputStride, Width(), Height());
aom_usec_timer timer;
int tests_num = 1000;
aom_usec_timer_start(&timer);
while (tests_num > 0) {
for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) {
const InterpFilter filter = (InterpFilter)filter_bank;
const InterpKernel *filters =
(const InterpKernel *)av1_get_interp_filter_kernel(filter,
USE_8_TAPS);
for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) {
for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) {
if (filter_x && filter_y) continue;
if (filter_y)
ASM_REGISTER_STATE_CHECK(
UUT_->v8_(in, kInputStride, out, kOutputStride, kInvalidFilter,
16, filters[filter_y], 16, Width(), Height()));
else if (filter_x)
ASM_REGISTER_STATE_CHECK(UUT_->h8_(
in, kInputStride, out, kOutputStride, filters[filter_x], 16,
kInvalidFilter, 16, Width(), Height()));
}
}
}
tests_num--;
}
aom_usec_timer_mark(&timer);
const int elapsed_time =
static_cast<int>(aom_usec_timer_elapsed(&timer) / 1000);
printf("%dx%d (bitdepth %d) time: %5d ms\n", Width(), Height(),
UUT_->use_highbd_, elapsed_time);
}
using std::make_tuple;
// WRAP macro is only used for high bitdepth build.
#define WRAP(func, bd) \
static void wrap_##func##_##bd( \
const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, \
ptrdiff_t dst_stride, const int16_t *filter_x, int filter_x_stride, \
const int16_t *filter_y, int filter_y_stride, int w, int h) { \
aom_highbd_##func(src, src_stride, dst, dst_stride, filter_x, \
filter_x_stride, filter_y, filter_y_stride, w, h, bd); \
}
#if HAVE_SSE2 && ARCH_X86_64
WRAP(convolve8_horiz_sse2, 8)
WRAP(convolve8_vert_sse2, 8)
WRAP(convolve8_horiz_sse2, 10)
WRAP(convolve8_vert_sse2, 10)
WRAP(convolve8_horiz_sse2, 12)
WRAP(convolve8_vert_sse2, 12)
#endif // HAVE_SSE2 && ARCH_X86_64
WRAP(convolve8_horiz_c, 8)
WRAP(convolve8_vert_c, 8)
WRAP(convolve8_horiz_c, 10)
WRAP(convolve8_vert_c, 10)
WRAP(convolve8_horiz_c, 12)
WRAP(convolve8_vert_c, 12)
#if HAVE_AVX2
WRAP(convolve8_horiz_avx2, 8)
WRAP(convolve8_vert_avx2, 8)
WRAP(convolve8_horiz_avx2, 10)
WRAP(convolve8_vert_avx2, 10)
WRAP(convolve8_horiz_avx2, 12)
WRAP(convolve8_vert_avx2, 12)
#endif // HAVE_AVX2
#undef WRAP
const ConvolveFunctions wrap_convolve8_c(wrap_convolve8_horiz_c_8,
wrap_convolve8_vert_c_8, 8);
const ConvolveFunctions wrap_convolve10_c(wrap_convolve8_horiz_c_10,
wrap_convolve8_vert_c_10, 10);
const ConvolveFunctions wrap_convolve12_c(wrap_convolve8_horiz_c_12,
wrap_convolve8_vert_c_12, 12);
const ConvolveParam kArrayConvolve_c[] = { ALL_SIZES(wrap_convolve8_c),
ALL_SIZES(wrap_convolve10_c),
ALL_SIZES(wrap_convolve12_c) };
INSTANTIATE_TEST_SUITE_P(C, ConvolveTest,
::testing::ValuesIn(kArrayConvolve_c));
#if HAVE_SSE2 && ARCH_X86_64
const ConvolveFunctions wrap_convolve8_sse2(wrap_convolve8_horiz_sse2_8,
wrap_convolve8_vert_sse2_8, 8);
const ConvolveFunctions wrap_convolve10_sse2(wrap_convolve8_horiz_sse2_10,
wrap_convolve8_vert_sse2_10, 10);
const ConvolveFunctions wrap_convolve12_sse2(wrap_convolve8_horiz_sse2_12,
wrap_convolve8_vert_sse2_12, 12);
const ConvolveParam kArrayConvolve_sse2[] = { ALL_SIZES(wrap_convolve8_sse2),
ALL_SIZES(wrap_convolve10_sse2),
ALL_SIZES(wrap_convolve12_sse2) };
INSTANTIATE_TEST_SUITE_P(SSE2, ConvolveTest,
::testing::ValuesIn(kArrayConvolve_sse2));
#endif
#if HAVE_AVX2
const ConvolveFunctions wrap_convolve8_avx2(wrap_convolve8_horiz_avx2_8,
wrap_convolve8_vert_avx2_8, 8);
const ConvolveFunctions wrap_convolve10_avx2(wrap_convolve8_horiz_avx2_10,
wrap_convolve8_vert_avx2_10, 10);
const ConvolveFunctions wrap_convolve12_avx2(wrap_convolve8_horiz_avx2_12,
wrap_convolve8_vert_avx2_12, 12);
const ConvolveParam kArray_Convolve8_avx2[] = {
ALL_SIZES_64(wrap_convolve8_avx2), ALL_SIZES_64(wrap_convolve10_avx2),
ALL_SIZES_64(wrap_convolve12_avx2)
};
INSTANTIATE_TEST_SUITE_P(AVX2, ConvolveTest,
::testing::ValuesIn(kArray_Convolve8_avx2));
#endif // HAVE_AVX2
} // namespace