| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "third_party/googletest/src/include/gtest/gtest.h" |
| #include "vpx_ports/mem.h" |
| |
| extern "C" { |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9_rtcd.h" |
| void vp9_short_idct16x16_add_c(short *input, uint8_t *output, int pitch); |
| } |
| |
| #include "acm_random.h" |
| #include "vpx/vpx_integer.h" |
| |
| using libvpx_test::ACMRandom; |
| |
| namespace { |
| |
| #ifdef _MSC_VER |
| static int round(double x) { |
| if (x < 0) |
| return (int)ceil(x - 0.5); |
| else |
| return (int)floor(x + 0.5); |
| } |
| #endif |
| |
| const double PI = 3.1415926535898; |
| void reference2_16x16_idct_2d(double *input, double *output) { |
| double x; |
| for (int l = 0; l < 16; ++l) { |
| for (int k = 0; k < 16; ++k) { |
| double s = 0; |
| for (int i = 0; i < 16; ++i) { |
| for (int j = 0; j < 16; ++j) { |
| x=cos(PI*j*(l+0.5)/16.0)*cos(PI*i*(k+0.5)/16.0)*input[i*16+j]/256; |
| if (i != 0) |
| x *= sqrt(2.0); |
| if (j != 0) |
| x *= sqrt(2.0); |
| s += x; |
| } |
| } |
| output[k*16+l] = s; |
| } |
| } |
| } |
| |
| |
| static const double C1 = 0.995184726672197; |
| static const double C2 = 0.98078528040323; |
| static const double C3 = 0.956940335732209; |
| static const double C4 = 0.923879532511287; |
| static const double C5 = 0.881921264348355; |
| static const double C6 = 0.831469612302545; |
| static const double C7 = 0.773010453362737; |
| static const double C8 = 0.707106781186548; |
| static const double C9 = 0.634393284163646; |
| static const double C10 = 0.555570233019602; |
| static const double C11 = 0.471396736825998; |
| static const double C12 = 0.38268343236509; |
| static const double C13 = 0.290284677254462; |
| static const double C14 = 0.195090322016128; |
| static const double C15 = 0.098017140329561; |
| |
| static void butterfly_16x16_dct_1d(double input[16], double output[16]) { |
| double step[16]; |
| double intermediate[16]; |
| double temp1, temp2; |
| |
| // step 1 |
| step[ 0] = input[0] + input[15]; |
| step[ 1] = input[1] + input[14]; |
| step[ 2] = input[2] + input[13]; |
| step[ 3] = input[3] + input[12]; |
| step[ 4] = input[4] + input[11]; |
| step[ 5] = input[5] + input[10]; |
| step[ 6] = input[6] + input[ 9]; |
| step[ 7] = input[7] + input[ 8]; |
| step[ 8] = input[7] - input[ 8]; |
| step[ 9] = input[6] - input[ 9]; |
| step[10] = input[5] - input[10]; |
| step[11] = input[4] - input[11]; |
| step[12] = input[3] - input[12]; |
| step[13] = input[2] - input[13]; |
| step[14] = input[1] - input[14]; |
| step[15] = input[0] - input[15]; |
| |
| // step 2 |
| output[0] = step[0] + step[7]; |
| output[1] = step[1] + step[6]; |
| output[2] = step[2] + step[5]; |
| output[3] = step[3] + step[4]; |
| output[4] = step[3] - step[4]; |
| output[5] = step[2] - step[5]; |
| output[6] = step[1] - step[6]; |
| output[7] = step[0] - step[7]; |
| |
| temp1 = step[ 8]*C7; |
| temp2 = step[15]*C9; |
| output[ 8] = temp1 + temp2; |
| |
| temp1 = step[ 9]*C11; |
| temp2 = step[14]*C5; |
| output[ 9] = temp1 - temp2; |
| |
| temp1 = step[10]*C3; |
| temp2 = step[13]*C13; |
| output[10] = temp1 + temp2; |
| |
| temp1 = step[11]*C15; |
| temp2 = step[12]*C1; |
| output[11] = temp1 - temp2; |
| |
| temp1 = step[11]*C1; |
| temp2 = step[12]*C15; |
| output[12] = temp2 + temp1; |
| |
| temp1 = step[10]*C13; |
| temp2 = step[13]*C3; |
| output[13] = temp2 - temp1; |
| |
| temp1 = step[ 9]*C5; |
| temp2 = step[14]*C11; |
| output[14] = temp2 + temp1; |
| |
| temp1 = step[ 8]*C9; |
| temp2 = step[15]*C7; |
| output[15] = temp2 - temp1; |
| |
| // step 3 |
| step[ 0] = output[0] + output[3]; |
| step[ 1] = output[1] + output[2]; |
| step[ 2] = output[1] - output[2]; |
| step[ 3] = output[0] - output[3]; |
| |
| temp1 = output[4]*C14; |
| temp2 = output[7]*C2; |
| step[ 4] = temp1 + temp2; |
| |
| temp1 = output[5]*C10; |
| temp2 = output[6]*C6; |
| step[ 5] = temp1 + temp2; |
| |
| temp1 = output[5]*C6; |
| temp2 = output[6]*C10; |
| step[ 6] = temp2 - temp1; |
| |
| temp1 = output[4]*C2; |
| temp2 = output[7]*C14; |
| step[ 7] = temp2 - temp1; |
| |
| step[ 8] = output[ 8] + output[11]; |
| step[ 9] = output[ 9] + output[10]; |
| step[10] = output[ 9] - output[10]; |
| step[11] = output[ 8] - output[11]; |
| |
| step[12] = output[12] + output[15]; |
| step[13] = output[13] + output[14]; |
| step[14] = output[13] - output[14]; |
| step[15] = output[12] - output[15]; |
| |
| // step 4 |
| output[ 0] = (step[ 0] + step[ 1]); |
| output[ 8] = (step[ 0] - step[ 1]); |
| |
| temp1 = step[2]*C12; |
| temp2 = step[3]*C4; |
| temp1 = temp1 + temp2; |
| output[ 4] = 2*(temp1*C8); |
| |
| temp1 = step[2]*C4; |
| temp2 = step[3]*C12; |
| temp1 = temp2 - temp1; |
| output[12] = 2*(temp1*C8); |
| |
| output[ 2] = 2*((step[4] + step[ 5])*C8); |
| output[14] = 2*((step[7] - step[ 6])*C8); |
| |
| temp1 = step[4] - step[5]; |
| temp2 = step[6] + step[7]; |
| output[ 6] = (temp1 + temp2); |
| output[10] = (temp1 - temp2); |
| |
| intermediate[8] = step[8] + step[14]; |
| intermediate[9] = step[9] + step[15]; |
| |
| temp1 = intermediate[8]*C12; |
| temp2 = intermediate[9]*C4; |
| temp1 = temp1 - temp2; |
| output[3] = 2*(temp1*C8); |
| |
| temp1 = intermediate[8]*C4; |
| temp2 = intermediate[9]*C12; |
| temp1 = temp2 + temp1; |
| output[13] = 2*(temp1*C8); |
| |
| output[ 9] = 2*((step[10] + step[11])*C8); |
| |
| intermediate[11] = step[10] - step[11]; |
| intermediate[12] = step[12] + step[13]; |
| intermediate[13] = step[12] - step[13]; |
| intermediate[14] = step[ 8] - step[14]; |
| intermediate[15] = step[ 9] - step[15]; |
| |
| output[15] = (intermediate[11] + intermediate[12]); |
| output[ 1] = -(intermediate[11] - intermediate[12]); |
| |
| output[ 7] = 2*(intermediate[13]*C8); |
| |
| temp1 = intermediate[14]*C12; |
| temp2 = intermediate[15]*C4; |
| temp1 = temp1 - temp2; |
| output[11] = -2*(temp1*C8); |
| |
| temp1 = intermediate[14]*C4; |
| temp2 = intermediate[15]*C12; |
| temp1 = temp2 + temp1; |
| output[ 5] = 2*(temp1*C8); |
| } |
| |
| static void reference_16x16_dct_1d(double in[16], double out[16]) { |
| const double kPi = 3.141592653589793238462643383279502884; |
| const double kInvSqrt2 = 0.707106781186547524400844362104; |
| for (int k = 0; k < 16; k++) { |
| out[k] = 0.0; |
| for (int n = 0; n < 16; n++) |
| out[k] += in[n]*cos(kPi*(2*n+1)*k/32.0); |
| if (k == 0) |
| out[k] = out[k]*kInvSqrt2; |
| } |
| } |
| |
| void reference_16x16_dct_2d(int16_t input[16*16], double output[16*16]) { |
| // First transform columns |
| for (int i = 0; i < 16; ++i) { |
| double temp_in[16], temp_out[16]; |
| for (int j = 0; j < 16; ++j) |
| temp_in[j] = input[j*16 + i]; |
| butterfly_16x16_dct_1d(temp_in, temp_out); |
| for (int j = 0; j < 16; ++j) |
| output[j*16 + i] = temp_out[j]; |
| } |
| // Then transform rows |
| for (int i = 0; i < 16; ++i) { |
| double temp_in[16], temp_out[16]; |
| for (int j = 0; j < 16; ++j) |
| temp_in[j] = output[j + i*16]; |
| butterfly_16x16_dct_1d(temp_in, temp_out); |
| // Scale by some magic number |
| for (int j = 0; j < 16; ++j) |
| output[j + i*16] = temp_out[j]/2; |
| } |
| } |
| |
| void fdct16x16(int16_t *in, int16_t *out, uint8_t* /*dst*/, |
| int stride, int /*tx_type*/) { |
| vp9_short_fdct16x16_c(in, out, stride); |
| } |
| void idct16x16_add(int16_t* /*in*/, int16_t *out, uint8_t *dst, |
| int stride, int /*tx_type*/) { |
| vp9_short_idct16x16_add_c(out, dst, stride >> 1); |
| } |
| void fht16x16(int16_t *in, int16_t *out, uint8_t* /*dst*/, |
| int stride, int tx_type) { |
| // FIXME(jingning): patch dependency on SSE2 16x16 hybrid transform coding |
| #if HAVE_SSE2 && 0 |
| vp9_short_fht16x16_sse2(in, out, stride >> 1, tx_type); |
| #else |
| vp9_short_fht16x16_c(in, out, stride >> 1, tx_type); |
| #endif |
| } |
| void iht16x16_add(int16_t* /*in*/, int16_t *out, uint8_t *dst, |
| int stride, int tx_type) { |
| vp9_short_iht16x16_add_c(out, dst, stride >> 1, tx_type); |
| } |
| |
| class FwdTrans16x16Test : public ::testing::TestWithParam<int> { |
| public: |
| FwdTrans16x16Test() { SetUpTestTxfm(); } |
| ~FwdTrans16x16Test() {} |
| |
| void SetUpTestTxfm() { |
| tx_type_ = GetParam(); |
| if (tx_type_ == 0) { |
| fwd_txfm = fdct16x16; |
| inv_txfm = idct16x16_add; |
| } else { |
| fwd_txfm = fht16x16; |
| inv_txfm = iht16x16_add; |
| } |
| } |
| |
| protected: |
| void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst, |
| int stride, int tx_type) { |
| (*fwd_txfm)(in, out, dst, stride, tx_type); |
| } |
| void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst, |
| int stride, int tx_type) { |
| (*inv_txfm)(in, out, dst, stride, tx_type); |
| } |
| |
| int tx_type_; |
| void (*fwd_txfm)(int16_t*, int16_t*, uint8_t*, int, int); |
| void (*inv_txfm)(int16_t*, int16_t*, uint8_t*, int, int); |
| }; |
| |
| TEST_P(FwdTrans16x16Test, AccuracyCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| int max_error = 0; |
| double total_error = 0; |
| const int count_test_block = 10000; |
| for (int i = 0; i < count_test_block; ++i) { |
| DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 256); |
| DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 256); |
| DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 256); |
| DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 256); |
| |
| for (int j = 0; j < 256; ++j) { |
| src[j] = rnd.Rand8(); |
| dst[j] = rnd.Rand8(); |
| } |
| // Initialize a test block with input range [-255, 255]. |
| for (int j = 0; j < 256; ++j) |
| test_input_block[j] = src[j] - dst[j]; |
| |
| const int pitch = 32; |
| RunFwdTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_); |
| RunInvTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_); |
| |
| for (int j = 0; j < 256; ++j) { |
| const int diff = dst[j] - src[j]; |
| const int error = diff * diff; |
| if (max_error < error) |
| max_error = error; |
| total_error += error; |
| } |
| } |
| |
| EXPECT_GE(1, max_error) |
| << "Error: 16x16 FHT/IHT has an individual round trip error > 1"; |
| |
| EXPECT_GE(count_test_block , total_error) |
| << "Error: 16x16 FHT/IHT has average round trip error > 1 per block"; |
| } |
| |
| TEST_P(FwdTrans16x16Test, CoeffSizeCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| for (int i = 0; i < count_test_block; ++i) { |
| DECLARE_ALIGNED_ARRAY(16, int16_t, input_block, 256); |
| DECLARE_ALIGNED_ARRAY(16, int16_t, input_extreme_block, 256); |
| DECLARE_ALIGNED_ARRAY(16, int16_t, output_block, 256); |
| DECLARE_ALIGNED_ARRAY(16, int16_t, output_extreme_block, 256); |
| DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 256); |
| |
| // Initialize a test block with input range [-255, 255]. |
| for (int j = 0; j < 256; ++j) { |
| input_block[j] = rnd.Rand8() - rnd.Rand8(); |
| input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; |
| } |
| if (i == 0) |
| for (int j = 0; j < 256; ++j) |
| input_extreme_block[j] = 255; |
| |
| const int pitch = 32; |
| RunFwdTxfm(input_block, output_block, dst, pitch, tx_type_); |
| RunFwdTxfm(input_extreme_block, output_extreme_block, dst, pitch, tx_type_); |
| |
| // The minimum quant value is 4. |
| for (int j = 0; j < 256; ++j) { |
| EXPECT_GE(4*DCT_MAX_VALUE, abs(output_block[j])) |
| << "Error: 16x16 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; |
| EXPECT_GE(4*DCT_MAX_VALUE, abs(output_extreme_block[j])) |
| << "Error: 16x16 FDCT extreme has coefficient larger than 4*DCT_MAX_VALUE"; |
| } |
| } |
| } |
| |
| INSTANTIATE_TEST_CASE_P(VP9, FwdTrans16x16Test, ::testing::Range(0, 4)); |
| |
| TEST(VP9Idct16x16Test, AccuracyCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| for (int i = 0; i < count_test_block; ++i) { |
| int16_t in[256], coeff[256]; |
| uint8_t dst[256], src[256]; |
| double out_r[256]; |
| |
| for (int j = 0; j < 256; ++j) { |
| src[j] = rnd.Rand8(); |
| dst[j] = rnd.Rand8(); |
| } |
| // Initialize a test block with input range [-255, 255]. |
| for (int j = 0; j < 256; ++j) |
| in[j] = src[j] - dst[j]; |
| |
| reference_16x16_dct_2d(in, out_r); |
| for (int j = 0; j < 256; j++) |
| coeff[j] = round(out_r[j]); |
| vp9_short_idct16x16_add_c(coeff, dst, 16); |
| for (int j = 0; j < 256; ++j) { |
| const int diff = dst[j] - src[j]; |
| const int error = diff * diff; |
| EXPECT_GE(1, error) |
| << "Error: 16x16 IDCT has error " << error |
| << " at index " << j; |
| } |
| } |
| } |
| |
| } // namespace |