| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "third_party/googletest/src/include/gtest/gtest.h" |
| |
| extern "C" { |
| #include "vp9/common/vp9_entropy.h" |
| #include "./vp9_rtcd.h" |
| void vp9_short_fdct32x32_c(int16_t *input, int16_t *out, int pitch); |
| void vp9_short_idct32x32_add_c(short *input, uint8_t *output, int pitch); |
| } |
| |
| #include "test/acm_random.h" |
| #include "vpx/vpx_integer.h" |
| |
| using libvpx_test::ACMRandom; |
| |
| namespace { |
| #ifdef _MSC_VER |
| static int round(double x) { |
| if (x < 0) |
| return (int)ceil(x - 0.5); |
| else |
| return (int)floor(x + 0.5); |
| } |
| #endif |
| |
| static const double kPi = 3.141592653589793238462643383279502884; |
| static void reference2_32x32_idct_2d(double *input, double *output) { |
| double x; |
| for (int l = 0; l < 32; ++l) { |
| for (int k = 0; k < 32; ++k) { |
| double s = 0; |
| for (int i = 0; i < 32; ++i) { |
| for (int j = 0; j < 32; ++j) { |
| x = cos(kPi * j * (l + 0.5) / 32.0) * |
| cos(kPi * i * (k + 0.5) / 32.0) * input[i * 32 + j] / 1024; |
| if (i != 0) |
| x *= sqrt(2.0); |
| if (j != 0) |
| x *= sqrt(2.0); |
| s += x; |
| } |
| } |
| output[k * 32 + l] = s / 4; |
| } |
| } |
| } |
| |
| static void reference_32x32_dct_1d(double in[32], double out[32], int stride) { |
| const double kInvSqrt2 = 0.707106781186547524400844362104; |
| for (int k = 0; k < 32; k++) { |
| out[k] = 0.0; |
| for (int n = 0; n < 32; n++) |
| out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0); |
| if (k == 0) |
| out[k] = out[k] * kInvSqrt2; |
| } |
| } |
| |
| static void reference_32x32_dct_2d(int16_t input[32*32], double output[32*32]) { |
| // First transform columns |
| for (int i = 0; i < 32; ++i) { |
| double temp_in[32], temp_out[32]; |
| for (int j = 0; j < 32; ++j) |
| temp_in[j] = input[j*32 + i]; |
| reference_32x32_dct_1d(temp_in, temp_out, 1); |
| for (int j = 0; j < 32; ++j) |
| output[j * 32 + i] = temp_out[j]; |
| } |
| // Then transform rows |
| for (int i = 0; i < 32; ++i) { |
| double temp_in[32], temp_out[32]; |
| for (int j = 0; j < 32; ++j) |
| temp_in[j] = output[j + i*32]; |
| reference_32x32_dct_1d(temp_in, temp_out, 1); |
| // Scale by some magic number |
| for (int j = 0; j < 32; ++j) |
| output[j + i * 32] = temp_out[j] / 4; |
| } |
| } |
| |
| TEST(VP9Idct32x32Test, AccuracyCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| for (int i = 0; i < count_test_block; ++i) { |
| int16_t in[1024], coeff[1024]; |
| uint8_t dst[1024], src[1024]; |
| double out_r[1024]; |
| |
| for (int j = 0; j < 1024; ++j) { |
| src[j] = rnd.Rand8(); |
| dst[j] = rnd.Rand8(); |
| } |
| // Initialize a test block with input range [-255, 255]. |
| for (int j = 0; j < 1024; ++j) |
| in[j] = src[j] - dst[j]; |
| |
| reference_32x32_dct_2d(in, out_r); |
| for (int j = 0; j < 1024; j++) |
| coeff[j] = round(out_r[j]); |
| vp9_short_idct32x32_add_c(coeff, dst, 32); |
| for (int j = 0; j < 1024; ++j) { |
| const int diff = dst[j] - src[j]; |
| const int error = diff * diff; |
| EXPECT_GE(1, error) |
| << "Error: 32x32 IDCT has error " << error |
| << " at index " << j; |
| } |
| } |
| } |
| |
| TEST(VP9Fdct32x32Test, AccuracyCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| unsigned int max_error = 0; |
| int64_t total_error = 0; |
| const int count_test_block = 1000; |
| for (int i = 0; i < count_test_block; ++i) { |
| int16_t test_input_block[1024]; |
| int16_t test_temp_block[1024]; |
| uint8_t dst[1024], src[1024]; |
| |
| for (int j = 0; j < 1024; ++j) { |
| src[j] = rnd.Rand8(); |
| dst[j] = rnd.Rand8(); |
| } |
| // Initialize a test block with input range [-255, 255]. |
| for (int j = 0; j < 1024; ++j) |
| test_input_block[j] = src[j] - dst[j]; |
| |
| const int pitch = 64; |
| vp9_short_fdct32x32_c(test_input_block, test_temp_block, pitch); |
| vp9_short_idct32x32_add_c(test_temp_block, dst, 32); |
| |
| for (int j = 0; j < 1024; ++j) { |
| const unsigned diff = dst[j] - src[j]; |
| const unsigned error = diff * diff; |
| if (max_error < error) |
| max_error = error; |
| total_error += error; |
| } |
| } |
| |
| EXPECT_GE(1u, max_error) |
| << "Error: 32x32 FDCT/IDCT has an individual roundtrip error > 1"; |
| |
| EXPECT_GE(count_test_block, total_error) |
| << "Error: 32x32 FDCT/IDCT has average roundtrip error > 1 per block"; |
| } |
| |
| TEST(VP9Fdct32x32Test, CoeffSizeCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| for (int i = 0; i < count_test_block; ++i) { |
| int16_t input_block[1024], input_extreme_block[1024]; |
| int16_t output_block[1024], output_extreme_block[1024]; |
| |
| // Initialize a test block with input range [-255, 255]. |
| for (int j = 0; j < 1024; ++j) { |
| input_block[j] = rnd.Rand8() - rnd.Rand8(); |
| input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; |
| } |
| if (i == 0) |
| for (int j = 0; j < 1024; ++j) |
| input_extreme_block[j] = 255; |
| |
| const int pitch = 64; |
| vp9_short_fdct32x32_c(input_block, output_block, pitch); |
| vp9_short_fdct32x32_c(input_extreme_block, output_extreme_block, pitch); |
| |
| // The minimum quant value is 4. |
| for (int j = 0; j < 1024; ++j) { |
| EXPECT_GE(4*DCT_MAX_VALUE, abs(output_block[j])) |
| << "Error: 32x32 FDCT has coefficient larger than 4*DCT_MAX_VALUE"; |
| EXPECT_GE(4*DCT_MAX_VALUE, abs(output_extreme_block[j])) |
| << "Error: 32x32 FDCT extreme has coefficient larger than " |
| "4*DCT_MAX_VALUE"; |
| } |
| } |
| } |
| } // namespace |