| |
| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <limits.h> |
| |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_treecoder.h" |
| |
| void vp9_set_pred_flag_seg_id(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, |
| unsigned char pred_flag) { |
| const int mis = xd->mode_info_stride; |
| const int bh = 1 << mi_height_log2(bsize); |
| const int bw = 1 << mi_width_log2(bsize); |
| #define sub(a, b) (b) < 0 ? (a) + (b) : (a) |
| const int x_mis = sub(bw, xd->mb_to_right_edge >> (3 + LOG2_MI_SIZE)); |
| const int y_mis = sub(bh, xd->mb_to_bottom_edge >> (3 + LOG2_MI_SIZE)); |
| #undef sub |
| int x, y; |
| |
| for (y = 0; y < y_mis; y++) |
| for (x = 0; x < x_mis; x++) |
| xd->mode_info_context[y * mis + x].mbmi.seg_id_predicted = pred_flag; |
| } |
| // Returns a context number for the given MB prediction signal |
| unsigned char vp9_get_pred_context_switchable_interp(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MODE_INFO * const mi = xd->mode_info_context; |
| const MODE_INFO * const above_mi = mi - cm->mode_info_stride; |
| const MODE_INFO * const left_mi = mi - 1; |
| const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image; |
| const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| // left |
| const int left_mv_pred = is_inter_mode(left_mi->mbmi.mode); |
| const int left_interp = |
| left_in_image && left_mv_pred ? |
| vp9_switchable_interp_map[left_mi->mbmi.interp_filter] : |
| VP9_SWITCHABLE_FILTERS; |
| |
| // above |
| const int above_mv_pred = is_inter_mode(above_mi->mbmi.mode); |
| const int above_interp = |
| above_in_image && above_mv_pred ? |
| vp9_switchable_interp_map[above_mi->mbmi.interp_filter] : |
| VP9_SWITCHABLE_FILTERS; |
| |
| assert(left_interp != -1); |
| assert(above_interp != -1); |
| |
| if (left_interp == above_interp) |
| pred_context = left_interp; |
| else if (left_interp == VP9_SWITCHABLE_FILTERS |
| && above_interp != VP9_SWITCHABLE_FILTERS) |
| pred_context = above_interp; |
| else if (left_interp != VP9_SWITCHABLE_FILTERS |
| && above_interp == VP9_SWITCHABLE_FILTERS) |
| pred_context = left_interp; |
| else |
| pred_context = VP9_SWITCHABLE_FILTERS; |
| |
| return pred_context; |
| } |
| // Returns a context number for the given MB prediction signal |
| unsigned char vp9_get_pred_context_intra_inter(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MODE_INFO *const mi = xd->mode_info_context; |
| const MODE_INFO *const above_mi = mi - cm->mode_info_stride; |
| const MODE_INFO *const left_mi = mi - 1; |
| const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image; |
| const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| if (above_in_image && left_in_image) { // both edges available |
| if (left_mi->mbmi.ref_frame[0] == INTRA_FRAME && |
| above_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/intra (3) |
| pred_context = 3; |
| } else { // intra/inter (1) or inter/inter (0) |
| pred_context = left_mi->mbmi.ref_frame[0] == INTRA_FRAME || |
| above_mi->mbmi.ref_frame[0] == INTRA_FRAME; |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MODE_INFO *edge = above_in_image ? above_mi : left_mi; |
| |
| // inter: 0, intra: 2 |
| pred_context = 2 * (edge->mbmi.ref_frame[0] == INTRA_FRAME); |
| } else { |
| pred_context = 0; |
| } |
| assert(pred_context >= 0 && pred_context < INTRA_INTER_CONTEXTS); |
| return pred_context; |
| } |
| // Returns a context number for the given MB prediction signal |
| unsigned char vp9_get_pred_context_comp_inter_inter(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MODE_INFO *const mi = xd->mode_info_context; |
| const MODE_INFO *const above_mi = mi - cm->mode_info_stride; |
| const MODE_INFO *const left_mi = mi - 1; |
| const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image; |
| const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| if (above_in_image && left_in_image) { // both edges available |
| if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME && |
| left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) { |
| // neither edge uses comp pred (0/1) |
| pred_context = ((above_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref) ^ |
| (left_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref)); |
| } else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME) { |
| // one of two edges uses comp pred (2/3) |
| pred_context = 2 + |
| (above_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref || |
| above_mi->mbmi.ref_frame[0] == INTRA_FRAME); |
| } else if (left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) { |
| // one of two edges uses comp pred (2/3) |
| pred_context = 2 + |
| (left_mi->mbmi.ref_frame[0] == cm->comp_fixed_ref || |
| left_mi->mbmi.ref_frame[0] == INTRA_FRAME); |
| } else { // both edges use comp pred (4) |
| pred_context = 4; |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MODE_INFO *edge = above_in_image ? above_mi : left_mi; |
| |
| if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { |
| // edge does not use comp pred (0/1) |
| pred_context = edge->mbmi.ref_frame[0] == cm->comp_fixed_ref; |
| } else { // edge uses comp pred (3) |
| pred_context = 3; |
| } |
| } else { // no edges available (1) |
| pred_context = 1; |
| } |
| assert(pred_context >= 0 && pred_context < COMP_INTER_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| unsigned char vp9_get_pred_context_comp_ref_p(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MODE_INFO *const mi = xd->mode_info_context; |
| const MODE_INFO *const above_mi = mi - cm->mode_info_stride; |
| const MODE_INFO *const left_mi = mi - 1; |
| const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image; |
| const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; |
| const int var_ref_idx = !fix_ref_idx; |
| |
| if (above_in_image && left_in_image) { // both edges available |
| if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME |
| && left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/intra (2) |
| pred_context = 2; |
| } else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME |
| || left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // intra/inter |
| const MODE_INFO *edge = |
| above_mi->mbmi.ref_frame[0] == INTRA_FRAME ? left_mi : above_mi; |
| |
| if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { // single pred (1/3) |
| pred_context = 1 + 2 * edge->mbmi.ref_frame[0] != cm->comp_var_ref[1]; |
| } else { // comp pred (1/3) |
| pred_context = 1 + 2 * edge->mbmi.ref_frame[var_ref_idx] |
| != cm->comp_var_ref[1]; |
| } |
| } else { // inter/inter |
| int l_sg = left_mi->mbmi.ref_frame[1] <= INTRA_FRAME; |
| int a_sg = above_mi->mbmi.ref_frame[1] <= INTRA_FRAME; |
| MV_REFERENCE_FRAME vrfa = |
| a_sg ? |
| above_mi->mbmi.ref_frame[0] : |
| above_mi->mbmi.ref_frame[var_ref_idx]; |
| MV_REFERENCE_FRAME vrfl = |
| l_sg ? |
| left_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[var_ref_idx]; |
| |
| if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) { |
| pred_context = 0; |
| } else if (l_sg && a_sg) { // single/single |
| if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) |
| || (vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) { |
| pred_context = 4; |
| } else if (vrfa == vrfl) { |
| pred_context = 3; |
| } else { |
| pred_context = 1; |
| } |
| } else if (l_sg || a_sg) { // single/comp |
| MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl; |
| MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl; |
| |
| if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) { |
| pred_context = 1; |
| } else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1]) { |
| pred_context = 2; |
| } else { |
| pred_context = 4; |
| } |
| } else if (vrfa == vrfl) { // comp/comp |
| pred_context = 4; |
| } else { |
| pred_context = 2; |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MODE_INFO *edge = above_in_image ? above_mi : left_mi; |
| |
| if (edge->mbmi.ref_frame[0] == INTRA_FRAME) { |
| pred_context = 2; |
| } else if (edge->mbmi.ref_frame[1] > INTRA_FRAME) { |
| pred_context = 4 * edge->mbmi.ref_frame[var_ref_idx] |
| != cm->comp_var_ref[1]; |
| } else { |
| pred_context = 3 * edge->mbmi.ref_frame[0] != cm->comp_var_ref[1]; |
| } |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| |
| return pred_context; |
| } |
| unsigned char vp9_get_pred_context_single_ref_p1(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MODE_INFO *const mi = xd->mode_info_context; |
| const MODE_INFO *const above_mi = mi - cm->mode_info_stride; |
| const MODE_INFO *const left_mi = mi - 1; |
| const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image; |
| const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| if (above_in_image && left_in_image) { // both edges available |
| if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME |
| && left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { |
| pred_context = 2; |
| } else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME |
| || left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { |
| const MODE_INFO *edge = |
| above_mi->mbmi.ref_frame[0] == INTRA_FRAME ? left_mi : above_mi; |
| |
| if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { |
| pred_context = 4 * (edge->mbmi.ref_frame[0] == LAST_FRAME); |
| } else { |
| pred_context = 1 |
| + (edge->mbmi.ref_frame[0] == LAST_FRAME |
| || edge->mbmi.ref_frame[1] == LAST_FRAME); |
| } |
| } else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME |
| && left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) { |
| pred_context = 2 * (above_mi->mbmi.ref_frame[0] == LAST_FRAME) |
| + 2 * (left_mi->mbmi.ref_frame[0] == LAST_FRAME); |
| } else if (above_mi->mbmi.ref_frame[1] > INTRA_FRAME |
| && left_mi->mbmi.ref_frame[1] > INTRA_FRAME) { |
| pred_context = 1 |
| + (above_mi->mbmi.ref_frame[0] == LAST_FRAME |
| || above_mi->mbmi.ref_frame[1] == LAST_FRAME |
| || left_mi->mbmi.ref_frame[0] == LAST_FRAME |
| || left_mi->mbmi.ref_frame[1] == LAST_FRAME); |
| } else { |
| MV_REFERENCE_FRAME rfs = |
| above_mi->mbmi.ref_frame[1] <= INTRA_FRAME ? |
| above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0]; |
| MV_REFERENCE_FRAME crf1 = |
| above_mi->mbmi.ref_frame[1] > INTRA_FRAME ? |
| above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0]; |
| MV_REFERENCE_FRAME crf2 = |
| above_mi->mbmi.ref_frame[1] > INTRA_FRAME ? |
| above_mi->mbmi.ref_frame[1] : left_mi->mbmi.ref_frame[1]; |
| |
| if (rfs == LAST_FRAME) { |
| pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); |
| } else { |
| pred_context = crf1 == LAST_FRAME || crf2 == LAST_FRAME; |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MODE_INFO *edge = above_in_image ? above_mi : left_mi; |
| |
| if (edge->mbmi.ref_frame[0] == INTRA_FRAME) { |
| pred_context = 2; |
| } else if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { |
| pred_context = 4 * (edge->mbmi.ref_frame[0] == LAST_FRAME); |
| } else { |
| pred_context = 1 |
| + (edge->mbmi.ref_frame[0] == LAST_FRAME |
| || edge->mbmi.ref_frame[1] == LAST_FRAME); |
| } |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| unsigned char vp9_get_pred_context_single_ref_p2(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MODE_INFO *const mi = xd->mode_info_context; |
| const MODE_INFO *const above_mi = mi - cm->mode_info_stride; |
| const MODE_INFO *const left_mi = mi - 1; |
| const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image; |
| const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| if (above_in_image && left_in_image) { // both edges available |
| if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME |
| && left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { |
| pred_context = 2; |
| } else if (above_mi->mbmi.ref_frame[0] == INTRA_FRAME |
| || left_mi->mbmi.ref_frame[0] == INTRA_FRAME) { |
| const MODE_INFO *edge = |
| above_mi->mbmi.ref_frame[0] == INTRA_FRAME ? left_mi : above_mi; |
| |
| if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { |
| if (edge->mbmi.ref_frame[0] == LAST_FRAME) { |
| pred_context = 3; |
| } else { |
| pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME); |
| } |
| } else { |
| pred_context = 1 |
| + 2 |
| * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME |
| || edge->mbmi.ref_frame[1] == GOLDEN_FRAME); |
| } |
| } else if (above_mi->mbmi.ref_frame[1] <= INTRA_FRAME |
| && left_mi->mbmi.ref_frame[1] <= INTRA_FRAME) { |
| if (above_mi->mbmi.ref_frame[0] == LAST_FRAME |
| && left_mi->mbmi.ref_frame[0] == LAST_FRAME) { |
| pred_context = 3; |
| } else if (above_mi->mbmi.ref_frame[0] == LAST_FRAME |
| || left_mi->mbmi.ref_frame[0] == LAST_FRAME) { |
| const MODE_INFO *edge = |
| above_mi->mbmi.ref_frame[0] == LAST_FRAME ? left_mi : above_mi; |
| |
| pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME); |
| } else { |
| pred_context = 2 * (above_mi->mbmi.ref_frame[0] == GOLDEN_FRAME) |
| + 2 * (left_mi->mbmi.ref_frame[0] == GOLDEN_FRAME); |
| } |
| } else if (above_mi->mbmi.ref_frame[1] > INTRA_FRAME |
| && left_mi->mbmi.ref_frame[1] > INTRA_FRAME) { |
| if (above_mi->mbmi.ref_frame[0] == left_mi->mbmi.ref_frame[0] |
| && above_mi->mbmi.ref_frame[1] == left_mi->mbmi.ref_frame[1]) { |
| pred_context = 3 |
| * (above_mi->mbmi.ref_frame[0] == GOLDEN_FRAME |
| || above_mi->mbmi.ref_frame[1] == GOLDEN_FRAME |
| || left_mi->mbmi.ref_frame[0] == GOLDEN_FRAME |
| || left_mi->mbmi.ref_frame[1] == GOLDEN_FRAME); |
| } else { |
| pred_context = 2; |
| } |
| } else { |
| MV_REFERENCE_FRAME rfs = |
| above_mi->mbmi.ref_frame[1] <= INTRA_FRAME ? |
| above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0]; |
| MV_REFERENCE_FRAME crf1 = |
| above_mi->mbmi.ref_frame[1] > INTRA_FRAME ? |
| above_mi->mbmi.ref_frame[0] : left_mi->mbmi.ref_frame[0]; |
| MV_REFERENCE_FRAME crf2 = |
| above_mi->mbmi.ref_frame[1] > INTRA_FRAME ? |
| above_mi->mbmi.ref_frame[1] : left_mi->mbmi.ref_frame[1]; |
| |
| if (rfs == GOLDEN_FRAME) { |
| pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); |
| } else if (rfs == ALTREF_FRAME) { |
| pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME; |
| } else { |
| pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MODE_INFO *edge = above_in_image ? above_mi : left_mi; |
| |
| if (edge->mbmi.ref_frame[0] == INTRA_FRAME |
| || (edge->mbmi.ref_frame[0] == LAST_FRAME |
| && edge->mbmi.ref_frame[1] <= INTRA_FRAME)) { |
| pred_context = 2; |
| } else if (edge->mbmi.ref_frame[1] <= INTRA_FRAME) { |
| pred_context = 4 * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME); |
| } else { |
| pred_context = 3 |
| * (edge->mbmi.ref_frame[0] == GOLDEN_FRAME |
| || edge->mbmi.ref_frame[1] == GOLDEN_FRAME); |
| } |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| // Returns a context number for the given MB prediction signal |
| unsigned char vp9_get_pred_context_tx_size(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MODE_INFO * const mi = xd->mode_info_context; |
| const MODE_INFO * const above_mi = mi - cm->mode_info_stride; |
| const MODE_INFO * const left_mi = mi - 1; |
| const int left_in_image = xd->left_available && left_mi->mbmi.mb_in_image; |
| const int above_in_image = xd->up_available && above_mi->mbmi.mb_in_image; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| int above_context, left_context; |
| int max_tx_size; |
| if (mi->mbmi.sb_type < BLOCK_SIZE_SB8X8) |
| max_tx_size = TX_4X4; |
| else if (mi->mbmi.sb_type < BLOCK_SIZE_MB16X16) |
| max_tx_size = TX_8X8; |
| else if (mi->mbmi.sb_type < BLOCK_SIZE_SB32X32) |
| max_tx_size = TX_16X16; |
| else |
| max_tx_size = TX_32X32; |
| above_context = left_context = max_tx_size; |
| if (above_in_image) { |
| above_context = ( |
| above_mi->mbmi.mb_skip_coeff ? max_tx_size : above_mi->mbmi.txfm_size); |
| } |
| if (left_in_image) { |
| left_context = ( |
| left_mi->mbmi.mb_skip_coeff ? max_tx_size : left_mi->mbmi.txfm_size); |
| } |
| if (!left_in_image) { |
| left_context = above_context; |
| } |
| if (!above_in_image) { |
| above_context = left_context; |
| } |
| pred_context = (above_context + left_context > max_tx_size); |
| |
| return pred_context; |
| } |
| |
| // This function sets the status of the given prediction signal. |
| // I.e. is the predicted value for the given signal correct. |
| void vp9_set_pred_flag_mbskip(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, |
| unsigned char pred_flag) { |
| const int mis = xd->mode_info_stride; |
| const int bh = 1 << mi_height_log2(bsize); |
| const int bw = 1 << mi_width_log2(bsize); |
| #define sub(a, b) (b) < 0 ? (a) + (b) : (a) |
| const int x_mis = sub(bw, xd->mb_to_right_edge >> (3 + LOG2_MI_SIZE)); |
| const int y_mis = sub(bh, xd->mb_to_bottom_edge >> (3 + LOG2_MI_SIZE)); |
| #undef sub |
| int x, y; |
| |
| for (y = 0; y < y_mis; y++) |
| for (x = 0; x < x_mis; x++) |
| xd->mode_info_context[y * mis + x].mbmi.mb_skip_coeff = pred_flag; |
| } |
| |
| int vp9_get_segment_id(VP9_COMMON *cm, const uint8_t *segment_ids, |
| BLOCK_SIZE_TYPE bsize, int mi_row, int mi_col) { |
| const int mi_offset = mi_row * cm->mi_cols + mi_col; |
| const int bw = 1 << mi_width_log2(bsize); |
| const int bh = 1 << mi_height_log2(bsize); |
| const int xmis = MIN(cm->mi_cols - mi_col, bw); |
| const int ymis = MIN(cm->mi_rows - mi_row, bh); |
| int x, y, segment_id = INT_MAX; |
| |
| for (y = 0; y < ymis; y++) |
| for (x = 0; x < xmis; x++) |
| segment_id = MIN(segment_id, |
| segment_ids[mi_offset + y * cm->mi_cols + x]); |
| |
| assert(segment_id >= 0 && segment_id < MAX_MB_SEGMENTS); |
| return segment_id; |
| } |