| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| |
| #include "./vpx_config.h" |
| #include "vpx/vpx_integer.h" |
| #include "vp9/common/vp9_blockd.h" |
| #include "vp9/common/vp9_filter.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_reconintra.h" |
| |
| static int scale_value_x_with_scaling(int val, |
| const struct scale_factors *scale) { |
| return (val * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT); |
| } |
| |
| static int scale_value_y_with_scaling(int val, |
| const struct scale_factors *scale) { |
| return (val * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT); |
| } |
| |
| static int unscaled_value(int val, const struct scale_factors *scale) { |
| (void) scale; |
| return val; |
| } |
| |
| static MV32 mv_q3_to_q4_with_scaling(const MV *mv, |
| const struct scale_factors *scale) { |
| const MV32 res = { |
| ((mv->row << 1) * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) |
| + scale->y_offset_q4, |
| ((mv->col << 1) * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) |
| + scale->x_offset_q4 |
| }; |
| return res; |
| } |
| |
| static MV32 mv_q3_to_q4_without_scaling(const MV *mv, |
| const struct scale_factors *scale) { |
| const MV32 res = { |
| mv->row << 1, |
| mv->col << 1 |
| }; |
| return res; |
| } |
| |
| static MV32 mv_q4_with_scaling(const MV *mv, |
| const struct scale_factors *scale) { |
| const MV32 res = { |
| (mv->row * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) + scale->y_offset_q4, |
| (mv->col * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) + scale->x_offset_q4 |
| }; |
| return res; |
| } |
| |
| static MV32 mv_q4_without_scaling(const MV *mv, |
| const struct scale_factors *scale) { |
| const MV32 res = { |
| mv->row, |
| mv->col |
| }; |
| return res; |
| } |
| |
| static void set_offsets_with_scaling(struct scale_factors *scale, |
| int row, int col) { |
| const int x_q4 = 16 * col; |
| const int y_q4 = 16 * row; |
| |
| scale->x_offset_q4 = (x_q4 * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT) & 0xf; |
| scale->y_offset_q4 = (y_q4 * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT) & 0xf; |
| } |
| |
| static void set_offsets_without_scaling(struct scale_factors *scale, |
| int row, int col) { |
| scale->x_offset_q4 = 0; |
| scale->y_offset_q4 = 0; |
| } |
| |
| static int get_fixed_point_scale_factor(int other_size, int this_size) { |
| // Calculate scaling factor once for each reference frame |
| // and use fixed point scaling factors in decoding and encoding routines. |
| // Hardware implementations can calculate scale factor in device driver |
| // and use multiplication and shifting on hardware instead of division. |
| return (other_size << VP9_REF_SCALE_SHIFT) / this_size; |
| } |
| |
| void vp9_setup_scale_factors_for_frame(struct scale_factors *scale, |
| int other_w, int other_h, |
| int this_w, int this_h) { |
| scale->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); |
| scale->x_offset_q4 = 0; // calculated per-mb |
| scale->x_step_q4 = (16 * scale->x_scale_fp >> VP9_REF_SCALE_SHIFT); |
| |
| scale->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); |
| scale->y_offset_q4 = 0; // calculated per-mb |
| scale->y_step_q4 = (16 * scale->y_scale_fp >> VP9_REF_SCALE_SHIFT); |
| |
| if ((other_w == this_w) && (other_h == this_h)) { |
| scale->scale_value_x = unscaled_value; |
| scale->scale_value_y = unscaled_value; |
| scale->set_scaled_offsets = set_offsets_without_scaling; |
| scale->scale_mv_q3_to_q4 = mv_q3_to_q4_without_scaling; |
| scale->scale_mv_q4 = mv_q4_without_scaling; |
| } else { |
| scale->scale_value_x = scale_value_x_with_scaling; |
| scale->scale_value_y = scale_value_y_with_scaling; |
| scale->set_scaled_offsets = set_offsets_with_scaling; |
| scale->scale_mv_q3_to_q4 = mv_q3_to_q4_with_scaling; |
| scale->scale_mv_q4 = mv_q4_with_scaling; |
| } |
| |
| // TODO(agrange): Investigate the best choice of functions to use here |
| // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what |
| // to do at full-pel offsets. The current selection, where the filter is |
| // applied in one direction only, and not at all for 0,0, seems to give the |
| // best quality, but it may be worth trying an additional mode that does |
| // do the filtering on full-pel. |
| if (scale->x_step_q4 == 16) { |
| if (scale->y_step_q4 == 16) { |
| // No scaling in either direction. |
| scale->predict[0][0][0] = vp9_convolve_copy; |
| scale->predict[0][0][1] = vp9_convolve_avg; |
| scale->predict[0][1][0] = vp9_convolve8_vert; |
| scale->predict[0][1][1] = vp9_convolve8_avg_vert; |
| scale->predict[1][0][0] = vp9_convolve8_horiz; |
| scale->predict[1][0][1] = vp9_convolve8_avg_horiz; |
| } else { |
| // No scaling in x direction. Must always scale in the y direction. |
| scale->predict[0][0][0] = vp9_convolve8_vert; |
| scale->predict[0][0][1] = vp9_convolve8_avg_vert; |
| scale->predict[0][1][0] = vp9_convolve8_vert; |
| scale->predict[0][1][1] = vp9_convolve8_avg_vert; |
| scale->predict[1][0][0] = vp9_convolve8; |
| scale->predict[1][0][1] = vp9_convolve8_avg; |
| } |
| } else { |
| if (scale->y_step_q4 == 16) { |
| // No scaling in the y direction. Must always scale in the x direction. |
| scale->predict[0][0][0] = vp9_convolve8_horiz; |
| scale->predict[0][0][1] = vp9_convolve8_avg_horiz; |
| scale->predict[0][1][0] = vp9_convolve8; |
| scale->predict[0][1][1] = vp9_convolve8_avg; |
| scale->predict[1][0][0] = vp9_convolve8_horiz; |
| scale->predict[1][0][1] = vp9_convolve8_avg_horiz; |
| } else { |
| // Must always scale in both directions. |
| scale->predict[0][0][0] = vp9_convolve8; |
| scale->predict[0][0][1] = vp9_convolve8_avg; |
| scale->predict[0][1][0] = vp9_convolve8; |
| scale->predict[0][1][1] = vp9_convolve8_avg; |
| scale->predict[1][0][0] = vp9_convolve8; |
| scale->predict[1][0][1] = vp9_convolve8_avg; |
| } |
| } |
| // 2D subpel motion always gets filtered in both directions |
| scale->predict[1][1][0] = vp9_convolve8; |
| scale->predict[1][1][1] = vp9_convolve8_avg; |
| } |
| |
| void vp9_setup_interp_filters(MACROBLOCKD *xd, |
| INTERPOLATIONFILTERTYPE mcomp_filter_type, |
| VP9_COMMON *cm) { |
| if (xd->mode_info_context) { |
| MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; |
| |
| set_scale_factors(xd, mbmi->ref_frame[0] - 1, mbmi->ref_frame[1] - 1, |
| cm->active_ref_scale); |
| } |
| |
| switch (mcomp_filter_type) { |
| case EIGHTTAP: |
| case SWITCHABLE: |
| xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8; |
| break; |
| case EIGHTTAP_SMOOTH: |
| xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp; |
| break; |
| case EIGHTTAP_SHARP: |
| xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s; |
| break; |
| case BILINEAR: |
| xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters; |
| break; |
| } |
| assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0); |
| } |
| |
| void vp9_build_inter_predictor(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, |
| const int_mv *src_mv, |
| const struct scale_factors *scale, |
| int w, int h, int weight, |
| const struct subpix_fn_table *subpix, |
| enum mv_precision precision) { |
| const MV32 mv = precision == MV_PRECISION_Q4 |
| ? scale->scale_mv_q4(&src_mv->as_mv, scale) |
| : scale->scale_mv_q3_to_q4(&src_mv->as_mv, scale); |
| const int subpel_x = mv.col & 15; |
| const int subpel_y = mv.row & 15; |
| |
| src += (mv.row >> 4) * src_stride + (mv.col >> 4); |
| scale->predict[!!subpel_x][!!subpel_y][weight]( |
| src, src_stride, dst, dst_stride, |
| subpix->filter_x[subpel_x], scale->x_step_q4, |
| subpix->filter_y[subpel_y], scale->y_step_q4, |
| w, h); |
| } |
| |
| static INLINE int round_mv_comp_q4(int value) { |
| return (value < 0 ? value - 2 : value + 2) / 4; |
| } |
| |
| static int mi_mv_pred_row_q4(MACROBLOCKD *mb, int idx) { |
| const int temp = mb->mode_info_context->bmi[0].as_mv[idx].as_mv.row + |
| mb->mode_info_context->bmi[1].as_mv[idx].as_mv.row + |
| mb->mode_info_context->bmi[2].as_mv[idx].as_mv.row + |
| mb->mode_info_context->bmi[3].as_mv[idx].as_mv.row; |
| return round_mv_comp_q4(temp); |
| } |
| |
| static int mi_mv_pred_col_q4(MACROBLOCKD *mb, int idx) { |
| const int temp = mb->mode_info_context->bmi[0].as_mv[idx].as_mv.col + |
| mb->mode_info_context->bmi[1].as_mv[idx].as_mv.col + |
| mb->mode_info_context->bmi[2].as_mv[idx].as_mv.col + |
| mb->mode_info_context->bmi[3].as_mv[idx].as_mv.col; |
| return round_mv_comp_q4(temp); |
| } |
| |
| // TODO(jkoleszar): yet another mv clamping function :-( |
| MV clamp_mv_to_umv_border_sb(const MV *src_mv, |
| int bwl, int bhl, int ss_x, int ss_y, |
| int mb_to_left_edge, int mb_to_top_edge, |
| int mb_to_right_edge, int mb_to_bottom_edge) { |
| /* If the MV points so far into the UMV border that no visible pixels |
| * are used for reconstruction, the subpel part of the MV can be |
| * discarded and the MV limited to 16 pixels with equivalent results. |
| */ |
| const int spel_left = (VP9_INTERP_EXTEND + (4 << bwl)) << 4; |
| const int spel_right = spel_left - (1 << 4); |
| const int spel_top = (VP9_INTERP_EXTEND + (4 << bhl)) << 4; |
| const int spel_bottom = spel_top - (1 << 4); |
| MV clamped_mv; |
| |
| assert(ss_x <= 1); |
| assert(ss_y <= 1); |
| clamped_mv.col = clamp(src_mv->col << (1 - ss_x), |
| (mb_to_left_edge << (1 - ss_x)) - spel_left, |
| (mb_to_right_edge << (1 - ss_x)) + spel_right); |
| clamped_mv.row = clamp(src_mv->row << (1 - ss_y), |
| (mb_to_top_edge << (1 - ss_y)) - spel_top, |
| (mb_to_bottom_edge << (1 - ss_y)) + spel_bottom); |
| return clamped_mv; |
| } |
| |
| struct build_inter_predictors_args { |
| MACROBLOCKD *xd; |
| int x; |
| int y; |
| uint8_t* dst[MAX_MB_PLANE]; |
| int dst_stride[MAX_MB_PLANE]; |
| uint8_t* pre[2][MAX_MB_PLANE]; |
| int pre_stride[2][MAX_MB_PLANE]; |
| }; |
| static void build_inter_predictors(int plane, int block, |
| BLOCK_SIZE_TYPE bsize, |
| int pred_w, int pred_h, |
| void *argv) { |
| const struct build_inter_predictors_args* const arg = argv; |
| MACROBLOCKD * const xd = arg->xd; |
| const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; |
| const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; |
| const int x = 4 * (block & ((1 << bwl) - 1)), y = 4 * (block >> bwl); |
| const int use_second_ref = xd->mode_info_context->mbmi.ref_frame[1] > 0; |
| int which_mv; |
| |
| assert(x < (4 << bwl)); |
| assert(y < (4 << bhl)); |
| assert(xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8 || |
| 4 << pred_w == (4 << bwl)); |
| assert(xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8 || |
| 4 << pred_h == (4 << bhl)); |
| |
| for (which_mv = 0; which_mv < 1 + use_second_ref; ++which_mv) { |
| // source |
| const uint8_t * const base_pre = arg->pre[which_mv][plane]; |
| const int pre_stride = arg->pre_stride[which_mv][plane]; |
| const uint8_t *const pre = base_pre + |
| scaled_buffer_offset(x, y, pre_stride, &xd->scale_factor[which_mv]); |
| struct scale_factors * const scale = |
| plane == 0 ? &xd->scale_factor[which_mv] : &xd->scale_factor_uv[which_mv]; |
| |
| // dest |
| uint8_t *const dst = arg->dst[plane] + arg->dst_stride[plane] * y + x; |
| |
| // motion vector |
| const MV *mv; |
| MV split_chroma_mv; |
| int_mv clamped_mv; |
| |
| if (xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8) { |
| if (plane == 0) { |
| mv = &xd->mode_info_context->bmi[block].as_mv[which_mv].as_mv; |
| } else { |
| // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the |
| // same MV (the average of the 4 luma MVs) but we could do something |
| // smarter for non-4:2:0. Just punt for now, pending the changes to get |
| // rid of SPLITMV mode entirely. |
| split_chroma_mv.row = mi_mv_pred_row_q4(xd, which_mv); |
| split_chroma_mv.col = mi_mv_pred_col_q4(xd, which_mv); |
| mv = &split_chroma_mv; |
| } |
| } else { |
| mv = &xd->mode_info_context->mbmi.mv[which_mv].as_mv; |
| } |
| |
| /* TODO(jkoleszar): This clamping is done in the incorrect place for the |
| * scaling case. It needs to be done on the scaled MV, not the pre-scaling |
| * MV. Note however that it performs the subsampling aware scaling so |
| * that the result is always q4. |
| */ |
| clamped_mv.as_mv = clamp_mv_to_umv_border_sb(mv, bwl, bhl, |
| xd->plane[plane].subsampling_x, |
| xd->plane[plane].subsampling_y, |
| xd->mb_to_left_edge, |
| xd->mb_to_top_edge, |
| xd->mb_to_right_edge, |
| xd->mb_to_bottom_edge); |
| scale->set_scaled_offsets(scale, arg->y + y, arg->x + x); |
| |
| vp9_build_inter_predictor(pre, pre_stride, |
| dst, arg->dst_stride[plane], |
| &clamped_mv, &xd->scale_factor[which_mv], |
| 4 << pred_w, 4 << pred_h, which_mv, |
| &xd->subpix, MV_PRECISION_Q4); |
| } |
| } |
| void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, |
| int mi_row, |
| int mi_col, |
| BLOCK_SIZE_TYPE bsize) { |
| struct build_inter_predictors_args args = { |
| xd, mi_col * MI_SIZE, mi_row * MI_SIZE, |
| {xd->plane[0].dst.buf, NULL, NULL}, {xd->plane[0].dst.stride, 0, 0}, |
| {{xd->plane[0].pre[0].buf, NULL, NULL}, |
| {xd->plane[0].pre[1].buf, NULL, NULL}}, |
| {{xd->plane[0].pre[0].stride, 0, 0}, {xd->plane[0].pre[1].stride, 0, 0}}, |
| }; |
| |
| foreach_predicted_block_in_plane(xd, bsize, 0, build_inter_predictors, &args); |
| } |
| void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, |
| int mi_row, |
| int mi_col, |
| BLOCK_SIZE_TYPE bsize) { |
| struct build_inter_predictors_args args = { |
| xd, mi_col * MI_SIZE, mi_row * MI_SIZE, |
| #if CONFIG_ALPHA |
| {NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf, |
| xd->plane[3].dst.buf}, |
| {0, xd->plane[1].dst.stride, xd->plane[1].dst.stride, |
| xd->plane[3].dst.stride}, |
| {{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf, |
| xd->plane[3].pre[0].buf}, |
| {NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf, |
| xd->plane[3].pre[1].buf}}, |
| {{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride, |
| xd->plane[3].pre[0].stride}, |
| {0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride, |
| xd->plane[3].pre[1].stride}}, |
| #else |
| {NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf}, |
| {0, xd->plane[1].dst.stride, xd->plane[1].dst.stride}, |
| {{NULL, xd->plane[1].pre[0].buf, xd->plane[2].pre[0].buf}, |
| {NULL, xd->plane[1].pre[1].buf, xd->plane[2].pre[1].buf}}, |
| {{0, xd->plane[1].pre[0].stride, xd->plane[1].pre[0].stride}, |
| {0, xd->plane[1].pre[1].stride, xd->plane[1].pre[1].stride}}, |
| #endif |
| }; |
| foreach_predicted_block_uv(xd, bsize, build_inter_predictors, &args); |
| } |
| void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| BLOCK_SIZE_TYPE bsize) { |
| |
| vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize); |
| vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, bsize); |
| } |
| |
| // TODO(dkovalev: find better place for this function) |
| void vp9_setup_scale_factors(VP9_COMMON *cm, int i) { |
| const int ref = cm->active_ref_idx[i]; |
| struct scale_factors *const sf = &cm->active_ref_scale[i]; |
| if (ref >= NUM_YV12_BUFFERS) { |
| memset(sf, 0, sizeof(*sf)); |
| } else { |
| YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref]; |
| vp9_setup_scale_factors_for_frame(sf, |
| fb->y_crop_width, fb->y_crop_height, |
| cm->width, cm->height); |
| } |
| } |
| |