|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "av1/common/common.h" | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/common/seg_common.h" | 
|  |  | 
|  | // Returns a context number for the given MB prediction signal | 
|  | static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi, | 
|  | const MACROBLOCKD *xd, int dir, | 
|  | MV_REFERENCE_FRAME ref_frame) { | 
|  | (void)xd; | 
|  |  | 
|  | if (ref_mbmi->ref_frame[0] != ref_frame && | 
|  | ref_mbmi->ref_frame[1] != ref_frame) { | 
|  | return SWITCHABLE_FILTERS; | 
|  | } | 
|  | #if CONFIG_REMOVE_DUAL_FILTER | 
|  | (void)dir; | 
|  | return ref_mbmi->interp_fltr; | 
|  | #else | 
|  | return av1_extract_interp_filter(ref_mbmi->interp_filters, dir & 0x01); | 
|  | #endif  // CONFIG_REMOVE_DUAL_FILTER | 
|  | } | 
|  |  | 
|  | int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | const int ctx_offset = | 
|  | (mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET; | 
|  | assert(dir == 0 || dir == 1); | 
|  | const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0]; | 
|  | // Note: | 
|  | // The mode info data structure has a one element border above and to the | 
|  | // left of the entries corresponding to real macroblocks. | 
|  | // The prediction flags in these dummy entries are initialized to 0. | 
|  | int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET; | 
|  | int left_type = SWITCHABLE_FILTERS; | 
|  | int above_type = SWITCHABLE_FILTERS; | 
|  |  | 
|  | if (xd->left_available) | 
|  | left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame); | 
|  |  | 
|  | if (xd->up_available) | 
|  | above_type = | 
|  | get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame); | 
|  |  | 
|  | if (left_type == above_type) { | 
|  | filter_type_ctx += left_type; | 
|  | } else if (left_type == SWITCHABLE_FILTERS) { | 
|  | assert(above_type != SWITCHABLE_FILTERS); | 
|  | filter_type_ctx += above_type; | 
|  | } else if (above_type == SWITCHABLE_FILTERS) { | 
|  | assert(left_type != SWITCHABLE_FILTERS); | 
|  | filter_type_ctx += left_type; | 
|  | } else { | 
|  | filter_type_ctx += SWITCHABLE_FILTERS; | 
|  | } | 
|  |  | 
|  | return filter_type_ctx; | 
|  | } | 
|  |  | 
|  | static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) { | 
|  | // Do not add an already existing value | 
|  | if (*n > 0 && val == cache[*n - 1]) return; | 
|  |  | 
|  | cache[(*n)++] = val; | 
|  | } | 
|  |  | 
|  | int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane, | 
|  | uint16_t *cache) { | 
|  | const int row = -xd->mb_to_top_edge >> 3; | 
|  | // Do not refer to above SB row when on SB boundary. | 
|  | const MB_MODE_INFO *const above_mi = | 
|  | (row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL; | 
|  | const MB_MODE_INFO *const left_mi = xd->left_mbmi; | 
|  | int above_n = 0, left_n = 0; | 
|  | if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0]; | 
|  | if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0]; | 
|  | if (above_n == 0 && left_n == 0) return 0; | 
|  | int above_idx = plane * PALETTE_MAX_SIZE; | 
|  | int left_idx = plane * PALETTE_MAX_SIZE; | 
|  | int n = 0; | 
|  | const uint16_t *above_colors = | 
|  | above_mi ? above_mi->palette_mode_info.palette_colors : NULL; | 
|  | const uint16_t *left_colors = | 
|  | left_mi ? left_mi->palette_mode_info.palette_colors : NULL; | 
|  | // Merge the sorted lists of base colors from above and left to get | 
|  | // combined sorted color cache. | 
|  | while (above_n > 0 && left_n > 0) { | 
|  | uint16_t v_above = above_colors[above_idx]; | 
|  | uint16_t v_left = left_colors[left_idx]; | 
|  | if (v_left < v_above) { | 
|  | palette_add_to_cache(cache, &n, v_left); | 
|  | ++left_idx, --left_n; | 
|  | } else { | 
|  | palette_add_to_cache(cache, &n, v_above); | 
|  | ++above_idx, --above_n; | 
|  | if (v_left == v_above) ++left_idx, --left_n; | 
|  | } | 
|  | } | 
|  | while (above_n-- > 0) { | 
|  | uint16_t val = above_colors[above_idx++]; | 
|  | palette_add_to_cache(cache, &n, val); | 
|  | } | 
|  | while (left_n-- > 0) { | 
|  | uint16_t val = left_colors[left_idx++]; | 
|  | palette_add_to_cache(cache, &n, val); | 
|  | } | 
|  | assert(n <= 2 * PALETTE_MAX_SIZE); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | // The mode info data structure has a one element border above and to the | 
|  | // left of the entries corresponding to real macroblocks. | 
|  | // The prediction flags in these dummy entries are initialized to 0. | 
|  | // 0 - inter/inter, inter/--, --/inter, --/-- | 
|  | // 1 - intra/inter, inter/intra | 
|  | // 2 - intra/--, --/intra | 
|  | // 3 - intra/intra | 
|  | int av1_get_intra_inter_context(const MACROBLOCKD *xd) { | 
|  | const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; | 
|  | const int has_above = xd->up_available; | 
|  | const int has_left = xd->left_available; | 
|  |  | 
|  | if (has_above && has_left) {  // both edges available | 
|  | const int above_intra = !is_inter_block(above_mbmi); | 
|  | const int left_intra = !is_inter_block(left_mbmi); | 
|  | return left_intra && above_intra ? 3 : left_intra || above_intra; | 
|  | } else if (has_above || has_left) {  // one edge available | 
|  | return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi); | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define CHECK_BACKWARD_REFS(ref_frame) \ | 
|  | (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME)) | 
|  | #define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame) | 
|  |  | 
|  | int av1_get_reference_mode_context(const MACROBLOCKD *xd) { | 
|  | int ctx; | 
|  | const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; | 
|  | const int has_above = xd->up_available; | 
|  | const int has_left = xd->left_available; | 
|  |  | 
|  | // Note: | 
|  | // The mode info data structure has a one element border above and to the | 
|  | // left of the entries corresponding to real macroblocks. | 
|  | // The prediction flags in these dummy entries are initialized to 0. | 
|  | if (has_above && has_left) {  // both edges available | 
|  | if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) | 
|  | // neither edge uses comp pred (0/1) | 
|  | ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^ | 
|  | IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]); | 
|  | else if (!has_second_ref(above_mbmi)) | 
|  | // one of two edges uses comp pred (2/3) | 
|  | ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) || | 
|  | !is_inter_block(above_mbmi)); | 
|  | else if (!has_second_ref(left_mbmi)) | 
|  | // one of two edges uses comp pred (2/3) | 
|  | ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) || | 
|  | !is_inter_block(left_mbmi)); | 
|  | else  // both edges use comp pred (4) | 
|  | ctx = 4; | 
|  | } else if (has_above || has_left) {  // one edge available | 
|  | const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; | 
|  |  | 
|  | if (!has_second_ref(edge_mbmi)) | 
|  | // edge does not use comp pred (0/1) | 
|  | ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]); | 
|  | else | 
|  | // edge uses comp pred (3) | 
|  | ctx = 3; | 
|  | } else {  // no edges available (1) | 
|  | ctx = 1; | 
|  | } | 
|  | assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) { | 
|  | int pred_context; | 
|  | const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; | 
|  | const int above_in_image = xd->up_available; | 
|  | const int left_in_image = xd->left_available; | 
|  |  | 
|  | if (above_in_image && left_in_image) {  // both edges available | 
|  | const int above_intra = !is_inter_block(above_mbmi); | 
|  | const int left_intra = !is_inter_block(left_mbmi); | 
|  |  | 
|  | if (above_intra && left_intra) {  // intra/intra | 
|  | pred_context = 2; | 
|  | } else if (above_intra || left_intra) {  // intra/inter | 
|  | const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi; | 
|  |  | 
|  | if (!has_second_ref(inter_mbmi))  // single pred | 
|  | pred_context = 2; | 
|  | else  // comp pred | 
|  | pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi); | 
|  | } else {  // inter/inter | 
|  | const int a_sg = !has_second_ref(above_mbmi); | 
|  | const int l_sg = !has_second_ref(left_mbmi); | 
|  | const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0]; | 
|  | const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0]; | 
|  |  | 
|  | if (a_sg && l_sg) {  // single/single | 
|  | pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^ | 
|  | IS_BACKWARD_REF_FRAME(frfl))); | 
|  | } else if (l_sg || a_sg) {  // single/comp | 
|  | const int uni_rfc = | 
|  | a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi); | 
|  |  | 
|  | if (!uni_rfc)  // comp bidir | 
|  | pred_context = 1; | 
|  | else  // comp unidir | 
|  | pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^ | 
|  | IS_BACKWARD_REF_FRAME(frfl))); | 
|  | } else {  // comp/comp | 
|  | const int a_uni_rfc = has_uni_comp_refs(above_mbmi); | 
|  | const int l_uni_rfc = has_uni_comp_refs(left_mbmi); | 
|  |  | 
|  | if (!a_uni_rfc && !l_uni_rfc)  // bidir/bidir | 
|  | pred_context = 0; | 
|  | else if (!a_uni_rfc || !l_uni_rfc)  // unidir/bidir | 
|  | pred_context = 2; | 
|  | else  // unidir/unidir | 
|  | pred_context = | 
|  | 3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME))); | 
|  | } | 
|  | } | 
|  | } else if (above_in_image || left_in_image) {  // one edge available | 
|  | const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; | 
|  |  | 
|  | if (!is_inter_block(edge_mbmi)) {  // intra | 
|  | pred_context = 2; | 
|  | } else {                           // inter | 
|  | if (!has_second_ref(edge_mbmi))  // single pred | 
|  | pred_context = 2; | 
|  | else  // comp pred | 
|  | pred_context = 4 * has_uni_comp_refs(edge_mbmi); | 
|  | } | 
|  | } else {  // no edges available | 
|  | pred_context = 2; | 
|  | } | 
|  |  | 
|  | assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS); | 
|  | return pred_context; | 
|  | } | 
|  |  | 
|  | // Returns a context number for the given MB prediction signal | 
|  | // | 
|  | // Signal the uni-directional compound reference frame pair as either | 
|  | // (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN), | 
|  | // conditioning on the pair is known as uni-directional. | 
|  | // | 
|  | // 3 contexts: Voting is used to compare the count of forward references with | 
|  | //             that of backward references from the spatial neighbors. | 
|  | int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) { | 
|  | const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
|  |  | 
|  | // Count of forward references (L, L2, L3, or G) | 
|  | const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] + | 
|  | ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; | 
|  | // Count of backward references (B or A) | 
|  | const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] + | 
|  | ref_counts[ALTREF_FRAME]; | 
|  |  | 
|  | const int pred_context = | 
|  | (frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2); | 
|  |  | 
|  | assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); | 
|  | return pred_context; | 
|  | } | 
|  |  | 
|  | // Returns a context number for the given MB prediction signal | 
|  | // | 
|  | // Signal the uni-directional compound reference frame pair as | 
|  | // either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN), | 
|  | // conditioning on the pair is known as one of the above three. | 
|  | // | 
|  | // 3 contexts: Voting is used to compare the count of LAST2_FRAME with the | 
|  | //             total count of LAST3/GOLDEN from the spatial neighbors. | 
|  | int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) { | 
|  | const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
|  |  | 
|  | // Count of LAST2 | 
|  | const int last2_count = ref_counts[LAST2_FRAME]; | 
|  | // Count of LAST3 or GOLDEN | 
|  | const int last3_or_gld_count = | 
|  | ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; | 
|  |  | 
|  | const int pred_context = (last2_count == last3_or_gld_count) | 
|  | ? 1 | 
|  | : ((last2_count < last3_or_gld_count) ? 0 : 2); | 
|  |  | 
|  | assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); | 
|  | return pred_context; | 
|  | } | 
|  |  | 
|  | // Returns a context number for the given MB prediction signal | 
|  | // | 
|  | // Signal the uni-directional compound reference frame pair as | 
|  | // either (LAST, LAST3) or (LAST, GOLDEN), | 
|  | // conditioning on the pair is known as one of the above two. | 
|  | // | 
|  | // 3 contexts: Voting is used to compare the count of LAST3_FRAME with the | 
|  | //             total count of GOLDEN_FRAME from the spatial neighbors. | 
|  | int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) { | 
|  | const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
|  |  | 
|  | // Count of LAST3 | 
|  | const int last3_count = ref_counts[LAST3_FRAME]; | 
|  | // Count of GOLDEN | 
|  | const int gld_count = ref_counts[GOLDEN_FRAME]; | 
|  |  | 
|  | const int pred_context = | 
|  | (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); | 
|  |  | 
|  | assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); | 
|  | return pred_context; | 
|  | } | 
|  |  | 
|  | // == Common context functions for both comp and single ref == | 
|  | // | 
|  | // Obtain contexts to signal a reference frame to be either LAST/LAST2 or | 
|  | // LAST3/GOLDEN. | 
|  | static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) { | 
|  | const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
|  |  | 
|  | // Count of LAST + LAST2 | 
|  | const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME]; | 
|  | // Count of LAST3 + GOLDEN | 
|  | const int last3_gld_count = | 
|  | ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; | 
|  |  | 
|  | const int pred_context = (last_last2_count == last3_gld_count) | 
|  | ? 1 | 
|  | : ((last_last2_count < last3_gld_count) ? 0 : 2); | 
|  |  | 
|  | assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
|  | return pred_context; | 
|  | } | 
|  |  | 
|  | // Obtain contexts to signal a reference frame to be either LAST or LAST2. | 
|  | static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) { | 
|  | const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
|  |  | 
|  | // Count of LAST | 
|  | const int last_count = ref_counts[LAST_FRAME]; | 
|  | // Count of LAST2 | 
|  | const int last2_count = ref_counts[LAST2_FRAME]; | 
|  |  | 
|  | const int pred_context = | 
|  | (last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2); | 
|  |  | 
|  | assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
|  | return pred_context; | 
|  | } | 
|  |  | 
|  | // Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN. | 
|  | static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) { | 
|  | const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
|  |  | 
|  | // Count of LAST3 | 
|  | const int last3_count = ref_counts[LAST3_FRAME]; | 
|  | // Count of GOLDEN | 
|  | const int gld_count = ref_counts[GOLDEN_FRAME]; | 
|  |  | 
|  | const int pred_context = | 
|  | (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); | 
|  |  | 
|  | assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
|  | return pred_context; | 
|  | } | 
|  |  | 
|  | // Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or | 
|  | // ALTREF. | 
|  | static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) { | 
|  | const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
|  |  | 
|  | // Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A) | 
|  | const int brfarf2_count = | 
|  | ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME]; | 
|  | const int arf_count = ref_counts[ALTREF_FRAME]; | 
|  |  | 
|  | const int pred_context = | 
|  | (brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2); | 
|  |  | 
|  | assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
|  | return pred_context; | 
|  | } | 
|  |  | 
|  | // Obtain contexts to signal a reference frame be either BWDREF or ALTREF2. | 
|  | static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) { | 
|  | const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
|  |  | 
|  | // Count of BWDREF frames (B) | 
|  | const int brf_count = ref_counts[BWDREF_FRAME]; | 
|  | // Count of ALTREF2 frames (A2) | 
|  | const int arf2_count = ref_counts[ALTREF2_FRAME]; | 
|  |  | 
|  | const int pred_context = | 
|  | (brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2); | 
|  |  | 
|  | assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
|  | return pred_context; | 
|  | } | 
|  |  | 
|  | // == Context functions for comp ref == | 
|  | // | 
|  | // Returns a context number for the given MB prediction signal | 
|  | // Signal the first reference frame for a compound mode be either | 
|  | // GOLDEN/LAST3, or LAST/LAST2. | 
|  | int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) { | 
|  | return get_pred_context_ll2_or_l3gld(xd); | 
|  | } | 
|  |  | 
|  | // Returns a context number for the given MB prediction signal | 
|  | // Signal the first reference frame for a compound mode be LAST, | 
|  | // conditioning on that it is known either LAST/LAST2. | 
|  | int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) { | 
|  | return get_pred_context_last_or_last2(xd); | 
|  | } | 
|  |  | 
|  | // Returns a context number for the given MB prediction signal | 
|  | // Signal the first reference frame for a compound mode be GOLDEN, | 
|  | // conditioning on that it is known either GOLDEN or LAST3. | 
|  | int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) { | 
|  | return get_pred_context_last3_or_gld(xd); | 
|  | } | 
|  |  | 
|  | // Signal the 2nd reference frame for a compound mode be either | 
|  | // ALTREF, or ALTREF2/BWDREF. | 
|  | int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) { | 
|  | return get_pred_context_brfarf2_or_arf(xd); | 
|  | } | 
|  |  | 
|  | // Signal the 2nd reference frame for a compound mode be either | 
|  | // ALTREF2 or BWDREF. | 
|  | int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) { | 
|  | return get_pred_context_brf_or_arf2(xd); | 
|  | } | 
|  |  | 
|  | // == Context functions for single ref == | 
|  | // | 
|  | // For the bit to signal whether the single reference is a forward reference | 
|  | // frame or a backward reference frame. | 
|  | int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { | 
|  | const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0]; | 
|  |  | 
|  | // Count of forward reference frames | 
|  | const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] + | 
|  | ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME]; | 
|  | // Count of backward reference frames | 
|  | const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] + | 
|  | ref_counts[ALTREF_FRAME]; | 
|  |  | 
|  | const int pred_context = | 
|  | (fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2); | 
|  |  | 
|  | assert(pred_context >= 0 && pred_context < REF_CONTEXTS); | 
|  | return pred_context; | 
|  | } | 
|  |  | 
|  | // For the bit to signal whether the single reference is ALTREF_FRAME or | 
|  | // non-ALTREF backward reference frame, knowing that it shall be either of | 
|  | // these 2 choices. | 
|  | int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { | 
|  | return get_pred_context_brfarf2_or_arf(xd); | 
|  | } | 
|  |  | 
|  | // For the bit to signal whether the single reference is LAST3/GOLDEN or | 
|  | // LAST2/LAST, knowing that it shall be either of these 2 choices. | 
|  | int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) { | 
|  | return get_pred_context_ll2_or_l3gld(xd); | 
|  | } | 
|  |  | 
|  | // For the bit to signal whether the single reference is LAST2_FRAME or | 
|  | // LAST_FRAME, knowing that it shall be either of these 2 choices. | 
|  | int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) { | 
|  | return get_pred_context_last_or_last2(xd); | 
|  | } | 
|  |  | 
|  | // For the bit to signal whether the single reference is GOLDEN_FRAME or | 
|  | // LAST3_FRAME, knowing that it shall be either of these 2 choices. | 
|  | int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) { | 
|  | return get_pred_context_last3_or_gld(xd); | 
|  | } | 
|  |  | 
|  | // For the bit to signal whether the single reference is ALTREF2_FRAME or | 
|  | // BWDREF_FRAME, knowing that it shall be either of these 2 choices. | 
|  | int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) { | 
|  | return get_pred_context_brf_or_arf2(xd); | 
|  | } |