| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include "vp9/common/vp9_header.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/common/vp9_findnearmv.h" |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/common/vp9_systemdependent.h" |
| #include <assert.h> |
| #include <stdio.h> |
| #include <limits.h> |
| #include "vp9/common/vp9_pragmas.h" |
| #include "vpx/vpx_encoder.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp9/encoder/vp9_bitstream.h" |
| #include "vp9/encoder/vp9_segmentation.h" |
| |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_treecoder.h" |
| |
| #if defined(SECTIONBITS_OUTPUT) |
| unsigned __int64 Sectionbits[500]; |
| #endif |
| |
| #ifdef ENTROPY_STATS |
| int intra_mode_stats[VP9_KF_BINTRAMODES] |
| [VP9_KF_BINTRAMODES] |
| [VP9_KF_BINTRAMODES]; |
| vp9_coeff_stats tree_update_hist_4x4[BLOCK_TYPES_4X4]; |
| vp9_coeff_stats hybrid_tree_update_hist_4x4[BLOCK_TYPES_4X4]; |
| vp9_coeff_stats tree_update_hist_8x8[BLOCK_TYPES_8X8]; |
| vp9_coeff_stats hybrid_tree_update_hist_8x8[BLOCK_TYPES_8X8]; |
| vp9_coeff_stats tree_update_hist_16x16[BLOCK_TYPES_16X16]; |
| vp9_coeff_stats hybrid_tree_update_hist_16x16[BLOCK_TYPES_16X16]; |
| vp9_coeff_stats tree_update_hist_32x32[BLOCK_TYPES_32X32]; |
| |
| extern unsigned int active_section; |
| #endif |
| |
| #ifdef MODE_STATS |
| int count_mb_seg[4] = { 0, 0, 0, 0 }; |
| #endif |
| |
| #define vp9_cost_upd ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)) >> 8) |
| #define vp9_cost_upd256 ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd))) |
| |
| #define SEARCH_NEWP |
| static int update_bits[255]; |
| |
| static void compute_update_table() { |
| int i; |
| for (i = 0; i < 255; i++) |
| update_bits[i] = vp9_count_term_subexp(i, SUBEXP_PARAM, 255); |
| } |
| |
| static int split_index(int i, int n, int modulus) { |
| int max1 = (n - 1 - modulus / 2) / modulus + 1; |
| if (i % modulus == modulus / 2) i = i / modulus; |
| else i = max1 + i - (i + modulus - modulus / 2) / modulus; |
| return i; |
| } |
| |
| static int remap_prob(int v, int m) { |
| const int n = 256; |
| const int modulus = MODULUS_PARAM; |
| int i; |
| if ((m << 1) <= n) |
| i = vp9_recenter_nonneg(v, m) - 1; |
| else |
| i = vp9_recenter_nonneg(n - 1 - v, n - 1 - m) - 1; |
| |
| i = split_index(i, n - 1, modulus); |
| return i; |
| } |
| |
| static void write_prob_diff_update(vp9_writer *const bc, |
| vp9_prob newp, vp9_prob oldp) { |
| int delp = remap_prob(newp, oldp); |
| vp9_encode_term_subexp(bc, delp, SUBEXP_PARAM, 255); |
| } |
| |
| static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) { |
| int delp = remap_prob(newp, oldp); |
| return update_bits[delp] * 256; |
| } |
| |
| static void update_mode( |
| vp9_writer *const bc, |
| int n, |
| vp9_token tok [/* n */], |
| vp9_tree tree, |
| vp9_prob Pnew [/* n-1 */], |
| vp9_prob Pcur [/* n-1 */], |
| unsigned int bct [/* n-1 */] [2], |
| const unsigned int num_events[/* n */] |
| ) { |
| unsigned int new_b = 0, old_b = 0; |
| int i = 0; |
| |
| vp9_tree_probs_from_distribution(n--, tok, tree, |
| Pnew, bct, num_events); |
| |
| do { |
| new_b += cost_branch(bct[i], Pnew[i]); |
| old_b += cost_branch(bct[i], Pcur[i]); |
| } while (++i < n); |
| |
| if (new_b + (n << 8) < old_b) { |
| int i = 0; |
| |
| vp9_write_bit(bc, 1); |
| |
| do { |
| const vp9_prob p = Pnew[i]; |
| |
| vp9_write_literal(bc, Pcur[i] = p ? p : 1, 8); |
| } while (++i < n); |
| } else |
| vp9_write_bit(bc, 0); |
| } |
| |
| static void update_mbintra_mode_probs(VP9_COMP* const cpi, |
| vp9_writer* const bc) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| { |
| vp9_prob Pnew [VP9_YMODES - 1]; |
| unsigned int bct [VP9_YMODES - 1] [2]; |
| |
| update_mode( |
| bc, VP9_YMODES, vp9_ymode_encodings, vp9_ymode_tree, |
| Pnew, cm->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count |
| ); |
| update_mode(bc, VP9_I32X32_MODES, vp9_sb_ymode_encodings, |
| vp9_sb_ymode_tree, Pnew, cm->fc.sb_ymode_prob, bct, |
| (unsigned int *)cpi->sb_ymode_count); |
| } |
| } |
| |
| void vp9_update_skip_probs(VP9_COMP *cpi) { |
| VP9_COMMON *const pc = &cpi->common; |
| int k; |
| |
| for (k = 0; k < MBSKIP_CONTEXTS; ++k) { |
| pc->mbskip_pred_probs[k] = get_binary_prob(cpi->skip_false_count[k], |
| cpi->skip_true_count[k]); |
| } |
| } |
| |
| static void update_switchable_interp_probs(VP9_COMP *cpi, |
| vp9_writer* const bc) { |
| VP9_COMMON *const pc = &cpi->common; |
| unsigned int branch_ct[32][2]; |
| int i, j; |
| for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) { |
| vp9_tree_probs_from_distribution( |
| VP9_SWITCHABLE_FILTERS, |
| vp9_switchable_interp_encodings, vp9_switchable_interp_tree, |
| pc->fc.switchable_interp_prob[j], branch_ct, |
| cpi->switchable_interp_count[j]); |
| for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) { |
| if (pc->fc.switchable_interp_prob[j][i] < 1) |
| pc->fc.switchable_interp_prob[j][i] = 1; |
| vp9_write_literal(bc, pc->fc.switchable_interp_prob[j][i], 8); |
| } |
| } |
| } |
| |
| // This function updates the reference frame prediction stats |
| static void update_refpred_stats(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| int i; |
| vp9_prob new_pred_probs[PREDICTION_PROBS]; |
| int old_cost, new_cost; |
| |
| // Set the prediction probability structures to defaults |
| if (cm->frame_type != KEY_FRAME) { |
| // From the prediction counts set the probabilities for each context |
| for (i = 0; i < PREDICTION_PROBS; i++) { |
| new_pred_probs[i] = get_binary_prob(cpi->ref_pred_count[i][0], |
| cpi->ref_pred_count[i][1]); |
| |
| // Decide whether or not to update the reference frame probs. |
| // Returned costs are in 1/256 bit units. |
| old_cost = |
| (cpi->ref_pred_count[i][0] * vp9_cost_zero(cm->ref_pred_probs[i])) + |
| (cpi->ref_pred_count[i][1] * vp9_cost_one(cm->ref_pred_probs[i])); |
| |
| new_cost = |
| (cpi->ref_pred_count[i][0] * vp9_cost_zero(new_pred_probs[i])) + |
| (cpi->ref_pred_count[i][1] * vp9_cost_one(new_pred_probs[i])); |
| |
| // Cost saving must be >= 8 bits (2048 in these units) |
| if ((old_cost - new_cost) >= 2048) { |
| cpi->ref_pred_probs_update[i] = 1; |
| cm->ref_pred_probs[i] = new_pred_probs[i]; |
| } else |
| cpi->ref_pred_probs_update[i] = 0; |
| } |
| } |
| } |
| |
| // This function is called to update the mode probability context used to encode |
| // inter modes. It assumes the branch counts table has already been populated |
| // prior to the actual packing of the bitstream (in rd stage or dummy pack) |
| // |
| // The branch counts table is re-populated during the actual pack stage and in |
| // the decoder to facilitate backwards update of the context. |
| static void update_mode_probs(VP9_COMMON *cm, |
| int mode_context[INTER_MODE_CONTEXTS][4]) { |
| int i, j; |
| unsigned int (*mv_ref_ct)[4][2]; |
| |
| vpx_memcpy(mode_context, cm->fc.vp9_mode_contexts, |
| sizeof(cm->fc.vp9_mode_contexts)); |
| |
| mv_ref_ct = cm->fc.mv_ref_ct; |
| |
| for (i = 0; i < INTER_MODE_CONTEXTS; i++) { |
| for (j = 0; j < 4; j++) { |
| int new_prob, old_cost, new_cost; |
| |
| // Work out cost of coding branches with the old and optimal probability |
| old_cost = cost_branch256(mv_ref_ct[i][j], mode_context[i][j]); |
| new_prob = get_binary_prob(mv_ref_ct[i][j][0], mv_ref_ct[i][j][1]); |
| new_cost = cost_branch256(mv_ref_ct[i][j], new_prob); |
| |
| // If cost saving is >= 14 bits then update the mode probability. |
| // This is the approximate net cost of updating one probability given |
| // that the no update case ismuch more common than the update case. |
| if (new_cost <= (old_cost - (14 << 8))) { |
| mode_context[i][j] = new_prob; |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_NEW_MVREF |
| static void update_mv_ref_probs(VP9_COMP *cpi, |
| int mvref_probs[MAX_REF_FRAMES] |
| [MAX_MV_REF_CANDIDATES-1]) { |
| MACROBLOCKD *xd = &cpi->mb.e_mbd; |
| int rf; // Reference frame |
| int ref_c; // Motion reference candidate |
| int node; // Probability node index |
| |
| for (rf = 0; rf < MAX_REF_FRAMES; ++rf) { |
| int count = 0; |
| |
| // Skip the dummy entry for intra ref frame. |
| if (rf == INTRA_FRAME) { |
| continue; |
| } |
| |
| // Sum the counts for all candidates |
| for (ref_c = 0; ref_c < MAX_MV_REF_CANDIDATES; ++ref_c) { |
| count += cpi->mb_mv_ref_count[rf][ref_c]; |
| } |
| |
| // Calculate the tree node probabilities |
| for (node = 0; node < MAX_MV_REF_CANDIDATES-1; ++node) { |
| int new_prob, old_cost, new_cost; |
| unsigned int branch_cnts[2]; |
| |
| // How many hits on each branch at this node |
| branch_cnts[0] = cpi->mb_mv_ref_count[rf][node]; |
| branch_cnts[1] = count - cpi->mb_mv_ref_count[rf][node]; |
| |
| // Work out cost of coding branches with the old and optimal probability |
| old_cost = cost_branch256(branch_cnts, xd->mb_mv_ref_probs[rf][node]); |
| new_prob = get_prob(branch_cnts[0], count); |
| new_cost = cost_branch256(branch_cnts, new_prob); |
| |
| // Take current 0 branch cases out of residual count |
| count -= cpi->mb_mv_ref_count[rf][node]; |
| |
| if ((new_cost + VP9_MV_REF_UPDATE_COST) <= old_cost) { |
| mvref_probs[rf][node] = new_prob; |
| } else { |
| mvref_probs[rf][node] = xd->mb_mv_ref_probs[rf][node]; |
| } |
| } |
| } |
| } |
| #endif |
| |
| static void write_ymode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_ymode_tree, p, vp9_ymode_encodings + m); |
| } |
| |
| static void kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_kf_ymode_tree, p, vp9_kf_ymode_encodings + m); |
| } |
| |
| static void write_sb_ymode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_sb_ymode_tree, p, vp9_sb_ymode_encodings + m); |
| } |
| |
| static void sb_kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_uv_mode_tree, p, vp9_sb_kf_ymode_encodings + m); |
| } |
| |
| static void write_i8x8_mode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_i8x8_mode_tree, p, vp9_i8x8_mode_encodings + m); |
| } |
| |
| static void write_uv_mode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_uv_mode_tree, p, vp9_uv_mode_encodings + m); |
| } |
| |
| |
| static void write_bmode(vp9_writer *bc, int m, const vp9_prob *p) { |
| #if CONFIG_NEWBINTRAMODES |
| assert(m < B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS || m == B_CONTEXT_PRED); |
| if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS; |
| #endif |
| write_token(bc, vp9_bmode_tree, p, vp9_bmode_encodings + m); |
| } |
| |
| static void write_kf_bmode(vp9_writer *bc, int m, const vp9_prob *p) { |
| write_token(bc, vp9_kf_bmode_tree, p, vp9_kf_bmode_encodings + m); |
| } |
| |
| static void write_split(vp9_writer *bc, int x, const vp9_prob *p) { |
| write_token( |
| bc, vp9_mbsplit_tree, p, vp9_mbsplit_encodings + x); |
| } |
| |
| static int prob_update_savings(const unsigned int *ct, |
| const vp9_prob oldp, const vp9_prob newp, |
| const vp9_prob upd) { |
| const int old_b = cost_branch256(ct, oldp); |
| const int new_b = cost_branch256(ct, newp); |
| const int update_b = 2048 + vp9_cost_upd256; |
| return (old_b - new_b - update_b); |
| } |
| |
| static int prob_diff_update_savings(const unsigned int *ct, |
| const vp9_prob oldp, const vp9_prob newp, |
| const vp9_prob upd) { |
| const int old_b = cost_branch256(ct, oldp); |
| const int new_b = cost_branch256(ct, newp); |
| const int update_b = (newp == oldp ? 0 : |
| prob_diff_update_cost(newp, oldp) + vp9_cost_upd256); |
| return (old_b - new_b - update_b); |
| } |
| |
| static int prob_diff_update_savings_search(const unsigned int *ct, |
| const vp9_prob oldp, vp9_prob *bestp, |
| const vp9_prob upd) { |
| const int old_b = cost_branch256(ct, oldp); |
| int new_b, update_b, savings, bestsavings, step; |
| vp9_prob newp, bestnewp; |
| |
| bestsavings = 0; |
| bestnewp = oldp; |
| |
| step = (*bestp > oldp ? -1 : 1); |
| for (newp = *bestp; newp != oldp; newp += step) { |
| new_b = cost_branch256(ct, newp); |
| update_b = prob_diff_update_cost(newp, oldp) + vp9_cost_upd256; |
| savings = old_b - new_b - update_b; |
| if (savings > bestsavings) { |
| bestsavings = savings; |
| bestnewp = newp; |
| } |
| } |
| *bestp = bestnewp; |
| return bestsavings; |
| } |
| |
| static void vp9_cond_prob_update(vp9_writer *bc, vp9_prob *oldp, vp9_prob upd, |
| unsigned int *ct) { |
| vp9_prob newp; |
| int savings; |
| newp = get_binary_prob(ct[0], ct[1]); |
| savings = prob_update_savings(ct, *oldp, newp, upd); |
| if (savings > 0) { |
| vp9_write(bc, 1, upd); |
| vp9_write_literal(bc, newp, 8); |
| *oldp = newp; |
| } else { |
| vp9_write(bc, 0, upd); |
| } |
| } |
| |
| static void pack_mb_tokens(vp9_writer* const bc, |
| TOKENEXTRA **tp, |
| const TOKENEXTRA *const stop) { |
| TOKENEXTRA *p = *tp; |
| |
| while (p < stop) { |
| const int t = p->Token; |
| vp9_token *const a = vp9_coef_encodings + t; |
| const vp9_extra_bit_struct *const b = vp9_extra_bits + t; |
| int i = 0; |
| const unsigned char *pp = p->context_tree; |
| int v = a->value; |
| int n = a->Len; |
| |
| if (t == EOSB_TOKEN) |
| { |
| ++p; |
| break; |
| } |
| |
| /* skip one or two nodes */ |
| if (p->skip_eob_node) { |
| n -= p->skip_eob_node; |
| i = 2 * p->skip_eob_node; |
| } |
| |
| do { |
| const int bb = (v >> --n) & 1; |
| encode_bool(bc, bb, pp[i >> 1]); |
| i = vp9_coef_tree[i + bb]; |
| } while (n); |
| |
| |
| if (b->base_val) { |
| const int e = p->Extra, L = b->Len; |
| |
| if (L) { |
| const unsigned char *pp = b->prob; |
| int v = e >> 1; |
| int n = L; /* number of bits in v, assumed nonzero */ |
| int i = 0; |
| |
| do { |
| const int bb = (v >> --n) & 1; |
| encode_bool(bc, bb, pp[i >> 1]); |
| i = b->tree[i + bb]; |
| } while (n); |
| } |
| |
| encode_bool(bc, e & 1, 128); |
| } |
| ++p; |
| } |
| |
| *tp = p; |
| } |
| |
| static void write_partition_size(unsigned char *cx_data, int size) { |
| signed char csize; |
| |
| csize = size & 0xff; |
| *cx_data = csize; |
| csize = (size >> 8) & 0xff; |
| *(cx_data + 1) = csize; |
| csize = (size >> 16) & 0xff; |
| *(cx_data + 2) = csize; |
| |
| } |
| |
| static void write_mv_ref |
| ( |
| vp9_writer *bc, MB_PREDICTION_MODE m, const vp9_prob *p |
| ) { |
| #if CONFIG_DEBUG |
| assert(NEARESTMV <= m && m <= SPLITMV); |
| #endif |
| write_token(bc, vp9_mv_ref_tree, p, |
| vp9_mv_ref_encoding_array - NEARESTMV + m); |
| } |
| |
| static void write_sb_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m, |
| const vp9_prob *p) { |
| #if CONFIG_DEBUG |
| assert(NEARESTMV <= m && m < SPLITMV); |
| #endif |
| write_token(bc, vp9_sb_mv_ref_tree, p, |
| vp9_sb_mv_ref_encoding_array - NEARESTMV + m); |
| } |
| |
| static void write_sub_mv_ref |
| ( |
| vp9_writer *bc, B_PREDICTION_MODE m, const vp9_prob *p |
| ) { |
| #if CONFIG_DEBUG |
| assert(LEFT4X4 <= m && m <= NEW4X4); |
| #endif |
| write_token(bc, vp9_sub_mv_ref_tree, p, |
| vp9_sub_mv_ref_encoding_array - LEFT4X4 + m); |
| } |
| |
| static void write_nmv(VP9_COMP *cpi, vp9_writer *bc, |
| const MV *mv, const int_mv *ref, |
| const nmv_context *nmvc, int usehp) { |
| MV e; |
| e.row = mv->row - ref->as_mv.row; |
| e.col = mv->col - ref->as_mv.col; |
| |
| vp9_encode_nmv(bc, &e, &ref->as_mv, nmvc); |
| vp9_encode_nmv_fp(bc, &e, &ref->as_mv, nmvc, usehp); |
| } |
| |
| #if CONFIG_NEW_MVREF |
| static void vp9_write_mv_ref_id(vp9_writer *w, |
| vp9_prob * ref_id_probs, |
| int mv_ref_id) { |
| // Encode the index for the MV reference. |
| switch (mv_ref_id) { |
| case 0: |
| vp9_write(w, 0, ref_id_probs[0]); |
| break; |
| case 1: |
| vp9_write(w, 1, ref_id_probs[0]); |
| vp9_write(w, 0, ref_id_probs[1]); |
| break; |
| case 2: |
| vp9_write(w, 1, ref_id_probs[0]); |
| vp9_write(w, 1, ref_id_probs[1]); |
| vp9_write(w, 0, ref_id_probs[2]); |
| break; |
| case 3: |
| vp9_write(w, 1, ref_id_probs[0]); |
| vp9_write(w, 1, ref_id_probs[1]); |
| vp9_write(w, 1, ref_id_probs[2]); |
| break; |
| |
| // TRAP.. This should not happen |
| default: |
| assert(0); |
| break; |
| } |
| } |
| #endif |
| |
| // This function writes the current macro block's segnment id to the bitstream |
| // It should only be called if a segment map update is indicated. |
| static void write_mb_segid(vp9_writer *bc, |
| const MB_MODE_INFO *mi, const MACROBLOCKD *xd) { |
| // Encode the MB segment id. |
| int seg_id = mi->segment_id; |
| |
| if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { |
| switch (seg_id) { |
| case 0: |
| vp9_write(bc, 0, xd->mb_segment_tree_probs[0]); |
| vp9_write(bc, 0, xd->mb_segment_tree_probs[1]); |
| break; |
| case 1: |
| vp9_write(bc, 0, xd->mb_segment_tree_probs[0]); |
| vp9_write(bc, 1, xd->mb_segment_tree_probs[1]); |
| break; |
| case 2: |
| vp9_write(bc, 1, xd->mb_segment_tree_probs[0]); |
| vp9_write(bc, 0, xd->mb_segment_tree_probs[2]); |
| break; |
| case 3: |
| vp9_write(bc, 1, xd->mb_segment_tree_probs[0]); |
| vp9_write(bc, 1, xd->mb_segment_tree_probs[2]); |
| break; |
| |
| // TRAP.. This should not happen |
| default: |
| vp9_write(bc, 0, xd->mb_segment_tree_probs[0]); |
| vp9_write(bc, 0, xd->mb_segment_tree_probs[1]); |
| break; |
| } |
| } |
| } |
| |
| // This function encodes the reference frame |
| static void encode_ref_frame(vp9_writer *const bc, |
| VP9_COMMON *const cm, |
| MACROBLOCKD *xd, |
| int segment_id, |
| MV_REFERENCE_FRAME rf) { |
| int seg_ref_active; |
| int seg_ref_count = 0; |
| seg_ref_active = vp9_segfeature_active(xd, |
| segment_id, |
| SEG_LVL_REF_FRAME); |
| |
| if (seg_ref_active) { |
| seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) + |
| vp9_check_segref(xd, segment_id, LAST_FRAME) + |
| vp9_check_segref(xd, segment_id, GOLDEN_FRAME) + |
| vp9_check_segref(xd, segment_id, ALTREF_FRAME); |
| } |
| |
| // If segment level coding of this signal is disabled... |
| // or the segment allows multiple reference frame options |
| if (!seg_ref_active || (seg_ref_count > 1)) { |
| // Values used in prediction model coding |
| unsigned char prediction_flag; |
| vp9_prob pred_prob; |
| MV_REFERENCE_FRAME pred_rf; |
| |
| // Get the context probability the prediction flag |
| pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF); |
| |
| // Get the predicted value. |
| pred_rf = vp9_get_pred_ref(cm, xd); |
| |
| // Did the chosen reference frame match its predicted value. |
| prediction_flag = |
| (xd->mode_info_context->mbmi.ref_frame == pred_rf); |
| |
| vp9_set_pred_flag(xd, PRED_REF, prediction_flag); |
| vp9_write(bc, prediction_flag, pred_prob); |
| |
| // If not predicted correctly then code value explicitly |
| if (!prediction_flag) { |
| vp9_prob mod_refprobs[PREDICTION_PROBS]; |
| |
| vpx_memcpy(mod_refprobs, |
| cm->mod_refprobs[pred_rf], sizeof(mod_refprobs)); |
| |
| // If segment coding enabled blank out options that cant occur by |
| // setting the branch probability to 0. |
| if (seg_ref_active) { |
| mod_refprobs[INTRA_FRAME] *= |
| vp9_check_segref(xd, segment_id, INTRA_FRAME); |
| mod_refprobs[LAST_FRAME] *= |
| vp9_check_segref(xd, segment_id, LAST_FRAME); |
| mod_refprobs[GOLDEN_FRAME] *= |
| (vp9_check_segref(xd, segment_id, GOLDEN_FRAME) * |
| vp9_check_segref(xd, segment_id, ALTREF_FRAME)); |
| } |
| |
| if (mod_refprobs[0]) { |
| vp9_write(bc, (rf != INTRA_FRAME), mod_refprobs[0]); |
| } |
| |
| // Inter coded |
| if (rf != INTRA_FRAME) { |
| if (mod_refprobs[1]) { |
| vp9_write(bc, (rf != LAST_FRAME), mod_refprobs[1]); |
| } |
| |
| if (rf != LAST_FRAME) { |
| if (mod_refprobs[2]) { |
| vp9_write(bc, (rf != GOLDEN_FRAME), mod_refprobs[2]); |
| } |
| } |
| } |
| } |
| } |
| |
| // if using the prediction mdoel we have nothing further to do because |
| // the reference frame is fully coded by the segment |
| } |
| |
| // Update the probabilities used to encode reference frame data |
| static void update_ref_probs(VP9_COMP *const cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| |
| const int *const rfct = cpi->count_mb_ref_frame_usage; |
| const int rf_intra = rfct[INTRA_FRAME]; |
| const int rf_inter = rfct[LAST_FRAME] + |
| rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; |
| |
| cm->prob_intra_coded = get_binary_prob(rf_intra, rf_inter); |
| cm->prob_last_coded = get_prob(rfct[LAST_FRAME], rf_inter); |
| cm->prob_gf_coded = get_binary_prob(rfct[GOLDEN_FRAME], rfct[ALTREF_FRAME]); |
| |
| // Compute a modified set of probabilities to use when prediction of the |
| // reference frame fails |
| vp9_compute_mod_refprobs(cm); |
| } |
| |
| static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, |
| vp9_writer *bc, |
| int mb_rows_left, int mb_cols_left) { |
| VP9_COMMON *const pc = &cpi->common; |
| const nmv_context *nmvc = &pc->fc.nmvc; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mis = pc->mode_info_stride; |
| MB_MODE_INFO *const mi = &m->mbmi; |
| const MV_REFERENCE_FRAME rf = mi->ref_frame; |
| const MB_PREDICTION_MODE mode = mi->mode; |
| const int segment_id = mi->segment_id; |
| const int mb_size = 1 << mi->sb_type; |
| int skip_coeff; |
| |
| int mb_row = pc->mb_rows - mb_rows_left; |
| int mb_col = pc->mb_cols - mb_cols_left; |
| xd->prev_mode_info_context = pc->prev_mi + (m - pc->mi); |
| x->partition_info = x->pi + (m - pc->mi); |
| |
| // Distance of Mb to the various image edges. |
| // These specified to 8th pel as they are always compared to MV |
| // values that are in 1/8th pel units |
| xd->mb_to_left_edge = -((mb_col * 16) << 3); |
| xd->mb_to_top_edge = -((mb_row * 16)) << 3; |
| xd->mb_to_right_edge = ((pc->mb_cols - mb_size - mb_col) * 16) << 3; |
| xd->mb_to_bottom_edge = ((pc->mb_rows - mb_size - mb_row) * 16) << 3; |
| |
| #ifdef ENTROPY_STATS |
| active_section = 9; |
| #endif |
| |
| if (cpi->mb.e_mbd.update_mb_segmentation_map) { |
| // Is temporal coding of the segment map enabled |
| if (pc->temporal_update) { |
| unsigned char prediction_flag = vp9_get_pred_flag(xd, PRED_SEG_ID); |
| vp9_prob pred_prob = vp9_get_pred_prob(pc, xd, PRED_SEG_ID); |
| |
| // Code the segment id prediction flag for this mb |
| vp9_write(bc, prediction_flag, pred_prob); |
| |
| // If the mb segment id wasn't predicted code explicitly |
| if (!prediction_flag) |
| write_mb_segid(bc, mi, &cpi->mb.e_mbd); |
| } else { |
| // Normal unpredicted coding |
| write_mb_segid(bc, mi, &cpi->mb.e_mbd); |
| } |
| } |
| |
| if (!pc->mb_no_coeff_skip) { |
| skip_coeff = 0; |
| } else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) && |
| vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) == 0) { |
| skip_coeff = 1; |
| } else { |
| const int nmbs = mb_size; |
| const int xmbs = MIN(nmbs, mb_cols_left); |
| const int ymbs = MIN(nmbs, mb_rows_left); |
| int x, y; |
| |
| skip_coeff = 1; |
| for (y = 0; y < ymbs; y++) { |
| for (x = 0; x < xmbs; x++) { |
| skip_coeff = skip_coeff && m[y * mis + x].mbmi.mb_skip_coeff; |
| } |
| } |
| |
| vp9_write(bc, skip_coeff, |
| vp9_get_pred_prob(pc, xd, PRED_MBSKIP)); |
| } |
| |
| // Encode the reference frame. |
| if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE) |
| || vp9_get_segdata(xd, segment_id, SEG_LVL_MODE) >= NEARESTMV) { |
| encode_ref_frame(bc, pc, xd, segment_id, rf); |
| } else { |
| assert(rf == INTRA_FRAME); |
| } |
| |
| if (rf == INTRA_FRAME) { |
| #ifdef ENTROPY_STATS |
| active_section = 6; |
| #endif |
| |
| if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE)) { |
| if (m->mbmi.sb_type) |
| write_sb_ymode(bc, mode, pc->fc.sb_ymode_prob); |
| else |
| write_ymode(bc, mode, pc->fc.ymode_prob); |
| } |
| if (mode == B_PRED) { |
| int j = 0; |
| do { |
| write_bmode(bc, m->bmi[j].as_mode.first, |
| pc->fc.bmode_prob); |
| } while (++j < 16); |
| } |
| if (mode == I8X8_PRED) { |
| write_i8x8_mode(bc, m->bmi[0].as_mode.first, |
| pc->fc.i8x8_mode_prob); |
| write_i8x8_mode(bc, m->bmi[2].as_mode.first, |
| pc->fc.i8x8_mode_prob); |
| write_i8x8_mode(bc, m->bmi[8].as_mode.first, |
| pc->fc.i8x8_mode_prob); |
| write_i8x8_mode(bc, m->bmi[10].as_mode.first, |
| pc->fc.i8x8_mode_prob); |
| } else { |
| write_uv_mode(bc, mi->uv_mode, |
| pc->fc.uv_mode_prob[mode]); |
| } |
| } else { |
| vp9_prob mv_ref_p[VP9_MVREFS - 1]; |
| |
| vp9_mv_ref_probs(&cpi->common, mv_ref_p, mi->mb_mode_context[rf]); |
| |
| #ifdef ENTROPY_STATS |
| accum_mv_refs(mode, ct); |
| active_section = 3; |
| #endif |
| |
| // Is the segment coding of mode enabled |
| if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_MODE)) { |
| if (mi->sb_type) { |
| write_sb_mv_ref(bc, mode, mv_ref_p); |
| } else { |
| write_mv_ref(bc, mode, mv_ref_p); |
| } |
| vp9_accum_mv_refs(&cpi->common, mode, mi->mb_mode_context[rf]); |
| } |
| |
| if (mode >= NEARESTMV && mode <= SPLITMV) { |
| if (cpi->common.mcomp_filter_type == SWITCHABLE) { |
| write_token(bc, vp9_switchable_interp_tree, |
| vp9_get_pred_probs(&cpi->common, xd, |
| PRED_SWITCHABLE_INTERP), |
| vp9_switchable_interp_encodings + |
| vp9_switchable_interp_map[mi->interp_filter]); |
| } else { |
| assert(mi->interp_filter == cpi->common.mcomp_filter_type); |
| } |
| } |
| |
| // does the feature use compound prediction or not |
| // (if not specified at the frame/segment level) |
| if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { |
| vp9_write(bc, mi->second_ref_frame > INTRA_FRAME, |
| vp9_get_pred_prob(pc, xd, PRED_COMP)); |
| } |
| #if CONFIG_COMP_INTERINTRA_PRED |
| if (cpi->common.use_interintra && |
| mode >= NEARESTMV && mode < SPLITMV && |
| mi->second_ref_frame <= INTRA_FRAME) { |
| vp9_write(bc, mi->second_ref_frame == INTRA_FRAME, |
| pc->fc.interintra_prob); |
| // if (!cpi->dummy_packing) |
| // printf("-- %d (%d)\n", mi->second_ref_frame == INTRA_FRAME, |
| // pc->fc.interintra_prob); |
| if (mi->second_ref_frame == INTRA_FRAME) { |
| // if (!cpi->dummy_packing) |
| // printf("** %d %d\n", mi->interintra_mode, |
| // mi->interintra_uv_mode); |
| write_ymode(bc, mi->interintra_mode, pc->fc.ymode_prob); |
| #if SEPARATE_INTERINTRA_UV |
| write_uv_mode(bc, mi->interintra_uv_mode, |
| pc->fc.uv_mode_prob[mi->interintra_mode]); |
| #endif |
| } |
| } |
| #endif |
| |
| #if CONFIG_NEW_MVREF |
| // if ((mode == NEWMV) || (mode == SPLITMV)) { |
| if (mode == NEWMV) { |
| // Encode the index of the choice. |
| vp9_write_mv_ref_id(bc, |
| xd->mb_mv_ref_probs[rf], mi->best_index); |
| |
| if (mi->second_ref_frame > 0) { |
| // Encode the index of the choice. |
| vp9_write_mv_ref_id( |
| bc, xd->mb_mv_ref_probs[mi->second_ref_frame], |
| mi->best_second_index); |
| } |
| } |
| #endif |
| |
| switch (mode) { /* new, split require MVs */ |
| case NEWMV: |
| #ifdef ENTROPY_STATS |
| active_section = 5; |
| #endif |
| write_nmv(cpi, bc, &mi->mv[0].as_mv, &mi->best_mv, |
| (const nmv_context*) nmvc, |
| xd->allow_high_precision_mv); |
| |
| if (mi->second_ref_frame > 0) { |
| write_nmv(cpi, bc, &mi->mv[1].as_mv, &mi->best_second_mv, |
| (const nmv_context*) nmvc, |
| xd->allow_high_precision_mv); |
| } |
| break; |
| case SPLITMV: { |
| int j = 0; |
| |
| #ifdef MODE_STATS |
| ++count_mb_seg[mi->partitioning]; |
| #endif |
| |
| write_split(bc, mi->partitioning, cpi->common.fc.mbsplit_prob); |
| cpi->mbsplit_count[mi->partitioning]++; |
| |
| do { |
| B_PREDICTION_MODE blockmode; |
| int_mv blockmv; |
| const int *const L = vp9_mbsplits[mi->partitioning]; |
| int k = -1; /* first block in subset j */ |
| int mv_contz; |
| int_mv leftmv, abovemv; |
| |
| blockmode = cpi->mb.partition_info->bmi[j].mode; |
| blockmv = cpi->mb.partition_info->bmi[j].mv; |
| #if CONFIG_DEBUG |
| while (j != L[++k]) |
| if (k >= 16) |
| assert(0); |
| #else |
| while (j != L[++k]); |
| #endif |
| leftmv.as_int = left_block_mv(m, k); |
| abovemv.as_int = above_block_mv(m, k, mis); |
| mv_contz = vp9_mv_cont(&leftmv, &abovemv); |
| |
| write_sub_mv_ref(bc, blockmode, |
| cpi->common.fc.sub_mv_ref_prob[mv_contz]); |
| cpi->sub_mv_ref_count[mv_contz][blockmode - LEFT4X4]++; |
| if (blockmode == NEW4X4) { |
| #ifdef ENTROPY_STATS |
| active_section = 11; |
| #endif |
| write_nmv(cpi, bc, &blockmv.as_mv, &mi->best_mv, |
| (const nmv_context*) nmvc, |
| xd->allow_high_precision_mv); |
| |
| if (mi->second_ref_frame > 0) { |
| write_nmv(cpi, bc, |
| &cpi->mb.partition_info->bmi[j].second_mv.as_mv, |
| &mi->best_second_mv, |
| (const nmv_context*) nmvc, |
| xd->allow_high_precision_mv); |
| } |
| } |
| } while (++j < cpi->mb.partition_info->count); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| if (((rf == INTRA_FRAME && mode <= I8X8_PRED) || |
| (rf != INTRA_FRAME && !(mode == SPLITMV && |
| mi->partitioning == PARTITIONING_4X4))) && |
| pc->txfm_mode == TX_MODE_SELECT && |
| !((pc->mb_no_coeff_skip && skip_coeff) || |
| (vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) && |
| vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) == 0))) { |
| TX_SIZE sz = mi->txfm_size; |
| // FIXME(rbultje) code ternary symbol once all experiments are merged |
| vp9_write(bc, sz != TX_4X4, pc->prob_tx[0]); |
| if (sz != TX_4X4 && mode != I8X8_PRED && mode != SPLITMV) { |
| vp9_write(bc, sz != TX_8X8, pc->prob_tx[1]); |
| if (mi->sb_type && sz != TX_8X8) |
| vp9_write(bc, sz != TX_16X16, pc->prob_tx[2]); |
| } |
| } |
| } |
| |
| static void write_mb_modes_kf(const VP9_COMP *cpi, |
| const MODE_INFO *m, |
| vp9_writer *bc, |
| int mb_rows_left, int mb_cols_left) { |
| const VP9_COMMON *const c = &cpi->common; |
| const MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| const int mis = c->mode_info_stride; |
| const int ym = m->mbmi.mode; |
| const int segment_id = m->mbmi.segment_id; |
| int skip_coeff; |
| |
| if (xd->update_mb_segmentation_map) { |
| write_mb_segid(bc, &m->mbmi, xd); |
| } |
| |
| if (!c->mb_no_coeff_skip) { |
| skip_coeff = 0; |
| } else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) && |
| vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) == 0) { |
| skip_coeff = 1; |
| } else { |
| const int nmbs = 1 << m->mbmi.sb_type; |
| const int xmbs = MIN(nmbs, mb_cols_left); |
| const int ymbs = MIN(nmbs, mb_rows_left); |
| int x, y; |
| |
| skip_coeff = 1; |
| for (y = 0; y < ymbs; y++) { |
| for (x = 0; x < xmbs; x++) { |
| skip_coeff = skip_coeff && m[y * mis + x].mbmi.mb_skip_coeff; |
| } |
| } |
| |
| vp9_write(bc, skip_coeff, |
| vp9_get_pred_prob(c, xd, PRED_MBSKIP)); |
| } |
| |
| if (m->mbmi.sb_type) { |
| sb_kfwrite_ymode(bc, ym, |
| c->sb_kf_ymode_prob[c->kf_ymode_probs_index]); |
| } else { |
| kfwrite_ymode(bc, ym, |
| c->kf_ymode_prob[c->kf_ymode_probs_index]); |
| } |
| |
| if (ym == B_PRED) { |
| int i = 0; |
| do { |
| const B_PREDICTION_MODE A = above_block_mode(m, i, mis); |
| const B_PREDICTION_MODE L = left_block_mode(m, i); |
| const int bm = m->bmi[i].as_mode.first; |
| |
| #ifdef ENTROPY_STATS |
| ++intra_mode_stats [A] [L] [bm]; |
| #endif |
| |
| write_kf_bmode(bc, bm, c->kf_bmode_prob[A][L]); |
| } while (++i < 16); |
| } |
| if (ym == I8X8_PRED) { |
| write_i8x8_mode(bc, m->bmi[0].as_mode.first, |
| c->fc.i8x8_mode_prob); |
| // printf(" mode: %d\n", m->bmi[0].as_mode.first); fflush(stdout); |
| write_i8x8_mode(bc, m->bmi[2].as_mode.first, |
| c->fc.i8x8_mode_prob); |
| // printf(" mode: %d\n", m->bmi[2].as_mode.first); fflush(stdout); |
| write_i8x8_mode(bc, m->bmi[8].as_mode.first, |
| c->fc.i8x8_mode_prob); |
| // printf(" mode: %d\n", m->bmi[8].as_mode.first); fflush(stdout); |
| write_i8x8_mode(bc, m->bmi[10].as_mode.first, |
| c->fc.i8x8_mode_prob); |
| // printf(" mode: %d\n", m->bmi[10].as_mode.first); fflush(stdout); |
| } else |
| write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]); |
| |
| if (ym <= I8X8_PRED && c->txfm_mode == TX_MODE_SELECT && |
| !((c->mb_no_coeff_skip && skip_coeff) || |
| (vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) && |
| vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) == 0))) { |
| TX_SIZE sz = m->mbmi.txfm_size; |
| // FIXME(rbultje) code ternary symbol once all experiments are merged |
| vp9_write(bc, sz != TX_4X4, c->prob_tx[0]); |
| if (sz != TX_4X4 && ym <= TM_PRED) { |
| vp9_write(bc, sz != TX_8X8, c->prob_tx[1]); |
| if (m->mbmi.sb_type && sz != TX_8X8) |
| vp9_write(bc, sz != TX_16X16, c->prob_tx[2]); |
| } |
| } |
| } |
| |
| static void write_modes_b(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, |
| TOKENEXTRA **tok, TOKENEXTRA *tok_end, |
| int mb_row, int mb_col) { |
| VP9_COMMON *const c = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| |
| xd->mode_info_context = m; |
| if (c->frame_type == KEY_FRAME) { |
| write_mb_modes_kf(cpi, m, bc, |
| c->mb_rows - mb_row, c->mb_cols - mb_col); |
| #ifdef ENTROPY_STATS |
| active_section = 8; |
| #endif |
| } else { |
| pack_inter_mode_mvs(cpi, m, bc, |
| c->mb_rows - mb_row, c->mb_cols - mb_col); |
| #ifdef ENTROPY_STATS |
| active_section = 1; |
| #endif |
| } |
| |
| assert(*tok < tok_end); |
| pack_mb_tokens(bc, tok, tok_end); |
| } |
| |
| static void write_modes(VP9_COMP *cpi, vp9_writer* const bc) { |
| VP9_COMMON *const c = &cpi->common; |
| const int mis = c->mode_info_stride; |
| MODE_INFO *m, *m_ptr = c->mi; |
| int i, mb_row, mb_col; |
| TOKENEXTRA *tok = cpi->tok; |
| TOKENEXTRA *tok_end = tok + cpi->tok_count; |
| |
| for (mb_row = 0; mb_row < c->mb_rows; mb_row += 4, m_ptr += 4 * mis) { |
| m = m_ptr; |
| for (mb_col = 0; mb_col < c->mb_cols; mb_col += 4, m += 4) { |
| vp9_write(bc, m->mbmi.sb_type == BLOCK_SIZE_SB64X64, c->sb64_coded); |
| if (m->mbmi.sb_type == BLOCK_SIZE_SB64X64) { |
| write_modes_b(cpi, m, bc, &tok, tok_end, mb_row, mb_col); |
| } else { |
| int j; |
| |
| for (j = 0; j < 4; j++) { |
| const int x_idx_sb = (j & 1) << 1, y_idx_sb = j & 2; |
| MODE_INFO *sb_m = m + y_idx_sb * mis + x_idx_sb; |
| |
| if (mb_col + x_idx_sb >= c->mb_cols || |
| mb_row + y_idx_sb >= c->mb_rows) |
| continue; |
| |
| vp9_write(bc, sb_m->mbmi.sb_type, c->sb32_coded); |
| if (sb_m->mbmi.sb_type) { |
| assert(sb_m->mbmi.sb_type == BLOCK_SIZE_SB32X32); |
| write_modes_b(cpi, sb_m, bc, &tok, tok_end, |
| mb_row + y_idx_sb, mb_col + x_idx_sb); |
| } else { |
| // Process the 4 MBs in the order: |
| // top-left, top-right, bottom-left, bottom-right |
| for (i = 0; i < 4; i++) { |
| const int x_idx = x_idx_sb + (i & 1), y_idx = y_idx_sb + (i >> 1); |
| MODE_INFO *mb_m = m + x_idx + y_idx * mis; |
| |
| if (mb_row + y_idx >= c->mb_rows || |
| mb_col + x_idx >= c->mb_cols) { |
| // MB lies outside frame, move on |
| continue; |
| } |
| |
| assert(mb_m->mbmi.sb_type == BLOCK_SIZE_MB16X16); |
| write_modes_b(cpi, mb_m, bc, &tok, tok_end, |
| mb_row + y_idx, mb_col + x_idx); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| |
| /* This function is used for debugging probability trees. */ |
| static void print_prob_tree(vp9_coeff_probs *coef_probs) { |
| /* print coef probability tree */ |
| int i, j, k, l; |
| FILE *f = fopen("enc_tree_probs.txt", "a"); |
| fprintf(f, "{\n"); |
| for (i = 0; i < BLOCK_TYPES_4X4; i++) { |
| fprintf(f, " {\n"); |
| for (j = 0; j < COEF_BANDS; j++) { |
| fprintf(f, " {\n"); |
| for (k = 0; k < PREV_COEF_CONTEXTS; k++) { |
| fprintf(f, " {"); |
| for (l = 0; l < ENTROPY_NODES; l++) { |
| fprintf(f, "%3u, ", |
| (unsigned int)(coef_probs [i][j][k][l])); |
| } |
| fprintf(f, " }\n"); |
| } |
| fprintf(f, " }\n"); |
| } |
| fprintf(f, " }\n"); |
| } |
| fprintf(f, "}\n"); |
| fclose(f); |
| } |
| |
| static void build_tree_distribution(vp9_coeff_probs *coef_probs, |
| vp9_coeff_count *coef_counts, |
| #ifdef ENTROPY_STATS |
| VP9_COMP *cpi, |
| vp9_coeff_accum *context_counters, |
| #endif |
| vp9_coeff_stats *coef_branch_ct, |
| int block_types) { |
| int i = 0, j, k; |
| #ifdef ENTROPY_STATS |
| int t = 0; |
| #endif |
| |
| for (i = 0; i < block_types; ++i) { |
| for (j = 0; j < COEF_BANDS; ++j) { |
| for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { |
| if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) |
| continue; |
| vp9_tree_probs_from_distribution(MAX_ENTROPY_TOKENS, |
| vp9_coef_encodings, vp9_coef_tree, |
| coef_probs[i][j][k], |
| coef_branch_ct[i][j][k], |
| coef_counts[i][j][k]); |
| #ifdef ENTROPY_STATS |
| if (!cpi->dummy_packing) |
| for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) |
| context_counters[i][j][k][t] += coef_counts[i][j][k][t]; |
| #endif |
| } |
| } |
| } |
| } |
| |
| static void build_coeff_contexts(VP9_COMP *cpi) { |
| build_tree_distribution(cpi->frame_coef_probs_4x4, |
| cpi->coef_counts_4x4, |
| #ifdef ENTROPY_STATS |
| cpi, context_counters_4x4, |
| #endif |
| cpi->frame_branch_ct_4x4, BLOCK_TYPES_4X4); |
| build_tree_distribution(cpi->frame_hybrid_coef_probs_4x4, |
| cpi->hybrid_coef_counts_4x4, |
| #ifdef ENTROPY_STATS |
| cpi, hybrid_context_counters_4x4, |
| #endif |
| cpi->frame_hybrid_branch_ct_4x4, BLOCK_TYPES_4X4); |
| build_tree_distribution(cpi->frame_coef_probs_8x8, |
| cpi->coef_counts_8x8, |
| #ifdef ENTROPY_STATS |
| cpi, context_counters_8x8, |
| #endif |
| cpi->frame_branch_ct_8x8, BLOCK_TYPES_8X8); |
| build_tree_distribution(cpi->frame_hybrid_coef_probs_8x8, |
| cpi->hybrid_coef_counts_8x8, |
| #ifdef ENTROPY_STATS |
| cpi, hybrid_context_counters_8x8, |
| #endif |
| cpi->frame_hybrid_branch_ct_8x8, BLOCK_TYPES_8X8); |
| build_tree_distribution(cpi->frame_coef_probs_16x16, |
| cpi->coef_counts_16x16, |
| #ifdef ENTROPY_STATS |
| cpi, context_counters_16x16, |
| #endif |
| cpi->frame_branch_ct_16x16, BLOCK_TYPES_16X16); |
| build_tree_distribution(cpi->frame_hybrid_coef_probs_16x16, |
| cpi->hybrid_coef_counts_16x16, |
| #ifdef ENTROPY_STATS |
| cpi, hybrid_context_counters_16x16, |
| #endif |
| cpi->frame_hybrid_branch_ct_16x16, BLOCK_TYPES_16X16); |
| build_tree_distribution(cpi->frame_coef_probs_32x32, |
| cpi->coef_counts_32x32, |
| #ifdef ENTROPY_STATS |
| cpi, context_counters_32x32, |
| #endif |
| cpi->frame_branch_ct_32x32, BLOCK_TYPES_32X32); |
| } |
| |
| static void update_coef_probs_common(vp9_writer* const bc, |
| #ifdef ENTROPY_STATS |
| VP9_COMP *cpi, |
| vp9_coeff_stats *tree_update_hist, |
| #endif |
| vp9_coeff_probs *new_frame_coef_probs, |
| vp9_coeff_probs *old_frame_coef_probs, |
| vp9_coeff_stats *frame_branch_ct, |
| int block_types) { |
| int i, j, k, t; |
| int update[2] = {0, 0}; |
| int savings; |
| // vp9_prob bestupd = find_coef_update_prob(cpi); |
| |
| /* dry run to see if there is any udpate at all needed */ |
| savings = 0; |
| for (i = 0; i < block_types; ++i) { |
| for (j = !i; j < COEF_BANDS; ++j) { |
| int prev_coef_savings[ENTROPY_NODES] = {0}; |
| for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { |
| for (t = 0; t < ENTROPY_NODES; ++t) { |
| vp9_prob newp = new_frame_coef_probs[i][j][k][t]; |
| const vp9_prob oldp = old_frame_coef_probs[i][j][k][t]; |
| const vp9_prob upd = COEF_UPDATE_PROB; |
| int s = prev_coef_savings[t]; |
| int u = 0; |
| if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) |
| continue; |
| #if defined(SEARCH_NEWP) |
| s = prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][t], |
| oldp, &newp, upd); |
| if (s > 0 && newp != oldp) |
| u = 1; |
| if (u) |
| savings += s - (int)(vp9_cost_zero(upd)); |
| else |
| savings -= (int)(vp9_cost_zero(upd)); |
| #else |
| s = prob_update_savings( |
| frame_branch_ct[i][j][k][t], |
| oldp, newp, upd); |
| if (s > 0) |
| u = 1; |
| if (u) |
| savings += s; |
| #endif |
| |
| update[u]++; |
| } |
| } |
| } |
| } |
| |
| // printf("Update %d %d, savings %d\n", update[0], update[1], savings); |
| /* Is coef updated at all */ |
| if (update[1] == 0 || savings < 0) { |
| vp9_write_bit(bc, 0); |
| } else { |
| vp9_write_bit(bc, 1); |
| for (i = 0; i < block_types; ++i) { |
| for (j = !i; j < COEF_BANDS; ++j) { |
| int prev_coef_savings[ENTROPY_NODES] = {0}; |
| for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { |
| // calc probs and branch cts for this frame only |
| for (t = 0; t < ENTROPY_NODES; ++t) { |
| vp9_prob newp = new_frame_coef_probs[i][j][k][t]; |
| vp9_prob *oldp = old_frame_coef_probs[i][j][k] + t; |
| const vp9_prob upd = COEF_UPDATE_PROB; |
| int s = prev_coef_savings[t]; |
| int u = 0; |
| if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) |
| continue; |
| |
| #if defined(SEARCH_NEWP) |
| s = prob_diff_update_savings_search( |
| frame_branch_ct[i][j][k][t], |
| *oldp, &newp, upd); |
| if (s > 0 && newp != *oldp) |
| u = 1; |
| #else |
| s = prob_update_savings( |
| frame_branch_ct[i][j][k][t], |
| *oldp, newp, upd); |
| if (s > 0) |
| u = 1; |
| #endif |
| vp9_write(bc, u, upd); |
| #ifdef ENTROPY_STATS |
| if (!cpi->dummy_packing) |
| ++tree_update_hist[i][j][k][t][u]; |
| #endif |
| if (u) { |
| /* send/use new probability */ |
| write_prob_diff_update(bc, newp, *oldp); |
| *oldp = newp; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) { |
| vp9_clear_system_state(); |
| |
| // Build the cofficient contexts based on counts collected in encode loop |
| build_coeff_contexts(cpi); |
| |
| update_coef_probs_common(bc, |
| #ifdef ENTROPY_STATS |
| cpi, |
| tree_update_hist_4x4, |
| #endif |
| cpi->frame_coef_probs_4x4, |
| cpi->common.fc.coef_probs_4x4, |
| cpi->frame_branch_ct_4x4, |
| BLOCK_TYPES_4X4); |
| |
| update_coef_probs_common(bc, |
| #ifdef ENTROPY_STATS |
| cpi, |
| hybrid_tree_update_hist_4x4, |
| #endif |
| cpi->frame_hybrid_coef_probs_4x4, |
| cpi->common.fc.hybrid_coef_probs_4x4, |
| cpi->frame_hybrid_branch_ct_4x4, |
| BLOCK_TYPES_4X4); |
| |
| /* do not do this if not even allowed */ |
| if (cpi->common.txfm_mode != ONLY_4X4) { |
| update_coef_probs_common(bc, |
| #ifdef ENTROPY_STATS |
| cpi, |
| tree_update_hist_8x8, |
| #endif |
| cpi->frame_coef_probs_8x8, |
| cpi->common.fc.coef_probs_8x8, |
| cpi->frame_branch_ct_8x8, |
| BLOCK_TYPES_8X8); |
| |
| update_coef_probs_common(bc, |
| #ifdef ENTROPY_STATS |
| cpi, |
| hybrid_tree_update_hist_8x8, |
| #endif |
| cpi->frame_hybrid_coef_probs_8x8, |
| cpi->common.fc.hybrid_coef_probs_8x8, |
| cpi->frame_hybrid_branch_ct_8x8, |
| BLOCK_TYPES_8X8); |
| } |
| |
| if (cpi->common.txfm_mode > ALLOW_8X8) { |
| update_coef_probs_common(bc, |
| #ifdef ENTROPY_STATS |
| cpi, |
| tree_update_hist_16x16, |
| #endif |
| cpi->frame_coef_probs_16x16, |
| cpi->common.fc.coef_probs_16x16, |
| cpi->frame_branch_ct_16x16, |
| BLOCK_TYPES_16X16); |
| update_coef_probs_common(bc, |
| #ifdef ENTROPY_STATS |
| cpi, |
| hybrid_tree_update_hist_16x16, |
| #endif |
| cpi->frame_hybrid_coef_probs_16x16, |
| cpi->common.fc.hybrid_coef_probs_16x16, |
| cpi->frame_hybrid_branch_ct_16x16, |
| BLOCK_TYPES_16X16); |
| } |
| |
| if (cpi->common.txfm_mode > ALLOW_16X16) { |
| update_coef_probs_common(bc, |
| #ifdef ENTROPY_STATS |
| cpi, |
| tree_update_hist_32x32, |
| #endif |
| cpi->frame_coef_probs_32x32, |
| cpi->common.fc.coef_probs_32x32, |
| cpi->frame_branch_ct_32x32, |
| BLOCK_TYPES_32X32); |
| } |
| } |
| |
| #ifdef PACKET_TESTING |
| FILE *vpxlogc = 0; |
| #endif |
| |
| static void put_delta_q(vp9_writer *bc, int delta_q) { |
| if (delta_q != 0) { |
| vp9_write_bit(bc, 1); |
| vp9_write_literal(bc, abs(delta_q), 4); |
| |
| if (delta_q < 0) |
| vp9_write_bit(bc, 1); |
| else |
| vp9_write_bit(bc, 0); |
| } else |
| vp9_write_bit(bc, 0); |
| } |
| |
| static void decide_kf_ymode_entropy(VP9_COMP *cpi) { |
| |
| int mode_cost[MB_MODE_COUNT]; |
| int cost; |
| int bestcost = INT_MAX; |
| int bestindex = 0; |
| int i, j; |
| |
| for (i = 0; i < 8; i++) { |
| vp9_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp9_kf_ymode_tree); |
| cost = 0; |
| for (j = 0; j < VP9_YMODES; j++) { |
| cost += mode_cost[j] * cpi->ymode_count[j]; |
| } |
| vp9_cost_tokens(mode_cost, cpi->common.sb_kf_ymode_prob[i], |
| vp9_sb_ymode_tree); |
| for (j = 0; j < VP9_I32X32_MODES; j++) { |
| cost += mode_cost[j] * cpi->sb_ymode_count[j]; |
| } |
| if (cost < bestcost) { |
| bestindex = i; |
| bestcost = cost; |
| } |
| } |
| cpi->common.kf_ymode_probs_index = bestindex; |
| |
| } |
| static void segment_reference_frames(VP9_COMP *cpi) { |
| VP9_COMMON *oci = &cpi->common; |
| MODE_INFO *mi = oci->mi; |
| int ref[MAX_MB_SEGMENTS] = {0}; |
| int i, j; |
| int mb_index = 0; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| |
| for (i = 0; i < oci->mb_rows; i++) { |
| for (j = 0; j < oci->mb_cols; j++, mb_index++) { |
| ref[mi[mb_index].mbmi.segment_id] |= (1 << mi[mb_index].mbmi.ref_frame); |
| } |
| mb_index++; |
| } |
| for (i = 0; i < MAX_MB_SEGMENTS; i++) { |
| vp9_enable_segfeature(xd, i, SEG_LVL_REF_FRAME); |
| vp9_set_segdata(xd, i, SEG_LVL_REF_FRAME, ref[i]); |
| } |
| } |
| |
| void vp9_pack_bitstream(VP9_COMP *cpi, unsigned char *dest, |
| unsigned long *size) { |
| int i, j; |
| VP9_HEADER oh; |
| VP9_COMMON *const pc = &cpi->common; |
| vp9_writer header_bc, residual_bc; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| int extra_bytes_packed = 0; |
| |
| unsigned char *cx_data = dest; |
| |
| oh.show_frame = (int) pc->show_frame; |
| oh.type = (int)pc->frame_type; |
| oh.version = pc->version; |
| oh.first_partition_length_in_bytes = 0; |
| |
| cx_data += 3; |
| |
| #if defined(SECTIONBITS_OUTPUT) |
| Sectionbits[active_section = 1] += sizeof(VP9_HEADER) * 8 * 256; |
| #endif |
| |
| compute_update_table(); |
| |
| /* vp9_kf_default_bmode_probs() is called in vp9_setup_key_frame() once |
| * for each K frame before encode frame. pc->kf_bmode_prob doesn't get |
| * changed anywhere else. No need to call it again here. --yw |
| * vp9_kf_default_bmode_probs( pc->kf_bmode_prob); |
| */ |
| |
| /* every keyframe send startcode, width, height, scale factor, clamp |
| * and color type. |
| */ |
| if (oh.type == KEY_FRAME) { |
| int v; |
| |
| // Start / synch code |
| cx_data[0] = 0x9D; |
| cx_data[1] = 0x01; |
| cx_data[2] = 0x2a; |
| |
| v = (pc->horiz_scale << 14) | pc->Width; |
| cx_data[3] = v; |
| cx_data[4] = v >> 8; |
| |
| v = (pc->vert_scale << 14) | pc->Height; |
| cx_data[5] = v; |
| cx_data[6] = v >> 8; |
| |
| extra_bytes_packed = 7; |
| cx_data += extra_bytes_packed; |
| |
| vp9_start_encode(&header_bc, cx_data); |
| |
| // signal clr type |
| vp9_write_bit(&header_bc, pc->clr_type); |
| vp9_write_bit(&header_bc, pc->clamp_type); |
| |
| } else { |
| vp9_start_encode(&header_bc, cx_data); |
| } |
| |
| // error resilient mode |
| vp9_write_bit(&header_bc, pc->error_resilient_mode); |
| |
| // Signal whether or not Segmentation is enabled |
| vp9_write_bit(&header_bc, (xd->segmentation_enabled) ? 1 : 0); |
| |
| // Indicate which features are enabled |
| if (xd->segmentation_enabled) { |
| // Indicate whether or not the segmentation map is being updated. |
| vp9_write_bit(&header_bc, (xd->update_mb_segmentation_map) ? 1 : 0); |
| |
| // If it is, then indicate the method that will be used. |
| if (xd->update_mb_segmentation_map) { |
| // Select the coding strategy (temporal or spatial) |
| vp9_choose_segmap_coding_method(cpi); |
| // Send the tree probabilities used to decode unpredicted |
| // macro-block segments |
| for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { |
| int data = xd->mb_segment_tree_probs[i]; |
| |
| if (data != 255) { |
| vp9_write_bit(&header_bc, 1); |
| vp9_write_literal(&header_bc, data, 8); |
| } else { |
| vp9_write_bit(&header_bc, 0); |
| } |
| } |
| |
| // Write out the chosen coding method. |
| vp9_write_bit(&header_bc, (pc->temporal_update) ? 1 : 0); |
| if (pc->temporal_update) { |
| for (i = 0; i < PREDICTION_PROBS; i++) { |
| int data = pc->segment_pred_probs[i]; |
| |
| if (data != 255) { |
| vp9_write_bit(&header_bc, 1); |
| vp9_write_literal(&header_bc, data, 8); |
| } else { |
| vp9_write_bit(&header_bc, 0); |
| } |
| } |
| } |
| } |
| |
| vp9_write_bit(&header_bc, (xd->update_mb_segmentation_data) ? 1 : 0); |
| |
| // segment_reference_frames(cpi); |
| |
| if (xd->update_mb_segmentation_data) { |
| signed char Data; |
| |
| vp9_write_bit(&header_bc, (xd->mb_segment_abs_delta) ? 1 : 0); |
| |
| // For each segments id... |
| for (i = 0; i < MAX_MB_SEGMENTS; i++) { |
| // For each segmentation codable feature... |
| for (j = 0; j < SEG_LVL_MAX; j++) { |
| Data = vp9_get_segdata(xd, i, j); |
| |
| // If the feature is enabled... |
| if (vp9_segfeature_active(xd, i, j)) { |
| vp9_write_bit(&header_bc, 1); |
| |
| // Is the segment data signed.. |
| if (vp9_is_segfeature_signed(j)) { |
| // Encode the relevant feature data |
| if (Data < 0) { |
| Data = - Data; |
| vp9_encode_unsigned_max(&header_bc, Data, |
| vp9_seg_feature_data_max(j)); |
| vp9_write_bit(&header_bc, 1); |
| } else { |
| vp9_encode_unsigned_max(&header_bc, Data, |
| vp9_seg_feature_data_max(j)); |
| vp9_write_bit(&header_bc, 0); |
| } |
| } |
| // Unsigned data element so no sign bit needed |
| else |
| vp9_encode_unsigned_max(&header_bc, Data, |
| vp9_seg_feature_data_max(j)); |
| } else |
| vp9_write_bit(&header_bc, 0); |
| } |
| } |
| } |
| } |
| |
| // Encode the common prediction model status flag probability updates for |
| // the reference frame |
| update_refpred_stats(cpi); |
| if (pc->frame_type != KEY_FRAME) { |
| for (i = 0; i < PREDICTION_PROBS; i++) { |
| if (cpi->ref_pred_probs_update[i]) { |
| vp9_write_bit(&header_bc, 1); |
| vp9_write_literal(&header_bc, pc->ref_pred_probs[i], 8); |
| } else { |
| vp9_write_bit(&header_bc, 0); |
| } |
| } |
| } |
| |
| pc->sb64_coded = get_binary_prob(cpi->sb64_count[0], cpi->sb64_count[1]); |
| vp9_write_literal(&header_bc, pc->sb64_coded, 8); |
| pc->sb32_coded = get_binary_prob(cpi->sb32_count[0], cpi->sb32_count[1]); |
| vp9_write_literal(&header_bc, pc->sb32_coded, 8); |
| |
| { |
| if (pc->txfm_mode == TX_MODE_SELECT) { |
| pc->prob_tx[0] = get_prob(cpi->txfm_count_32x32p[TX_4X4] + |
| cpi->txfm_count_16x16p[TX_4X4] + |
| cpi->txfm_count_8x8p[TX_4X4], |
| cpi->txfm_count_32x32p[TX_4X4] + |
| cpi->txfm_count_32x32p[TX_8X8] + |
| cpi->txfm_count_32x32p[TX_16X16] + |
| cpi->txfm_count_32x32p[TX_32X32] + |
| cpi->txfm_count_16x16p[TX_4X4] + |
| cpi->txfm_count_16x16p[TX_8X8] + |
| cpi->txfm_count_16x16p[TX_16X16] + |
| cpi->txfm_count_8x8p[TX_4X4] + |
| cpi->txfm_count_8x8p[TX_8X8]); |
| pc->prob_tx[1] = get_prob(cpi->txfm_count_32x32p[TX_8X8] + |
| cpi->txfm_count_16x16p[TX_8X8], |
| cpi->txfm_count_32x32p[TX_8X8] + |
| cpi->txfm_count_32x32p[TX_16X16] + |
| cpi->txfm_count_32x32p[TX_32X32] + |
| cpi->txfm_count_16x16p[TX_8X8] + |
| cpi->txfm_count_16x16p[TX_16X16]); |
| pc->prob_tx[2] = get_prob(cpi->txfm_count_32x32p[TX_16X16], |
| cpi->txfm_count_32x32p[TX_16X16] + |
| cpi->txfm_count_32x32p[TX_32X32]); |
| } else { |
| pc->prob_tx[0] = 128; |
| pc->prob_tx[1] = 128; |
| pc->prob_tx[2] = 128; |
| } |
| vp9_write_literal(&header_bc, pc->txfm_mode <= 3 ? pc->txfm_mode : 3, 2); |
| if (pc->txfm_mode > ALLOW_16X16) { |
| vp9_write_bit(&header_bc, pc->txfm_mode == TX_MODE_SELECT); |
| } |
| if (pc->txfm_mode == TX_MODE_SELECT) { |
| vp9_write_literal(&header_bc, pc->prob_tx[0], 8); |
| vp9_write_literal(&header_bc, pc->prob_tx[1], 8); |
| vp9_write_literal(&header_bc, pc->prob_tx[2], 8); |
| } |
| } |
| |
| // Encode the loop filter level and type |
| vp9_write_bit(&header_bc, pc->filter_type); |
| vp9_write_literal(&header_bc, pc->filter_level, 6); |
| vp9_write_literal(&header_bc, pc->sharpness_level, 3); |
| |
| // Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled). |
| vp9_write_bit(&header_bc, (xd->mode_ref_lf_delta_enabled) ? 1 : 0); |
| |
| if (xd->mode_ref_lf_delta_enabled) { |
| // Do the deltas need to be updated |
| int send_update = xd->mode_ref_lf_delta_update; |
| |
| vp9_write_bit(&header_bc, send_update); |
| if (send_update) { |
| int Data; |
| |
| // Send update |
| for (i = 0; i < MAX_REF_LF_DELTAS; i++) { |
| Data = xd->ref_lf_deltas[i]; |
| |
| // Frame level data |
| if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]) { |
| xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i]; |
| vp9_write_bit(&header_bc, 1); |
| |
| if (Data > 0) { |
| vp9_write_literal(&header_bc, (Data & 0x3F), 6); |
| vp9_write_bit(&header_bc, 0); // sign |
| } else { |
| Data = -Data; |
| vp9_write_literal(&header_bc, (Data & 0x3F), 6); |
| vp9_write_bit(&header_bc, 1); // sign |
| } |
| } else { |
| vp9_write_bit(&header_bc, 0); |
| } |
| } |
| |
| // Send update |
| for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { |
| Data = xd->mode_lf_deltas[i]; |
| |
| if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]) { |
| xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i]; |
| vp9_write_bit(&header_bc, 1); |
| |
| if (Data > 0) { |
| vp9_write_literal(&header_bc, (Data & 0x3F), 6); |
| vp9_write_bit(&header_bc, 0); // sign |
| } else { |
| Data = -Data; |
| vp9_write_literal(&header_bc, (Data & 0x3F), 6); |
| vp9_write_bit(&header_bc, 1); // sign |
| } |
| } else { |
| vp9_write_bit(&header_bc, 0); |
| } |
| } |
| } |
| } |
| |
| // signal here is multi token partition is enabled |
| // vp9_write_literal(&header_bc, pc->multi_token_partition, 2); |
| vp9_write_literal(&header_bc, 0, 2); |
| |
| // Frame Q baseline quantizer index |
| vp9_write_literal(&header_bc, pc->base_qindex, QINDEX_BITS); |
| |
| // Transmit Dc, Second order and Uv quantizer delta information |
| put_delta_q(&header_bc, pc->y1dc_delta_q); |
| put_delta_q(&header_bc, pc->y2dc_delta_q); |
| put_delta_q(&header_bc, pc->y2ac_delta_q); |
| put_delta_q(&header_bc, pc->uvdc_delta_q); |
| put_delta_q(&header_bc, pc->uvac_delta_q); |
| |
| // When there is a key frame all reference buffers are updated using the new key frame |
| if (pc->frame_type != KEY_FRAME) { |
| int refresh_mask; |
| |
| // Should the GF or ARF be updated using the transmitted frame or buffer |
| if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { |
| /* Preserve the previously existing golden frame and update the frame in |
| * the alt ref slot instead. This is highly specific to the use of |
| * alt-ref as a forward reference, and this needs to be generalized as |
| * other uses are implemented (like RTC/temporal scaling) |
| * |
| * gld_fb_idx and alt_fb_idx need to be swapped for future frames, but |
| * that happens in vp9_onyx_if.c:update_reference_frames() so that it can |
| * be done outside of the recode loop. |
| */ |
| refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) | |
| (cpi->refresh_golden_frame << cpi->alt_fb_idx); |
| } else { |
| refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) | |
| (cpi->refresh_golden_frame << cpi->gld_fb_idx) | |
| (cpi->refresh_alt_ref_frame << cpi->alt_fb_idx); |
| } |
| vp9_write_literal(&header_bc, refresh_mask, NUM_REF_FRAMES); |
| vp9_write_literal(&header_bc, cpi->lst_fb_idx, NUM_REF_FRAMES_LG2); |
| vp9_write_literal(&header_bc, cpi->gld_fb_idx, NUM_REF_FRAMES_LG2); |
| vp9_write_literal(&header_bc, cpi->alt_fb_idx, NUM_REF_FRAMES_LG2); |
| |
| // Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer) |
| vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]); |
| vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[ALTREF_FRAME]); |
| |
| // Signal whether to allow high MV precision |
| vp9_write_bit(&header_bc, (xd->allow_high_precision_mv) ? 1 : 0); |
| if (pc->mcomp_filter_type == SWITCHABLE) { |
| /* Check to see if only one of the filters is actually used */ |
| int count[VP9_SWITCHABLE_FILTERS]; |
| int i, j, c = 0; |
| for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { |
| count[i] = 0; |
| for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) { |
| count[i] += cpi->switchable_interp_count[j][i]; |
| } |
| c += (count[i] > 0); |
| } |
| if (c == 1) { |
| /* Only one filter is used. So set the filter at frame level */ |
| for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { |
| if (count[i]) { |
| pc->mcomp_filter_type = vp9_switchable_interp[i]; |
| break; |
| } |
| } |
| } |
| } |
| // Signal the type of subpel filter to use |
| vp9_write_bit(&header_bc, (pc->mcomp_filter_type == SWITCHABLE)); |
| if (pc->mcomp_filter_type != SWITCHABLE) |
| vp9_write_literal(&header_bc, (pc->mcomp_filter_type), 2); |
| #if CONFIG_COMP_INTERINTRA_PRED |
| // printf("Counts: %d %d\n", cpi->interintra_count[0], |
| // cpi->interintra_count[1]); |
| if (!cpi->dummy_packing && pc->use_interintra) |
| pc->use_interintra = (cpi->interintra_count[1] > 0); |
| vp9_write_bit(&header_bc, pc->use_interintra); |
| if (!pc->use_interintra) |
| vp9_zero(cpi->interintra_count); |
| #endif |
| } |
| |
| if (!pc->error_resilient_mode) { |
| vp9_write_bit(&header_bc, pc->refresh_entropy_probs); |
| vp9_write_bit(&header_bc, pc->frame_parallel_decoding_mode); |
| } |
| |
| vp9_write_literal(&header_bc, pc->frame_context_idx, |
| NUM_FRAME_CONTEXTS_LG2); |
| |
| #ifdef ENTROPY_STATS |
| if (pc->frame_type == INTER_FRAME) |
| active_section = 0; |
| else |
| active_section = 7; |
| #endif |
| |
| // If appropriate update the inter mode probability context and code the |
| // changes in the bitstream. |
| if (pc->frame_type != KEY_FRAME) { |
| int i, j; |
| int new_context[INTER_MODE_CONTEXTS][4]; |
| update_mode_probs(pc, new_context); |
| |
| for (i = 0; i < INTER_MODE_CONTEXTS; i++) { |
| for (j = 0; j < 4; j++) { |
| if (new_context[i][j] != pc->fc.vp9_mode_contexts[i][j]) { |
| vp9_write(&header_bc, 1, 252); |
| vp9_write_literal(&header_bc, new_context[i][j], 8); |
| |
| // Only update the persistent copy if this is the "real pack" |
| if (!cpi->dummy_packing) { |
| pc->fc.vp9_mode_contexts[i][j] = new_context[i][j]; |
| } |
| } else { |
| vp9_write(&header_bc, 0, 252); |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_NEW_MVREF |
| if ((pc->frame_type != KEY_FRAME)) { |
| int new_mvref_probs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES-1]; |
| int i, j; |
| |
| update_mv_ref_probs(cpi, new_mvref_probs); |
| |
| for (i = 0; i < MAX_REF_FRAMES; ++i) { |
| // Skip the dummy entry for intra ref frame. |
| if (i == INTRA_FRAME) { |
| continue; |
| } |
| |
| // Encode any mandated updates to probabilities |
| for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j) { |
| if (new_mvref_probs[i][j] != xd->mb_mv_ref_probs[i][j]) { |
| vp9_write(&header_bc, 1, VP9_MVREF_UPDATE_PROB); |
| vp9_write_literal(&header_bc, new_mvref_probs[i][j], 8); |
| |
| // Only update the persistent copy if this is the "real pack" |
| if (!cpi->dummy_packing) { |
| xd->mb_mv_ref_probs[i][j] = new_mvref_probs[i][j]; |
| } |
| } else { |
| vp9_write(&header_bc, 0, VP9_MVREF_UPDATE_PROB); |
| } |
| } |
| } |
| } |
| #endif |
| |
| vp9_clear_system_state(); // __asm emms; |
| |
| vp9_copy(cpi->common.fc.pre_coef_probs_4x4, |
| cpi->common.fc.coef_probs_4x4); |
| vp9_copy(cpi->common.fc.pre_hybrid_coef_probs_4x4, |
| cpi->common.fc.hybrid_coef_probs_4x4); |
| vp9_copy(cpi->common.fc.pre_coef_probs_8x8, |
| cpi->common.fc.coef_probs_8x8); |
| vp9_copy(cpi->common.fc.pre_hybrid_coef_probs_8x8, |
| cpi->common.fc.hybrid_coef_probs_8x8); |
| vp9_copy(cpi->common.fc.pre_coef_probs_16x16, |
| cpi->common.fc.coef_probs_16x16); |
| vp9_copy(cpi->common.fc.pre_hybrid_coef_probs_16x16, |
| cpi->common.fc.hybrid_coef_probs_16x16); |
| vp9_copy(cpi->common.fc.pre_coef_probs_32x32, |
| cpi->common.fc.coef_probs_32x32); |
| vp9_copy(cpi->common.fc.pre_sb_ymode_prob, cpi->common.fc.sb_ymode_prob); |
| vp9_copy(cpi->common.fc.pre_ymode_prob, cpi->common.fc.ymode_prob); |
| vp9_copy(cpi->common.fc.pre_uv_mode_prob, cpi->common.fc.uv_mode_prob); |
| vp9_copy(cpi->common.fc.pre_bmode_prob, cpi->common.fc.bmode_prob); |
| vp9_copy(cpi->common.fc.pre_sub_mv_ref_prob, cpi->common.fc.sub_mv_ref_prob); |
| vp9_copy(cpi->common.fc.pre_mbsplit_prob, cpi->common.fc.mbsplit_prob); |
| vp9_copy(cpi->common.fc.pre_i8x8_mode_prob, cpi->common.fc.i8x8_mode_prob); |
| cpi->common.fc.pre_nmvc = cpi->common.fc.nmvc; |
| #if CONFIG_COMP_INTERINTRA_PRED |
| cpi->common.fc.pre_interintra_prob = cpi->common.fc.interintra_prob; |
| #endif |
| vp9_zero(cpi->sub_mv_ref_count); |
| vp9_zero(cpi->mbsplit_count); |
| vp9_zero(cpi->common.fc.mv_ref_ct) |
| |
| update_coef_probs(cpi, &header_bc); |
| |
| #ifdef ENTROPY_STATS |
| active_section = 2; |
| #endif |
| |
| // Write out the mb_no_coeff_skip flag |
| vp9_write_bit(&header_bc, pc->mb_no_coeff_skip); |
| if (pc->mb_no_coeff_skip) { |
| int k; |
| |
| vp9_update_skip_probs(cpi); |
| for (k = 0; k < MBSKIP_CONTEXTS; ++k) |
| vp9_write_literal(&header_bc, pc->mbskip_pred_probs[k], 8); |
| } |
| |
| if (pc->frame_type == KEY_FRAME) { |
| if (!pc->kf_ymode_probs_update) { |
| vp9_write_literal(&header_bc, pc->kf_ymode_probs_index, 3); |
| } |
| } else { |
| // Update the probabilities used to encode reference frame data |
| update_ref_probs(cpi); |
| |
| #ifdef ENTROPY_STATS |
| active_section = 1; |
| #endif |
| |
| if (pc->mcomp_filter_type == SWITCHABLE) |
| update_switchable_interp_probs(cpi, &header_bc); |
| |
| #if CONFIG_COMP_INTERINTRA_PRED |
| if (pc->use_interintra) { |
| vp9_cond_prob_update(&header_bc, |
| &pc->fc.interintra_prob, |
| VP9_UPD_INTERINTRA_PROB, |
| cpi->interintra_count); |
| } |
| #endif |
| |
| vp9_write_literal(&header_bc, pc->prob_intra_coded, 8); |
| vp9_write_literal(&header_bc, pc->prob_last_coded, 8); |
| vp9_write_literal(&header_bc, pc->prob_gf_coded, 8); |
| |
| { |
| const int comp_pred_mode = cpi->common.comp_pred_mode; |
| const int use_compound_pred = (comp_pred_mode != SINGLE_PREDICTION_ONLY); |
| const int use_hybrid_pred = (comp_pred_mode == HYBRID_PREDICTION); |
| |
| vp9_write(&header_bc, use_compound_pred, 128); |
| if (use_compound_pred) { |
| vp9_write(&header_bc, use_hybrid_pred, 128); |
| if (use_hybrid_pred) { |
| for (i = 0; i < COMP_PRED_CONTEXTS; i++) { |
| pc->prob_comppred[i] = get_binary_prob(cpi->single_pred_count[i], |
| cpi->comp_pred_count[i]); |
| vp9_write_literal(&header_bc, pc->prob_comppred[i], 8); |
| } |
| } |
| } |
| } |
| update_mbintra_mode_probs(cpi, &header_bc); |
| |
| vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc); |
| } |
| |
| vp9_stop_encode(&header_bc); |
| |
| oh.first_partition_length_in_bytes = header_bc.pos; |
| |
| /* update frame tag */ |
| { |
| int v = (oh.first_partition_length_in_bytes << 5) | |
| (oh.show_frame << 4) | |
| (oh.version << 1) | |
| oh.type; |
| |
| dest[0] = v; |
| dest[1] = v >> 8; |
| dest[2] = v >> 16; |
| } |
| |
| *size = VP9_HEADER_SIZE + extra_bytes_packed + header_bc.pos; |
| vp9_start_encode(&residual_bc, cx_data + header_bc.pos); |
| |
| if (pc->frame_type == KEY_FRAME) { |
| decide_kf_ymode_entropy(cpi); |
| write_modes(cpi, &residual_bc); |
| } else { |
| /* This is not required if the counts in cpi are consistent with the |
| * final packing pass */ |
| // if (!cpi->dummy_packing) vp9_zero(cpi->NMVcount); |
| write_modes(cpi, &residual_bc); |
| } |
| |
| vp9_stop_encode(&residual_bc); |
| |
| *size += residual_bc.pos; |
| } |
| |
| #ifdef ENTROPY_STATS |
| static void print_tree_update_for_type(FILE *f, |
| vp9_coeff_stats *tree_update_hist, |
| int block_types, const char *header) { |
| int i, j, k, l; |
| |
| fprintf(f, "const vp9_coeff_prob %s = {\n", header); |
| for (i = 0; i < block_types; i++) { |
| fprintf(f, " { \n"); |
| for (j = 0; j < COEF_BANDS; j++) { |
| fprintf(f, " {\n"); |
| for (k = 0; k < PREV_COEF_CONTEXTS; k++) { |
| fprintf(f, " {"); |
| for (l = 0; l < ENTROPY_NODES; l++) { |
| fprintf(f, "%3d, ", |
| get_binary_prob(tree_update_hist[i][j][k][l][0], |
| tree_update_hist[i][j][k][l][1])); |
| } |
| fprintf(f, "},\n"); |
| } |
| fprintf(f, " },\n"); |
| } |
| fprintf(f, " },\n"); |
| } |
| fprintf(f, "};\n"); |
| } |
| |
| void print_tree_update_probs() { |
| FILE *f = fopen("coefupdprob.h", "w"); |
| fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n"); |
| |
| print_tree_update_for_type(f, tree_update_hist_4x4, BLOCK_TYPES_4X4, |
| "vp9_coef_update_probs_4x4[BLOCK_TYPES_4X4]"); |
| print_tree_update_for_type(f, hybrid_tree_update_hist_4x4, BLOCK_TYPES_4X4, |
| "vp9_coef_update_probs_4x4[BLOCK_TYPES_4X4]"); |
| print_tree_update_for_type(f, tree_update_hist_8x8, BLOCK_TYPES_8X8, |
| "vp9_coef_update_probs_8x8[BLOCK_TYPES_8X8]"); |
| print_tree_update_for_type(f, hybrid_tree_update_hist_8x8, BLOCK_TYPES_8X8, |
| "vp9_coef_update_probs_8x8[BLOCK_TYPES_8X8]"); |
| print_tree_update_for_type(f, tree_update_hist_16x16, BLOCK_TYPES_16X16, |
| "vp9_coef_update_probs_16x16[BLOCK_TYPES_16X16]"); |
| print_tree_update_for_type(f, hybrid_tree_update_hist_16x16, |
| BLOCK_TYPES_16X16, |
| "vp9_coef_update_probs_16x16[BLOCK_TYPES_16X16]"); |
| print_tree_update_for_type(f, tree_update_hist_32x32, BLOCK_TYPES_32X32, |
| "vp9_coef_update_probs_32x32[BLOCK_TYPES_32X32]"); |
| |
| fclose(f); |
| f = fopen("treeupdate.bin", "wb"); |
| fwrite(tree_update_hist_4x4, sizeof(tree_update_hist_4x4), 1, f); |
| fwrite(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f); |
| fwrite(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f); |
| fclose(f); |
| } |
| #endif |