| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| #include <assert.h> |
| #include <smmintrin.h> /* SSE4.1 */ |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| #include "av1/common/idct.h" |
| |
| void av1_highbd_inv_txfm_add_sse4_1(const tran_low_t *input, uint16_t *dest, |
| int stride, const TxfmParam *txfm_param) { |
| assert(av1_ext_tx_used[txfm_param->tx_set_type][txfm_param->tx_type]); |
| inv_txfm_c(input, dest, stride, txfm_param); |
| } |
| |
| // 128bit intrinsic implementation of ROUND_POWER_OF_TWO_SIGNED. |
| static INLINE __m128i round_power_of_two_signed_epi32(__m128i val, int bits) { |
| const __m128i v_bias_d = _mm_set1_epi32((1 << bits) >> 1); |
| const __m128i v_sign_d = _mm_srai_epi32(val, 31); |
| const __m128i v_tmp_d = _mm_add_epi32(_mm_add_epi32(val, v_bias_d), v_sign_d); |
| return _mm_srai_epi32(v_tmp_d, bits); |
| } |
| |
| // Inverse secondary transform |
| void inv_stxfm_sse4_1(tran_low_t *src, tran_low_t *dst, |
| const PREDICTION_MODE mode, const uint8_t stx_idx, |
| const int size, const int bd) { |
| // Secondary transform kernels are stored as 32-bit integers to match SIMD |
| // processing needs. This avoids on-the-fly conversion from int16_t to int32_t |
| // during execution by letting SIMD variants directly load the pre-converted |
| // filter weights. |
| assert(stx_idx < 4); |
| const int32_t *kernel = (size == 0) ? ist_4x4_kernel_int32[mode][stx_idx][0] |
| : ist_8x8_kernel_int32[mode][stx_idx][0]; |
| |
| int reduced_width, reduced_height; |
| if (size == 0) { |
| reduced_height = IST_4x4_HEIGHT; |
| reduced_width = IST_4x4_WIDTH; |
| } else { |
| reduced_height = (size == 1) |
| ? IST_8x8_HEIGHT_RED |
| : ((size == 3) ? IST_ADST_NZ_CNT : IST_8x8_HEIGHT); |
| reduced_width = IST_8x8_WIDTH; |
| } |
| for (int j = 0; j < reduced_height; j++) { |
| const int32_t *kernel_tmp = kernel; |
| int *srcPtr = src; |
| int *out = dst; |
| __m128i tmpCoeff = _mm_set1_epi32(srcPtr[j]); |
| __m128i *tmpBlock = (__m128i *)out; |
| for (int i = 0; i < reduced_width; i += 4, tmpBlock++) { |
| __m128i tmp = _mm_loadu_si128((__m128i *)(kernel_tmp + i)); |
| __m128i sum = _mm_loadu_si128(tmpBlock); |
| tmp = _mm_mullo_epi32(tmpCoeff, tmp); |
| tmp = _mm_add_epi32(tmp, sum); |
| _mm_storeu_si128(tmpBlock, tmp); |
| } |
| kernel += reduced_width; |
| } |
| int *out = dst; |
| __m128i *tmpBlock = (__m128i *)out; |
| const __m128i max_value = _mm_set1_epi32((1 << (7 + bd)) - 1); |
| const __m128i min_value = _mm_set1_epi32(-(1 << (7 + bd))); |
| for (int j = 0; j < reduced_width; j += 4, tmpBlock++) { |
| __m128i tmp = _mm_loadu_si128(tmpBlock); |
| tmp = round_power_of_two_signed_epi32(tmp, 7); |
| tmp = _mm_min_epi32(_mm_max_epi32(tmp, min_value), max_value); |
| _mm_storeu_si128(tmpBlock, tmp); |
| } |
| } |