|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #ifndef AOM_AV1_ENCODER_ML_H_ | 
|  | #define AOM_AV1_ENCODER_ML_H_ | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #define NN_MAX_HIDDEN_LAYERS 10 | 
|  | #define NN_MAX_NODES_PER_LAYER 128 | 
|  |  | 
|  | struct NN_CONFIG { | 
|  | int num_inputs;         // Number of input nodes, i.e. features. | 
|  | int num_outputs;        // Number of output nodes. | 
|  | int num_hidden_layers;  // Number of hidden layers, maximum 10. | 
|  | // Number of nodes for each hidden layer. | 
|  | int num_hidden_nodes[NN_MAX_HIDDEN_LAYERS]; | 
|  | // Weight parameters, indexed by layer. | 
|  | const float *weights[NN_MAX_HIDDEN_LAYERS + 1]; | 
|  | // Bias parameters, indexed by layer. | 
|  | const float *bias[NN_MAX_HIDDEN_LAYERS + 1]; | 
|  | }; | 
|  | // Typedef from struct NN_CONFIG to NN_CONFIG is in rtcd_defs | 
|  |  | 
|  | #if CONFIG_NN_V2 | 
|  | // Fully-connectedly layer configuration | 
|  | struct FC_LAYER { | 
|  | const int num_inputs;   // Number of input nodes, i.e. features. | 
|  | const int num_outputs;  // Number of output nodes. | 
|  |  | 
|  | float *weights;               // Weight parameters. | 
|  | float *bias;                  // Bias parameters. | 
|  | const ACTIVATION activation;  // Activation function. | 
|  |  | 
|  | float *output;  // The output array. | 
|  | float *dY;      // Gradient of outputs | 
|  | float *dW;      // Gradient of weights. | 
|  | float *db;      // Gradient of bias | 
|  | }; | 
|  |  | 
|  | // NN configure structure V2 | 
|  | struct NN_CONFIG_V2 { | 
|  | const int num_hidden_layers;  // Number of hidden layers, max = 10. | 
|  | FC_LAYER layer[NN_MAX_HIDDEN_LAYERS + 1];  // The layer array | 
|  | const int num_logits;                      // Number of output nodes. | 
|  | float *logits;    // Raw prediction (same as output of final layer) | 
|  | const LOSS loss;  // Loss function | 
|  | }; | 
|  |  | 
|  | // Calculate prediction based on the given input features and neural net config. | 
|  | // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden | 
|  | // layer. | 
|  | void av1_nn_predict_v2(const float *features, NN_CONFIG_V2 *nn_config, | 
|  | int reduce_prec, float *output); | 
|  | #endif  // CONFIG_NN_V2 | 
|  |  | 
|  | // Applies the softmax normalization function to the input | 
|  | // to get a valid probability distribution in the output: | 
|  | // output[i] = exp(input[i]) / sum_{k \in [0,n)}(exp(input[k])) | 
|  | void av1_nn_softmax(const float *input, float *output, int n); | 
|  |  | 
|  | // Applies a precision reduction to output of av1_nn_predict to prevent | 
|  | // mismatches between C and SIMD implementations. | 
|  | void av1_nn_output_prec_reduce(float *const output, int num_output); | 
|  |  | 
|  | #ifdef __cplusplus | 
|  | }  // extern "C" | 
|  | #endif | 
|  |  | 
|  | #endif  // AOM_AV1_ENCODER_ML_H_ |