| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "third_party/googletest/src/googletest/include/gtest/gtest.h" |
| |
| #include "./av1_rtcd.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "test/acm_random.h" |
| #include "test/clear_system_state.h" |
| #include "test/register_state_check.h" |
| #include "test/util.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/scan.h" |
| #include "aom/aom_codec.h" |
| #include "aom/aom_integer.h" |
| #include "aom_ports/mem.h" |
| |
| using libaom_test::ACMRandom; |
| |
| #if !CONFIG_DAALA_TX |
| namespace { |
| |
| const int kNumCoeffs = 64; |
| const double kPi = 3.141592653589793238462643383279502884; |
| |
| const int kSignBiasMaxDiff255 = 1500; |
| const int kSignBiasMaxDiff15 = 10000; |
| |
| typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); |
| typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); |
| typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, |
| TxfmParam *txfm_param); |
| typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, |
| const TxfmParam *txfm_param); |
| |
| typedef std::tr1::tuple<FdctFunc, IdctFunc, TX_TYPE, aom_bit_depth_t> |
| Dct8x8Param; |
| typedef std::tr1::tuple<FhtFunc, IhtFunc, TX_TYPE, aom_bit_depth_t> Ht8x8Param; |
| typedef std::tr1::tuple<IdctFunc, IdctFunc, int, aom_bit_depth_t> Idct8x8Param; |
| |
| void reference_8x8_dct_1d(const double in[8], double out[8]) { |
| const double kInvSqrt2 = 0.707106781186547524400844362104; |
| for (int k = 0; k < 8; k++) { |
| out[k] = 0.0; |
| for (int n = 0; n < 8; n++) |
| out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 16.0); |
| if (k == 0) out[k] = out[k] * kInvSqrt2; |
| } |
| } |
| |
| void reference_8x8_dct_2d(const int16_t input[kNumCoeffs], |
| double output[kNumCoeffs]) { |
| // First transform columns |
| for (int i = 0; i < 8; ++i) { |
| double temp_in[8], temp_out[8]; |
| for (int j = 0; j < 8; ++j) temp_in[j] = input[j * 8 + i]; |
| reference_8x8_dct_1d(temp_in, temp_out); |
| for (int j = 0; j < 8; ++j) output[j * 8 + i] = temp_out[j]; |
| } |
| // Then transform rows |
| for (int i = 0; i < 8; ++i) { |
| double temp_in[8], temp_out[8]; |
| for (int j = 0; j < 8; ++j) temp_in[j] = output[j + i * 8]; |
| reference_8x8_dct_1d(temp_in, temp_out); |
| // Scale by some magic number |
| for (int j = 0; j < 8; ++j) output[j + i * 8] = temp_out[j] * 2; |
| } |
| } |
| |
| void fdct8x8_ref(const int16_t *in, tran_low_t *out, int stride, |
| TxfmParam * /*txfm_param*/) { |
| aom_fdct8x8_c(in, out, stride); |
| } |
| |
| void fht8x8_ref(const int16_t *in, tran_low_t *out, int stride, |
| TxfmParam *txfm_param) { |
| av1_fht8x8_c(in, out, stride, txfm_param); |
| } |
| |
| void fht8x8_10(const int16_t *in, tran_low_t *out, int stride, |
| TxfmParam *txfm_param) { |
| av1_fwd_txfm2d_8x8_c(in, out, stride, txfm_param->tx_type, 10); |
| } |
| |
| void fht8x8_12(const int16_t *in, tran_low_t *out, int stride, |
| TxfmParam *txfm_param) { |
| av1_fwd_txfm2d_8x8_c(in, out, stride, txfm_param->tx_type, 12); |
| } |
| |
| void iht8x8_10(const tran_low_t *in, uint8_t *out, int stride, |
| const TxfmParam *txfm_param) { |
| av1_inv_txfm2d_add_8x8_c(in, CONVERT_TO_SHORTPTR(out), stride, |
| txfm_param->tx_type, 10); |
| } |
| |
| void iht8x8_12(const tran_low_t *in, uint8_t *out, int stride, |
| const TxfmParam *txfm_param) { |
| av1_inv_txfm2d_add_8x8_c(in, CONVERT_TO_SHORTPTR(out), stride, |
| txfm_param->tx_type, 12); |
| } |
| |
| class FwdTrans8x8TestBase { |
| public: |
| virtual ~FwdTrans8x8TestBase() {} |
| |
| protected: |
| virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0; |
| virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0; |
| |
| void RunSignBiasCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| DECLARE_ALIGNED(16, int16_t, test_input_block[64]); |
| DECLARE_ALIGNED(16, tran_low_t, test_output_block[64]); |
| int count_sign_block[64][2]; |
| const int count_test_block = 100000; |
| |
| memset(count_sign_block, 0, sizeof(count_sign_block)); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| // Initialize a test block with input range [-255, 255]. |
| for (int j = 0; j < 64; ++j) |
| test_input_block[j] = ((rnd.Rand16() >> (16 - bit_depth_)) & mask_) - |
| ((rnd.Rand16() >> (16 - bit_depth_)) & mask_); |
| ASM_REGISTER_STATE_CHECK( |
| RunFwdTxfm(test_input_block, test_output_block, pitch_)); |
| |
| for (int j = 0; j < 64; ++j) { |
| if (test_output_block[j] < 0) |
| ++count_sign_block[j][0]; |
| else if (test_output_block[j] > 0) |
| ++count_sign_block[j][1]; |
| } |
| } |
| |
| for (int j = 0; j < 64; ++j) { |
| const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]); |
| const int max_diff = kSignBiasMaxDiff255; |
| EXPECT_LT(diff, max_diff << (bit_depth_ - 8)) |
| << "Error: 8x8 FDCT/FHT has a sign bias > " |
| << 1. * max_diff / count_test_block * 100 << "%" |
| << " for input range [-255, 255] at index " << j |
| << " count0: " << count_sign_block[j][0] |
| << " count1: " << count_sign_block[j][1] << " diff: " << diff; |
| } |
| |
| memset(count_sign_block, 0, sizeof(count_sign_block)); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| // Initialize a test block with input range [-mask_ / 16, mask_ / 16]. |
| for (int j = 0; j < 64; ++j) |
| test_input_block[j] = |
| ((rnd.Rand16() & mask_) >> 4) - ((rnd.Rand16() & mask_) >> 4); |
| ASM_REGISTER_STATE_CHECK( |
| RunFwdTxfm(test_input_block, test_output_block, pitch_)); |
| |
| for (int j = 0; j < 64; ++j) { |
| if (test_output_block[j] < 0) |
| ++count_sign_block[j][0]; |
| else if (test_output_block[j] > 0) |
| ++count_sign_block[j][1]; |
| } |
| } |
| |
| for (int j = 0; j < 64; ++j) { |
| const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]); |
| const int max_diff = kSignBiasMaxDiff15; |
| EXPECT_LT(diff, max_diff << (bit_depth_ - 8)) |
| << "Error: 8x8 FDCT/FHT has a sign bias > " |
| << 1. * max_diff / count_test_block * 100 << "%" |
| << " for input range [-15, 15] at index " << j |
| << " count0: " << count_sign_block[j][0] |
| << " count1: " << count_sign_block[j][1] << " diff: " << diff; |
| } |
| } |
| |
| void RunRoundTripErrorCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| int max_error = 0; |
| int total_error = 0; |
| const int count_test_block = 100000; |
| DECLARE_ALIGNED(16, int16_t, test_input_block[64]); |
| DECLARE_ALIGNED(16, tran_low_t, test_temp_block[64]); |
| DECLARE_ALIGNED(16, uint8_t, dst[64]); |
| DECLARE_ALIGNED(16, uint8_t, src[64]); |
| DECLARE_ALIGNED(16, uint16_t, dst16[64]); |
| DECLARE_ALIGNED(16, uint16_t, src16[64]); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| // Initialize a test block with input range [-mask_, mask_]. |
| for (int j = 0; j < 64; ++j) { |
| if (bit_depth_ == AOM_BITS_8) { |
| src[j] = rnd.Rand8(); |
| dst[j] = rnd.Rand8(); |
| test_input_block[j] = src[j] - dst[j]; |
| } else { |
| src16[j] = rnd.Rand16() & mask_; |
| dst16[j] = rnd.Rand16() & mask_; |
| test_input_block[j] = src16[j] - dst16[j]; |
| } |
| } |
| |
| ASM_REGISTER_STATE_CHECK( |
| RunFwdTxfm(test_input_block, test_temp_block, pitch_)); |
| for (int j = 0; j < 64; ++j) { |
| if (test_temp_block[j] > 0) { |
| test_temp_block[j] += 2; |
| test_temp_block[j] /= 4; |
| test_temp_block[j] *= 4; |
| } else { |
| test_temp_block[j] -= 2; |
| test_temp_block[j] /= 4; |
| test_temp_block[j] *= 4; |
| } |
| } |
| if (bit_depth_ == AOM_BITS_8) { |
| ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); |
| } else { |
| ASM_REGISTER_STATE_CHECK( |
| RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); |
| } |
| |
| for (int j = 0; j < 64; ++j) { |
| const int diff = |
| bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; |
| const int error = diff * diff; |
| if (max_error < error) max_error = error; |
| total_error += error; |
| } |
| } |
| |
| EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error) |
| << "Error: 8x8 FDCT/IDCT or FHT/IHT has an individual" |
| << " roundtrip error > 1"; |
| |
| EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8)) / 4, total_error) |
| << "Error: 8x8 FDCT/IDCT or FHT/IHT has average roundtrip " |
| << "error > 1/4 per block"; |
| } |
| |
| void RunExtremalCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| int max_error = 0; |
| int total_error = 0; |
| int total_coeff_error = 0; |
| const int count_test_block = 100000; |
| DECLARE_ALIGNED(16, int16_t, test_input_block[64]); |
| DECLARE_ALIGNED(16, tran_low_t, test_temp_block[64]); |
| DECLARE_ALIGNED(16, tran_low_t, ref_temp_block[64]); |
| DECLARE_ALIGNED(16, uint8_t, dst[64]); |
| DECLARE_ALIGNED(16, uint8_t, src[64]); |
| DECLARE_ALIGNED(16, uint16_t, dst16[64]); |
| DECLARE_ALIGNED(16, uint16_t, src16[64]); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| // Initialize a test block with input range [-mask_, mask_]. |
| for (int j = 0; j < 64; ++j) { |
| if (bit_depth_ == AOM_BITS_8) { |
| if (i == 0) { |
| src[j] = 255; |
| dst[j] = 0; |
| } else if (i == 1) { |
| src[j] = 0; |
| dst[j] = 255; |
| } else { |
| src[j] = rnd.Rand8() % 2 ? 255 : 0; |
| dst[j] = rnd.Rand8() % 2 ? 255 : 0; |
| } |
| test_input_block[j] = src[j] - dst[j]; |
| } else { |
| if (i == 0) { |
| src16[j] = mask_; |
| dst16[j] = 0; |
| } else if (i == 1) { |
| src16[j] = 0; |
| dst16[j] = mask_; |
| } else { |
| src16[j] = rnd.Rand8() % 2 ? mask_ : 0; |
| dst16[j] = rnd.Rand8() % 2 ? mask_ : 0; |
| } |
| test_input_block[j] = src16[j] - dst16[j]; |
| } |
| } |
| |
| ASM_REGISTER_STATE_CHECK( |
| RunFwdTxfm(test_input_block, test_temp_block, pitch_)); |
| ASM_REGISTER_STATE_CHECK( |
| fwd_txfm_ref(test_input_block, ref_temp_block, pitch_, &txfm_param_)); |
| if (bit_depth_ == AOM_BITS_8) { |
| ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_)); |
| } else { |
| ASM_REGISTER_STATE_CHECK( |
| RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_)); |
| } |
| |
| for (int j = 0; j < 64; ++j) { |
| const int diff = |
| bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; |
| const int error = diff * diff; |
| if (max_error < error) max_error = error; |
| total_error += error; |
| |
| const int coeff_diff = test_temp_block[j] - ref_temp_block[j]; |
| total_coeff_error += abs(coeff_diff); |
| } |
| |
| EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error) |
| << "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has" |
| << "an individual roundtrip error > 1"; |
| |
| EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8)) / 5, total_error) |
| << "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has average" |
| << " roundtrip error > 1/5 per block"; |
| |
| EXPECT_EQ(0, total_coeff_error) |
| << "Error: Extremal 8x8 FDCT/FHT has" |
| << "overflow issues in the intermediate steps > 1"; |
| } |
| } |
| |
| void RunInvAccuracyCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| double out_r[kNumCoeffs]; |
| |
| // Initialize a test block with input range [-255, 255]. |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| if (bit_depth_ == AOM_BITS_8) { |
| src[j] = rnd.Rand8() % 2 ? 255 : 0; |
| dst[j] = src[j] > 0 ? 0 : 255; |
| in[j] = src[j] - dst[j]; |
| } else { |
| src16[j] = rnd.Rand8() % 2 ? mask_ : 0; |
| dst16[j] = src16[j] > 0 ? 0 : mask_; |
| in[j] = src16[j] - dst16[j]; |
| } |
| } |
| |
| reference_8x8_dct_2d(in, out_r); |
| for (int j = 0; j < kNumCoeffs; ++j) |
| coeff[j] = static_cast<tran_low_t>(round(out_r[j])); |
| |
| if (bit_depth_ == AOM_BITS_8) { |
| ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); |
| } else { |
| ASM_REGISTER_STATE_CHECK( |
| RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_)); |
| } |
| |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| const int diff = |
| bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j]; |
| const uint32_t error = diff * diff; |
| EXPECT_GE(1u << 2 * (bit_depth_ - 8), error) |
| << "Error: 8x8 IDCT has error " << error << " at index " << j; |
| } |
| } |
| } |
| |
| void RunFwdAccuracyCheck() { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 1000; |
| DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, coeff_r[kNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| double out_r[kNumCoeffs]; |
| |
| // Initialize a test block with input range [-mask_, mask_]. |
| for (int j = 0; j < kNumCoeffs; ++j) |
| in[j] = rnd.Rand8() % 2 == 0 ? mask_ : -mask_; |
| |
| RunFwdTxfm(in, coeff, pitch_); |
| reference_8x8_dct_2d(in, out_r); |
| for (int j = 0; j < kNumCoeffs; ++j) |
| coeff_r[j] = static_cast<tran_low_t>(round(out_r[j])); |
| |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| const int32_t diff = coeff[j] - coeff_r[j]; |
| const uint32_t error = diff * diff; |
| EXPECT_GE(9u << 2 * (bit_depth_ - 8), error) |
| << "Error: 8x8 DCT has error " << error << " at index " << j; |
| } |
| } |
| } |
| |
| void CompareInvReference(IdctFunc ref_txfm, int thresh) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 10000; |
| const int eob = 12; |
| DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]); |
| DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]); |
| const int16_t *scan = av1_default_scan_orders[TX_8X8].scan; |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| if (j < eob) { |
| // Random values less than the threshold, either positive or negative |
| coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2)); |
| } else { |
| coeff[scan[j]] = 0; |
| } |
| if (bit_depth_ == AOM_BITS_8) { |
| dst[j] = 0; |
| ref[j] = 0; |
| } else { |
| dst16[j] = 0; |
| ref16[j] = 0; |
| } |
| } |
| if (bit_depth_ == AOM_BITS_8) { |
| ref_txfm(coeff, ref, pitch_); |
| ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_)); |
| } else { |
| ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_); |
| ASM_REGISTER_STATE_CHECK( |
| RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_)); |
| } |
| |
| for (int j = 0; j < kNumCoeffs; ++j) { |
| const int diff = |
| bit_depth_ == AOM_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j]; |
| const uint32_t error = diff * diff; |
| EXPECT_EQ(0u, error) |
| << "Error: 8x8 IDCT has error " << error << " at index " << j; |
| } |
| } |
| } |
| int pitch_; |
| FhtFunc fwd_txfm_ref; |
| aom_bit_depth_t bit_depth_; |
| int mask_; |
| TxfmParam txfm_param_; |
| }; |
| |
| class FwdTrans8x8DCT : public FwdTrans8x8TestBase, |
| public ::testing::TestWithParam<Dct8x8Param> { |
| public: |
| virtual ~FwdTrans8x8DCT() {} |
| |
| virtual void SetUp() { |
| fwd_txfm_ = GET_PARAM(0); |
| inv_txfm_ = GET_PARAM(1); |
| pitch_ = 8; |
| fwd_txfm_ref = fdct8x8_ref; |
| bit_depth_ = GET_PARAM(3); |
| mask_ = (1 << bit_depth_) - 1; |
| txfm_param_.tx_type = GET_PARAM(2); |
| } |
| |
| virtual void TearDown() { libaom_test::ClearSystemState(); } |
| |
| protected: |
| void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { |
| fwd_txfm_(in, out, stride); |
| } |
| void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { |
| inv_txfm_(out, dst, stride); |
| } |
| |
| FdctFunc fwd_txfm_; |
| IdctFunc inv_txfm_; |
| }; |
| |
| TEST_P(FwdTrans8x8DCT, SignBiasCheck) { RunSignBiasCheck(); } |
| |
| TEST_P(FwdTrans8x8DCT, RoundTripErrorCheck) { RunRoundTripErrorCheck(); } |
| |
| TEST_P(FwdTrans8x8DCT, ExtremalCheck) { RunExtremalCheck(); } |
| |
| TEST_P(FwdTrans8x8DCT, FwdAccuracyCheck) { RunFwdAccuracyCheck(); } |
| |
| TEST_P(FwdTrans8x8DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); } |
| |
| class FwdTrans8x8HT : public FwdTrans8x8TestBase, |
| public ::testing::TestWithParam<Ht8x8Param> { |
| public: |
| virtual ~FwdTrans8x8HT() {} |
| |
| virtual void SetUp() { |
| fwd_txfm_ = GET_PARAM(0); |
| inv_txfm_ = GET_PARAM(1); |
| pitch_ = 8; |
| fwd_txfm_ref = fht8x8_ref; |
| bit_depth_ = GET_PARAM(3); |
| mask_ = (1 << bit_depth_) - 1; |
| txfm_param_.tx_type = GET_PARAM(2); |
| switch (bit_depth_) { |
| case AOM_BITS_10: fwd_txfm_ref = fht8x8_10; break; |
| case AOM_BITS_12: fwd_txfm_ref = fht8x8_12; break; |
| default: fwd_txfm_ref = fht8x8_ref; break; |
| } |
| } |
| |
| virtual void TearDown() { libaom_test::ClearSystemState(); } |
| |
| protected: |
| void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) { |
| fwd_txfm_(in, out, stride, &txfm_param_); |
| } |
| void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { |
| inv_txfm_(out, dst, stride, &txfm_param_); |
| } |
| |
| FhtFunc fwd_txfm_; |
| IhtFunc inv_txfm_; |
| }; |
| |
| TEST_P(FwdTrans8x8HT, SignBiasCheck) { RunSignBiasCheck(); } |
| |
| TEST_P(FwdTrans8x8HT, RoundTripErrorCheck) { RunRoundTripErrorCheck(); } |
| |
| TEST_P(FwdTrans8x8HT, ExtremalCheck) { RunExtremalCheck(); } |
| |
| class InvTrans8x8DCT : public FwdTrans8x8TestBase, |
| public ::testing::TestWithParam<Idct8x8Param> { |
| public: |
| virtual ~InvTrans8x8DCT() {} |
| |
| virtual void SetUp() { |
| ref_txfm_ = GET_PARAM(0); |
| inv_txfm_ = GET_PARAM(1); |
| thresh_ = GET_PARAM(2); |
| pitch_ = 8; |
| bit_depth_ = GET_PARAM(3); |
| mask_ = (1 << bit_depth_) - 1; |
| } |
| |
| virtual void TearDown() { libaom_test::ClearSystemState(); } |
| |
| protected: |
| void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) { |
| inv_txfm_(out, dst, stride); |
| } |
| void RunFwdTxfm(int16_t * /*out*/, tran_low_t * /*dst*/, int /*stride*/) {} |
| |
| IdctFunc ref_txfm_; |
| IdctFunc inv_txfm_; |
| int thresh_; |
| }; |
| |
| TEST_P(InvTrans8x8DCT, CompareReference) { |
| CompareInvReference(ref_txfm_, thresh_); |
| } |
| |
| using std::tr1::make_tuple; |
| |
| INSTANTIATE_TEST_CASE_P(C, FwdTrans8x8DCT, |
| ::testing::Values(make_tuple(&aom_fdct8x8_c, |
| &aom_idct8x8_64_add_c, |
| DCT_DCT, AOM_BITS_8))); |
| |
| INSTANTIATE_TEST_CASE_P( |
| C, FwdTrans8x8HT, |
| ::testing::Values( |
| make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, DCT_DCT, AOM_BITS_8), |
| make_tuple(&fht8x8_10, &iht8x8_10, DCT_DCT, AOM_BITS_10), |
| make_tuple(&fht8x8_10, &iht8x8_10, ADST_DCT, AOM_BITS_10), |
| make_tuple(&fht8x8_10, &iht8x8_10, DCT_ADST, AOM_BITS_10), |
| make_tuple(&fht8x8_10, &iht8x8_10, ADST_ADST, AOM_BITS_10), |
| make_tuple(&fht8x8_12, &iht8x8_12, DCT_DCT, AOM_BITS_12), |
| make_tuple(&fht8x8_12, &iht8x8_12, ADST_DCT, AOM_BITS_12), |
| make_tuple(&fht8x8_12, &iht8x8_12, DCT_ADST, AOM_BITS_12), |
| make_tuple(&fht8x8_12, &iht8x8_12, ADST_ADST, AOM_BITS_12), |
| make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, ADST_DCT, AOM_BITS_8), |
| make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, DCT_ADST, AOM_BITS_8), |
| make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, ADST_ADST, |
| AOM_BITS_8))); |
| |
| #if HAVE_SSE2 |
| INSTANTIATE_TEST_CASE_P(SSE2, FwdTrans8x8DCT, |
| ::testing::Values(make_tuple(&aom_fdct8x8_sse2, |
| &aom_idct8x8_64_add_c, |
| DCT_DCT, AOM_BITS_8))); |
| #if !CONFIG_DAALA_TX8 |
| INSTANTIATE_TEST_CASE_P( |
| SSE2, FwdTrans8x8HT, |
| ::testing::Values(make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c, |
| DCT_DCT, AOM_BITS_8), |
| make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c, |
| ADST_DCT, AOM_BITS_8), |
| make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c, |
| DCT_ADST, AOM_BITS_8), |
| make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c, |
| ADST_ADST, AOM_BITS_8))); |
| #endif // !CONFIG_DAALA_TX8 |
| #endif // HAVE_SSE2 |
| |
| #if HAVE_SSSE3 && ARCH_X86_64 |
| INSTANTIATE_TEST_CASE_P(SSSE3, FwdTrans8x8DCT, |
| ::testing::Values(make_tuple(&aom_fdct8x8_ssse3, |
| &aom_idct8x8_64_add_ssse3, |
| DCT_DCT, AOM_BITS_8))); |
| #endif |
| |
| } // namespace |
| #endif // !CONFIG_DAALA_TX |