blob: 13249a6ca8a2530c851548ac9ab62cf0b7b9d0a1 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <limits>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/blockd.h"
#include "av1/common/scan.h"
#include "aom/aom_integer.h"
#include "aom_ports/aom_timer.h"
using libaom_test::ACMRandom;
namespace {
typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef void (*InvTxfmWithBdFunc)(const tran_low_t *in, uint8_t *out,
int stride, int bd);
template <InvTxfmFunc fn>
void wrapper(const tran_low_t *in, uint8_t *out, int stride, int bd) {
(void)bd;
fn(in, out, stride);
}
typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmWithBdFunc, InvTxfmWithBdFunc,
TX_SIZE, int, int, int>
PartialInvTxfmParam;
const int kMaxNumCoeffs = 1024;
const int kCountTestBlock = 10000;
class PartialIDctTest : public ::testing::TestWithParam<PartialInvTxfmParam> {
public:
virtual ~PartialIDctTest() {}
virtual void SetUp() {
rnd_.Reset(ACMRandom::DeterministicSeed());
ftxfm_ = GET_PARAM(0);
full_itxfm_ = GET_PARAM(1);
partial_itxfm_ = GET_PARAM(2);
tx_size_ = GET_PARAM(3);
last_nonzero_ = GET_PARAM(4);
bit_depth_ = GET_PARAM(5);
pixel_size_ = GET_PARAM(6);
mask_ = (1 << bit_depth_) - 1;
switch (tx_size_) {
case TX_4X4: size_ = 4; break;
case TX_8X8: size_ = 8; break;
case TX_16X16: size_ = 16; break;
case TX_32X32: size_ = 32; break;
default: FAIL() << "Wrong Size!"; break;
}
// Randomize stride_ to a value less than or equal to 1024
stride_ = rnd_(1024) + 1;
if (stride_ < size_) {
stride_ = size_;
}
// Align stride_ to 16 if it's bigger than 16.
if (stride_ > 16) {
stride_ &= ~15;
}
input_block_size_ = size_ * size_;
output_block_size_ = size_ * stride_;
input_block_ = reinterpret_cast<tran_low_t *>(
aom_memalign(16, sizeof(*input_block_) * input_block_size_));
output_block_ = reinterpret_cast<uint8_t *>(
aom_memalign(16, pixel_size_ * output_block_size_));
output_block_ref_ = reinterpret_cast<uint8_t *>(
aom_memalign(16, pixel_size_ * output_block_size_));
}
virtual void TearDown() {
aom_free(input_block_);
input_block_ = NULL;
aom_free(output_block_);
output_block_ = NULL;
aom_free(output_block_ref_);
output_block_ref_ = NULL;
libaom_test::ClearSystemState();
}
void InitMem() {
memset(input_block_, 0, sizeof(*input_block_) * input_block_size_);
if (pixel_size_ == 1) {
for (int j = 0; j < output_block_size_; ++j) {
output_block_[j] = output_block_ref_[j] = rnd_.Rand16() & mask_;
}
} else {
ASSERT_EQ(2, pixel_size_);
uint16_t *const output = reinterpret_cast<uint16_t *>(output_block_);
uint16_t *const output_ref =
reinterpret_cast<uint16_t *>(output_block_ref_);
for (int j = 0; j < output_block_size_; ++j) {
output[j] = output_ref[j] = rnd_.Rand16() & mask_;
}
}
}
void InitInput() {
const int max_coeff = 32766 / 4;
int max_energy_leftover = max_coeff * max_coeff;
for (int j = 0; j < last_nonzero_; ++j) {
int16_t coeff = static_cast<int16_t>(sqrt(1.0 * max_energy_leftover) *
(rnd_.Rand16() - 32768) / 65536);
max_energy_leftover -= coeff * coeff;
if (max_energy_leftover < 0) {
max_energy_leftover = 0;
coeff = 0;
}
input_block_[av1_default_scan_orders[tx_size_].scan[j]] = coeff;
}
}
protected:
int last_nonzero_;
TX_SIZE tx_size_;
tran_low_t *input_block_;
uint8_t *output_block_;
uint8_t *output_block_ref_;
int size_;
int stride_;
int pixel_size_;
int input_block_size_;
int output_block_size_;
int bit_depth_;
int mask_;
FwdTxfmFunc ftxfm_;
InvTxfmWithBdFunc full_itxfm_;
InvTxfmWithBdFunc partial_itxfm_;
ACMRandom rnd_;
};
TEST_P(PartialIDctTest, RunQuantCheck) {
DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]);
InitMem();
for (int i = 0; i < kCountTestBlock; ++i) {
// Initialize a test block with input range [-mask_, mask_].
if (i == 0) {
for (int k = 0; k < input_block_size_; ++k) {
input_extreme_block[k] = mask_;
}
} else if (i == 1) {
for (int k = 0; k < input_block_size_; ++k) {
input_extreme_block[k] = -mask_;
}
} else {
for (int k = 0; k < input_block_size_; ++k) {
input_extreme_block[k] = rnd_.Rand8() % 2 ? mask_ : -mask_;
}
}
ftxfm_(input_extreme_block, output_ref_block, size_);
// quantization with minimum allowed step sizes
input_block_[0] = (output_ref_block[0] / 4) * 4;
for (int k = 1; k < last_nonzero_; ++k) {
const int pos = av1_default_scan_orders[tx_size_].scan[k];
input_block_[pos] = (output_ref_block[pos] / 4) * 4;
}
ASM_REGISTER_STATE_CHECK(
full_itxfm_(input_block_, output_block_ref_, stride_, bit_depth_));
ASM_REGISTER_STATE_CHECK(
partial_itxfm_(input_block_, output_block_, stride_, bit_depth_));
ASSERT_EQ(0, memcmp(output_block_ref_, output_block_,
pixel_size_ * output_block_size_))
<< "Error: partial inverse transform produces different results";
}
}
TEST_P(PartialIDctTest, ResultsMatch) {
for (int i = 0; i < kCountTestBlock; ++i) {
InitMem();
InitInput();
ASM_REGISTER_STATE_CHECK(
full_itxfm_(input_block_, output_block_ref_, stride_, bit_depth_));
ASM_REGISTER_STATE_CHECK(
partial_itxfm_(input_block_, output_block_, stride_, bit_depth_));
ASSERT_EQ(0, memcmp(output_block_ref_, output_block_,
pixel_size_ * output_block_size_))
<< "Error: partial inverse transform produces different results";
}
}
TEST_P(PartialIDctTest, AddOutputBlock) {
for (int i = 0; i < kCountTestBlock; ++i) {
InitMem();
for (int j = 0; j < last_nonzero_; ++j) {
input_block_[av1_default_scan_orders[tx_size_].scan[j]] = 10;
}
ASM_REGISTER_STATE_CHECK(
full_itxfm_(input_block_, output_block_ref_, stride_, bit_depth_));
ASM_REGISTER_STATE_CHECK(
partial_itxfm_(input_block_, output_block_, stride_, bit_depth_));
ASSERT_EQ(0, memcmp(output_block_ref_, output_block_,
pixel_size_ * output_block_size_))
<< "Error: Transform results are not correctly added to output.";
}
}
TEST_P(PartialIDctTest, SingleExtremeCoeff) {
const int16_t max_coeff = INT16_MAX;
const int16_t min_coeff = INT16_MIN;
for (int i = 0; i < last_nonzero_; ++i) {
memset(input_block_, 0, sizeof(*input_block_) * input_block_size_);
// Run once for min and once for max.
for (int j = 0; j < 2; ++j) {
const int coeff = j ? min_coeff : max_coeff;
memset(output_block_, 0, pixel_size_ * output_block_size_);
memset(output_block_ref_, 0, pixel_size_ * output_block_size_);
input_block_[av1_default_scan_orders[tx_size_].scan[i]] = coeff;
ASM_REGISTER_STATE_CHECK(
full_itxfm_(input_block_, output_block_ref_, stride_, bit_depth_));
ASM_REGISTER_STATE_CHECK(
partial_itxfm_(input_block_, output_block_, stride_, bit_depth_));
ASSERT_EQ(0, memcmp(output_block_ref_, output_block_,
pixel_size_ * output_block_size_))
<< "Error: Fails with single coeff of " << coeff << " at " << i
<< ".";
}
}
}
TEST_P(PartialIDctTest, DISABLED_Speed) {
// Keep runtime stable with transform size.
const int kCountSpeedTestBlock = 500000000 / input_block_size_;
InitMem();
InitInput();
for (int i = 0; i < kCountSpeedTestBlock; ++i) {
ASM_REGISTER_STATE_CHECK(
full_itxfm_(input_block_, output_block_ref_, stride_, bit_depth_));
}
aom_usec_timer timer;
aom_usec_timer_start(&timer);
for (int i = 0; i < kCountSpeedTestBlock; ++i) {
partial_itxfm_(input_block_, output_block_, stride_, bit_depth_);
}
libaom_test::ClearSystemState();
aom_usec_timer_mark(&timer);
const int elapsed_time =
static_cast<int>(aom_usec_timer_elapsed(&timer) / 1000);
printf("idct%dx%d_%d (bitdepth %d) time: %5d ms\n", size_, size_,
last_nonzero_, bit_depth_, elapsed_time);
ASSERT_EQ(0, memcmp(output_block_ref_, output_block_,
pixel_size_ * output_block_size_))
<< "Error: partial inverse transform produces different results";
}
using std::tr1::make_tuple;
const PartialInvTxfmParam c_partial_idct_tests[] = {
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_1024_add_c>, TX_32X32, 1024, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_135_add_c>, TX_32X32, 135, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_34_add_c>, TX_32X32, 34, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_1_add_c>, TX_32X32, 1, 8, 1),
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_256_add_c>, TX_16X16, 256, 8, 1),
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_38_add_c>, TX_16X16, 38, 8, 1),
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_10_add_c>, TX_16X16, 10, 8, 1),
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_1_add_c>, TX_16X16, 1, 8, 1),
make_tuple(&aom_fdct8x8_c, &wrapper<aom_idct8x8_64_add_c>,
&wrapper<aom_idct8x8_64_add_c>, TX_8X8, 64, 8, 1),
make_tuple(&aom_fdct8x8_c, &wrapper<aom_idct8x8_64_add_c>,
&wrapper<aom_idct8x8_12_add_c>, TX_8X8, 12, 8, 1),
make_tuple(&aom_fdct8x8_c, &wrapper<aom_idct8x8_64_add_c>,
&wrapper<aom_idct8x8_1_add_c>, TX_8X8, 1, 8, 1),
make_tuple(&aom_fdct4x4_c, &wrapper<aom_idct4x4_16_add_c>,
&wrapper<aom_idct4x4_16_add_c>, TX_4X4, 16, 8, 1),
make_tuple(&aom_fdct4x4_c, &wrapper<aom_idct4x4_16_add_c>,
&wrapper<aom_idct4x4_1_add_c>, TX_4X4, 1, 8, 1)
};
INSTANTIATE_TEST_CASE_P(C, PartialIDctTest,
::testing::ValuesIn(c_partial_idct_tests));
#if HAVE_SSE2
const PartialInvTxfmParam sse2_partial_idct_tests[] = {
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_1024_add_sse2>, TX_32X32, 1024, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_1024_add_sse2>, TX_32X32, 135, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_34_add_sse2>, TX_32X32, 34, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_1_add_sse2>, TX_32X32, 1, 8, 1),
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_256_add_sse2>, TX_16X16, 256, 8, 1),
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_10_add_sse2>, TX_16X16, 10, 8, 1),
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_1_add_sse2>, TX_16X16, 1, 8, 1),
make_tuple(&aom_fdct8x8_c, &wrapper<aom_idct8x8_64_add_c>,
&wrapper<aom_idct8x8_64_add_sse2>, TX_8X8, 64, 8, 1),
make_tuple(&aom_fdct8x8_c, &wrapper<aom_idct8x8_64_add_c>,
&wrapper<aom_idct8x8_12_add_sse2>, TX_8X8, 12, 8, 1),
make_tuple(&aom_fdct8x8_c, &wrapper<aom_idct8x8_64_add_c>,
&wrapper<aom_idct8x8_1_add_sse2>, TX_8X8, 1, 8, 1),
make_tuple(&aom_fdct4x4_c, &wrapper<aom_idct4x4_16_add_c>,
&wrapper<aom_idct4x4_16_add_sse2>, TX_4X4, 16, 8, 1),
make_tuple(&aom_fdct4x4_c, &wrapper<aom_idct4x4_16_add_c>,
&wrapper<aom_idct4x4_1_add_sse2>, TX_4X4, 1, 8, 1)
};
INSTANTIATE_TEST_CASE_P(SSE2, PartialIDctTest,
::testing::ValuesIn(sse2_partial_idct_tests));
#endif // HAVE_SSE2
#if HAVE_SSSE3
const PartialInvTxfmParam ssse3_partial_idct_tests[] = {
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_1024_add_ssse3>, TX_32X32, 1024, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_135_add_ssse3>, TX_32X32, 135, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_34_add_ssse3>, TX_32X32, 34, 8, 1),
make_tuple(&aom_fdct8x8_c, &wrapper<aom_idct8x8_64_add_c>,
&wrapper<aom_idct8x8_64_add_ssse3>, TX_8X8, 64, 8, 1),
make_tuple(&aom_fdct8x8_c, &wrapper<aom_idct8x8_64_add_c>,
&wrapper<aom_idct8x8_12_add_ssse3>, TX_8X8, 12, 8, 1)
};
INSTANTIATE_TEST_CASE_P(SSSE3, PartialIDctTest,
::testing::ValuesIn(ssse3_partial_idct_tests));
#endif // HAVE_SSSE3
#if HAVE_AVX2
const PartialInvTxfmParam avx2_partial_idct_tests[] = {
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_256_add_avx2>, TX_16X16, 256, 8, 1),
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_38_add_avx2>, TX_16X16, 38, 8, 1),
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_10_add_avx2>, TX_16X16, 10, 8, 1),
make_tuple(&aom_fdct16x16_c, &wrapper<aom_idct16x16_256_add_c>,
&wrapper<aom_idct16x16_1_add_avx2>, TX_16X16, 1, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_1024_add_avx2>, TX_32X32, 1024, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_135_add_avx2>, TX_32X32, 135, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_34_add_avx2>, TX_32X32, 34, 8, 1),
make_tuple(&aom_fdct32x32_c, &wrapper<aom_idct32x32_1024_add_c>,
&wrapper<aom_idct32x32_1_add_avx2>, TX_32X32, 1, 8, 1),
};
INSTANTIATE_TEST_CASE_P(AVX2, PartialIDctTest,
::testing::ValuesIn(avx2_partial_idct_tests));
#endif // HAVE_AVX2
} // namespace