blob: 65e3d090e3e625191a751f9cd9d6bdb8192870a5 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*
*/
#include <math.h>
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/restoration.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#define BILATERAL_PARAM_PRECISION 16
#define BILATERAL_AMP_RANGE 256
#define BILATERAL_AMP_RANGE_SYM (2 * BILATERAL_AMP_RANGE + 1)
static uint8_t bilateral_filter_coeffs_r_kf[BILATERAL_LEVELS_KF]
[BILATERAL_AMP_RANGE_SYM];
static uint8_t bilateral_filter_coeffs_r[BILATERAL_LEVELS]
[BILATERAL_AMP_RANGE_SYM];
static uint8_t bilateral_filter_coeffs_s_kf[BILATERAL_LEVELS_KF]
[RESTORATION_WIN][RESTORATION_WIN];
static uint8_t bilateral_filter_coeffs_s[BILATERAL_LEVELS][RESTORATION_WIN]
[RESTORATION_WIN];
typedef struct bilateral_params {
int sigma_x; // spatial variance x
int sigma_y; // spatial variance y
int sigma_r; // range variance
} BilateralParamsType;
static BilateralParamsType bilateral_level_to_params_arr[BILATERAL_LEVELS] = {
// Values are rounded to 1/16 th precision
{ 8, 9, 30 }, { 9, 8, 30 }, { 9, 11, 32 }, { 11, 9, 32 },
{ 14, 14, 36 }, { 18, 18, 36 }, { 24, 24, 40 }, { 32, 32, 40 },
};
static BilateralParamsType
bilateral_level_to_params_arr_kf[BILATERAL_LEVELS_KF] = {
// Values are rounded to 1/16 th precision
{ 8, 8, 30 }, { 9, 9, 32 }, { 10, 10, 32 }, { 12, 12, 32 },
{ 14, 14, 32 }, { 18, 18, 36 }, { 24, 24, 40 }, { 30, 30, 44 },
{ 36, 36, 48 }, { 42, 42, 48 }, { 48, 48, 48 }, { 48, 48, 56 },
{ 56, 56, 48 }, { 56, 56, 56 }, { 56, 56, 64 }, { 64, 64, 48 },
};
typedef void (*restore_func_type)(uint8_t *data8, int width, int height,
int stride, RestorationInternal *rst,
uint8_t *tmpdata8, int tmpstride);
#if CONFIG_AOM_HIGHBITDEPTH
typedef void (*restore_func_highbd_type)(uint8_t *data8, int width, int height,
int stride, RestorationInternal *rst,
uint8_t *tmpdata8, int tmpstride,
int bit_depth);
#endif // CONFIG_AOM_HIGHBITDEPTH
static INLINE BilateralParamsType av1_bilateral_level_to_params(int index,
int kf) {
return kf ? bilateral_level_to_params_arr_kf[index]
: bilateral_level_to_params_arr[index];
}
typedef struct TileParams {
int width;
int height;
} TileParams;
static TileParams restoration_tile_sizes[RESTORATION_TILESIZES] = {
{ 64, 64 }, { 128, 128 }, { 256, 256 }
};
void av1_get_restoration_tile_size(int tilesize, int width, int height,
int *tile_width, int *tile_height,
int *nhtiles, int *nvtiles) {
*tile_width = (tilesize < 0)
? width
: AOMMIN(restoration_tile_sizes[tilesize].width, width);
*tile_height = (tilesize < 0)
? height
: AOMMIN(restoration_tile_sizes[tilesize].height, height);
*nhtiles = (width + (*tile_width >> 1)) / *tile_width;
*nvtiles = (height + (*tile_height >> 1)) / *tile_height;
}
int av1_get_restoration_ntiles(int tilesize, int width, int height) {
int nhtiles, nvtiles;
int tile_width, tile_height;
av1_get_restoration_tile_size(tilesize, width, height, &tile_width,
&tile_height, &nhtiles, &nvtiles);
return (nhtiles * nvtiles);
}
void av1_loop_restoration_precal() {
int i;
for (i = 0; i < BILATERAL_LEVELS_KF; i++) {
const BilateralParamsType param = av1_bilateral_level_to_params(i, 1);
const int sigma_x = param.sigma_x;
const int sigma_y = param.sigma_y;
const int sigma_r = param.sigma_r;
const double sigma_r_d = (double)sigma_r / BILATERAL_PARAM_PRECISION;
const double sigma_x_d = (double)sigma_x / BILATERAL_PARAM_PRECISION;
const double sigma_y_d = (double)sigma_y / BILATERAL_PARAM_PRECISION;
uint8_t *fr = bilateral_filter_coeffs_r_kf[i] + BILATERAL_AMP_RANGE;
int j, x, y;
for (j = 0; j <= BILATERAL_AMP_RANGE; j++) {
fr[j] = (uint8_t)(0.5 +
RESTORATION_FILT_STEP *
exp(-(j * j) / (2 * sigma_r_d * sigma_r_d)));
fr[-j] = fr[j];
}
for (y = -RESTORATION_HALFWIN; y <= RESTORATION_HALFWIN; y++) {
for (x = -RESTORATION_HALFWIN; x <= RESTORATION_HALFWIN; x++) {
bilateral_filter_coeffs_s_kf[i][y + RESTORATION_HALFWIN]
[x + RESTORATION_HALFWIN] = (uint8_t)(
0.5 +
RESTORATION_FILT_STEP *
exp(-(x * x) / (2 * sigma_x_d *
sigma_x_d) -
(y * y) / (2 * sigma_y_d *
sigma_y_d)));
}
}
}
for (i = 0; i < BILATERAL_LEVELS; i++) {
const BilateralParamsType param = av1_bilateral_level_to_params(i, 0);
const int sigma_x = param.sigma_x;
const int sigma_y = param.sigma_y;
const int sigma_r = param.sigma_r;
const double sigma_r_d = (double)sigma_r / BILATERAL_PARAM_PRECISION;
const double sigma_x_d = (double)sigma_x / BILATERAL_PARAM_PRECISION;
const double sigma_y_d = (double)sigma_y / BILATERAL_PARAM_PRECISION;
uint8_t *fr = bilateral_filter_coeffs_r[i] + BILATERAL_AMP_RANGE;
int j, x, y;
for (j = 0; j <= BILATERAL_AMP_RANGE; j++) {
fr[j] = (uint8_t)(0.5 +
RESTORATION_FILT_STEP *
exp(-(j * j) / (2 * sigma_r_d * sigma_r_d)));
fr[-j] = fr[j];
}
for (y = -RESTORATION_HALFWIN; y <= RESTORATION_HALFWIN; y++) {
for (x = -RESTORATION_HALFWIN; x <= RESTORATION_HALFWIN; x++) {
bilateral_filter_coeffs_s[i][y + RESTORATION_HALFWIN]
[x + RESTORATION_HALFWIN] = (uint8_t)(
0.5 +
RESTORATION_FILT_STEP *
exp(-(x * x) /
(2 * sigma_x_d * sigma_x_d) -
(y * y) /
(2 * sigma_y_d * sigma_y_d)));
}
}
}
}
int av1_bilateral_level_bits(const AV1_COMMON *const cm) {
return cm->frame_type == KEY_FRAME ? BILATERAL_LEVEL_BITS_KF
: BILATERAL_LEVEL_BITS;
}
void av1_loop_restoration_init(RestorationInternal *rst, RestorationInfo *rsi,
int kf, int width, int height) {
int i, tile_idx;
rst->restoration_type = rsi->restoration_type;
rst->subsampling_x = 0;
rst->subsampling_y = 0;
if (rsi->restoration_type == RESTORE_BILATERAL) {
rst->tilesize_index = BILATERAL_TILESIZE;
rst->ntiles =
av1_get_restoration_ntiles(rst->tilesize_index, width, height);
av1_get_restoration_tile_size(rst->tilesize_index, width, height,
&rst->tile_width, &rst->tile_height,
&rst->nhtiles, &rst->nvtiles);
rst->bilateral_level = rsi->bilateral_level;
rst->wr_lut = (uint8_t **)malloc(sizeof(*rst->wr_lut) * rst->ntiles);
assert(rst->wr_lut != NULL);
rst->wx_lut = (uint8_t(**)[RESTORATION_WIN])malloc(sizeof(*rst->wx_lut) *
rst->ntiles);
assert(rst->wx_lut != NULL);
for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) {
const int level = rsi->bilateral_level[tile_idx];
if (level >= 0) {
rst->wr_lut[tile_idx] = kf ? bilateral_filter_coeffs_r_kf[level]
: bilateral_filter_coeffs_r[level];
rst->wx_lut[tile_idx] = kf ? bilateral_filter_coeffs_s_kf[level]
: bilateral_filter_coeffs_s[level];
}
}
} else if (rsi->restoration_type == RESTORE_WIENER) {
rst->tilesize_index = WIENER_TILESIZE;
rst->ntiles =
av1_get_restoration_ntiles(rst->tilesize_index, width, height);
av1_get_restoration_tile_size(rst->tilesize_index, width, height,
&rst->tile_width, &rst->tile_height,
&rst->nhtiles, &rst->nvtiles);
rst->wiener_level = rsi->wiener_level;
rst->vfilter =
(int(*)[RESTORATION_WIN])malloc(sizeof(*rst->vfilter) * rst->ntiles);
assert(rst->vfilter != NULL);
rst->hfilter =
(int(*)[RESTORATION_WIN])malloc(sizeof(*rst->hfilter) * rst->ntiles);
assert(rst->hfilter != NULL);
for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) {
rst->vfilter[tile_idx][RESTORATION_HALFWIN] =
rst->hfilter[tile_idx][RESTORATION_HALFWIN] = RESTORATION_FILT_STEP;
for (i = 0; i < RESTORATION_HALFWIN; ++i) {
rst->vfilter[tile_idx][i] =
rst->vfilter[tile_idx][RESTORATION_WIN - 1 - i] =
rsi->vfilter[tile_idx][i];
rst->hfilter[tile_idx][i] =
rst->hfilter[tile_idx][RESTORATION_WIN - 1 - i] =
rsi->hfilter[tile_idx][i];
rst->vfilter[tile_idx][RESTORATION_HALFWIN] -=
2 * rsi->vfilter[tile_idx][i];
rst->hfilter[tile_idx][RESTORATION_HALFWIN] -=
2 * rsi->hfilter[tile_idx][i];
}
}
}
}
static void loop_bilateral_filter(uint8_t *data, int width, int height,
int stride, RestorationInternal *rst,
uint8_t *tmpdata, int tmpstride) {
int i, j, tile_idx, htile_idx, vtile_idx;
int h_start, h_end, v_start, v_end;
int tile_width, tile_height;
tile_width = rst->tile_width >> rst->subsampling_x;
tile_height = rst->tile_height >> rst->subsampling_y;
for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) {
uint8_t *data_p, *tmpdata_p;
const uint8_t *wr_lut_ = rst->wr_lut[tile_idx] + BILATERAL_AMP_RANGE;
if (rst->bilateral_level[tile_idx] < 0) continue;
htile_idx = tile_idx % rst->nhtiles;
vtile_idx = tile_idx / rst->nhtiles;
h_start =
htile_idx * tile_width + ((htile_idx > 0) ? 0 : RESTORATION_HALFWIN);
h_end = (htile_idx < rst->nhtiles - 1) ? ((htile_idx + 1) * tile_width)
: (width - RESTORATION_HALFWIN);
v_start =
vtile_idx * tile_height + ((vtile_idx > 0) ? 0 : RESTORATION_HALFWIN);
v_end = (vtile_idx < rst->nvtiles - 1) ? ((vtile_idx + 1) * tile_height)
: (height - RESTORATION_HALFWIN);
data_p = data + h_start + v_start * stride;
tmpdata_p = tmpdata + h_start + v_start * tmpstride;
for (i = 0; i < (v_end - v_start); ++i) {
for (j = 0; j < (h_end - h_start); ++j) {
int x, y;
int flsum = 0, wtsum = 0, wt;
uint8_t *data_p2 = data_p + j - RESTORATION_HALFWIN * stride;
for (y = -RESTORATION_HALFWIN; y <= RESTORATION_HALFWIN; ++y) {
for (x = -RESTORATION_HALFWIN; x <= RESTORATION_HALFWIN; ++x) {
wt = (int)rst->wx_lut[tile_idx][y + RESTORATION_HALFWIN]
[x + RESTORATION_HALFWIN] *
(int)wr_lut_[data_p2[x] - data_p[j]];
wtsum += wt;
flsum += wt * data_p2[x];
}
data_p2 += stride;
}
if (wtsum > 0)
tmpdata_p[j] = clip_pixel((int)((flsum + wtsum / 2) / wtsum));
else
tmpdata_p[j] = data_p[j];
}
tmpdata_p += tmpstride;
data_p += stride;
}
for (i = v_start; i < v_end; ++i) {
memcpy(data + i * stride + h_start, tmpdata + i * tmpstride + h_start,
(h_end - h_start) * sizeof(*data));
}
}
}
uint8_t hor_sym_filter(uint8_t *d, int *hfilter) {
int32_t s =
(1 << (RESTORATION_FILT_BITS - 1)) + d[0] * hfilter[RESTORATION_HALFWIN];
int i;
for (i = 1; i <= RESTORATION_HALFWIN; ++i)
s += (d[i] + d[-i]) * hfilter[RESTORATION_HALFWIN + i];
return clip_pixel(s >> RESTORATION_FILT_BITS);
}
uint8_t ver_sym_filter(uint8_t *d, int stride, int *vfilter) {
int32_t s =
(1 << (RESTORATION_FILT_BITS - 1)) + d[0] * vfilter[RESTORATION_HALFWIN];
int i;
for (i = 1; i <= RESTORATION_HALFWIN; ++i)
s += (d[i * stride] + d[-i * stride]) * vfilter[RESTORATION_HALFWIN + i];
return clip_pixel(s >> RESTORATION_FILT_BITS);
}
static void loop_wiener_filter(uint8_t *data, int width, int height, int stride,
RestorationInternal *rst, uint8_t *tmpdata,
int tmpstride) {
int i, j, tile_idx, htile_idx, vtile_idx;
int h_start, h_end, v_start, v_end;
int tile_width, tile_height;
uint8_t *data_p, *tmpdata_p;
tile_width = rst->tile_width >> rst->subsampling_x;
tile_height = rst->tile_height >> rst->subsampling_y;
// Initialize tmp buffer
data_p = data;
tmpdata_p = tmpdata;
for (i = 0; i < height; ++i) {
memcpy(tmpdata_p, data_p, sizeof(*data_p) * width);
data_p += stride;
tmpdata_p += tmpstride;
}
// Filter row-wise tile-by-tile
for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) {
if (rst->wiener_level[tile_idx] == 0) continue;
htile_idx = tile_idx % rst->nhtiles;
vtile_idx = tile_idx / rst->nhtiles;
h_start =
htile_idx * tile_width + ((htile_idx > 0) ? 0 : RESTORATION_HALFWIN);
h_end = (htile_idx < rst->nhtiles - 1) ? ((htile_idx + 1) * tile_width)
: (width - RESTORATION_HALFWIN);
v_start = vtile_idx * tile_height;
v_end = (vtile_idx < rst->nvtiles - 1) ? ((vtile_idx + 1) * tile_height)
: height;
data_p = data + h_start + v_start * stride;
tmpdata_p = tmpdata + h_start + v_start * tmpstride;
for (i = 0; i < (v_end - v_start); ++i) {
for (j = 0; j < (h_end - h_start); ++j) {
*tmpdata_p++ = hor_sym_filter(data_p++, rst->hfilter[tile_idx]);
}
data_p += stride - (h_end - h_start);
tmpdata_p += tmpstride - (h_end - h_start);
}
}
// Filter column-wise tile-by-tile (bands of thickness RESTORATION_HALFWIN
// at top and bottom of tiles allow filtering overlap, and are not optimally
// filtered)
for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) {
if (rst->wiener_level[tile_idx] == 0) continue;
htile_idx = tile_idx % rst->nhtiles;
vtile_idx = tile_idx / rst->nhtiles;
h_start = htile_idx * tile_width;
h_end =
(htile_idx < rst->nhtiles - 1) ? ((htile_idx + 1) * tile_width) : width;
v_start =
vtile_idx * tile_height + ((vtile_idx > 0) ? 0 : RESTORATION_HALFWIN);
v_end = (vtile_idx < rst->nvtiles - 1) ? ((vtile_idx + 1) * tile_height)
: (height - RESTORATION_HALFWIN);
data_p = data + h_start + v_start * stride;
tmpdata_p = tmpdata + h_start + v_start * tmpstride;
for (i = 0; i < (v_end - v_start); ++i) {
for (j = 0; j < (h_end - h_start); ++j) {
*data_p++ =
ver_sym_filter(tmpdata_p++, tmpstride, rst->vfilter[tile_idx]);
}
data_p += stride - (h_end - h_start);
tmpdata_p += tmpstride - (h_end - h_start);
}
}
}
#if CONFIG_AOM_HIGHBITDEPTH
static void loop_bilateral_filter_highbd(uint8_t *data8, int width, int height,
int stride, RestorationInternal *rst,
uint8_t *tmpdata8, int tmpstride,
int bit_depth) {
int i, j, tile_idx, htile_idx, vtile_idx;
int h_start, h_end, v_start, v_end;
int tile_width, tile_height;
uint16_t *data = CONVERT_TO_SHORTPTR(data8);
uint16_t *tmpdata = CONVERT_TO_SHORTPTR(tmpdata8);
tile_width = rst->tile_width >> rst->subsampling_x;
tile_height = rst->tile_height >> rst->subsampling_y;
for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) {
uint16_t *data_p, *tmpdata_p;
const uint8_t *wr_lut_ = rst->wr_lut[tile_idx] + BILATERAL_AMP_RANGE;
if (rst->bilateral_level[tile_idx] < 0) continue;
htile_idx = tile_idx % rst->nhtiles;
vtile_idx = tile_idx / rst->nhtiles;
h_start =
htile_idx * tile_width + ((htile_idx > 0) ? 0 : RESTORATION_HALFWIN);
h_end = (htile_idx < rst->nhtiles - 1) ? ((htile_idx + 1) * tile_width)
: (width - RESTORATION_HALFWIN);
v_start =
vtile_idx * tile_height + ((vtile_idx > 0) ? 0 : RESTORATION_HALFWIN);
v_end = (vtile_idx < rst->nvtiles - 1) ? ((vtile_idx + 1) * tile_height)
: (height - RESTORATION_HALFWIN);
data_p = data + h_start + v_start * stride;
tmpdata_p = tmpdata + h_start + v_start * tmpstride;
for (i = 0; i < (v_end - v_start); ++i) {
for (j = 0; j < (h_end - h_start); ++j) {
int x, y;
int flsum = 0, wtsum = 0, wt;
uint16_t *data_p2 = data_p + j - RESTORATION_HALFWIN * stride;
for (y = -RESTORATION_HALFWIN; y <= RESTORATION_HALFWIN; ++y) {
for (x = -RESTORATION_HALFWIN; x <= RESTORATION_HALFWIN; ++x) {
wt = (int)rst->wx_lut[tile_idx][y + RESTORATION_HALFWIN]
[x + RESTORATION_HALFWIN] *
(int)wr_lut_[data_p2[x] - data_p[j]];
wtsum += wt;
flsum += wt * data_p2[x];
}
data_p2 += stride;
}
if (wtsum > 0)
tmpdata_p[j] =
clip_pixel_highbd((int)((flsum + wtsum / 2) / wtsum), bit_depth);
else
tmpdata_p[j] = data_p[j];
}
tmpdata_p += tmpstride;
data_p += stride;
}
for (i = v_start; i < v_end; ++i) {
memcpy(data + i * stride + h_start, tmpdata + i * tmpstride + h_start,
(h_end - h_start) * sizeof(*data));
}
}
}
uint16_t hor_sym_filter_highbd(uint16_t *d, int *hfilter, int bd) {
int32_t s =
(1 << (RESTORATION_FILT_BITS - 1)) + d[0] * hfilter[RESTORATION_HALFWIN];
int i;
for (i = 1; i <= RESTORATION_HALFWIN; ++i)
s += (d[i] + d[-i]) * hfilter[RESTORATION_HALFWIN + i];
return clip_pixel_highbd(s >> RESTORATION_FILT_BITS, bd);
}
uint16_t ver_sym_filter_highbd(uint16_t *d, int stride, int *vfilter, int bd) {
int32_t s =
(1 << (RESTORATION_FILT_BITS - 1)) + d[0] * vfilter[RESTORATION_HALFWIN];
int i;
for (i = 1; i <= RESTORATION_HALFWIN; ++i)
s += (d[i * stride] + d[-i * stride]) * vfilter[RESTORATION_HALFWIN + i];
return clip_pixel_highbd(s >> RESTORATION_FILT_BITS, bd);
}
static void loop_wiener_filter_highbd(uint8_t *data8, int width, int height,
int stride, RestorationInternal *rst,
uint8_t *tmpdata8, int tmpstride,
int bit_depth) {
uint16_t *data = CONVERT_TO_SHORTPTR(data8);
uint16_t *tmpdata = CONVERT_TO_SHORTPTR(tmpdata8);
int i, j, tile_idx, htile_idx, vtile_idx;
int h_start, h_end, v_start, v_end;
int tile_width, tile_height;
uint16_t *data_p, *tmpdata_p;
tile_width = rst->tile_width >> rst->subsampling_x;
tile_height = rst->tile_height >> rst->subsampling_y;
// Initialize tmp buffer
data_p = data;
tmpdata_p = tmpdata;
for (i = 0; i < height; ++i) {
memcpy(tmpdata_p, data_p, sizeof(*data_p) * width);
data_p += stride;
tmpdata_p += tmpstride;
}
// Filter row-wise tile-by-tile
for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) {
if (rst->wiener_level[tile_idx] == 0) continue;
htile_idx = tile_idx % rst->nhtiles;
vtile_idx = tile_idx / rst->nhtiles;
h_start =
htile_idx * tile_width + ((htile_idx > 0) ? 0 : RESTORATION_HALFWIN);
h_end = (htile_idx < rst->nhtiles - 1) ? ((htile_idx + 1) * tile_width)
: (width - RESTORATION_HALFWIN);
v_start = vtile_idx * tile_height;
v_end = (vtile_idx < rst->nvtiles - 1) ? ((vtile_idx + 1) * tile_height)
: height;
data_p = data + h_start + v_start * stride;
tmpdata_p = tmpdata + h_start + v_start * tmpstride;
for (i = 0; i < (v_end - v_start); ++i) {
for (j = 0; j < (h_end - h_start); ++j) {
*tmpdata_p++ =
hor_sym_filter_highbd(data_p++, rst->hfilter[tile_idx], bit_depth);
}
data_p += stride - (h_end - h_start);
tmpdata_p += tmpstride - (h_end - h_start);
}
}
// Filter column-wise tile-by-tile (bands of thickness RESTORATION_HALFWIN
// at top and bottom of tiles allow filtering overlap, and are not optimally
// filtered)
for (tile_idx = 0; tile_idx < rst->ntiles; ++tile_idx) {
if (rst->wiener_level[tile_idx] == 0) continue;
htile_idx = tile_idx % rst->nhtiles;
vtile_idx = tile_idx / rst->nhtiles;
h_start = htile_idx * tile_width;
h_end =
(htile_idx < rst->nhtiles - 1) ? ((htile_idx + 1) * tile_width) : width;
v_start =
vtile_idx * tile_height + ((vtile_idx > 0) ? 0 : RESTORATION_HALFWIN);
v_end = (vtile_idx < rst->nvtiles - 1) ? ((vtile_idx + 1) * tile_height)
: (height - RESTORATION_HALFWIN);
data_p = data + h_start + v_start * stride;
tmpdata_p = tmpdata + h_start + v_start * tmpstride;
for (i = 0; i < (v_end - v_start); ++i) {
for (j = 0; j < (h_end - h_start); ++j) {
*data_p++ = ver_sym_filter_highbd(tmpdata_p++, tmpstride,
rst->vfilter[tile_idx], bit_depth);
}
data_p += stride - (h_end - h_start);
tmpdata_p += tmpstride - (h_end - h_start);
}
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
void av1_loop_restoration_rows(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
int start_mi_row, int end_mi_row, int y_only) {
const int ywidth = frame->y_crop_width;
const int ystride = frame->y_stride;
const int uvwidth = frame->uv_crop_width;
const int uvstride = frame->uv_stride;
const int ystart = start_mi_row << MI_SIZE_LOG2;
const int uvstart = ystart >> cm->subsampling_y;
int yend = end_mi_row << MI_SIZE_LOG2;
int uvend = yend >> cm->subsampling_y;
restore_func_type restore_func =
cm->rst_internal.restoration_type == RESTORE_BILATERAL
? loop_bilateral_filter
: loop_wiener_filter;
#if CONFIG_AOM_HIGHBITDEPTH
restore_func_highbd_type restore_func_highbd =
cm->rst_internal.restoration_type == RESTORE_BILATERAL
? loop_bilateral_filter_highbd
: loop_wiener_filter_highbd;
#endif // CONFIG_AOM_HIGHBITDEPTH
YV12_BUFFER_CONFIG tmp_buf;
memset(&tmp_buf, 0, sizeof(YV12_BUFFER_CONFIG));
yend = AOMMIN(yend, cm->height);
uvend = AOMMIN(uvend, cm->subsampling_y ? (cm->height + 1) >> 1 : cm->height);
if (aom_realloc_frame_buffer(
&tmp_buf, cm->width, cm->height, cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_DEC_BORDER_IN_PIXELS, cm->byte_alignment, NULL, NULL, NULL) < 0)
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate tmp restoration buffer");
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth)
restore_func_highbd(frame->y_buffer + ystart * ystride, ywidth,
yend - ystart, ystride, &cm->rst_internal,
tmp_buf.y_buffer + ystart * tmp_buf.y_stride,
tmp_buf.y_stride, cm->bit_depth);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
restore_func(frame->y_buffer + ystart * ystride, ywidth, yend - ystart,
ystride, &cm->rst_internal,
tmp_buf.y_buffer + ystart * tmp_buf.y_stride,
tmp_buf.y_stride);
if (!y_only) {
cm->rst_internal.subsampling_x = cm->subsampling_x;
cm->rst_internal.subsampling_y = cm->subsampling_y;
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
restore_func_highbd(frame->u_buffer + uvstart * uvstride, uvwidth,
uvend - uvstart, uvstride, &cm->rst_internal,
tmp_buf.u_buffer + uvstart * tmp_buf.uv_stride,
tmp_buf.uv_stride, cm->bit_depth);
restore_func_highbd(frame->v_buffer + uvstart * uvstride, uvwidth,
uvend - uvstart, uvstride, &cm->rst_internal,
tmp_buf.v_buffer + uvstart * tmp_buf.uv_stride,
tmp_buf.uv_stride, cm->bit_depth);
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
restore_func(frame->u_buffer + uvstart * uvstride, uvwidth,
uvend - uvstart, uvstride, &cm->rst_internal,
tmp_buf.u_buffer + uvstart * tmp_buf.uv_stride,
tmp_buf.uv_stride);
restore_func(frame->v_buffer + uvstart * uvstride, uvwidth,
uvend - uvstart, uvstride, &cm->rst_internal,
tmp_buf.v_buffer + uvstart * tmp_buf.uv_stride,
tmp_buf.uv_stride);
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
}
aom_free_frame_buffer(&tmp_buf);
if (cm->rst_internal.restoration_type == RESTORE_BILATERAL) {
free(cm->rst_internal.wr_lut);
cm->rst_internal.wr_lut = NULL;
free(cm->rst_internal.wx_lut);
cm->rst_internal.wx_lut = NULL;
}
if (cm->rst_internal.restoration_type == RESTORE_WIENER) {
free(cm->rst_internal.vfilter);
cm->rst_internal.vfilter = NULL;
free(cm->rst_internal.hfilter);
cm->rst_internal.hfilter = NULL;
}
}
void av1_loop_restoration_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
RestorationInfo *rsi, int y_only,
int partial_frame) {
int start_mi_row, end_mi_row, mi_rows_to_filter;
if (rsi->restoration_type != RESTORE_NONE) {
start_mi_row = 0;
mi_rows_to_filter = cm->mi_rows;
if (partial_frame && cm->mi_rows > 8) {
start_mi_row = cm->mi_rows >> 1;
start_mi_row &= 0xfffffff8;
mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8);
}
end_mi_row = start_mi_row + mi_rows_to_filter;
av1_loop_restoration_init(&cm->rst_internal, rsi,
cm->frame_type == KEY_FRAME, cm->width,
cm->height);
av1_loop_restoration_rows(frame, cm, start_mi_row, end_mi_row, y_only);
}
}