| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #ifndef AV1_COMMON_ONYXC_INT_H_ |
| #define AV1_COMMON_ONYXC_INT_H_ |
| |
| #include "./aom_config.h" |
| #include "./av1_rtcd.h" |
| #include "aom/internal/aom_codec_internal.h" |
| #include "aom_util/aom_thread.h" |
| #if CONFIG_ANS |
| #include "aom_dsp/ans.h" |
| #endif |
| #include "av1/common/alloccommon.h" |
| #include "av1/common/av1_loopfilter.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/entropymv.h" |
| #include "av1/common/frame_buffers.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/quant_common.h" |
| #if CONFIG_LOOP_RESTORATION |
| #include "av1/common/restoration.h" |
| #endif // CONFIG_LOOP_RESTORATION |
| #include "av1/common/tile_common.h" |
| #include "av1/common/odintrin.h" |
| #if CONFIG_PVQ |
| #include "av1/common/pvq.h" |
| #endif |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #define REF_FRAMES_LOG2 3 |
| #define REF_FRAMES (1 << REF_FRAMES_LOG2) |
| |
| // 4 scratch frames for the new frames to support a maximum of 4 cores decoding |
| // in parallel, 3 for scaled references on the encoder. |
| // TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number |
| // of framebuffers. |
| // TODO(jkoleszar): These 3 extra references could probably come from the |
| // normal reference pool. |
| #define FRAME_BUFFERS (REF_FRAMES + 7) |
| |
| #if CONFIG_REFERENCE_BUFFER |
| /* Constant values while waiting for the sequence header */ |
| #define FRAME_ID_NUMBERS_PRESENT_FLAG 1 |
| #define FRAME_ID_LENGTH_MINUS7 8 // Allows frame id up to 2^15-1 |
| #define DELTA_FRAME_ID_LENGTH_MINUS2 12 // Allows frame id deltas up to 2^14-1 |
| #endif |
| |
| #if CONFIG_EXT_REFS |
| #define FRAME_CONTEXTS_LOG2 3 |
| #else |
| #define FRAME_CONTEXTS_LOG2 2 |
| #endif |
| |
| #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2) |
| |
| #define NUM_PING_PONG_BUFFERS 2 |
| |
| typedef enum { |
| SINGLE_REFERENCE = 0, |
| COMPOUND_REFERENCE = 1, |
| REFERENCE_MODE_SELECT = 2, |
| REFERENCE_MODES = 3, |
| } REFERENCE_MODE; |
| |
| typedef enum { |
| RESET_FRAME_CONTEXT_NONE = 0, |
| RESET_FRAME_CONTEXT_CURRENT = 1, |
| RESET_FRAME_CONTEXT_ALL = 2, |
| } RESET_FRAME_CONTEXT_MODE; |
| |
| typedef enum { |
| /** |
| * Update frame context to values resulting from forward probability |
| * updates signaled in the frame header |
| */ |
| REFRESH_FRAME_CONTEXT_FORWARD, |
| /** |
| * Update frame context to values resulting from backward probability |
| * updates based on entropy/counts in the decoded frame |
| */ |
| REFRESH_FRAME_CONTEXT_BACKWARD, |
| } REFRESH_FRAME_CONTEXT_MODE; |
| |
| typedef struct { |
| int_mv mv[2]; |
| #if CONFIG_REF_MV |
| int_mv pred_mv[2]; |
| #endif |
| MV_REFERENCE_FRAME ref_frame[2]; |
| } MV_REF; |
| |
| typedef struct { |
| int ref_count; |
| MV_REF *mvs; |
| int mi_rows; |
| int mi_cols; |
| aom_codec_frame_buffer_t raw_frame_buffer; |
| YV12_BUFFER_CONFIG buf; |
| #if CONFIG_TEMPMV_SIGNALING |
| uint8_t intra_only; |
| #endif |
| // The Following variables will only be used in frame parallel decode. |
| |
| // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means |
| // that no FrameWorker owns, or is decoding, this buffer. |
| AVxWorker *frame_worker_owner; |
| |
| // row and col indicate which position frame has been decoded to in real |
| // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX |
| // when the frame is fully decoded. |
| int row; |
| int col; |
| } RefCntBuffer; |
| |
| typedef struct BufferPool { |
| // Protect BufferPool from being accessed by several FrameWorkers at |
| // the same time during frame parallel decode. |
| // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t pool_mutex; |
| #endif |
| |
| // Private data associated with the frame buffer callbacks. |
| void *cb_priv; |
| |
| aom_get_frame_buffer_cb_fn_t get_fb_cb; |
| aom_release_frame_buffer_cb_fn_t release_fb_cb; |
| |
| RefCntBuffer frame_bufs[FRAME_BUFFERS]; |
| |
| // Frame buffers allocated internally by the codec. |
| InternalFrameBufferList int_frame_buffers; |
| } BufferPool; |
| |
| typedef struct AV1Common { |
| struct aom_internal_error_info error; |
| aom_color_space_t color_space; |
| int color_range; |
| int width; |
| int height; |
| int render_width; |
| int render_height; |
| int last_width; |
| int last_height; |
| |
| // TODO(jkoleszar): this implies chroma ss right now, but could vary per |
| // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to |
| // support additional planes. |
| int subsampling_x; |
| int subsampling_y; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| // Marks if we need to use 16bit frame buffers (1: yes, 0: no). |
| int use_highbitdepth; |
| #endif |
| #if CONFIG_CDEF |
| // Two bits are used to signal the strength for all blocks and the |
| // valid values are: |
| // 0: no filtering |
| // 1: strength = 1 |
| // 2: strength = 2 |
| // 3: strength = 4 |
| int clpf_strength_y; |
| int clpf_strength_u; |
| int clpf_strength_v; |
| |
| // If clpf_strength_y is not 0, another two bits are used to signal |
| // the filter block size. The valid values for clfp_size are: |
| // 0: no block signalling |
| // 1: 32x32 |
| // 2: 64x64 |
| // 3: 128x128 |
| CLPF_BLOCK_SIZE clpf_size; |
| |
| // Buffer for storing whether to filter individual blocks. |
| int8_t *clpf_blocks; |
| int clpf_stride; |
| #endif |
| |
| YV12_BUFFER_CONFIG *frame_to_show; |
| RefCntBuffer *prev_frame; |
| |
| // TODO(hkuang): Combine this with cur_buf in macroblockd. |
| RefCntBuffer *cur_frame; |
| |
| int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ |
| |
| // Prepare ref_frame_map for the next frame. |
| // Only used in frame parallel decode. |
| int next_ref_frame_map[REF_FRAMES]; |
| |
| // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and |
| // roll new_fb_idx into it. |
| |
| // Each Inter frame can reference INTER_REFS_PER_FRAME buffers |
| RefBuffer frame_refs[INTER_REFS_PER_FRAME]; |
| |
| int new_fb_idx; |
| |
| FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ |
| FRAME_TYPE frame_type; |
| |
| int show_frame; |
| int last_show_frame; |
| int show_existing_frame; |
| #if CONFIG_EXT_REFS |
| // Flag for a frame used as a reference - not written to the bitstream |
| int is_reference_frame; |
| #endif // CONFIG_EXT_REFS |
| |
| // Flag signaling that the frame is encoded using only INTRA modes. |
| uint8_t intra_only; |
| uint8_t last_intra_only; |
| |
| int allow_high_precision_mv; |
| |
| #if CONFIG_PALETTE |
| int allow_screen_content_tools; |
| #endif // CONFIG_PALETTE |
| |
| // Flag signaling which frame contexts should be reset to default values. |
| RESET_FRAME_CONTEXT_MODE reset_frame_context; |
| |
| // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in |
| // MODE_INFO (8-pixel) units. |
| int MBs; |
| int mb_rows, mi_rows; |
| int mb_cols, mi_cols; |
| int mi_stride; |
| |
| /* profile settings */ |
| TX_MODE tx_mode; |
| |
| int base_qindex; |
| int y_dc_delta_q; |
| int uv_dc_delta_q; |
| int uv_ac_delta_q; |
| int16_t y_dequant[MAX_SEGMENTS][2]; |
| int16_t uv_dequant[MAX_SEGMENTS][2]; |
| |
| #if CONFIG_AOM_QM |
| // Global quant matrix tables |
| qm_val_t *giqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES]; |
| qm_val_t *gqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES]; |
| |
| // Local quant matrix tables for each frame |
| qm_val_t *y_iqmatrix[MAX_SEGMENTS][2][TX_SIZES]; |
| qm_val_t *uv_iqmatrix[MAX_SEGMENTS][2][TX_SIZES]; |
| // Encoder |
| qm_val_t *y_qmatrix[MAX_SEGMENTS][2][TX_SIZES]; |
| qm_val_t *uv_qmatrix[MAX_SEGMENTS][2][TX_SIZES]; |
| |
| int using_qmatrix; |
| int min_qmlevel; |
| int max_qmlevel; |
| #endif |
| #if CONFIG_NEW_QUANT |
| dequant_val_type_nuq y_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS]; |
| dequant_val_type_nuq uv_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS]; |
| #endif |
| |
| /* We allocate a MODE_INFO struct for each macroblock, together with |
| an extra row on top and column on the left to simplify prediction. */ |
| int mi_alloc_size; |
| MODE_INFO *mip; /* Base of allocated array */ |
| MODE_INFO *mi; /* Corresponds to upper left visible macroblock */ |
| |
| // TODO(agrange): Move prev_mi into encoder structure. |
| // prev_mip and prev_mi will only be allocated in encoder. |
| MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */ |
| MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */ |
| |
| // Separate mi functions between encoder and decoder. |
| int (*alloc_mi)(struct AV1Common *cm, int mi_size); |
| void (*free_mi)(struct AV1Common *cm); |
| void (*setup_mi)(struct AV1Common *cm); |
| |
| // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible |
| // area will be NULL. |
| MODE_INFO **mi_grid_base; |
| MODE_INFO **mi_grid_visible; |
| MODE_INFO **prev_mi_grid_base; |
| MODE_INFO **prev_mi_grid_visible; |
| |
| // Whether to use previous frame's motion vectors for prediction. |
| int use_prev_frame_mvs; |
| |
| // Persistent mb segment id map used in prediction. |
| int seg_map_idx; |
| int prev_seg_map_idx; |
| |
| uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS]; |
| uint8_t *last_frame_seg_map; |
| uint8_t *current_frame_seg_map; |
| int seg_map_alloc_size; |
| |
| InterpFilter interp_filter; |
| |
| loop_filter_info_n lf_info; |
| #if CONFIG_LOOP_RESTORATION |
| RestorationInfo rst_info[MAX_MB_PLANE]; |
| RestorationInternal rst_internal; |
| #endif // CONFIG_LOOP_RESTORATION |
| |
| // Flag signaling how frame contexts should be updated at the end of |
| // a frame decode |
| REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; |
| |
| int ref_frame_sign_bias[TOTAL_REFS_PER_FRAME]; /* Two state 0, 1 */ |
| |
| struct loopfilter lf; |
| struct segmentation seg; |
| |
| int frame_parallel_decode; // frame-based threading. |
| |
| #if CONFIG_EXT_TX |
| int reduced_tx_set_used; |
| #endif // CONFIG_EXT_TX |
| |
| // Context probabilities for reference frame prediction |
| #if CONFIG_EXT_REFS |
| MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS]; |
| MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS]; |
| #else |
| MV_REFERENCE_FRAME comp_fixed_ref; |
| MV_REFERENCE_FRAME comp_var_ref[COMP_REFS]; |
| #endif // CONFIG_EXT_REFS |
| REFERENCE_MODE reference_mode; |
| |
| FRAME_CONTEXT *fc; /* this frame entropy */ |
| FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS |
| unsigned int frame_context_idx; /* Context to use/update */ |
| FRAME_COUNTS counts; |
| |
| #if CONFIG_ENTROPY |
| // The initial probabilities for a frame, before any subframe backward update, |
| // and after forward update. |
| av1_coeff_probs_model starting_coef_probs[TX_SIZES][PLANE_TYPES]; |
| // Number of subframe backward updates already done |
| uint8_t coef_probs_update_idx; |
| // Signal if the backward update is subframe or end-of-frame |
| uint8_t partial_prob_update; |
| // Frame level flag to turn on/off subframe backward update |
| uint8_t do_subframe_update; |
| #endif // CONFIG_ENTROPY |
| |
| unsigned int current_video_frame; |
| BITSTREAM_PROFILE profile; |
| |
| // AOM_BITS_8 in profile 0 or 1, AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. |
| aom_bit_depth_t bit_depth; |
| aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer |
| |
| int error_resilient_mode; |
| |
| #if !CONFIG_EXT_TILE |
| int log2_tile_cols, log2_tile_rows; |
| #endif // !CONFIG_EXT_TILE |
| int tile_cols, tile_rows; |
| int tile_width, tile_height; // In MI units |
| |
| #if CONFIG_DEPENDENT_HORZTILES |
| int dependent_horz_tiles; |
| #endif |
| #if CONFIG_LOOPFILTERING_ACROSS_TILES |
| int loop_filter_across_tiles_enabled; |
| #endif // CONFIG_LOOPFILTERING_ACROSS_TILES |
| |
| int byte_alignment; |
| int skip_loop_filter; |
| |
| // Private data associated with the frame buffer callbacks. |
| void *cb_priv; |
| aom_get_frame_buffer_cb_fn_t get_fb_cb; |
| aom_release_frame_buffer_cb_fn_t release_fb_cb; |
| |
| // Handles memory for the codec. |
| InternalFrameBufferList int_frame_buffers; |
| |
| // External BufferPool passed from outside. |
| BufferPool *buffer_pool; |
| |
| PARTITION_CONTEXT *above_seg_context; |
| ENTROPY_CONTEXT *above_context[MAX_MB_PLANE]; |
| #if CONFIG_VAR_TX |
| TXFM_CONTEXT *above_txfm_context; |
| TXFM_CONTEXT left_txfm_context[MAX_MIB_SIZE]; |
| #endif |
| int above_context_alloc_cols; |
| |
| // scratch memory for intraonly/keyframe forward updates from default tables |
| // - this is intentionally not placed in FRAME_CONTEXT since it's reset upon |
| // each keyframe and not used afterwards |
| aom_prob kf_y_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1]; |
| #if CONFIG_GLOBAL_MOTION |
| WarpedMotionParams global_motion[TOTAL_REFS_PER_FRAME]; |
| #endif |
| |
| BLOCK_SIZE sb_size; // Size of the superblock used for this frame |
| int mib_size; // Size of the superblock in units of MI blocks |
| int mib_size_log2; // Log 2 of above. |
| #if CONFIG_CDEF |
| int dering_level; |
| #endif |
| |
| #if CONFIG_DELTA_Q |
| int delta_q_present_flag; |
| // Resolution of delta quant |
| int delta_q_res; |
| #endif |
| #if CONFIG_TILE_GROUPS |
| int num_tg; |
| #endif |
| #if CONFIG_REFERENCE_BUFFER |
| int current_frame_id; |
| int ref_frame_id[REF_FRAMES]; |
| int valid_for_referencing[REF_FRAMES]; |
| int refresh_mask; |
| int invalid_delta_frame_id_minus1; |
| #endif |
| #if CONFIG_ANS && ANS_MAX_SYMBOLS |
| int ans_window_size_log2; |
| #endif |
| } AV1_COMMON; |
| |
| #if CONFIG_REFERENCE_BUFFER |
| /* Initial version of sequence header structure */ |
| typedef struct SequenceHeader { |
| int frame_id_numbers_present_flag; |
| int frame_id_length_minus7; |
| int delta_frame_id_length_minus2; |
| } SequenceHeader; |
| #endif |
| |
| // TODO(hkuang): Don't need to lock the whole pool after implementing atomic |
| // frame reference count. |
| static void lock_buffer_pool(BufferPool *const pool) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(&pool->pool_mutex); |
| #else |
| (void)pool; |
| #endif |
| } |
| |
| static void unlock_buffer_pool(BufferPool *const pool) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(&pool->pool_mutex); |
| #else |
| (void)pool; |
| #endif |
| } |
| |
| static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) { |
| if (index < 0 || index >= REF_FRAMES) return NULL; |
| if (cm->ref_frame_map[index] < 0) return NULL; |
| assert(cm->ref_frame_map[index] < FRAME_BUFFERS); |
| return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf; |
| } |
| |
| static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer( |
| const AV1_COMMON *const cm) { |
| return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf; |
| } |
| |
| static INLINE int get_free_fb(AV1_COMMON *cm) { |
| RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; |
| int i; |
| |
| lock_buffer_pool(cm->buffer_pool); |
| for (i = 0; i < FRAME_BUFFERS; ++i) |
| if (frame_bufs[i].ref_count == 0) break; |
| |
| if (i != FRAME_BUFFERS) { |
| frame_bufs[i].ref_count = 1; |
| } else { |
| // Reset i to be INVALID_IDX to indicate no free buffer found. |
| i = INVALID_IDX; |
| } |
| |
| unlock_buffer_pool(cm->buffer_pool); |
| return i; |
| } |
| |
| static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) { |
| const int ref_index = *idx; |
| |
| if (ref_index >= 0 && bufs[ref_index].ref_count > 0) |
| bufs[ref_index].ref_count--; |
| |
| *idx = new_idx; |
| |
| bufs[new_idx].ref_count++; |
| } |
| |
| static INLINE int mi_cols_aligned_to_sb(const AV1_COMMON *cm) { |
| return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2); |
| } |
| |
| static INLINE int mi_rows_aligned_to_sb(const AV1_COMMON *cm) { |
| return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2); |
| } |
| |
| static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) { |
| return cm->frame_type == KEY_FRAME || cm->intra_only; |
| } |
| |
| static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd, |
| #if CONFIG_PVQ |
| tran_low_t *pvq_ref_coeff, |
| #endif |
| tran_low_t *dqcoeff) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| xd->plane[i].dqcoeff = dqcoeff; |
| #if CONFIG_PVQ |
| xd->plane[i].pvq_ref_coeff = pvq_ref_coeff; |
| #endif |
| xd->above_context[i] = cm->above_context[i]; |
| if (xd->plane[i].plane_type == PLANE_TYPE_Y) { |
| memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant)); |
| #if CONFIG_AOM_QM |
| memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix)); |
| #endif |
| |
| #if CONFIG_NEW_QUANT |
| memcpy(xd->plane[i].seg_dequant_nuq, cm->y_dequant_nuq, |
| sizeof(cm->y_dequant_nuq)); |
| #endif |
| } else { |
| memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant)); |
| #if CONFIG_AOM_QM |
| memcpy(xd->plane[i].seg_iqmatrix, cm->uv_iqmatrix, |
| sizeof(cm->uv_iqmatrix)); |
| #endif |
| #if CONFIG_NEW_QUANT |
| memcpy(xd->plane[i].seg_dequant_nuq, cm->uv_dequant_nuq, |
| sizeof(cm->uv_dequant_nuq)); |
| #endif |
| } |
| xd->fc = cm->fc; |
| } |
| xd->above_seg_context = cm->above_seg_context; |
| #if CONFIG_VAR_TX |
| xd->above_txfm_context = cm->above_txfm_context; |
| #endif |
| xd->mi_stride = cm->mi_stride; |
| xd->error_info = &cm->error; |
| } |
| |
| static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) { |
| const int above_idx = mi_col * 2; |
| const int left_idx = (mi_row * 2) & MAX_MIB_MASK_2; |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; |
| pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; |
| } |
| } |
| |
| static INLINE int calc_mi_size(int len) { |
| // len is in mi units. |
| return len + MAX_MIB_SIZE; |
| } |
| |
| static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh) { |
| int i; |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x; |
| xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y; |
| |
| xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x; |
| xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y; |
| |
| #if !CONFIG_CHROMA_2X2 |
| xd->plane[i].width = AOMMAX(xd->plane[i].width, 4); |
| xd->plane[i].height = AOMMAX(xd->plane[i].height, 4); |
| #endif |
| } |
| } |
| |
| #if CONFIG_DEPENDENT_HORZTILES |
| static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, |
| int mi_row, int bh, int mi_col, int bw, |
| int mi_rows, int mi_cols, |
| int dependent_horz_tile_flag) { |
| xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); |
| xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; |
| xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); |
| xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; |
| |
| if (dependent_horz_tile_flag) { |
| xd->up_available = (mi_row > 0); |
| } else { |
| // Are edges available for intra prediction? |
| xd->up_available = (mi_row > tile->mi_row_start); |
| } |
| |
| xd->left_available = (mi_col > tile->mi_col_start); |
| if (xd->up_available) { |
| xd->above_mi = xd->mi[-xd->mi_stride]; |
| // above_mi may be NULL in encoder's first pass. |
| xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL; |
| } else { |
| xd->above_mi = NULL; |
| xd->above_mbmi = NULL; |
| } |
| |
| if (xd->left_available) { |
| xd->left_mi = xd->mi[-1]; |
| // left_mi may be NULL in encoder's first pass. |
| xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL; |
| } else { |
| xd->left_mi = NULL; |
| xd->left_mbmi = NULL; |
| } |
| |
| xd->n8_h = bh; |
| xd->n8_w = bw; |
| #if CONFIG_REF_MV |
| xd->is_sec_rect = 0; |
| if (xd->n8_w < xd->n8_h) |
| if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1; |
| |
| if (xd->n8_w > xd->n8_h) |
| if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1; |
| #endif |
| } |
| #else |
| static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, |
| int mi_row, int bh, int mi_col, int bw, |
| int mi_rows, int mi_cols) { |
| xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); |
| xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; |
| xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); |
| xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; |
| |
| // Are edges available for intra prediction? |
| xd->up_available = (mi_row > tile->mi_row_start); |
| xd->left_available = (mi_col > tile->mi_col_start); |
| if (xd->up_available) { |
| xd->above_mi = xd->mi[-xd->mi_stride]; |
| // above_mi may be NULL in encoder's first pass. |
| xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL; |
| } else { |
| xd->above_mi = NULL; |
| xd->above_mbmi = NULL; |
| } |
| |
| if (xd->left_available) { |
| xd->left_mi = xd->mi[-1]; |
| // left_mi may be NULL in encoder's first pass. |
| xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL; |
| } else { |
| xd->left_mi = NULL; |
| xd->left_mbmi = NULL; |
| } |
| |
| xd->n8_h = bh; |
| xd->n8_w = bw; |
| #if CONFIG_REF_MV |
| xd->is_sec_rect = 0; |
| if (xd->n8_w < xd->n8_h) |
| if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1; |
| |
| if (xd->n8_w > xd->n8_h) |
| if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1; |
| #endif |
| } |
| #endif |
| |
| static INLINE const aom_prob *get_y_mode_probs(const AV1_COMMON *cm, |
| const MODE_INFO *mi, |
| const MODE_INFO *above_mi, |
| const MODE_INFO *left_mi, |
| int block) { |
| const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block); |
| const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block); |
| return cm->kf_y_prob[above][left]; |
| } |
| |
| #if CONFIG_EC_MULTISYMBOL |
| static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx, |
| const MODE_INFO *mi, |
| const MODE_INFO *above_mi, |
| const MODE_INFO *left_mi, |
| int block) { |
| const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block); |
| const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block); |
| return tile_ctx->kf_y_cdf[above][left]; |
| } |
| #endif |
| |
| static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, |
| int mi_col, BLOCK_SIZE subsize, |
| BLOCK_SIZE bsize) { |
| PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; |
| PARTITION_CONTEXT *const left_ctx = |
| xd->left_seg_context + (mi_row & MAX_MIB_MASK); |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| memset(above_ctx, partition_context_lookup[subsize].above, bw); |
| memset(left_ctx, partition_context_lookup[subsize].left, bh); |
| #else |
| // num_4x4_blocks_wide_lookup[bsize] / 2 |
| const int bs = mi_size_wide[bsize]; |
| |
| // update the partition context at the end notes. set partition bits |
| // of block sizes larger than the current one to be one, and partition |
| // bits of smaller block sizes to be zero. |
| memset(above_ctx, partition_context_lookup[subsize].above, bs); |
| memset(left_ctx, partition_context_lookup[subsize].left, bs); |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| } |
| |
| #if CONFIG_CB4X4 |
| static INLINE int is_chroma_reference(const int mi_row, const int mi_col) { |
| #if CONFIG_CHROMA_2X2 |
| return 1; |
| #endif |
| return !((mi_row & 0x01) || (mi_col & 0x01)); |
| } |
| #endif |
| |
| #if CONFIG_EXT_PARTITION_TYPES |
| static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, |
| int mi_col, BLOCK_SIZE subsize, |
| BLOCK_SIZE bsize, |
| PARTITION_TYPE partition) { |
| if (bsize >= BLOCK_8X8) { |
| const int hbs = mi_size_wide[bsize] / 2; |
| BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); |
| switch (partition) { |
| case PARTITION_SPLIT: |
| if (bsize != BLOCK_8X8) break; |
| case PARTITION_NONE: |
| case PARTITION_HORZ: |
| case PARTITION_VERT: |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| break; |
| case PARTITION_HORZ_A: |
| update_partition_context(xd, mi_row, mi_col, bsize2, subsize); |
| update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); |
| break; |
| case PARTITION_HORZ_B: |
| update_partition_context(xd, mi_row, mi_col, subsize, subsize); |
| update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); |
| break; |
| case PARTITION_VERT_A: |
| update_partition_context(xd, mi_row, mi_col, bsize2, subsize); |
| update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); |
| break; |
| case PARTITION_VERT_B: |
| update_partition_context(xd, mi_row, mi_col, subsize, subsize); |
| update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); |
| break; |
| default: assert(0 && "Invalid partition type"); |
| } |
| } |
| } |
| #endif // CONFIG_EXT_PARTITION_TYPES |
| |
| static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, |
| int mi_col, |
| #if CONFIG_UNPOISON_PARTITION_CTX |
| int has_rows, int has_cols, |
| #endif |
| BLOCK_SIZE bsize) { |
| #if CONFIG_UNPOISON_PARTITION_CTX |
| const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; |
| const PARTITION_CONTEXT *left_ctx = |
| xd->left_seg_context + (mi_row & MAX_MIB_MASK); |
| // Minimum partition point is 8x8. Offset the bsl accordingly. |
| const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8]; |
| int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; |
| |
| assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); |
| assert(bsl >= 0); |
| |
| if (has_rows && has_cols) |
| return (left * 2 + above) + bsl * PARTITION_PLOFFSET; |
| else if (has_rows && !has_cols) |
| return PARTITION_CONTEXTS_PRIMARY + bsl; |
| else if (!has_rows && has_cols) |
| return PARTITION_CONTEXTS_PRIMARY + PARTITION_BLOCK_SIZES + bsl; |
| else |
| return -1; // Bogus context, forced SPLIT |
| #else |
| const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; |
| const PARTITION_CONTEXT *left_ctx = |
| xd->left_seg_context + (mi_row & MAX_MIB_MASK); |
| // Minimum partition point is 8x8. Offset the bsl accordingly. |
| const int bsl = mi_width_log2_lookup[bsize] - mi_width_log2_lookup[BLOCK_8X8]; |
| int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; |
| |
| assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); |
| assert(bsl >= 0); |
| |
| return (left * 2 + above) + bsl * PARTITION_PLOFFSET; |
| #endif |
| } |
| |
| static INLINE int max_block_wide(const MACROBLOCKD *xd, const BLOCK_SIZE bsize, |
| const int plane) { |
| int max_blocks_wide = block_size_wide[bsize]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| |
| if (xd->mb_to_right_edge < 0) |
| max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x); |
| |
| // Scale the width in the transform block unit. |
| return max_blocks_wide >> tx_size_wide_log2[0]; |
| } |
| |
| static INLINE int max_block_high(const MACROBLOCKD *xd, const BLOCK_SIZE bsize, |
| const int plane) { |
| int max_blocks_high = block_size_high[bsize]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| |
| if (xd->mb_to_bottom_edge < 0) |
| max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y); |
| |
| // Scale the width in the transform block unit. |
| return max_blocks_high >> tx_size_wide_log2[0]; |
| } |
| |
| static INLINE void av1_zero_above_context(AV1_COMMON *const cm, |
| int mi_col_start, int mi_col_end) { |
| const int width = mi_col_end - mi_col_start; |
| |
| const int offset_y = 2 * mi_col_start; |
| const int width_y = 2 * width; |
| const int offset_uv = offset_y >> cm->subsampling_x; |
| const int width_uv = width_y >> cm->subsampling_x; |
| |
| av1_zero_array(cm->above_context[0] + offset_y, width_y); |
| av1_zero_array(cm->above_context[1] + offset_uv, width_uv); |
| av1_zero_array(cm->above_context[2] + offset_uv, width_uv); |
| |
| av1_zero_array(cm->above_seg_context + mi_col_start, width); |
| |
| #if CONFIG_VAR_TX |
| av1_zero_array(cm->above_txfm_context + mi_col_start, width); |
| #endif // CONFIG_VAR_TX |
| } |
| |
| static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) { |
| av1_zero(xd->left_context); |
| av1_zero(xd->left_seg_context); |
| #if CONFIG_VAR_TX |
| av1_zero(xd->left_txfm_context_buffer); |
| #endif |
| } |
| |
| #if CONFIG_VAR_TX |
| static INLINE TX_SIZE get_min_tx_size(const TX_SIZE tx_size) { |
| if (tx_size >= TX_SIZES_ALL) assert(0); |
| return txsize_sqr_map[tx_size]; |
| } |
| |
| static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) { |
| int i; |
| for (i = 0; i < len; ++i) txfm_ctx[i] = txs; |
| } |
| |
| static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n8_w, int n8_h, |
| const int skip, const MACROBLOCKD *xd) { |
| uint8_t bw = tx_size_wide[tx_size]; |
| uint8_t bh = tx_size_high[tx_size]; |
| |
| if (skip) { |
| bw = n8_w * MI_SIZE; |
| bh = n8_h * MI_SIZE; |
| } |
| |
| set_txfm_ctx(xd->above_txfm_context, bw, n8_w); |
| set_txfm_ctx(xd->left_txfm_context, bh, n8_h); |
| } |
| |
| static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx, |
| TXFM_CONTEXT *left_ctx, |
| TX_SIZE tx_size, TX_SIZE txb_size) { |
| BLOCK_SIZE bsize = txsize_to_bsize[txb_size]; |
| int bh = mi_size_high[bsize]; |
| int bw = mi_size_wide[bsize]; |
| uint8_t txw = tx_size_wide[tx_size]; |
| uint8_t txh = tx_size_high[tx_size]; |
| int i; |
| for (i = 0; i < bh; ++i) left_ctx[i] = txh; |
| for (i = 0; i < bw; ++i) above_ctx[i] = txw; |
| } |
| |
| static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx, |
| TXFM_CONTEXT *left_ctx, |
| const BLOCK_SIZE bsize, |
| const TX_SIZE tx_size) { |
| const uint8_t txw = tx_size_wide[tx_size]; |
| const uint8_t txh = tx_size_high[tx_size]; |
| const int above = *above_ctx < txw; |
| const int left = *left_ctx < txh; |
| TX_SIZE max_tx_size = max_txsize_lookup[bsize]; |
| int category = TXFM_PARTITION_CONTEXTS - 1; |
| |
| // dummy return, not used by others. |
| if (tx_size <= TX_4X4) return 0; |
| |
| switch (AOMMAX(block_size_wide[bsize], block_size_high[bsize])) { |
| case 64: |
| case 32: max_tx_size = TX_32X32; break; |
| case 16: max_tx_size = TX_16X16; break; |
| case 8: max_tx_size = TX_8X8; break; |
| default: assert(0); |
| } |
| |
| if (max_tx_size >= TX_8X8) { |
| category = (tx_size != max_tx_size && max_tx_size > TX_8X8) + |
| (TX_SIZES - 1 - max_tx_size) * 2; |
| } |
| if (category == TXFM_PARTITION_CONTEXTS - 1) return category; |
| return category * 3 + above + left; |
| } |
| #endif |
| |
| static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm, |
| const int mi_row, const int mi_col, |
| const BLOCK_SIZE bsize) { |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) { |
| return PARTITION_INVALID; |
| } else { |
| const int offset = mi_row * cm->mi_stride + mi_col; |
| MODE_INFO **mi = cm->mi_grid_visible + offset; |
| const MB_MODE_INFO *const mbmi = &mi[0]->mbmi; |
| const int bsl = b_width_log2_lookup[bsize]; |
| const PARTITION_TYPE partition = partition_lookup[bsl][mbmi->sb_type]; |
| #if !CONFIG_EXT_PARTITION_TYPES |
| return partition; |
| #else |
| const int hbs = mi_size_wide[bsize] / 2; |
| |
| assert(cm->mi_grid_visible[offset] == &cm->mi[offset]); |
| |
| if (partition != PARTITION_NONE && bsize > BLOCK_8X8 && |
| mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) { |
| const BLOCK_SIZE h = get_subsize(bsize, PARTITION_HORZ_A); |
| const BLOCK_SIZE v = get_subsize(bsize, PARTITION_VERT_A); |
| const MB_MODE_INFO *const mbmi_right = &mi[hbs]->mbmi; |
| const MB_MODE_INFO *const mbmi_below = &mi[hbs * cm->mi_stride]->mbmi; |
| if (mbmi->sb_type == h) { |
| return mbmi_below->sb_type == h ? PARTITION_HORZ : PARTITION_HORZ_B; |
| } else if (mbmi->sb_type == v) { |
| return mbmi_right->sb_type == v ? PARTITION_VERT : PARTITION_VERT_B; |
| } else if (mbmi_below->sb_type == h) { |
| return PARTITION_HORZ_A; |
| } else if (mbmi_right->sb_type == v) { |
| return PARTITION_VERT_A; |
| } else { |
| return PARTITION_SPLIT; |
| } |
| } |
| |
| return partition; |
| #endif // !CONFIG_EXT_PARTITION_TYPES |
| } |
| } |
| |
| static INLINE void set_sb_size(AV1_COMMON *const cm, const BLOCK_SIZE sb_size) { |
| cm->sb_size = sb_size; |
| cm->mib_size = mi_size_wide[cm->sb_size]; |
| #if CONFIG_CB4X4 |
| cm->mib_size_log2 = b_width_log2_lookup[cm->sb_size]; |
| #else |
| cm->mib_size_log2 = mi_width_log2_lookup[cm->sb_size]; |
| #endif |
| } |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AV1_COMMON_ONYXC_INT_H_ |