| /* |
| * Copyright (c) 2013 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "third_party/googletest/src/include/gtest/gtest.h" |
| |
| #include "./vp10_rtcd.h" |
| #include "./vpx_dsp_rtcd.h" |
| #include "test/acm_random.h" |
| #include "test/clear_system_state.h" |
| #include "test/register_state_check.h" |
| #include "test/util.h" |
| #include "vp10/common/blockd.h" |
| #include "vp10/common/scan.h" |
| #include "vpx/vpx_integer.h" |
| #include "vp10/common/vp10_inv_txfm.h" |
| |
| using libvpx_test::ACMRandom; |
| |
| namespace { |
| const double kInvSqrt2 = 0.707106781186547524400844362104; |
| |
| void reference_idct_1d(const double *in, double *out, int size) { |
| for (int n = 0; n < size; ++n) { |
| out[n] = 0; |
| for (int k = 0; k < size; ++k) { |
| if (k == 0) |
| out[n] += kInvSqrt2 * in[k] * cos(PI * (2 * n + 1) * k / (2 * size)); |
| else |
| out[n] += in[k] * cos(PI * (2 * n + 1) * k / (2 * size)); |
| } |
| } |
| } |
| |
| typedef void (*IdctFuncRef)(const double *in, double *out, int size); |
| typedef void (*IdctFunc)(const tran_low_t *in, tran_low_t *out); |
| |
| class TransTestBase { |
| public: |
| virtual ~TransTestBase() {} |
| |
| protected: |
| void RunInvAccuracyCheck() { |
| tran_low_t *input = new tran_low_t[txfm_size_]; |
| tran_low_t *output = new tran_low_t[txfm_size_]; |
| double *ref_input = new double[txfm_size_]; |
| double *ref_output = new double[txfm_size_]; |
| |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 5000; |
| for (int ti = 0; ti < count_test_block; ++ti) { |
| for (int ni = 0; ni < txfm_size_; ++ni) { |
| input[ni] = rnd.Rand8() - rnd.Rand8(); |
| ref_input[ni] = static_cast<double>(input[ni]); |
| } |
| |
| fwd_txfm_(input, output); |
| fwd_txfm_ref_(ref_input, ref_output, txfm_size_); |
| |
| for (int ni = 0; ni < txfm_size_; ++ni) { |
| EXPECT_LE( |
| abs(output[ni] - static_cast<tran_low_t>(round(ref_output[ni]))), |
| max_error_); |
| } |
| } |
| |
| delete[] input; |
| delete[] output; |
| delete[] ref_input; |
| delete[] ref_output; |
| } |
| |
| double max_error_; |
| int txfm_size_; |
| IdctFunc fwd_txfm_; |
| IdctFuncRef fwd_txfm_ref_; |
| }; |
| |
| typedef std::tr1::tuple<IdctFunc, IdctFuncRef, int, int> IdctParam; |
| class Vp10InvTxfm |
| : public TransTestBase, |
| public ::testing::TestWithParam<IdctParam> { |
| public: |
| virtual void SetUp() { |
| fwd_txfm_ = GET_PARAM(0); |
| fwd_txfm_ref_ = GET_PARAM(1); |
| txfm_size_ = GET_PARAM(2); |
| max_error_ = GET_PARAM(3); |
| } |
| virtual void TearDown() {} |
| }; |
| |
| TEST_P(Vp10InvTxfm, RunInvAccuracyCheck) { |
| RunInvAccuracyCheck(); |
| } |
| |
| INSTANTIATE_TEST_CASE_P( |
| C, Vp10InvTxfm, |
| ::testing::Values( |
| IdctParam(&vp10_idct4_c, &reference_idct_1d, 4, 1), |
| IdctParam(&vp10_idct8_c, &reference_idct_1d, 8, 2), |
| IdctParam(&vp10_idct16_c, &reference_idct_1d, 16, 4), |
| IdctParam(&vp10_idct32_c, &reference_idct_1d, 32, 6)) |
| ); |
| |
| typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride); |
| typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride); |
| typedef std::tr1::tuple<FwdTxfmFunc, |
| InvTxfmFunc, |
| InvTxfmFunc, |
| TX_SIZE, int> PartialInvTxfmParam; |
| const int kMaxNumCoeffs = 1024; |
| class Vp10PartialIDctTest |
| : public ::testing::TestWithParam<PartialInvTxfmParam> { |
| public: |
| virtual ~Vp10PartialIDctTest() {} |
| virtual void SetUp() { |
| ftxfm_ = GET_PARAM(0); |
| full_itxfm_ = GET_PARAM(1); |
| partial_itxfm_ = GET_PARAM(2); |
| tx_size_ = GET_PARAM(3); |
| last_nonzero_ = GET_PARAM(4); |
| } |
| |
| virtual void TearDown() { libvpx_test::ClearSystemState(); } |
| |
| protected: |
| int last_nonzero_; |
| TX_SIZE tx_size_; |
| FwdTxfmFunc ftxfm_; |
| InvTxfmFunc full_itxfm_; |
| InvTxfmFunc partial_itxfm_; |
| }; |
| |
| TEST_P(Vp10PartialIDctTest, RunQuantCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| int size; |
| switch (tx_size_) { |
| case TX_4X4: |
| size = 4; |
| break; |
| case TX_8X8: |
| size = 8; |
| break; |
| case TX_16X16: |
| size = 16; |
| break; |
| case TX_32X32: |
| size = 32; |
| break; |
| default: |
| FAIL() << "Wrong Size!"; |
| break; |
| } |
| DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]); |
| |
| const int count_test_block = 1000; |
| const int block_size = size * size; |
| |
| DECLARE_ALIGNED(16, int16_t, input_extreme_block[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kMaxNumCoeffs]); |
| |
| int max_error = 0; |
| for (int i = 0; i < count_test_block; ++i) { |
| // clear out destination buffer |
| memset(dst1, 0, sizeof(*dst1) * block_size); |
| memset(dst2, 0, sizeof(*dst2) * block_size); |
| memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size); |
| memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size); |
| |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| |
| for (int i = 0; i < count_test_block; ++i) { |
| // Initialize a test block with input range [-255, 255]. |
| if (i == 0) { |
| for (int j = 0; j < block_size; ++j) |
| input_extreme_block[j] = 255; |
| } else if (i == 1) { |
| for (int j = 0; j < block_size; ++j) |
| input_extreme_block[j] = -255; |
| } else { |
| for (int j = 0; j < block_size; ++j) { |
| input_extreme_block[j] = rnd.Rand8() % 2 ? 255 : -255; |
| } |
| } |
| |
| ftxfm_(input_extreme_block, output_ref_block, size); |
| |
| // quantization with maximum allowed step sizes |
| test_coef_block1[0] = (output_ref_block[0] / 1336) * 1336; |
| for (int j = 1; j < last_nonzero_; ++j) |
| test_coef_block1[get_scan(tx_size_, DCT_DCT, 0)->scan[j]] |
| = (output_ref_block[j] / 1828) * 1828; |
| } |
| |
| ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size)); |
| ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block1, dst2, size)); |
| |
| for (int j = 0; j < block_size; ++j) { |
| const int diff = dst1[j] - dst2[j]; |
| const int error = diff * diff; |
| if (max_error < error) |
| max_error = error; |
| } |
| } |
| |
| EXPECT_EQ(0, max_error) |
| << "Error: partial inverse transform produces different results"; |
| } |
| |
| TEST_P(Vp10PartialIDctTest, ResultsMatch) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| int size; |
| switch (tx_size_) { |
| case TX_4X4: |
| size = 4; |
| break; |
| case TX_8X8: |
| size = 8; |
| break; |
| case TX_16X16: |
| size = 16; |
| break; |
| case TX_32X32: |
| size = 32; |
| break; |
| default: |
| FAIL() << "Wrong Size!"; |
| break; |
| } |
| DECLARE_ALIGNED(16, tran_low_t, test_coef_block1[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, tran_low_t, test_coef_block2[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst1[kMaxNumCoeffs]); |
| DECLARE_ALIGNED(16, uint8_t, dst2[kMaxNumCoeffs]); |
| const int count_test_block = 1000; |
| const int max_coeff = 32766 / 4; |
| const int block_size = size * size; |
| int max_error = 0; |
| for (int i = 0; i < count_test_block; ++i) { |
| // clear out destination buffer |
| memset(dst1, 0, sizeof(*dst1) * block_size); |
| memset(dst2, 0, sizeof(*dst2) * block_size); |
| memset(test_coef_block1, 0, sizeof(*test_coef_block1) * block_size); |
| memset(test_coef_block2, 0, sizeof(*test_coef_block2) * block_size); |
| int max_energy_leftover = max_coeff * max_coeff; |
| for (int j = 0; j < last_nonzero_; ++j) { |
| int16_t coef = static_cast<int16_t>(sqrt(1.0 * max_energy_leftover) * |
| (rnd.Rand16() - 32768) / 65536); |
| max_energy_leftover -= coef * coef; |
| if (max_energy_leftover < 0) { |
| max_energy_leftover = 0; |
| coef = 0; |
| } |
| test_coef_block1[get_scan(tx_size_, DCT_DCT, 0)->scan[j]] = coef; |
| } |
| |
| memcpy(test_coef_block2, test_coef_block1, |
| sizeof(*test_coef_block2) * block_size); |
| |
| ASM_REGISTER_STATE_CHECK(full_itxfm_(test_coef_block1, dst1, size)); |
| ASM_REGISTER_STATE_CHECK(partial_itxfm_(test_coef_block2, dst2, size)); |
| |
| for (int j = 0; j < block_size; ++j) { |
| const int diff = dst1[j] - dst2[j]; |
| const int error = diff * diff; |
| if (max_error < error) |
| max_error = error; |
| } |
| } |
| |
| EXPECT_EQ(0, max_error) |
| << "Error: partial inverse transform produces different results"; |
| } |
| using std::tr1::make_tuple; |
| |
| INSTANTIATE_TEST_CASE_P( |
| C, Vp10PartialIDctTest, |
| ::testing::Values( |
| make_tuple(&vpx_fdct32x32_c, |
| &vp10_idct32x32_1024_add_c, |
| &vp10_idct32x32_34_add_c, |
| TX_32X32, 34), |
| make_tuple(&vpx_fdct32x32_c, |
| &vp10_idct32x32_1024_add_c, |
| &vp10_idct32x32_1_add_c, |
| TX_32X32, 1), |
| make_tuple(&vpx_fdct16x16_c, |
| &vp10_idct16x16_256_add_c, |
| &vp10_idct16x16_10_add_c, |
| TX_16X16, 10), |
| make_tuple(&vpx_fdct16x16_c, |
| &vp10_idct16x16_256_add_c, |
| &vp10_idct16x16_1_add_c, |
| TX_16X16, 1), |
| make_tuple(&vpx_fdct8x8_c, |
| &vp10_idct8x8_64_add_c, |
| &vp10_idct8x8_12_add_c, |
| TX_8X8, 12), |
| make_tuple(&vpx_fdct8x8_c, |
| &vp10_idct8x8_64_add_c, |
| &vp10_idct8x8_1_add_c, |
| TX_8X8, 1), |
| make_tuple(&vpx_fdct4x4_c, |
| &vp10_idct4x4_16_add_c, |
| &vp10_idct4x4_1_add_c, |
| TX_4X4, 1))); |
| } // namespace |