| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <assert.h> |
| #include <emmintrin.h> // SSE2 |
| #include "./vpx_config.h" |
| #include "vpx/vpx_integer.h" |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_idct.h" |
| |
| #if HAVE_SSE2 |
| // In order to improve performance, clip absolute diff values to [0, 255], |
| // which allows to keep the additions/subtractions in 8 bits. |
| void vp9_dc_only_idct_add_sse2(int input_dc, uint8_t *pred_ptr, |
| uint8_t *dst_ptr, int pitch, int stride) { |
| int a1; |
| int16_t out; |
| uint8_t abs_diff; |
| __m128i p0, p1, p2, p3; |
| unsigned int extended_diff; |
| __m128i diff; |
| |
| out = dct_const_round_shift(input_dc * cospi_16_64); |
| out = dct_const_round_shift(out * cospi_16_64); |
| a1 = ROUND_POWER_OF_TWO(out, 4); |
| |
| // Read prediction data. |
| p0 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 0 * pitch)); |
| p1 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 1 * pitch)); |
| p2 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 2 * pitch)); |
| p3 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 3 * pitch)); |
| |
| // Unpack prediction data, and store 4x4 array in 1 XMM register. |
| p0 = _mm_unpacklo_epi32(p0, p1); |
| p2 = _mm_unpacklo_epi32(p2, p3); |
| p0 = _mm_unpacklo_epi64(p0, p2); |
| |
| // Clip dc value to [0, 255] range. Then, do addition or subtraction |
| // according to its sign. |
| if (a1 >= 0) { |
| abs_diff = (a1 > 255) ? 255 : a1; |
| extended_diff = abs_diff * 0x01010101u; |
| diff = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)extended_diff), 0); |
| |
| p1 = _mm_adds_epu8(p0, diff); |
| } else { |
| abs_diff = (a1 < -255) ? 255 : -a1; |
| extended_diff = abs_diff * 0x01010101u; |
| diff = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)extended_diff), 0); |
| |
| p1 = _mm_subs_epu8(p0, diff); |
| } |
| |
| // Store results to dst. |
| *(int *)dst_ptr = _mm_cvtsi128_si32(p1); |
| dst_ptr += stride; |
| |
| p1 = _mm_srli_si128(p1, 4); |
| *(int *)dst_ptr = _mm_cvtsi128_si32(p1); |
| dst_ptr += stride; |
| |
| p1 = _mm_srli_si128(p1, 4); |
| *(int *)dst_ptr = _mm_cvtsi128_si32(p1); |
| dst_ptr += stride; |
| |
| p1 = _mm_srli_si128(p1, 4); |
| *(int *)dst_ptr = _mm_cvtsi128_si32(p1); |
| } |
| |
| void vp9_short_idct4x4llm_sse2(int16_t *input, int16_t *output, int pitch) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i eight = _mm_set1_epi16(8); |
| const __m128i cst = _mm_setr_epi16((short)cospi_16_64, (short)cospi_16_64, |
| (short)cospi_16_64, (short)-cospi_16_64, |
| (short)cospi_24_64, (short)-cospi_8_64, |
| (short)cospi_8_64, (short)cospi_24_64); |
| const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING); |
| const int half_pitch = pitch >> 1; |
| __m128i input0, input1, input2, input3; |
| |
| // Rows |
| input0 = _mm_loadl_epi64((__m128i *)input); |
| input1 = _mm_loadl_epi64((__m128i *)(input + 4)); |
| input2 = _mm_loadl_epi64((__m128i *)(input + 8)); |
| input3 = _mm_loadl_epi64((__m128i *)(input + 12)); |
| |
| // Construct i3, i1, i3, i1, i2, i0, i2, i0 |
| input0 = _mm_shufflelo_epi16(input0, 0xd8); |
| input1 = _mm_shufflelo_epi16(input1, 0xd8); |
| input2 = _mm_shufflelo_epi16(input2, 0xd8); |
| input3 = _mm_shufflelo_epi16(input3, 0xd8); |
| |
| input0 = _mm_unpacklo_epi32(input0, input0); |
| input1 = _mm_unpacklo_epi32(input1, input1); |
| input2 = _mm_unpacklo_epi32(input2, input2); |
| input3 = _mm_unpacklo_epi32(input3, input3); |
| |
| // Stage 1 |
| input0 = _mm_madd_epi16(input0, cst); |
| input1 = _mm_madd_epi16(input1, cst); |
| input2 = _mm_madd_epi16(input2, cst); |
| input3 = _mm_madd_epi16(input3, cst); |
| |
| input0 = _mm_add_epi32(input0, rounding); |
| input1 = _mm_add_epi32(input1, rounding); |
| input2 = _mm_add_epi32(input2, rounding); |
| input3 = _mm_add_epi32(input3, rounding); |
| |
| input0 = _mm_srai_epi32(input0, DCT_CONST_BITS); |
| input1 = _mm_srai_epi32(input1, DCT_CONST_BITS); |
| input2 = _mm_srai_epi32(input2, DCT_CONST_BITS); |
| input3 = _mm_srai_epi32(input3, DCT_CONST_BITS); |
| |
| // Stage 2 |
| input0 = _mm_packs_epi32(input0, zero); |
| input1 = _mm_packs_epi32(input1, zero); |
| input2 = _mm_packs_epi32(input2, zero); |
| input3 = _mm_packs_epi32(input3, zero); |
| |
| // Transpose |
| input1 = _mm_unpacklo_epi16(input0, input1); |
| input3 = _mm_unpacklo_epi16(input2, input3); |
| input0 = _mm_unpacklo_epi32(input1, input3); |
| input1 = _mm_unpackhi_epi32(input1, input3); |
| |
| // Switch column2, column 3, and then, we got: |
| // input2: column1, column 0; input3: column2, column 3. |
| input1 = _mm_shuffle_epi32(input1, 0x4e); |
| input2 = _mm_add_epi16(input0, input1); |
| input3 = _mm_sub_epi16(input0, input1); |
| |
| // Columns |
| // Construct i3, i1, i3, i1, i2, i0, i2, i0 |
| input0 = _mm_shufflelo_epi16(input2, 0xd8); |
| input1 = _mm_shufflehi_epi16(input2, 0xd8); |
| input2 = _mm_shufflehi_epi16(input3, 0xd8); |
| input3 = _mm_shufflelo_epi16(input3, 0xd8); |
| |
| input0 = _mm_unpacklo_epi32(input0, input0); |
| input1 = _mm_unpackhi_epi32(input1, input1); |
| input2 = _mm_unpackhi_epi32(input2, input2); |
| input3 = _mm_unpacklo_epi32(input3, input3); |
| |
| // Stage 1 |
| input0 = _mm_madd_epi16(input0, cst); |
| input1 = _mm_madd_epi16(input1, cst); |
| input2 = _mm_madd_epi16(input2, cst); |
| input3 = _mm_madd_epi16(input3, cst); |
| |
| input0 = _mm_add_epi32(input0, rounding); |
| input1 = _mm_add_epi32(input1, rounding); |
| input2 = _mm_add_epi32(input2, rounding); |
| input3 = _mm_add_epi32(input3, rounding); |
| |
| input0 = _mm_srai_epi32(input0, DCT_CONST_BITS); |
| input1 = _mm_srai_epi32(input1, DCT_CONST_BITS); |
| input2 = _mm_srai_epi32(input2, DCT_CONST_BITS); |
| input3 = _mm_srai_epi32(input3, DCT_CONST_BITS); |
| |
| // Stage 2 |
| input0 = _mm_packs_epi32(input0, zero); |
| input1 = _mm_packs_epi32(input1, zero); |
| input2 = _mm_packs_epi32(input2, zero); |
| input3 = _mm_packs_epi32(input3, zero); |
| |
| // Transpose |
| input1 = _mm_unpacklo_epi16(input0, input1); |
| input3 = _mm_unpacklo_epi16(input2, input3); |
| input0 = _mm_unpacklo_epi32(input1, input3); |
| input1 = _mm_unpackhi_epi32(input1, input3); |
| |
| // Switch column2, column 3, and then, we got: |
| // input2: column1, column 0; input3: column2, column 3. |
| input1 = _mm_shuffle_epi32(input1, 0x4e); |
| input2 = _mm_add_epi16(input0, input1); |
| input3 = _mm_sub_epi16(input0, input1); |
| |
| // Final round and shift |
| input2 = _mm_add_epi16(input2, eight); |
| input3 = _mm_add_epi16(input3, eight); |
| |
| input2 = _mm_srai_epi16(input2, 4); |
| input3 = _mm_srai_epi16(input3, 4); |
| |
| // Store results |
| _mm_storel_epi64((__m128i *)output, input2); |
| input2 = _mm_srli_si128(input2, 8); |
| _mm_storel_epi64((__m128i *)(output + half_pitch), input2); |
| |
| _mm_storel_epi64((__m128i *)(output + 3 * half_pitch), input3); |
| input3 = _mm_srli_si128(input3, 8); |
| _mm_storel_epi64((__m128i *)(output + 2 * half_pitch), input3); |
| } |
| #endif |