blob: 5404b8ab0160cac038762efb72ba7c9ed6ca6e3d [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./aom_config.h"
#if !CONFIG_PVQ
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#endif // !CONFIG_PVQ
#include "av1/common/blockd.h"
#include "av1/decoder/detokenize.h"
#define ACCT_STR __func__
#if !CONFIG_PVQ || CONFIG_VAR_TX
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/idct.h"
#define EOB_CONTEXT_NODE 0
#define ZERO_CONTEXT_NODE 1
#define ONE_CONTEXT_NODE 2
#define LOW_VAL_CONTEXT_NODE 0
#define TWO_CONTEXT_NODE 1
#define THREE_CONTEXT_NODE 2
#define HIGH_LOW_CONTEXT_NODE 3
#define CAT_ONE_CONTEXT_NODE 4
#define CAT_THREEFOUR_CONTEXT_NODE 5
#define CAT_THREE_CONTEXT_NODE 6
#define CAT_FIVE_CONTEXT_NODE 7
#define INCREMENT_COUNT(token) \
do { \
if (counts) ++coef_counts[band][ctx][token]; \
} while (0)
#if CONFIG_NEW_MULTISYMBOL
#define READ_COEFF(prob_name, cdf_name, num, r) read_coeff(cdf_name, num, r);
static INLINE int read_coeff(const aom_cdf_prob *const *cdf, int n,
aom_reader *r) {
int val = 0;
int i = 0;
int count = 0;
while (count < n) {
const int size = AOMMIN(n - count, 4);
val |= aom_read_cdf(r, cdf[i++], 1 << size, ACCT_STR) << count;
count += size;
}
return val;
}
#else
#define READ_COEFF(prob_name, cdf_name, num, r) read_coeff(prob_name, num, r);
static INLINE int read_coeff(const aom_prob *probs, int n, aom_reader *r) {
int i, val = 0;
for (i = 0; i < n; ++i) val = (val << 1) | aom_read(r, probs[i], ACCT_STR);
return val;
}
#endif
static int token_to_value(aom_reader *const r, int token, TX_SIZE tx_size,
int bit_depth) {
#if !CONFIG_HIGHBITDEPTH
assert(bit_depth == 8);
#endif // !CONFIG_HIGHBITDEPTH
switch (token) {
case ZERO_TOKEN:
case ONE_TOKEN:
case TWO_TOKEN:
case THREE_TOKEN:
case FOUR_TOKEN: return token;
case CATEGORY1_TOKEN:
return CAT1_MIN_VAL + READ_COEFF(av1_cat1_prob, av1_cat1_cdf, 1, r);
case CATEGORY2_TOKEN:
return CAT2_MIN_VAL + READ_COEFF(av1_cat2_prob, av1_cat2_cdf, 2, r);
case CATEGORY3_TOKEN:
return CAT3_MIN_VAL + READ_COEFF(av1_cat3_prob, av1_cat3_cdf, 3, r);
case CATEGORY4_TOKEN:
return CAT4_MIN_VAL + READ_COEFF(av1_cat4_prob, av1_cat4_cdf, 4, r);
case CATEGORY5_TOKEN:
return CAT5_MIN_VAL + READ_COEFF(av1_cat5_prob, av1_cat5_cdf, 5, r);
case CATEGORY6_TOKEN: {
const int skip_bits = (int)sizeof(av1_cat6_prob) -
av1_get_cat6_extrabits_size(tx_size, bit_depth);
return CAT6_MIN_VAL + READ_COEFF(av1_cat6_prob + skip_bits, av1_cat6_cdf,
18 - skip_bits, r);
}
default:
assert(0); // Invalid token.
return -1;
}
}
static int decode_coefs(MACROBLOCKD *xd, PLANE_TYPE type, tran_low_t *dqcoeff,
TX_SIZE tx_size, TX_TYPE tx_type, const int16_t *dq,
#if CONFIG_NEW_QUANT
dequant_val_type_nuq *dq_val,
#else
#if CONFIG_AOM_QM
const qm_val_t *iqm[2][TX_SIZES_ALL],
#endif // CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
int ctx, const int16_t *scan, const int16_t *nb,
int16_t *max_scan_line, aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int max_eob = tx_size_2d[tx_size];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
#if CONFIG_AOM_QM && !CONFIG_NEW_QUANT
const qm_val_t *iqmatrix = iqm[!ref][tx_size];
#endif // CONFIG_AOM_QM
(void)tx_type;
int band, c = 0;
const int tx_size_ctx = txsize_sqr_map[tx_size];
aom_cdf_prob(*coef_head_cdfs)[COEFF_CONTEXTS][CDF_SIZE(ENTROPY_TOKENS)] =
ec_ctx->coef_head_cdfs[tx_size_ctx][type][ref];
aom_cdf_prob(*coef_tail_cdfs)[COEFF_CONTEXTS][CDF_SIZE(ENTROPY_TOKENS)] =
ec_ctx->coef_tail_cdfs[tx_size_ctx][type][ref];
int val = 0;
uint8_t token_cache[MAX_TX_SQUARE];
const uint8_t *band_translate = get_band_translate(tx_size);
int dq_shift;
int v, token;
int16_t dqv = dq[0];
#if CONFIG_NEW_QUANT
const tran_low_t *dqv_val = &dq_val[0][0];
#endif // CONFIG_NEW_QUANT
dq_shift = av1_get_tx_scale(tx_size);
band = *band_translate++;
int more_data = 1;
while (more_data) {
int comb_token;
int last_pos = (c + 1 == max_eob);
int first_pos = (c == 0);
#if CONFIG_NEW_QUANT
dqv_val = &dq_val[band][0];
#endif // CONFIG_NEW_QUANT
comb_token = last_pos ? 2 * aom_read_bit(r, ACCT_STR) + 2
: aom_read_symbol(r, coef_head_cdfs[band][ctx],
HEAD_TOKENS + first_pos, ACCT_STR) +
!first_pos;
if (first_pos) {
if (comb_token == 0) return 0;
}
token = comb_token >> 1;
while (!token) {
*max_scan_line = AOMMAX(*max_scan_line, scan[c]);
token_cache[scan[c]] = 0;
++c;
dqv = dq[1];
ctx = get_coef_context(nb, token_cache, c);
band = *band_translate++;
last_pos = (c + 1 == max_eob);
comb_token = last_pos ? 2 * aom_read_bit(r, ACCT_STR) + 2
: aom_read_symbol(r, coef_head_cdfs[band][ctx],
HEAD_TOKENS, ACCT_STR) +
1;
token = comb_token >> 1;
}
more_data = comb_token & 1;
if (token > ONE_TOKEN)
token +=
aom_read_symbol(r, coef_tail_cdfs[band][ctx], TAIL_TOKENS, ACCT_STR);
#if CONFIG_NEW_QUANT
dqv_val = &dq_val[band][0];
#endif // CONFIG_NEW_QUANT
*max_scan_line = AOMMAX(*max_scan_line, scan[c]);
token_cache[scan[c]] = av1_pt_energy_class[token];
val = token_to_value(r, token, tx_size, xd->bd);
#if CONFIG_NEW_QUANT
v = av1_dequant_abscoeff_nuq(val, dqv, dqv_val);
v = dq_shift ? ROUND_POWER_OF_TWO(v, dq_shift) : v;
#else
#if CONFIG_AOM_QM
// Apply quant matrix only for 2D transforms
if (IS_2D_TRANSFORM(tx_type) && iqmatrix != NULL)
dqv = ((iqmatrix[scan[c]] * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
#endif
v = (val * dqv) >> dq_shift;
#endif
v = (int)check_range(aom_read_bit(r, ACCT_STR) ? -v : v, xd->bd);
dqcoeff[scan[c]] = v;
++c;
more_data &= (c < max_eob);
if (!more_data) break;
dqv = dq[1];
ctx = get_coef_context(nb, token_cache, c);
band = *band_translate++;
}
return c;
}
#endif // !CONFIG_PVQ
static void decode_color_map_tokens(Av1ColorMapParam *param, aom_reader *r) {
uint8_t color_order[PALETTE_MAX_SIZE];
const int n = param->n_colors;
uint8_t *const color_map = param->color_map;
MapCdf color_map_cdf = param->map_cdf;
int plane_block_width = param->plane_width;
int plane_block_height = param->plane_height;
int rows = param->rows;
int cols = param->cols;
// The first color index.
color_map[0] = av1_read_uniform(r, n);
assert(color_map[0] < n);
#if CONFIG_PALETTE_THROUGHPUT
// Run wavefront on the palette map index decoding.
for (int i = 1; i < rows + cols - 1; ++i) {
for (int j = AOMMIN(i, cols - 1); j >= AOMMAX(0, i - rows + 1); --j) {
const int color_ctx = av1_get_palette_color_index_context(
color_map, plane_block_width, (i - j), j, n, color_order, NULL);
const int color_idx = aom_read_symbol(
r, color_map_cdf[n - PALETTE_MIN_SIZE][color_ctx], n, ACCT_STR);
assert(color_idx >= 0 && color_idx < n);
color_map[(i - j) * plane_block_width + j] = color_order[color_idx];
}
}
// Copy last column to extra columns.
if (cols < plane_block_width) {
for (int i = 0; i < rows; ++i) {
memset(color_map + i * plane_block_width + cols,
color_map[i * plane_block_width + cols - 1],
(plane_block_width - cols));
}
}
#else
for (int i = 0; i < rows; ++i) {
for (int j = (i == 0 ? 1 : 0); j < cols; ++j) {
const int color_ctx = av1_get_palette_color_index_context(
color_map, plane_block_width, i, j, n, color_order, NULL);
const int color_idx = aom_read_symbol(
r, color_map_cdf[n - PALETTE_MIN_SIZE][color_ctx], n, ACCT_STR);
assert(color_idx >= 0 && color_idx < n);
color_map[i * plane_block_width + j] = color_order[color_idx];
}
memset(color_map + i * plane_block_width + cols,
color_map[i * plane_block_width + cols - 1],
(plane_block_width - cols)); // Copy last column to extra columns.
}
#endif // CONFIG_PALETTE_THROUGHPUT
// Copy last row to extra rows.
for (int i = rows; i < plane_block_height; ++i) {
memcpy(color_map + i * plane_block_width,
color_map + (rows - 1) * plane_block_width, plane_block_width);
}
}
static void get_palette_params(const MACROBLOCKD *const xd, int plane,
BLOCK_SIZE bsize, Av1ColorMapParam *params) {
assert(plane == 0 || plane == 1);
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
params->color_map = xd->plane[plane].color_index_map;
params->map_cdf = plane ? xd->tile_ctx->palette_uv_color_index_cdf
: xd->tile_ctx->palette_y_color_index_cdf;
params->n_colors = pmi->palette_size[plane];
av1_get_block_dimensions(bsize, plane, xd, &params->plane_width,
&params->plane_height, &params->rows, &params->cols);
}
#if CONFIG_MRC_TX
static void get_mrc_params(const MACROBLOCKD *const xd, int plane,
BLOCK_SIZE bsize, Av1ColorMapParam *params) {
// TODO(sarahparker)
(void)xd;
(void)plane;
(void)bsize;
memset(params, 0, sizeof(*params));
}
#endif // CONFIG_MRC_TX
void av1_decode_palette_tokens(MACROBLOCKD *const xd, int plane,
aom_reader *r) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
assert(plane == 0 || plane == 1);
assert(mbmi->sb_type >= BLOCK_8X8);
Av1ColorMapParam color_map_params;
memset(&color_map_params, 0, sizeof(color_map_params));
get_palette_params(xd, plane, mbmi->sb_type, &color_map_params);
decode_color_map_tokens(&color_map_params, r);
}
#if CONFIG_MRC_TX
void av1_decode_mrc_tokens(MACROBLOCKD *const xd, int plane, aom_reader *r) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
Av1ColorMapParam color_map_params;
get_mrc_params(xd, plane, mbmi->sb_type, &color_map_params);
decode_color_map_tokens(&color_map_params, r);
}
#endif // CONFIG_MRC_TX
#if !CONFIG_PVQ || CONFIG_VAR_TX
int av1_decode_block_tokens(AV1_COMMON *cm, MACROBLOCKD *const xd, int plane,
const SCAN_ORDER *sc, int x, int y, TX_SIZE tx_size,
TX_TYPE tx_type, int16_t *max_scan_line,
aom_reader *r, int seg_id) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const int16_t *const dequant = pd->seg_dequant[seg_id];
const int ctx =
get_entropy_context(tx_size, pd->above_context + x, pd->left_context + y);
#if CONFIG_NEW_QUANT
const int ref = is_inter_block(&xd->mi[0]->mbmi);
int dq =
get_dq_profile_from_ctx(xd->qindex[seg_id], ctx, ref, pd->plane_type);
#endif // CONFIG_NEW_QUANT
const int eob =
decode_coefs(xd, pd->plane_type, pd->dqcoeff, tx_size, tx_type, dequant,
#if CONFIG_NEW_QUANT
pd->seg_dequant_nuq[seg_id][dq],
#else
#if CONFIG_AOM_QM
pd->seg_iqmatrix[seg_id],
#endif // CONFIG_AOM_QM
#endif // CONFIG_NEW_QUANT
ctx, sc->scan, sc->neighbors, max_scan_line, r);
av1_set_contexts(xd, pd, plane, tx_size, eob > 0, x, y);
#if CONFIG_ADAPT_SCAN
if (xd->counts)
av1_update_scan_count_facade(cm, xd->counts, tx_size, tx_type, pd->dqcoeff,
eob);
#else
(void)cm;
#endif
return eob;
}
#endif // !CONFIG_PVQ