| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "./aom_config.h" |
| #if !CONFIG_PVQ |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #endif // !CONFIG_PVQ |
| |
| #include "av1/common/blockd.h" |
| #include "av1/decoder/detokenize.h" |
| |
| #define ACCT_STR __func__ |
| |
| #if !CONFIG_PVQ || CONFIG_VAR_TX |
| #include "av1/common/common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/idct.h" |
| |
| #define EOB_CONTEXT_NODE 0 |
| #define ZERO_CONTEXT_NODE 1 |
| #define ONE_CONTEXT_NODE 2 |
| #define LOW_VAL_CONTEXT_NODE 0 |
| #define TWO_CONTEXT_NODE 1 |
| #define THREE_CONTEXT_NODE 2 |
| #define HIGH_LOW_CONTEXT_NODE 3 |
| #define CAT_ONE_CONTEXT_NODE 4 |
| #define CAT_THREEFOUR_CONTEXT_NODE 5 |
| #define CAT_THREE_CONTEXT_NODE 6 |
| #define CAT_FIVE_CONTEXT_NODE 7 |
| |
| #define INCREMENT_COUNT(token) \ |
| do { \ |
| if (counts) ++coef_counts[band][ctx][token]; \ |
| } while (0) |
| |
| #if CONFIG_NEW_MULTISYMBOL |
| #define READ_COEFF(prob_name, cdf_name, num, r) read_coeff(cdf_name, num, r); |
| static INLINE int read_coeff(const aom_cdf_prob *const *cdf, int n, |
| aom_reader *r) { |
| int val = 0; |
| int i = 0; |
| int count = 0; |
| while (count < n) { |
| const int size = AOMMIN(n - count, 4); |
| val |= aom_read_cdf(r, cdf[i++], 1 << size, ACCT_STR) << count; |
| count += size; |
| } |
| return val; |
| } |
| #else |
| #define READ_COEFF(prob_name, cdf_name, num, r) read_coeff(prob_name, num, r); |
| static INLINE int read_coeff(const aom_prob *probs, int n, aom_reader *r) { |
| int i, val = 0; |
| for (i = 0; i < n; ++i) val = (val << 1) | aom_read(r, probs[i], ACCT_STR); |
| return val; |
| } |
| |
| #endif |
| |
| static int token_to_value(aom_reader *const r, int token, TX_SIZE tx_size, |
| int bit_depth) { |
| #if !CONFIG_HIGHBITDEPTH |
| assert(bit_depth == 8); |
| #endif // !CONFIG_HIGHBITDEPTH |
| |
| switch (token) { |
| case ZERO_TOKEN: |
| case ONE_TOKEN: |
| case TWO_TOKEN: |
| case THREE_TOKEN: |
| case FOUR_TOKEN: return token; |
| case CATEGORY1_TOKEN: |
| return CAT1_MIN_VAL + READ_COEFF(av1_cat1_prob, av1_cat1_cdf, 1, r); |
| case CATEGORY2_TOKEN: |
| return CAT2_MIN_VAL + READ_COEFF(av1_cat2_prob, av1_cat2_cdf, 2, r); |
| case CATEGORY3_TOKEN: |
| return CAT3_MIN_VAL + READ_COEFF(av1_cat3_prob, av1_cat3_cdf, 3, r); |
| case CATEGORY4_TOKEN: |
| return CAT4_MIN_VAL + READ_COEFF(av1_cat4_prob, av1_cat4_cdf, 4, r); |
| case CATEGORY5_TOKEN: |
| return CAT5_MIN_VAL + READ_COEFF(av1_cat5_prob, av1_cat5_cdf, 5, r); |
| case CATEGORY6_TOKEN: { |
| const int skip_bits = (int)sizeof(av1_cat6_prob) - |
| av1_get_cat6_extrabits_size(tx_size, bit_depth); |
| return CAT6_MIN_VAL + READ_COEFF(av1_cat6_prob + skip_bits, av1_cat6_cdf, |
| 18 - skip_bits, r); |
| } |
| default: |
| assert(0); // Invalid token. |
| return -1; |
| } |
| } |
| |
| static int decode_coefs(MACROBLOCKD *xd, PLANE_TYPE type, tran_low_t *dqcoeff, |
| TX_SIZE tx_size, TX_TYPE tx_type, const int16_t *dq, |
| #if CONFIG_NEW_QUANT |
| dequant_val_type_nuq *dq_val, |
| #else |
| #if CONFIG_AOM_QM |
| const qm_val_t *iqm[2][TX_SIZES_ALL], |
| #endif // CONFIG_AOM_QM |
| #endif // CONFIG_NEW_QUANT |
| int ctx, const int16_t *scan, const int16_t *nb, |
| int16_t *max_scan_line, aom_reader *r) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const int max_eob = tx_size_2d[tx_size]; |
| const int ref = is_inter_block(&xd->mi[0]->mbmi); |
| #if CONFIG_AOM_QM && !CONFIG_NEW_QUANT |
| const qm_val_t *iqmatrix = iqm[!ref][tx_size]; |
| #endif // CONFIG_AOM_QM |
| (void)tx_type; |
| int band, c = 0; |
| const int tx_size_ctx = txsize_sqr_map[tx_size]; |
| aom_cdf_prob(*coef_head_cdfs)[COEFF_CONTEXTS][CDF_SIZE(ENTROPY_TOKENS)] = |
| ec_ctx->coef_head_cdfs[tx_size_ctx][type][ref]; |
| aom_cdf_prob(*coef_tail_cdfs)[COEFF_CONTEXTS][CDF_SIZE(ENTROPY_TOKENS)] = |
| ec_ctx->coef_tail_cdfs[tx_size_ctx][type][ref]; |
| int val = 0; |
| |
| uint8_t token_cache[MAX_TX_SQUARE]; |
| const uint8_t *band_translate = get_band_translate(tx_size); |
| int dq_shift; |
| int v, token; |
| int16_t dqv = dq[0]; |
| #if CONFIG_NEW_QUANT |
| const tran_low_t *dqv_val = &dq_val[0][0]; |
| #endif // CONFIG_NEW_QUANT |
| |
| dq_shift = av1_get_tx_scale(tx_size); |
| |
| band = *band_translate++; |
| |
| int more_data = 1; |
| while (more_data) { |
| int comb_token; |
| int last_pos = (c + 1 == max_eob); |
| int first_pos = (c == 0); |
| |
| #if CONFIG_NEW_QUANT |
| dqv_val = &dq_val[band][0]; |
| #endif // CONFIG_NEW_QUANT |
| |
| comb_token = last_pos ? 2 * aom_read_bit(r, ACCT_STR) + 2 |
| : aom_read_symbol(r, coef_head_cdfs[band][ctx], |
| HEAD_TOKENS + first_pos, ACCT_STR) + |
| !first_pos; |
| if (first_pos) { |
| if (comb_token == 0) return 0; |
| } |
| token = comb_token >> 1; |
| |
| while (!token) { |
| *max_scan_line = AOMMAX(*max_scan_line, scan[c]); |
| token_cache[scan[c]] = 0; |
| ++c; |
| dqv = dq[1]; |
| ctx = get_coef_context(nb, token_cache, c); |
| band = *band_translate++; |
| |
| last_pos = (c + 1 == max_eob); |
| |
| comb_token = last_pos ? 2 * aom_read_bit(r, ACCT_STR) + 2 |
| : aom_read_symbol(r, coef_head_cdfs[band][ctx], |
| HEAD_TOKENS, ACCT_STR) + |
| 1; |
| token = comb_token >> 1; |
| } |
| |
| more_data = comb_token & 1; |
| |
| if (token > ONE_TOKEN) |
| token += |
| aom_read_symbol(r, coef_tail_cdfs[band][ctx], TAIL_TOKENS, ACCT_STR); |
| #if CONFIG_NEW_QUANT |
| dqv_val = &dq_val[band][0]; |
| #endif // CONFIG_NEW_QUANT |
| |
| *max_scan_line = AOMMAX(*max_scan_line, scan[c]); |
| token_cache[scan[c]] = av1_pt_energy_class[token]; |
| |
| val = token_to_value(r, token, tx_size, xd->bd); |
| |
| #if CONFIG_NEW_QUANT |
| v = av1_dequant_abscoeff_nuq(val, dqv, dqv_val); |
| v = dq_shift ? ROUND_POWER_OF_TWO(v, dq_shift) : v; |
| #else |
| #if CONFIG_AOM_QM |
| // Apply quant matrix only for 2D transforms |
| if (IS_2D_TRANSFORM(tx_type) && iqmatrix != NULL) |
| dqv = ((iqmatrix[scan[c]] * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> |
| AOM_QM_BITS; |
| #endif |
| v = (val * dqv) >> dq_shift; |
| #endif |
| |
| v = (int)check_range(aom_read_bit(r, ACCT_STR) ? -v : v, xd->bd); |
| |
| dqcoeff[scan[c]] = v; |
| |
| ++c; |
| more_data &= (c < max_eob); |
| if (!more_data) break; |
| dqv = dq[1]; |
| ctx = get_coef_context(nb, token_cache, c); |
| band = *band_translate++; |
| } |
| |
| return c; |
| } |
| #endif // !CONFIG_PVQ |
| |
| static void decode_color_map_tokens(Av1ColorMapParam *param, aom_reader *r) { |
| uint8_t color_order[PALETTE_MAX_SIZE]; |
| const int n = param->n_colors; |
| uint8_t *const color_map = param->color_map; |
| MapCdf color_map_cdf = param->map_cdf; |
| int plane_block_width = param->plane_width; |
| int plane_block_height = param->plane_height; |
| int rows = param->rows; |
| int cols = param->cols; |
| |
| // The first color index. |
| color_map[0] = av1_read_uniform(r, n); |
| assert(color_map[0] < n); |
| |
| #if CONFIG_PALETTE_THROUGHPUT |
| // Run wavefront on the palette map index decoding. |
| for (int i = 1; i < rows + cols - 1; ++i) { |
| for (int j = AOMMIN(i, cols - 1); j >= AOMMAX(0, i - rows + 1); --j) { |
| const int color_ctx = av1_get_palette_color_index_context( |
| color_map, plane_block_width, (i - j), j, n, color_order, NULL); |
| const int color_idx = aom_read_symbol( |
| r, color_map_cdf[n - PALETTE_MIN_SIZE][color_ctx], n, ACCT_STR); |
| assert(color_idx >= 0 && color_idx < n); |
| color_map[(i - j) * plane_block_width + j] = color_order[color_idx]; |
| } |
| } |
| // Copy last column to extra columns. |
| if (cols < plane_block_width) { |
| for (int i = 0; i < rows; ++i) { |
| memset(color_map + i * plane_block_width + cols, |
| color_map[i * plane_block_width + cols - 1], |
| (plane_block_width - cols)); |
| } |
| } |
| #else |
| for (int i = 0; i < rows; ++i) { |
| for (int j = (i == 0 ? 1 : 0); j < cols; ++j) { |
| const int color_ctx = av1_get_palette_color_index_context( |
| color_map, plane_block_width, i, j, n, color_order, NULL); |
| const int color_idx = aom_read_symbol( |
| r, color_map_cdf[n - PALETTE_MIN_SIZE][color_ctx], n, ACCT_STR); |
| assert(color_idx >= 0 && color_idx < n); |
| color_map[i * plane_block_width + j] = color_order[color_idx]; |
| } |
| memset(color_map + i * plane_block_width + cols, |
| color_map[i * plane_block_width + cols - 1], |
| (plane_block_width - cols)); // Copy last column to extra columns. |
| } |
| #endif // CONFIG_PALETTE_THROUGHPUT |
| // Copy last row to extra rows. |
| for (int i = rows; i < plane_block_height; ++i) { |
| memcpy(color_map + i * plane_block_width, |
| color_map + (rows - 1) * plane_block_width, plane_block_width); |
| } |
| } |
| |
| static void get_palette_params(const MACROBLOCKD *const xd, int plane, |
| BLOCK_SIZE bsize, Av1ColorMapParam *params) { |
| assert(plane == 0 || plane == 1); |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| params->color_map = xd->plane[plane].color_index_map; |
| params->map_cdf = plane ? xd->tile_ctx->palette_uv_color_index_cdf |
| : xd->tile_ctx->palette_y_color_index_cdf; |
| params->n_colors = pmi->palette_size[plane]; |
| av1_get_block_dimensions(bsize, plane, xd, ¶ms->plane_width, |
| ¶ms->plane_height, ¶ms->rows, ¶ms->cols); |
| } |
| |
| #if CONFIG_MRC_TX |
| static void get_mrc_params(const MACROBLOCKD *const xd, int plane, |
| BLOCK_SIZE bsize, Av1ColorMapParam *params) { |
| // TODO(sarahparker) |
| (void)xd; |
| (void)plane; |
| (void)bsize; |
| memset(params, 0, sizeof(*params)); |
| } |
| #endif // CONFIG_MRC_TX |
| |
| void av1_decode_palette_tokens(MACROBLOCKD *const xd, int plane, |
| aom_reader *r) { |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| assert(plane == 0 || plane == 1); |
| assert(mbmi->sb_type >= BLOCK_8X8); |
| Av1ColorMapParam color_map_params; |
| memset(&color_map_params, 0, sizeof(color_map_params)); |
| get_palette_params(xd, plane, mbmi->sb_type, &color_map_params); |
| decode_color_map_tokens(&color_map_params, r); |
| } |
| |
| #if CONFIG_MRC_TX |
| void av1_decode_mrc_tokens(MACROBLOCKD *const xd, int plane, aom_reader *r) { |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| Av1ColorMapParam color_map_params; |
| get_mrc_params(xd, plane, mbmi->sb_type, &color_map_params); |
| decode_color_map_tokens(&color_map_params, r); |
| } |
| #endif // CONFIG_MRC_TX |
| |
| #if !CONFIG_PVQ || CONFIG_VAR_TX |
| int av1_decode_block_tokens(AV1_COMMON *cm, MACROBLOCKD *const xd, int plane, |
| const SCAN_ORDER *sc, int x, int y, TX_SIZE tx_size, |
| TX_TYPE tx_type, int16_t *max_scan_line, |
| aom_reader *r, int seg_id) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int16_t *const dequant = pd->seg_dequant[seg_id]; |
| const int ctx = |
| get_entropy_context(tx_size, pd->above_context + x, pd->left_context + y); |
| #if CONFIG_NEW_QUANT |
| const int ref = is_inter_block(&xd->mi[0]->mbmi); |
| int dq = |
| get_dq_profile_from_ctx(xd->qindex[seg_id], ctx, ref, pd->plane_type); |
| #endif // CONFIG_NEW_QUANT |
| |
| const int eob = |
| decode_coefs(xd, pd->plane_type, pd->dqcoeff, tx_size, tx_type, dequant, |
| #if CONFIG_NEW_QUANT |
| pd->seg_dequant_nuq[seg_id][dq], |
| #else |
| #if CONFIG_AOM_QM |
| pd->seg_iqmatrix[seg_id], |
| #endif // CONFIG_AOM_QM |
| #endif // CONFIG_NEW_QUANT |
| ctx, sc->scan, sc->neighbors, max_scan_line, r); |
| av1_set_contexts(xd, pd, plane, tx_size, eob > 0, x, y); |
| #if CONFIG_ADAPT_SCAN |
| if (xd->counts) |
| av1_update_scan_count_facade(cm, xd->counts, tx_size, tx_type, pd->dqcoeff, |
| eob); |
| #else |
| (void)cm; |
| #endif |
| return eob; |
| } |
| #endif // !CONFIG_PVQ |