| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "./vp9_rtcd.h" |
| #include "./vpx_config.h" |
| |
| #include "vpx_ports/vpx_timer.h" |
| |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_entropy.h" |
| #include "vp9/common/vp9_entropymode.h" |
| #include "vp9/common/vp9_findnearmv.h" |
| #include "vp9/common/vp9_idct.h" |
| #include "vp9/common/vp9_mvref_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_reconintra.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vp9/common/vp9_seg_common.h" |
| #include "vp9/common/vp9_tile_common.h" |
| #include "vp9/encoder/vp9_encodeframe.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_extend.h" |
| #include "vp9/encoder/vp9_onyx_int.h" |
| #include "vp9/encoder/vp9_rdopt.h" |
| #include "vp9/encoder/vp9_segmentation.h" |
| #include "vp9/common/vp9_systemdependent.h" |
| #include "vp9/encoder/vp9_tokenize.h" |
| #include "vp9/encoder/vp9_vaq.h" |
| |
| |
| #define DBG_PRNT_SEGMAP 0 |
| |
| |
| // #define ENC_DEBUG |
| #ifdef ENC_DEBUG |
| int enc_debug = 0; |
| #endif |
| |
| static INLINE uint8_t *get_sb_index(MACROBLOCK *x, BLOCK_SIZE subsize) { |
| switch (subsize) { |
| case BLOCK_64X64: |
| case BLOCK_64X32: |
| case BLOCK_32X64: |
| case BLOCK_32X32: |
| return &x->sb_index; |
| case BLOCK_32X16: |
| case BLOCK_16X32: |
| case BLOCK_16X16: |
| return &x->mb_index; |
| case BLOCK_16X8: |
| case BLOCK_8X16: |
| case BLOCK_8X8: |
| return &x->b_index; |
| case BLOCK_8X4: |
| case BLOCK_4X8: |
| case BLOCK_4X4: |
| return &x->ab_index; |
| default: |
| assert(0); |
| return NULL; |
| } |
| } |
| |
| static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled, |
| int mi_row, int mi_col, BLOCK_SIZE bsize); |
| |
| static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x); |
| |
| /* activity_avg must be positive, or flat regions could get a zero weight |
| * (infinite lambda), which confounds analysis. |
| * This also avoids the need for divide by zero checks in |
| * vp9_activity_masking(). |
| */ |
| #define ACTIVITY_AVG_MIN (64) |
| |
| /* Motion vector component magnitude threshold for defining fast motion. */ |
| #define FAST_MOTION_MV_THRESH (24) |
| |
| /* This is used as a reference when computing the source variance for the |
| * purposes of activity masking. |
| * Eventually this should be replaced by custom no-reference routines, |
| * which will be faster. |
| */ |
| static const uint8_t VP9_VAR_OFFS[64] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bs) { |
| unsigned int var, sse; |
| var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, |
| x->plane[0].src.stride, |
| VP9_VAR_OFFS, 0, &sse); |
| return (var + (1 << (num_pels_log2_lookup[bs] - 1))) >> |
| num_pels_log2_lookup[bs]; |
| } |
| |
| // Original activity measure from Tim T's code. |
| static unsigned int tt_activity_measure(MACROBLOCK *x) { |
| unsigned int act; |
| unsigned int sse; |
| /* TODO: This could also be done over smaller areas (8x8), but that would |
| * require extensive changes elsewhere, as lambda is assumed to be fixed |
| * over an entire MB in most of the code. |
| * Another option is to compute four 8x8 variances, and pick a single |
| * lambda using a non-linear combination (e.g., the smallest, or second |
| * smallest, etc.). |
| */ |
| act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride, |
| VP9_VAR_OFFS, 0, &sse); |
| act <<= 4; |
| |
| /* If the region is flat, lower the activity some more. */ |
| if (act < 8 << 12) |
| act = act < 5 << 12 ? act : 5 << 12; |
| |
| return act; |
| } |
| |
| // Stub for alternative experimental activity measures. |
| static unsigned int alt_activity_measure(MACROBLOCK *x, int use_dc_pred) { |
| return vp9_encode_intra(x, use_dc_pred); |
| } |
| |
| // Measure the activity of the current macroblock |
| // What we measure here is TBD so abstracted to this function |
| #define ALT_ACT_MEASURE 1 |
| static unsigned int mb_activity_measure(MACROBLOCK *x, int mb_row, int mb_col) { |
| unsigned int mb_activity; |
| |
| if (ALT_ACT_MEASURE) { |
| int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
| |
| // Or use and alternative. |
| mb_activity = alt_activity_measure(x, use_dc_pred); |
| } else { |
| // Original activity measure from Tim T's code. |
| mb_activity = tt_activity_measure(x); |
| } |
| |
| if (mb_activity < ACTIVITY_AVG_MIN) |
| mb_activity = ACTIVITY_AVG_MIN; |
| |
| return mb_activity; |
| } |
| |
| // Calculate an "average" mb activity value for the frame |
| #define ACT_MEDIAN 0 |
| static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) { |
| #if ACT_MEDIAN |
| // Find median: Simple n^2 algorithm for experimentation |
| { |
| unsigned int median; |
| unsigned int i, j; |
| unsigned int *sortlist; |
| unsigned int tmp; |
| |
| // Create a list to sort to |
| CHECK_MEM_ERROR(&cpi->common, sortlist, vpx_calloc(sizeof(unsigned int), |
| cpi->common.MBs)); |
| |
| // Copy map to sort list |
| vpx_memcpy(sortlist, cpi->mb_activity_map, |
| sizeof(unsigned int) * cpi->common.MBs); |
| |
| // Ripple each value down to its correct position |
| for (i = 1; i < cpi->common.MBs; i ++) { |
| for (j = i; j > 0; j --) { |
| if (sortlist[j] < sortlist[j - 1]) { |
| // Swap values |
| tmp = sortlist[j - 1]; |
| sortlist[j - 1] = sortlist[j]; |
| sortlist[j] = tmp; |
| } else { |
| break; |
| } |
| } |
| } |
| |
| // Even number MBs so estimate median as mean of two either side. |
| median = (1 + sortlist[cpi->common.MBs >> 1] + |
| sortlist[(cpi->common.MBs >> 1) + 1]) >> 1; |
| |
| cpi->activity_avg = median; |
| |
| vpx_free(sortlist); |
| } |
| #else |
| // Simple mean for now |
| cpi->activity_avg = (unsigned int) (activity_sum / cpi->common.MBs); |
| #endif // ACT_MEDIAN |
| |
| if (cpi->activity_avg < ACTIVITY_AVG_MIN) |
| cpi->activity_avg = ACTIVITY_AVG_MIN; |
| |
| // Experimental code: return fixed value normalized for several clips |
| if (ALT_ACT_MEASURE) |
| cpi->activity_avg = 100000; |
| } |
| |
| #define USE_ACT_INDEX 0 |
| #define OUTPUT_NORM_ACT_STATS 0 |
| |
| #if USE_ACT_INDEX |
| // Calculate an activity index for each mb |
| static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) { |
| VP9_COMMON *const cm = &cpi->common; |
| int mb_row, mb_col; |
| |
| int64_t act; |
| int64_t a; |
| int64_t b; |
| |
| #if OUTPUT_NORM_ACT_STATS |
| FILE *f = fopen("norm_act.stt", "a"); |
| fprintf(f, "\n%12d\n", cpi->activity_avg); |
| #endif |
| |
| // Reset pointers to start of activity map |
| x->mb_activity_ptr = cpi->mb_activity_map; |
| |
| // Calculate normalized mb activity number. |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { |
| // Read activity from the map |
| act = *(x->mb_activity_ptr); |
| |
| // Calculate a normalized activity number |
| a = act + 4 * cpi->activity_avg; |
| b = 4 * act + cpi->activity_avg; |
| |
| if (b >= a) |
| *(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1; |
| else |
| *(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b); |
| |
| #if OUTPUT_NORM_ACT_STATS |
| fprintf(f, " %6d", *(x->mb_activity_ptr)); |
| #endif |
| // Increment activity map pointers |
| x->mb_activity_ptr++; |
| } |
| |
| #if OUTPUT_NORM_ACT_STATS |
| fprintf(f, "\n"); |
| #endif |
| } |
| |
| #if OUTPUT_NORM_ACT_STATS |
| fclose(f); |
| #endif |
| } |
| #endif // USE_ACT_INDEX |
| |
| // Loop through all MBs. Note activity of each, average activity and |
| // calculate a normalized activity for each |
| static void build_activity_map(VP9_COMP *cpi) { |
| MACROBLOCK * const x = &cpi->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| VP9_COMMON * const cm = &cpi->common; |
| |
| #if ALT_ACT_MEASURE |
| YV12_BUFFER_CONFIG *new_yv12 = get_frame_new_buffer(cm); |
| int recon_yoffset; |
| int recon_y_stride = new_yv12->y_stride; |
| #endif |
| |
| int mb_row, mb_col; |
| unsigned int mb_activity; |
| int64_t activity_sum = 0; |
| |
| x->mb_activity_ptr = cpi->mb_activity_map; |
| |
| // for each macroblock row in image |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { |
| #if ALT_ACT_MEASURE |
| // reset above block coeffs |
| xd->up_available = (mb_row != 0); |
| recon_yoffset = (mb_row * recon_y_stride * 16); |
| #endif |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { |
| #if ALT_ACT_MEASURE |
| xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; |
| xd->left_available = (mb_col != 0); |
| recon_yoffset += 16; |
| #endif |
| |
| // measure activity |
| mb_activity = mb_activity_measure(x, mb_row, mb_col); |
| |
| // Keep frame sum |
| activity_sum += mb_activity; |
| |
| // Store MB level activity details. |
| *x->mb_activity_ptr = mb_activity; |
| |
| // Increment activity map pointer |
| x->mb_activity_ptr++; |
| |
| // adjust to the next column of source macroblocks |
| x->plane[0].src.buf += 16; |
| } |
| |
| // adjust to the next row of mbs |
| x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; |
| } |
| |
| // Calculate an "average" MB activity |
| calc_av_activity(cpi, activity_sum); |
| |
| #if USE_ACT_INDEX |
| // Calculate an activity index number of each mb |
| calc_activity_index(cpi, x); |
| #endif |
| } |
| |
| // Macroblock activity masking |
| void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) { |
| #if USE_ACT_INDEX |
| x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2); |
| x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); |
| x->errorperbit += (x->errorperbit == 0); |
| #else |
| int64_t a; |
| int64_t b; |
| int64_t act = *(x->mb_activity_ptr); |
| |
| // Apply the masking to the RD multiplier. |
| a = act + (2 * cpi->activity_avg); |
| b = (2 * act) + cpi->activity_avg; |
| |
| x->rdmult = (unsigned int) (((int64_t) x->rdmult * b + (a >> 1)) / a); |
| x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); |
| x->errorperbit += (x->errorperbit == 0); |
| #endif |
| |
| // Activity based Zbin adjustment |
| adjust_act_zbin(cpi, x); |
| } |
| |
| // Select a segment for the current SB64 |
| static void select_in_frame_q_segment(VP9_COMP *cpi, |
| int mi_row, int mi_col, |
| int output_enabled, int projected_rate) { |
| VP9_COMMON * const cm = &cpi->common; |
| int target_rate = cpi->rc.sb64_target_rate << 8; // convert to bits << 8 |
| |
| const int mi_offset = mi_row * cm->mi_cols + mi_col; |
| const int bw = 1 << mi_width_log2(BLOCK_64X64); |
| const int bh = 1 << mi_height_log2(BLOCK_64X64); |
| const int xmis = MIN(cm->mi_cols - mi_col, bw); |
| const int ymis = MIN(cm->mi_rows - mi_row, bh); |
| int complexity_metric = 64; |
| int x, y; |
| |
| unsigned char segment; |
| |
| if (!output_enabled) { |
| segment = 0; |
| } else { |
| // Rate depends on fraction of a SB64 in frame (xmis * ymis / bw * bh). |
| // It is converted to bits * 256 units |
| target_rate = (cpi->rc.sb64_target_rate * xmis * ymis * 256) / (bw * bh); |
| |
| if (projected_rate < (target_rate / 4)) { |
| segment = 2; |
| } else if (projected_rate < (target_rate / 2)) { |
| segment = 1; |
| } else { |
| segment = 0; |
| } |
| |
| complexity_metric = |
| clamp((int)((projected_rate * 64) / target_rate), 16, 255); |
| } |
| |
| // Fill in the entires in the segment map corresponding to this SB64 |
| for (y = 0; y < ymis; y++) { |
| for (x = 0; x < xmis; x++) { |
| cpi->segmentation_map[mi_offset + y * cm->mi_cols + x] = segment; |
| cpi->complexity_map[mi_offset + y * cm->mi_cols + x] = |
| (unsigned char)complexity_metric; |
| } |
| } |
| } |
| |
| static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx, |
| BLOCK_SIZE bsize, int output_enabled) { |
| int i, x_idx, y; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| MODE_INFO *mi = &ctx->mic; |
| MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi; |
| MODE_INFO *mi_addr = xd->mi_8x8[0]; |
| |
| int mb_mode_index = ctx->best_mode_index; |
| const int mis = cm->mode_info_stride; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| int max_plane; |
| |
| assert(mi->mbmi.mode < MB_MODE_COUNT); |
| assert(mi->mbmi.ref_frame[0] < MAX_REF_FRAMES); |
| assert(mi->mbmi.ref_frame[1] < MAX_REF_FRAMES); |
| assert(mi->mbmi.sb_type == bsize); |
| |
| // For in frame adaptive Q copy over the chosen segment id into the |
| // mode innfo context for the chosen mode / partition. |
| if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && output_enabled) |
| mi->mbmi.segment_id = xd->mi_8x8[0]->mbmi.segment_id; |
| |
| *mi_addr = *mi; |
| |
| max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1; |
| for (i = 0; i < max_plane; ++i) { |
| p[i].coeff = ctx->coeff_pbuf[i][1]; |
| p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; |
| pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; |
| p[i].eobs = ctx->eobs_pbuf[i][1]; |
| } |
| |
| for (i = max_plane; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff_pbuf[i][2]; |
| p[i].qcoeff = ctx->qcoeff_pbuf[i][2]; |
| pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2]; |
| p[i].eobs = ctx->eobs_pbuf[i][2]; |
| } |
| |
| // Restore the coding context of the MB to that that was in place |
| // when the mode was picked for it |
| for (y = 0; y < mi_height; y++) |
| for (x_idx = 0; x_idx < mi_width; x_idx++) |
| if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx |
| && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { |
| xd->mi_8x8[x_idx + y * mis] = mi_addr; |
| } |
| |
| if ((cpi->oxcf.aq_mode == VARIANCE_AQ) || |
| (cpi->oxcf.aq_mode == COMPLEXITY_AQ)) { |
| vp9_mb_init_quantizer(cpi, x); |
| } |
| |
| // FIXME(rbultje) I'm pretty sure this should go to the end of this block |
| // (i.e. after the output_enabled) |
| if (bsize < BLOCK_32X32) { |
| if (bsize < BLOCK_16X16) |
| ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8]; |
| ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16]; |
| } |
| |
| if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) { |
| mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; |
| mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; |
| } |
| |
| x->skip = ctx->skip; |
| vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk, |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| |
| if (!output_enabled) |
| return; |
| |
| if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| for (i = 0; i < TX_MODES; i++) |
| cpi->rd_tx_select_diff[i] += ctx->tx_rd_diff[i]; |
| } |
| |
| if (frame_is_intra_only(cm)) { |
| #if CONFIG_INTERNAL_STATS |
| static const int kf_mode_index[] = { |
| THR_DC /*DC_PRED*/, |
| THR_V_PRED /*V_PRED*/, |
| THR_H_PRED /*H_PRED*/, |
| THR_D45_PRED /*D45_PRED*/, |
| THR_D135_PRED /*D135_PRED*/, |
| THR_D117_PRED /*D117_PRED*/, |
| THR_D153_PRED /*D153_PRED*/, |
| THR_D207_PRED /*D207_PRED*/, |
| THR_D63_PRED /*D63_PRED*/, |
| THR_TM /*TM_PRED*/, |
| }; |
| cpi->mode_chosen_counts[kf_mode_index[mi->mbmi.mode]]++; |
| #endif |
| } else { |
| // Note how often each mode chosen as best |
| cpi->mode_chosen_counts[mb_mode_index]++; |
| if (is_inter_block(mbmi) |
| && (mbmi->sb_type < BLOCK_8X8 || mbmi->mode == NEWMV)) { |
| int_mv best_mv[2]; |
| const MV_REFERENCE_FRAME rf1 = mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME rf2 = mbmi->ref_frame[1]; |
| best_mv[0].as_int = ctx->best_ref_mv.as_int; |
| best_mv[1].as_int = ctx->second_best_ref_mv.as_int; |
| if (mbmi->mode == NEWMV) { |
| best_mv[0].as_int = mbmi->ref_mvs[rf1][0].as_int; |
| if (rf2 > 0) |
| best_mv[1].as_int = mbmi->ref_mvs[rf2][0].as_int; |
| } |
| mbmi->best_mv[0].as_int = best_mv[0].as_int; |
| mbmi->best_mv[1].as_int = best_mv[1].as_int; |
| vp9_update_mv_count(cpi, x, best_mv); |
| } |
| |
| if (cm->mcomp_filter_type == SWITCHABLE && is_inter_mode(mbmi->mode)) { |
| const int ctx = vp9_get_pred_context_switchable_interp(xd); |
| ++cm->counts.switchable_interp[ctx][mbmi->interp_filter]; |
| } |
| |
| cpi->rd_comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; |
| cpi->rd_comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; |
| cpi->rd_comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) |
| cpi->rd_filter_diff[i] += ctx->best_filter_diff[i]; |
| } |
| } |
| |
| void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, |
| int mi_row, int mi_col) { |
| uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer, |
| src->alpha_buffer}; |
| const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride, |
| src->alpha_stride}; |
| int i; |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) |
| setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col, |
| NULL, x->e_mbd.plane[i].subsampling_x, |
| x->e_mbd.plane[i].subsampling_y); |
| } |
| |
| static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| MACROBLOCK *const x = &cpi->mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| const int dst_fb_idx = cm->new_fb_idx; |
| const int idx_str = xd->mode_info_stride * mi_row + mi_col; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| const int mb_row = mi_row >> 1; |
| const int mb_col = mi_col >> 1; |
| const int idx_map = mb_row * cm->mb_cols + mb_col; |
| const struct segmentation *const seg = &cm->seg; |
| |
| set_skip_context(xd, cpi->above_context, cpi->left_context, mi_row, mi_col); |
| |
| // Activity map pointer |
| x->mb_activity_ptr = &cpi->mb_activity_map[idx_map]; |
| x->active_ptr = cpi->active_map + idx_map; |
| |
| xd->mi_8x8 = cm->mi_grid_visible + idx_str; |
| xd->prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str; |
| |
| // Special case: if prev_mi is NULL, the previous mode info context |
| // cannot be used. |
| xd->last_mi = cm->prev_mi ? xd->prev_mi_8x8[0] : NULL; |
| |
| xd->mi_8x8[0] = cm->mi + idx_str; |
| |
| mbmi = &xd->mi_8x8[0]->mbmi; |
| |
| // Set up destination pointers |
| setup_dst_planes(xd, &cm->yv12_fb[dst_fb_idx], mi_row, mi_col); |
| |
| // Set up limit values for MV components |
| // mv beyond the range do not produce new/different prediction block |
| x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND); |
| x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND); |
| x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND; |
| x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND; |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units |
| assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); |
| set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, |
| cm->mi_rows, cm->mi_cols); |
| |
| /* set up source buffers */ |
| vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); |
| |
| /* R/D setup */ |
| x->rddiv = cpi->RDDIV; |
| x->rdmult = cpi->RDMULT; |
| |
| /* segment ID */ |
| if (seg->enabled) { |
| if (cpi->oxcf.aq_mode != VARIANCE_AQ) { |
| uint8_t *map = seg->update_map ? cpi->segmentation_map |
| : cm->last_frame_seg_map; |
| mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col); |
| } |
| vp9_mb_init_quantizer(cpi, x); |
| |
| if (seg->enabled && cpi->seg0_cnt > 0 |
| && !vp9_segfeature_active(seg, 0, SEG_LVL_REF_FRAME) |
| && vp9_segfeature_active(seg, 1, SEG_LVL_REF_FRAME)) { |
| cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt; |
| } else { |
| const int y = mb_row & ~3; |
| const int x = mb_col & ~3; |
| const int p16 = ((mb_row & 1) << 1) + (mb_col & 1); |
| const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1); |
| const int tile_progress = tile->mi_col_start * cm->mb_rows >> 1; |
| const int mb_cols = (tile->mi_col_end - tile->mi_col_start) >> 1; |
| |
| cpi->seg0_progress = ((y * mb_cols + x * 4 + p32 + p16 + tile_progress) |
| << 16) / cm->MBs; |
| } |
| |
| x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id]; |
| } else { |
| mbmi->segment_id = 0; |
| x->encode_breakout = cpi->oxcf.encode_breakout; |
| } |
| } |
| |
| static void pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile, |
| int mi_row, int mi_col, |
| int *totalrate, int64_t *totaldist, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| int i; |
| int orig_rdmult = x->rdmult; |
| double rdmult_ratio; |
| |
| vp9_clear_system_state(); // __asm emms; |
| rdmult_ratio = 1.0; // avoid uninitialized warnings |
| |
| // Use the lower precision, but faster, 32x32 fdct for mode selection. |
| x->use_lp32x32fdct = 1; |
| |
| if (bsize < BLOCK_8X8) { |
| // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 |
| // there is nothing to be done. |
| if (x->ab_index != 0) { |
| *totalrate = 0; |
| *totaldist = 0; |
| return; |
| } |
| } |
| |
| set_offsets(cpi, tile, mi_row, mi_col, bsize); |
| xd->mi_8x8[0]->mbmi.sb_type = bsize; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff_pbuf[i][0]; |
| p[i].qcoeff = ctx->qcoeff_pbuf[i][0]; |
| pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0]; |
| p[i].eobs = ctx->eobs_pbuf[i][0]; |
| } |
| ctx->is_coded = 0; |
| x->skip_recode = 0; |
| |
| // Set to zero to make sure we do not use the previous encoded frame stats |
| xd->mi_8x8[0]->mbmi.skip_coeff = 0; |
| |
| x->source_variance = get_sby_perpixel_variance(cpi, x, bsize); |
| |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| int energy; |
| if (bsize <= BLOCK_16X16) { |
| energy = x->mb_energy; |
| } else { |
| energy = vp9_block_energy(cpi, x, bsize); |
| } |
| |
| xd->mi_8x8[0]->mbmi.segment_id = vp9_vaq_segment_id(energy); |
| rdmult_ratio = vp9_vaq_rdmult_ratio(energy); |
| vp9_mb_init_quantizer(cpi, x); |
| } |
| |
| if (cpi->oxcf.tuning == VP8_TUNE_SSIM) |
| vp9_activity_masking(cpi, x); |
| |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| vp9_clear_system_state(); // __asm emms; |
| x->rdmult = round(x->rdmult * rdmult_ratio); |
| } else if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { |
| const int mi_offset = mi_row * cm->mi_cols + mi_col; |
| unsigned char complexity = cpi->complexity_map[mi_offset]; |
| const int is_edge = (mi_row == 0) || (mi_row == (cm->mi_rows - 1)) || |
| (mi_col == 0) || (mi_col == (cm->mi_cols - 1)); |
| |
| if (!is_edge && (complexity > 128)) |
| x->rdmult = x->rdmult + ((x->rdmult * (complexity - 128)) / 256); |
| } |
| |
| // Find best coding mode & reconstruct the MB so it is available |
| // as a predictor for MBs that follow in the SB |
| if (frame_is_intra_only(cm)) { |
| vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx, |
| best_rd); |
| } else { |
| if (bsize >= BLOCK_8X8) |
| vp9_rd_pick_inter_mode_sb(cpi, x, tile, mi_row, mi_col, |
| totalrate, totaldist, bsize, ctx, best_rd); |
| else |
| vp9_rd_pick_inter_mode_sub8x8(cpi, x, tile, mi_row, mi_col, totalrate, |
| totaldist, bsize, ctx, best_rd); |
| } |
| |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| x->rdmult = orig_rdmult; |
| if (*totalrate != INT_MAX) { |
| vp9_clear_system_state(); // __asm emms; |
| *totalrate = round(*totalrate * rdmult_ratio); |
| } |
| } |
| } |
| |
| static void update_stats(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi_8x8[0]; |
| MB_MODE_INFO *const mbmi = &mi->mbmi; |
| |
| if (!frame_is_intra_only(cm)) { |
| const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id, |
| SEG_LVL_REF_FRAME); |
| |
| if (!seg_ref_active) |
| cpi->intra_inter_count[vp9_get_intra_inter_context(xd)] |
| [is_inter_block(mbmi)]++; |
| |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (is_inter_block(mbmi) && !seg_ref_active) { |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| cpi->comp_inter_count[vp9_get_reference_mode_context(cm, xd)] |
| [has_second_ref(mbmi)]++; |
| |
| if (has_second_ref(mbmi)) { |
| cpi->comp_ref_count[vp9_get_pred_context_comp_ref_p(cm, xd)] |
| [mbmi->ref_frame[0] == GOLDEN_FRAME]++; |
| } else { |
| cpi->single_ref_count[vp9_get_pred_context_single_ref_p1(xd)][0] |
| [mbmi->ref_frame[0] != LAST_FRAME]++; |
| if (mbmi->ref_frame[0] != LAST_FRAME) |
| cpi->single_ref_count[vp9_get_pred_context_single_ref_p2(xd)][1] |
| [mbmi->ref_frame[0] != GOLDEN_FRAME]++; |
| } |
| } |
| } |
| } |
| |
| static BLOCK_SIZE *get_sb_partitioning(MACROBLOCK *x, BLOCK_SIZE bsize) { |
| switch (bsize) { |
| case BLOCK_64X64: |
| return &x->sb64_partitioning; |
| case BLOCK_32X32: |
| return &x->sb_partitioning[x->sb_index]; |
| case BLOCK_16X16: |
| return &x->mb_partitioning[x->sb_index][x->mb_index]; |
| case BLOCK_8X8: |
| return &x->b_partitioning[x->sb_index][x->mb_index][x->b_index]; |
| default: |
| assert(0); |
| return NULL; |
| } |
| } |
| |
| static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col, |
| ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], |
| PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], |
| BLOCK_SIZE bsize) { |
| MACROBLOCK *const x = &cpi->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| for (p = 0; p < MAX_MB_PLANE; p++) { |
| vpx_memcpy( |
| cpi->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x), |
| a + num_4x4_blocks_wide * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| vpx_memcpy( |
| cpi->left_context[p] |
| + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), |
| l + num_4x4_blocks_high * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| vpx_memcpy(cpi->above_seg_context + mi_col, sa, |
| sizeof(*cpi->above_seg_context) * mi_width); |
| vpx_memcpy(cpi->left_seg_context + (mi_row & MI_MASK), sl, |
| sizeof(cpi->left_seg_context[0]) * mi_height); |
| } |
| static void save_context(VP9_COMP *cpi, int mi_row, int mi_col, |
| ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], |
| PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], |
| BLOCK_SIZE bsize) { |
| const MACROBLOCK *const x = &cpi->mb; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| |
| // buffer the above/left context information of the block in search. |
| for (p = 0; p < MAX_MB_PLANE; ++p) { |
| vpx_memcpy( |
| a + num_4x4_blocks_wide * p, |
| cpi->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x), |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| vpx_memcpy( |
| l + num_4x4_blocks_high * p, |
| cpi->left_context[p] |
| + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| vpx_memcpy(sa, cpi->above_seg_context + mi_col, |
| sizeof(*cpi->above_seg_context) * mi_width); |
| vpx_memcpy(sl, cpi->left_seg_context + (mi_row & MI_MASK), |
| sizeof(cpi->left_seg_context[0]) * mi_height); |
| } |
| |
| static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| int output_enabled, BLOCK_SIZE bsize, int sub_index) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| if (sub_index != -1) |
| *get_sb_index(x, bsize) = sub_index; |
| |
| if (bsize < BLOCK_8X8) { |
| // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 |
| // there is nothing to be done. |
| if (x->ab_index > 0) |
| return; |
| } |
| set_offsets(cpi, tile, mi_row, mi_col, bsize); |
| update_state(cpi, get_block_context(x, bsize), bsize, output_enabled); |
| encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize); |
| |
| if (output_enabled) { |
| update_stats(cpi); |
| |
| (*tp)->token = EOSB_TOKEN; |
| (*tp)++; |
| } |
| } |
| |
| static void encode_sb(VP9_COMP *cpi, const TileInfo *const tile, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| int output_enabled, BLOCK_SIZE bsize) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| BLOCK_SIZE c1 = BLOCK_8X8; |
| const int bsl = b_width_log2(bsize), bs = (1 << bsl) / 4; |
| int pl = 0; |
| PARTITION_TYPE partition; |
| BLOCK_SIZE subsize; |
| int i; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| c1 = BLOCK_4X4; |
| if (bsize >= BLOCK_8X8) { |
| pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context, |
| mi_row, mi_col, bsize); |
| c1 = *(get_sb_partitioning(x, bsize)); |
| } |
| partition = partition_lookup[bsl][c1]; |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| if (output_enabled && bsize >= BLOCK_8X8) |
| cm->counts.partition[pl][PARTITION_NONE]++; |
| encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, c1, -1); |
| break; |
| case PARTITION_VERT: |
| if (output_enabled) |
| cm->counts.partition[pl][PARTITION_VERT]++; |
| encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, c1, 0); |
| encode_b(cpi, tile, tp, mi_row, mi_col + bs, output_enabled, c1, 1); |
| break; |
| case PARTITION_HORZ: |
| if (output_enabled) |
| cm->counts.partition[pl][PARTITION_HORZ]++; |
| encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, c1, 0); |
| encode_b(cpi, tile, tp, mi_row + bs, mi_col, output_enabled, c1, 1); |
| break; |
| case PARTITION_SPLIT: |
| subsize = get_subsize(bsize, PARTITION_SPLIT); |
| |
| if (output_enabled) |
| cm->counts.partition[pl][PARTITION_SPLIT]++; |
| |
| for (i = 0; i < 4; i++) { |
| const int x_idx = i & 1, y_idx = i >> 1; |
| |
| *get_sb_index(x, subsize) = i; |
| encode_sb(cpi, tile, tp, mi_row + y_idx * bs, mi_col + x_idx * bs, |
| output_enabled, subsize); |
| } |
| break; |
| default: |
| assert(0); |
| break; |
| } |
| |
| if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) |
| update_partition_context(cpi->above_seg_context, cpi->left_seg_context, |
| mi_row, mi_col, c1, bsize); |
| } |
| |
| // Check to see if the given partition size is allowed for a specified number |
| // of 8x8 block rows and columns remaining in the image. |
| // If not then return the largest allowed partition size |
| static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, |
| int rows_left, int cols_left, |
| int *bh, int *bw) { |
| if ((rows_left <= 0) || (cols_left <= 0)) { |
| return MIN(bsize, BLOCK_8X8); |
| } else { |
| for (; bsize > 0; --bsize) { |
| *bh = num_8x8_blocks_high_lookup[bsize]; |
| *bw = num_8x8_blocks_wide_lookup[bsize]; |
| if ((*bh <= rows_left) && (*bw <= cols_left)) { |
| break; |
| } |
| } |
| } |
| return bsize; |
| } |
| |
| // This function attempts to set all mode info entries in a given SB64 |
| // to the same block partition size. |
| // However, at the bottom and right borders of the image the requested size |
| // may not be allowed in which case this code attempts to choose the largest |
| // allowable partition. |
| static void set_partitioning(VP9_COMP *cpi, const TileInfo *const tile, |
| MODE_INFO **mi_8x8, int mi_row, int mi_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| BLOCK_SIZE bsize = cpi->sf.always_this_block_size; |
| const int mis = cm->mode_info_stride; |
| int row8x8_remaining = tile->mi_row_end - mi_row; |
| int col8x8_remaining = tile->mi_col_end - mi_col; |
| int block_row, block_col; |
| MODE_INFO * mi_upper_left = cm->mi + mi_row * mis + mi_col; |
| int bh = num_8x8_blocks_high_lookup[bsize]; |
| int bw = num_8x8_blocks_wide_lookup[bsize]; |
| |
| assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); |
| |
| // Apply the requested partition size to the SB64 if it is all "in image" |
| if ((col8x8_remaining >= MI_BLOCK_SIZE) && |
| (row8x8_remaining >= MI_BLOCK_SIZE)) { |
| for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { |
| for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { |
| int index = block_row * mis + block_col; |
| mi_8x8[index] = mi_upper_left + index; |
| mi_8x8[index]->mbmi.sb_type = bsize; |
| } |
| } |
| } else { |
| // Else this is a partial SB64. |
| for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { |
| for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { |
| int index = block_row * mis + block_col; |
| // Find a partition size that fits |
| bsize = find_partition_size(cpi->sf.always_this_block_size, |
| (row8x8_remaining - block_row), |
| (col8x8_remaining - block_col), &bh, &bw); |
| mi_8x8[index] = mi_upper_left + index; |
| mi_8x8[index]->mbmi.sb_type = bsize; |
| } |
| } |
| } |
| } |
| |
| static void copy_partitioning(VP9_COMP *cpi, MODE_INFO **mi_8x8, |
| MODE_INFO **prev_mi_8x8) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int mis = cm->mode_info_stride; |
| int block_row, block_col; |
| |
| for (block_row = 0; block_row < 8; ++block_row) { |
| for (block_col = 0; block_col < 8; ++block_col) { |
| MODE_INFO * prev_mi = prev_mi_8x8[block_row * mis + block_col]; |
| BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0; |
| ptrdiff_t offset; |
| |
| if (prev_mi) { |
| offset = prev_mi - cm->prev_mi; |
| mi_8x8[block_row * mis + block_col] = cm->mi + offset; |
| mi_8x8[block_row * mis + block_col]->mbmi.sb_type = sb_type; |
| } |
| } |
| } |
| } |
| |
| static int sb_has_motion(VP9_COMP *cpi, MODE_INFO **prev_mi_8x8) { |
| VP9_COMMON *const cm = &cpi->common; |
| const int mis = cm->mode_info_stride; |
| int block_row, block_col; |
| |
| if (cm->prev_mi) { |
| for (block_row = 0; block_row < 8; ++block_row) { |
| for (block_col = 0; block_col < 8; ++block_col) { |
| MODE_INFO * prev_mi = prev_mi_8x8[block_row * mis + block_col]; |
| if (prev_mi) { |
| if (abs(prev_mi->mbmi.mv[0].as_mv.row) >= 8 || |
| abs(prev_mi->mbmi.mv[0].as_mv.col) >= 8) |
| return 1; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static void rd_use_partition(VP9_COMP *cpi, |
| const TileInfo *const tile, |
| MODE_INFO **mi_8x8, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int *rate, int64_t *dist, |
| int do_recon) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| const int mis = cm->mode_info_stride; |
| int bsl = b_width_log2(bsize); |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| int ms = num_4x4_blocks_wide / 2; |
| int mh = num_4x4_blocks_high / 2; |
| int bss = (1 << bsl) / 4; |
| int i, pl; |
| PARTITION_TYPE partition = PARTITION_NONE; |
| BLOCK_SIZE subsize; |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sl[8], sa[8]; |
| int last_part_rate = INT_MAX; |
| int64_t last_part_dist = INT_MAX; |
| int split_rate = INT_MAX; |
| int64_t split_dist = INT_MAX; |
| int none_rate = INT_MAX; |
| int64_t none_dist = INT_MAX; |
| int chosen_rate = INT_MAX; |
| int64_t chosen_dist = INT_MAX; |
| BLOCK_SIZE sub_subsize = BLOCK_4X4; |
| int splits_below = 0; |
| BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| partition = partition_lookup[bsl][bs_type]; |
| |
| subsize = get_subsize(bsize, partition); |
| |
| if (bsize < BLOCK_8X8) { |
| // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 |
| // there is nothing to be done. |
| if (x->ab_index != 0) { |
| *rate = 0; |
| *dist = 0; |
| return; |
| } |
| } else { |
| *(get_sb_partitioning(x, bsize)) = subsize; |
| } |
| save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| |
| if (bsize == BLOCK_16X16) { |
| set_offsets(cpi, tile, mi_row, mi_col, bsize); |
| x->mb_energy = vp9_block_energy(cpi, x, bsize); |
| } |
| |
| x->fast_ms = 0; |
| x->subblock_ref = 0; |
| |
| if (cpi->sf.adjust_partitioning_from_last_frame) { |
| // Check if any of the sub blocks are further split. |
| if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { |
| sub_subsize = get_subsize(subsize, PARTITION_SPLIT); |
| splits_below = 1; |
| for (i = 0; i < 4; i++) { |
| int jj = i >> 1, ii = i & 0x01; |
| MODE_INFO * this_mi = mi_8x8[jj * bss * mis + ii * bss]; |
| if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) { |
| splits_below = 0; |
| } |
| } |
| } |
| |
| // If partition is not none try none unless each of the 4 splits are split |
| // even further.. |
| if (partition != PARTITION_NONE && !splits_below && |
| mi_row + (ms >> 1) < cm->mi_rows && |
| mi_col + (ms >> 1) < cm->mi_cols) { |
| *(get_sb_partitioning(x, bsize)) = bsize; |
| pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rate, &none_dist, bsize, |
| get_block_context(x, bsize), INT64_MAX); |
| |
| pl = partition_plane_context(cpi->above_seg_context, |
| cpi->left_seg_context, |
| mi_row, mi_col, bsize); |
| none_rate += x->partition_cost[pl][PARTITION_NONE]; |
| |
| restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| mi_8x8[0]->mbmi.sb_type = bs_type; |
| *(get_sb_partitioning(x, bsize)) = subsize; |
| } |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist, |
| bsize, get_block_context(x, bsize), INT64_MAX); |
| break; |
| case PARTITION_HORZ: |
| *get_sb_index(x, subsize) = 0; |
| pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist, |
| subsize, get_block_context(x, subsize), INT64_MAX); |
| if (last_part_rate != INT_MAX && |
| bsize >= BLOCK_8X8 && mi_row + (mh >> 1) < cm->mi_rows) { |
| int rt = 0; |
| int64_t dt = 0; |
| update_state(cpi, get_block_context(x, subsize), subsize, 0); |
| encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); |
| *get_sb_index(x, subsize) = 1; |
| pick_sb_modes(cpi, tile, mi_row + (ms >> 1), mi_col, &rt, &dt, subsize, |
| get_block_context(x, subsize), INT64_MAX); |
| if (rt == INT_MAX || dt == INT_MAX) { |
| last_part_rate = INT_MAX; |
| last_part_dist = INT_MAX; |
| break; |
| } |
| |
| last_part_rate += rt; |
| last_part_dist += dt; |
| } |
| break; |
| case PARTITION_VERT: |
| *get_sb_index(x, subsize) = 0; |
| pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist, |
| subsize, get_block_context(x, subsize), INT64_MAX); |
| if (last_part_rate != INT_MAX && |
| bsize >= BLOCK_8X8 && mi_col + (ms >> 1) < cm->mi_cols) { |
| int rt = 0; |
| int64_t dt = 0; |
| update_state(cpi, get_block_context(x, subsize), subsize, 0); |
| encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); |
| *get_sb_index(x, subsize) = 1; |
| pick_sb_modes(cpi, tile, mi_row, mi_col + (ms >> 1), &rt, &dt, subsize, |
| get_block_context(x, subsize), INT64_MAX); |
| if (rt == INT_MAX || dt == INT_MAX) { |
| last_part_rate = INT_MAX; |
| last_part_dist = INT_MAX; |
| break; |
| } |
| last_part_rate += rt; |
| last_part_dist += dt; |
| } |
| break; |
| case PARTITION_SPLIT: |
| // Split partition. |
| last_part_rate = 0; |
| last_part_dist = 0; |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * (ms >> 1); |
| int y_idx = (i >> 1) * (ms >> 1); |
| int jj = i >> 1, ii = i & 0x01; |
| int rt; |
| int64_t dt; |
| |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| |
| *get_sb_index(x, subsize) = i; |
| |
| rd_use_partition(cpi, tile, mi_8x8 + jj * bss * mis + ii * bss, tp, |
| mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt, |
| i != 3); |
| if (rt == INT_MAX || dt == INT_MAX) { |
| last_part_rate = INT_MAX; |
| last_part_dist = INT_MAX; |
| break; |
| } |
| last_part_rate += rt; |
| last_part_dist += dt; |
| } |
| break; |
| default: |
| assert(0); |
| } |
| |
| pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context, |
| mi_row, mi_col, bsize); |
| if (last_part_rate < INT_MAX) |
| last_part_rate += x->partition_cost[pl][partition]; |
| |
| if (cpi->sf.adjust_partitioning_from_last_frame |
| && partition != PARTITION_SPLIT && bsize > BLOCK_8X8 |
| && (mi_row + ms < cm->mi_rows || mi_row + (ms >> 1) == cm->mi_rows) |
| && (mi_col + ms < cm->mi_cols || mi_col + (ms >> 1) == cm->mi_cols)) { |
| BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT); |
| split_rate = 0; |
| split_dist = 0; |
| restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| |
| // Split partition. |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * (num_4x4_blocks_wide >> 2); |
| int y_idx = (i >> 1) * (num_4x4_blocks_wide >> 2); |
| int rt = 0; |
| int64_t dt = 0; |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sl[8], sa[8]; |
| |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| |
| *get_sb_index(x, split_subsize) = i; |
| *get_sb_partitioning(x, bsize) = split_subsize; |
| *get_sb_partitioning(x, split_subsize) = split_subsize; |
| |
| save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| |
| pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &rt, &dt, |
| split_subsize, get_block_context(x, split_subsize), |
| INT64_MAX); |
| |
| restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| |
| if (rt == INT_MAX || dt == INT_MAX) { |
| split_rate = INT_MAX; |
| split_dist = INT_MAX; |
| break; |
| } |
| |
| if (i != 3) |
| encode_sb(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, 0, |
| split_subsize); |
| |
| split_rate += rt; |
| split_dist += dt; |
| pl = partition_plane_context(cpi->above_seg_context, |
| cpi->left_seg_context, |
| mi_row + y_idx, mi_col + x_idx, |
| split_subsize); |
| split_rate += x->partition_cost[pl][PARTITION_NONE]; |
| } |
| pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context, |
| mi_row, mi_col, bsize); |
| if (split_rate < INT_MAX) { |
| split_rate += x->partition_cost[pl][PARTITION_SPLIT]; |
| |
| chosen_rate = split_rate; |
| chosen_dist = split_dist; |
| } |
| } |
| |
| // If last_part is better set the partitioning to that... |
| if (RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist) |
| < RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)) { |
| mi_8x8[0]->mbmi.sb_type = bsize; |
| if (bsize >= BLOCK_8X8) |
| *(get_sb_partitioning(x, bsize)) = subsize; |
| chosen_rate = last_part_rate; |
| chosen_dist = last_part_dist; |
| } |
| // If none was better set the partitioning to that... |
| if (RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist) |
| > RDCOST(x->rdmult, x->rddiv, none_rate, none_dist)) { |
| if (bsize >= BLOCK_8X8) |
| *(get_sb_partitioning(x, bsize)) = bsize; |
| chosen_rate = none_rate; |
| chosen_dist = none_dist; |
| } |
| |
| restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| |
| // We must have chosen a partitioning and encoding or we'll fail later on. |
| // No other opportunities for success. |
| if ( bsize == BLOCK_64X64) |
| assert(chosen_rate < INT_MAX && chosen_dist < INT_MAX); |
| |
| if (do_recon) { |
| int output_enabled = (bsize == BLOCK_64X64); |
| |
| // Check the projected output rate for this SB against it's target |
| // and and if necessary apply a Q delta using segmentation to get |
| // closer to the target. |
| if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) { |
| select_in_frame_q_segment(cpi, mi_row, mi_col, |
| output_enabled, chosen_rate); |
| } |
| |
| encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize); |
| } |
| |
| *rate = chosen_rate; |
| *dist = chosen_dist; |
| } |
| |
| static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = { |
| BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, |
| BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, |
| BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 |
| }; |
| |
| static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = { |
| BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, |
| BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, |
| BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64 |
| }; |
| |
| // Look at all the mode_info entries for blocks that are part of this |
| // partition and find the min and max values for sb_type. |
| // At the moment this is designed to work on a 64x64 SB but could be |
| // adjusted to use a size parameter. |
| // |
| // The min and max are assumed to have been initialized prior to calling this |
| // function so repeat calls can accumulate a min and max of more than one sb64. |
| static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO ** mi_8x8, |
| BLOCK_SIZE * min_block_size, |
| BLOCK_SIZE * max_block_size ) { |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| int sb_width_in_blocks = MI_BLOCK_SIZE; |
| int sb_height_in_blocks = MI_BLOCK_SIZE; |
| int i, j; |
| int index = 0; |
| |
| // Check the sb_type for each block that belongs to this region. |
| for (i = 0; i < sb_height_in_blocks; ++i) { |
| for (j = 0; j < sb_width_in_blocks; ++j) { |
| MODE_INFO * mi = mi_8x8[index+j]; |
| BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0; |
| *min_block_size = MIN(*min_block_size, sb_type); |
| *max_block_size = MAX(*max_block_size, sb_type); |
| } |
| index += xd->mode_info_stride; |
| } |
| } |
| |
| // Look at neighboring blocks and set a min and max partition size based on |
| // what they chose. |
| static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile, |
| int row, int col, |
| BLOCK_SIZE *min_block_size, |
| BLOCK_SIZE *max_block_size) { |
| VP9_COMMON * const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| MODE_INFO ** mi_8x8 = xd->mi_8x8; |
| MODE_INFO ** prev_mi_8x8 = xd->prev_mi_8x8; |
| |
| const int left_in_image = xd->left_available && mi_8x8[-1]; |
| const int above_in_image = xd->up_available && |
| mi_8x8[-xd->mode_info_stride]; |
| MODE_INFO ** above_sb64_mi_8x8; |
| MODE_INFO ** left_sb64_mi_8x8; |
| |
| int row8x8_remaining = tile->mi_row_end - row; |
| int col8x8_remaining = tile->mi_col_end - col; |
| int bh, bw; |
| |
| // Trap case where we do not have a prediction. |
| if (!left_in_image && !above_in_image && |
| ((cm->frame_type == KEY_FRAME) || !cm->prev_mi)) { |
| *min_block_size = BLOCK_4X4; |
| *max_block_size = BLOCK_64X64; |
| } else { |
| // Default "min to max" and "max to min" |
| *min_block_size = BLOCK_64X64; |
| *max_block_size = BLOCK_4X4; |
| |
| // NOTE: each call to get_sb_partition_size_range() uses the previous |
| // passed in values for min and max as a starting point. |
| // |
| // Find the min and max partition used in previous frame at this location |
| if (cm->prev_mi && (cm->frame_type != KEY_FRAME)) { |
| get_sb_partition_size_range(cpi, prev_mi_8x8, |
| min_block_size, max_block_size); |
| } |
| |
| // Find the min and max partition sizes used in the left SB64 |
| if (left_in_image) { |
| left_sb64_mi_8x8 = &mi_8x8[-MI_BLOCK_SIZE]; |
| get_sb_partition_size_range(cpi, left_sb64_mi_8x8, |
| min_block_size, max_block_size); |
| } |
| |
| // Find the min and max partition sizes used in the above SB64. |
| if (above_in_image) { |
| above_sb64_mi_8x8 = &mi_8x8[-xd->mode_info_stride * MI_BLOCK_SIZE]; |
| get_sb_partition_size_range(cpi, above_sb64_mi_8x8, |
| min_block_size, max_block_size); |
| } |
| } |
| |
| // Give a bit of leaway either side of the observed min and max |
| *min_block_size = min_partition_size[*min_block_size]; |
| *max_block_size = max_partition_size[*max_block_size]; |
| |
| // Check border cases where max and min from neighbours may not be legal. |
| *max_block_size = find_partition_size(*max_block_size, |
| row8x8_remaining, col8x8_remaining, |
| &bh, &bw); |
| *min_block_size = MIN(*min_block_size, *max_block_size); |
| } |
| |
| static void compute_fast_motion_search_level(VP9_COMP *cpi, BLOCK_SIZE bsize) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| |
| // Only use 8x8 result for non HD videos. |
| // int use_8x8 = (MIN(cpi->common.width, cpi->common.height) < 720) ? 1 : 0; |
| int use_8x8 = 1; |
| |
| if (cm->frame_type && !cpi->is_src_frame_alt_ref && |
| ((use_8x8 && bsize == BLOCK_16X16) || |
| bsize == BLOCK_32X32 || bsize == BLOCK_64X64)) { |
| int ref0 = 0, ref1 = 0, ref2 = 0, ref3 = 0; |
| PICK_MODE_CONTEXT *block_context = NULL; |
| |
| if (bsize == BLOCK_16X16) { |
| block_context = x->sb8x8_context[x->sb_index][x->mb_index]; |
| } else if (bsize == BLOCK_32X32) { |
| block_context = x->mb_context[x->sb_index]; |
| } else if (bsize == BLOCK_64X64) { |
| block_context = x->sb32_context; |
| } |
| |
| if (block_context) { |
| ref0 = block_context[0].mic.mbmi.ref_frame[0]; |
| ref1 = block_context[1].mic.mbmi.ref_frame[0]; |
| ref2 = block_context[2].mic.mbmi.ref_frame[0]; |
| ref3 = block_context[3].mic.mbmi.ref_frame[0]; |
| } |
| |
| // Currently, only consider 4 inter reference frames. |
| if (ref0 && ref1 && ref2 && ref3) { |
| int d01, d23, d02, d13; |
| |
| // Motion vectors for the four subblocks. |
| int16_t mvr0 = block_context[0].mic.mbmi.mv[0].as_mv.row; |
| int16_t mvc0 = block_context[0].mic.mbmi.mv[0].as_mv.col; |
| int16_t mvr1 = block_context[1].mic.mbmi.mv[0].as_mv.row; |
| int16_t mvc1 = block_context[1].mic.mbmi.mv[0].as_mv.col; |
| int16_t mvr2 = block_context[2].mic.mbmi.mv[0].as_mv.row; |
| int16_t mvc2 = block_context[2].mic.mbmi.mv[0].as_mv.col; |
| int16_t mvr3 = block_context[3].mic.mbmi.mv[0].as_mv.row; |
| int16_t mvc3 = block_context[3].mic.mbmi.mv[0].as_mv.col; |
| |
| // Adjust sign if ref is alt_ref. |
| if (cm->ref_frame_sign_bias[ref0]) { |
| mvr0 *= -1; |
| mvc0 *= -1; |
| } |
| |
| if (cm->ref_frame_sign_bias[ref1]) { |
| mvr1 *= -1; |
| mvc1 *= -1; |
| } |
| |
| if (cm->ref_frame_sign_bias[ref2]) { |
| mvr2 *= -1; |
| mvc2 *= -1; |
| } |
| |
| if (cm->ref_frame_sign_bias[ref3]) { |
| mvr3 *= -1; |
| mvc3 *= -1; |
| } |
| |
| // Calculate mv distances. |
| d01 = MAX(abs(mvr0 - mvr1), abs(mvc0 - mvc1)); |
| d23 = MAX(abs(mvr2 - mvr3), abs(mvc2 - mvc3)); |
| d02 = MAX(abs(mvr0 - mvr2), abs(mvc0 - mvc2)); |
| d13 = MAX(abs(mvr1 - mvr3), abs(mvc1 - mvc3)); |
| |
| if (d01 < FAST_MOTION_MV_THRESH && d23 < FAST_MOTION_MV_THRESH && |
| d02 < FAST_MOTION_MV_THRESH && d13 < FAST_MOTION_MV_THRESH) { |
| // Set fast motion search level. |
| x->fast_ms = 1; |
| |
| if (ref0 == ref1 && ref1 == ref2 && ref2 == ref3 && |
| d01 < 2 && d23 < 2 && d02 < 2 && d13 < 2) { |
| // Set fast motion search level. |
| x->fast_ms = 2; |
| |
| if (!d01 && !d23 && !d02 && !d13) { |
| x->fast_ms = 3; |
| x->subblock_ref = ref0; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { |
| vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { |
| vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are |
| // unlikely to be selected depending on previous rate-distortion optimization |
| // results, for encoding speed-up. |
| static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile, |
| TOKENEXTRA **tp, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, int *rate, |
| int64_t *dist, int do_recon, int64_t best_rd) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->mb; |
| const int ms = num_8x8_blocks_wide_lookup[bsize] / 2; |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sl[8], sa[8]; |
| TOKENEXTRA *tp_orig = *tp; |
| int i, pl; |
| BLOCK_SIZE subsize; |
| int this_rate, sum_rate = 0, best_rate = INT_MAX; |
| int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX; |
| int64_t sum_rd = 0; |
| int do_split = bsize >= BLOCK_8X8; |
| int do_rect = 1; |
| // Override skipping rectangular partition operations for edge blocks |
| const int force_horz_split = (mi_row + ms >= cm->mi_rows); |
| const int force_vert_split = (mi_col + ms >= cm->mi_cols); |
| const int xss = x->e_mbd.plane[1].subsampling_x; |
| const int yss = x->e_mbd.plane[1].subsampling_y; |
| |
| int partition_none_allowed = !force_horz_split && !force_vert_split; |
| int partition_horz_allowed = !force_vert_split && yss <= xss && |
| bsize >= BLOCK_8X8; |
| int partition_vert_allowed = !force_horz_split && xss <= yss && |
| bsize >= BLOCK_8X8; |
| |
| int partition_split_done = 0; |
| (void) *tp_orig; |
| |
| if (bsize < BLOCK_8X8) { |
| // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 |
| // there is nothing to be done. |
| if (x->ab_index != 0) { |
| *rate = 0; |
| *dist = 0; |
| return; |
| } |
| } |
| assert(num_8x8_blocks_wide_lookup[bsize] == |
| num_8x8_blocks_high_lookup[bsize]); |
| |
| if (bsize == BLOCK_16X16) { |
| set_offsets(cpi, tile, mi_row, mi_col, bsize); |
| x->mb_energy = vp9_block_energy(cpi, x, bsize); |
| } |
| |
| // Determine partition types in search according to the speed features. |
| // The threshold set here has to be of square block size. |
| if (cpi->sf.auto_min_max_partition_size) { |
| partition_none_allowed &= (bsize <= cpi->sf.max_partition_size && |
| bsize >= cpi->sf.min_partition_size); |
| partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size && |
| bsize > cpi->sf.min_partition_size) || |
| force_horz_split); |
| partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size && |
| bsize > cpi->sf.min_partition_size) || |
| force_vert_split); |
| do_split &= bsize > cpi->sf.min_partition_size; |
| } |
| if (cpi->sf.use_square_partition_only) { |
| partition_horz_allowed &= force_horz_split; |
| partition_vert_allowed &= force_vert_split; |
| } |
| |
| save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| |
| if (cpi->sf.disable_split_var_thresh && partition_none_allowed) { |
| unsigned int source_variancey; |
| vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); |
| source_variancey = get_sby_perpixel_variance(cpi, x, bsize); |
| if (source_variancey < cpi->sf.disable_split_var_thresh) { |
| do_split = 0; |
| if (source_variancey < cpi->sf.disable_split_var_thresh / 2) |
| do_rect = 0; |
| } |
| } |
| |
| // PARTITION_NONE |
| if (partition_none_allowed) { |
| pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize, |
| get_block_context(x, bsize), best_rd); |
| if (this_rate != INT_MAX) { |
| if (bsize >= BLOCK_8X8) { |
| pl = partition_plane_context(cpi->above_seg_context, |
| cpi->left_seg_context, |
| mi_row, mi_col, bsize); |
| this_rate += x->partition_cost[pl][PARTITION_NONE]; |
| } |
| sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist); |
| if (sum_rd < best_rd) { |
| int64_t stop_thresh = 4096; |
| int64_t stop_thresh_rd; |
| |
| best_rate = this_rate; |
| best_dist = this_dist; |
| best_rd = sum_rd; |
| if (bsize >= BLOCK_8X8) |
| *(get_sb_partitioning(x, bsize)) = bsize; |
| |
| // Adjust threshold according to partition size. |
| stop_thresh >>= 8 - (b_width_log2_lookup[bsize] + |
| b_height_log2_lookup[bsize]); |
| |
| stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh); |
| // If obtained distortion is very small, choose current partition |
| // and stop splitting. |
| if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) { |
| do_split = 0; |
| do_rect = 0; |
| } |
| } |
| } |
| restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| } |
| |
| // store estimated motion vector |
| if (cpi->sf.adaptive_motion_search) |
| store_pred_mv(x, get_block_context(x, bsize)); |
| |
| // PARTITION_SPLIT |
| sum_rd = 0; |
| // TODO(jingning): use the motion vectors given by the above search as |
| // the starting point of motion search in the following partition type check. |
| if (do_split) { |
| subsize = get_subsize(bsize, PARTITION_SPLIT); |
| for (i = 0; i < 4 && sum_rd < best_rd; ++i) { |
| const int x_idx = (i & 1) * ms; |
| const int y_idx = (i >> 1) * ms; |
| |
| if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) |
| continue; |
| |
| *get_sb_index(x, subsize) = i; |
| if (cpi->sf.adaptive_motion_search) |
| load_pred_mv(x, get_block_context(x, bsize)); |
| rd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, subsize, |
| &this_rate, &this_dist, i != 3, best_rd - sum_rd); |
| |
| if (this_rate == INT_MAX) { |
| sum_rd = INT64_MAX; |
| } else { |
| sum_rate += this_rate; |
| sum_dist += this_dist; |
| sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); |
| } |
| } |
| if (sum_rd < best_rd && i == 4) { |
| pl = partition_plane_context(cpi->above_seg_context, |
| cpi->left_seg_context, |
| mi_row, mi_col, bsize); |
| sum_rate += x->partition_cost[pl][PARTITION_SPLIT]; |
| sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); |
| if (sum_rd < best_rd) { |
| best_rate = sum_rate; |
| best_dist = sum_dist; |
| best_rd = sum_rd; |
| *(get_sb_partitioning(x, bsize)) = subsize; |
| } |
| } else { |
| // skip rectangular partition test when larger block size |
| // gives better rd cost |
| if (cpi->sf.less_rectangular_check) |
| do_rect &= !partition_none_allowed; |
| } |
| partition_split_done = 1; |
| restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| } |
| |
| x->fast_ms = 0; |
| x->subblock_ref = 0; |
| |
| if (partition_split_done && |
| cpi->sf.using_small_partition_info) { |
| compute_fast_motion_search_level(cpi, bsize); |
| } |
| |
| // PARTITION_HORZ |
| if (partition_horz_allowed && do_rect) { |
| subsize = get_subsize(bsize, PARTITION_HORZ); |
| *get_sb_index(x, subsize) = 0; |
| if (cpi->sf.adaptive_motion_search) |
| load_pred_mv(x, get_block_context(x, bsize)); |
| pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize, |
| get_block_context(x, subsize), best_rd); |
| sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); |
| |
| if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) { |
| update_state(cpi, get_block_context(x, subsize), subsize, 0); |
| encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); |
| |
| *get_sb_index(x, subsize) = 1; |
| if (cpi->sf.adaptive_motion_search) |
| load_pred_mv(x, get_block_context(x, bsize)); |
| pick_sb_modes(cpi, tile, mi_row + ms, mi_col, &this_rate, |
| &this_dist, subsize, get_block_context(x, subsize), |
| best_rd - sum_rd); |
| if (this_rate == INT_MAX) { |
| sum_rd = INT64_MAX; |
| } else { |
| sum_rate += this_rate; |
| sum_dist += this_dist; |
| sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); |
| } |
| } |
| if (sum_rd < best_rd) { |
| pl = partition_plane_context(cpi->above_seg_context, |
| cpi->left_seg_context, |
| mi_row, mi_col, bsize); |
| sum_rate += x->partition_cost[pl][PARTITION_HORZ]; |
| sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); |
| if (sum_rd < best_rd) { |
| best_rd = sum_rd; |
| best_rate = sum_rate; |
| best_dist = sum_dist; |
| *(get_sb_partitioning(x, bsize)) = subsize; |
| } |
| } |
| restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| } |
| |
| // PARTITION_VERT |
| if (partition_vert_allowed && do_rect) { |
| subsize = get_subsize(bsize, PARTITION_VERT); |
| |
| *get_sb_index(x, subsize) = 0; |
| if (cpi->sf.adaptive_motion_search) |
| load_pred_mv(x, get_block_context(x, bsize)); |
| pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize, |
| get_block_context(x, subsize), best_rd); |
| sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); |
| if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) { |
| update_state(cpi, get_block_context(x, subsize), subsize, 0); |
| encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); |
| |
| *get_sb_index(x, subsize) = 1; |
| if (cpi->sf.adaptive_motion_search) |
| load_pred_mv(x, get_block_context(x, bsize)); |
| pick_sb_modes(cpi, tile, mi_row, mi_col + ms, &this_rate, |
| &this_dist, subsize, get_block_context(x, subsize), |
| best_rd - sum_rd); |
| if (this_rate == INT_MAX) { |
| sum_rd = INT64_MAX; |
| } else { |
| sum_rate += this_rate; |
| sum_dist += this_dist; |
| sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); |
| } |
| } |
| if (sum_rd < best_rd) { |
| pl = partition_plane_context(cpi->above_seg_context, |
| cpi->left_seg_context, |
| mi_row, mi_col, bsize); |
| sum_rate += x->partition_cost[pl][PARTITION_VERT]; |
| sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); |
| if (sum_rd < best_rd) { |
| best_rate = sum_rate; |
| best_dist = sum_dist; |
| best_rd = sum_rd; |
| *(get_sb_partitioning(x, bsize)) = subsize; |
| } |
| } |
| restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); |
| } |
| |
| |
| *rate = best_rate; |
| *dist = best_dist; |
| |
| if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) { |
| int output_enabled = (bsize == BLOCK_64X64); |
| |
| // Check the projected output rate for this SB against it's target |
| // and and if necessary apply a Q delta using segmentation to get |
| // closer to the target. |
| if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) { |
| select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled, best_rate); |
| } |
| encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize); |
| } |
| if (bsize == BLOCK_64X64) { |
| assert(tp_orig < *tp); |
| assert(best_rate < INT_MAX); |
| assert(best_dist < INT_MAX); |
| } else { |
| assert(tp_orig == *tp); |
| } |
| } |
| |
| // Examines 64x64 block and chooses a best reference frame |
| static void rd_pick_reference_frame(VP9_COMP *cpi, const TileInfo *const tile, |
| int mi_row, int mi_col) { |
| VP9_COMMON * const cm = &cpi->common; |
| MACROBLOCK * const x = &cpi->mb; |
| int bsl = b_width_log2(BLOCK_64X64), bs = 1 << bsl; |
| int ms = bs / 2; |
| ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sl[8], sa[8]; |
| int pl; |
| int r; |
| int64_t d; |
| |
| save_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64); |
| |
| // Default is non mask (all reference frames allowed. |
| cpi->ref_frame_mask = 0; |
| |
| // Do RD search for 64x64. |
| if ((mi_row + (ms >> 1) < cm->mi_rows) && |
| (mi_col + (ms >> 1) < cm->mi_cols)) { |
| cpi->set_ref_frame_mask = 1; |
| pick_sb_modes(cpi, tile, mi_row, mi_col, &r, &d, BLOCK_64X64, |
| get_block_context(x, BLOCK_64X64), INT64_MAX); |
| pl = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context, |
| mi_row, mi_col, BLOCK_64X64); |
| r += x->partition_cost[pl][PARTITION_NONE]; |
| |
| *(get_sb_partitioning(x, BLOCK_64X64)) = BLOCK_64X64; |
| cpi->set_ref_frame_mask = 0; |
| } |
| |
| restore_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64); |
| } |
| |
| static void encode_sb_row(VP9_COMP *cpi, const TileInfo *const tile, |
| int mi_row, TOKENEXTRA **tp) { |
| VP9_COMMON * const cm = &cpi->common; |
| int mi_col; |
| |
| // Initialize the left context for the new SB row |
| vpx_memset(&cpi->left_context, 0, sizeof(cpi->left_context)); |
| vpx_memset(cpi->left_seg_context, 0, sizeof(cpi->left_seg_context)); |
| |
| // Code each SB in the row |
| for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; |
| mi_col += MI_BLOCK_SIZE) { |
| int dummy_rate; |
| int64_t dummy_dist; |
| |
| vp9_zero(cpi->mb.pred_mv); |
| |
| if (cpi->sf.reference_masking) |
| rd_pick_reference_frame(cpi, tile, mi_row, mi_col); |
| |
| if (cpi->sf.use_lastframe_partitioning || |
| cpi->sf.use_one_partition_size_always ) { |
| const int idx_str = cm->mode_info_stride * mi_row + mi_col; |
| MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str; |
| MODE_INFO **prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str; |
| |
| cpi->mb.source_variance = UINT_MAX; |
| if (cpi->sf.use_one_partition_size_always) { |
| set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64); |
| set_partitioning(cpi, tile, mi_8x8, mi_row, mi_col); |
| rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, |
| &dummy_rate, &dummy_dist, 1); |
| } else { |
| if ((cpi->common.current_video_frame |
| % cpi->sf.last_partitioning_redo_frequency) == 0 |
| || cm->prev_mi == 0 |
| || cpi->common.show_frame == 0 |
| || cpi->common.frame_type == KEY_FRAME |
| || cpi->is_src_frame_alt_ref |
| || ((cpi->sf.use_lastframe_partitioning == |
| LAST_FRAME_PARTITION_LOW_MOTION) && |
| sb_has_motion(cpi, prev_mi_8x8))) { |
| // If required set upper and lower partition size limits |
| if (cpi->sf.auto_min_max_partition_size) { |
| set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64); |
| rd_auto_partition_range(cpi, tile, mi_row, mi_col, |
| &cpi->sf.min_partition_size, |
| &cpi->sf.max_partition_size); |
| } |
| rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64, |
| &dummy_rate, &dummy_dist, 1, INT64_MAX); |
| } else { |
| copy_partitioning(cpi, mi_8x8, prev_mi_8x8); |
| rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, |
| &dummy_rate, &dummy_dist, 1); |
| } |
| } |
| } else { |
| // If required set upper and lower partition size limits |
| if (cpi->sf.auto_min_max_partition_size) { |
| set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64); |
| rd_auto_partition_range(cpi, tile, mi_row, mi_col, |
| &cpi->sf.min_partition_size, |
| &cpi->sf.max_partition_size); |
| } |
| rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64, |
| &dummy_rate, &dummy_dist, 1, INT64_MAX); |
| } |
| } |
| } |
| |
| static void init_encode_frame_mb_context(VP9_COMP *cpi) { |
| MACROBLOCK *const x = &cpi->mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); |
| |
| x->act_zbin_adj = 0; |
| cpi->seg0_idx = 0; |
| |
| xd->mode_info_stride = cm->mode_info_stride; |
| |
| // Copy data over into macro block data structures. |
| vp9_setup_src_planes(x, cpi->Source, 0, 0); |
| |
| // TODO(jkoleszar): are these initializations required? |
| setup_pre_planes(xd, 0, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]], |
| 0, 0, NULL); |
| setup_dst_planes(xd, get_frame_new_buffer(cm), 0, 0); |
| |
| setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); |
| |
| xd->mi_8x8[0]->mbmi.mode = DC_PRED; |
| xd->mi_8x8[0]->mbmi.uv_mode = DC_PRED; |
| |
| vp9_zero(cpi->y_mode_count); |
| vp9_zero(cpi->y_uv_mode_count); |
| vp9_zero(cm->counts.inter_mode); |
| vp9_zero(cm->counts.partition); |
| vp9_zero(cpi->intra_inter_count); |
| vp9_zero(cpi->comp_inter_count); |
| vp9_zero(cpi->single_ref_count); |
| vp9_zero(cpi->comp_ref_count); |
| vp9_zero(cm->counts.tx); |
| vp9_zero(cm->counts.mbskip); |
| |
| // Note: this memset assumes above_context[0], [1] and [2] |
| // are allocated as part of the same buffer. |
| vpx_memset(cpi->above_context[0], 0, |
| sizeof(*cpi->above_context[0]) * |
| 2 * aligned_mi_cols * MAX_MB_PLANE); |
| vpx_memset(cpi->above_seg_context, 0, |
| sizeof(*cpi->above_seg_context) * aligned_mi_cols); |
| } |
| |
| static void switch_lossless_mode(VP9_COMP *cpi, int lossless) { |
| if (lossless) { |
| // printf("Switching to lossless\n"); |
| cpi->mb.fwd_txm4x4 = vp9_fwht4x4; |
| cpi->mb.e_mbd.itxm_add = vp9_iwht4x4_add; |
| cpi->mb.optimize = 0; |
| cpi->common.lf.filter_level = 0; |
| cpi->zbin_mode_boost_enabled = 0; |
| cpi->common.tx_mode = ONLY_4X4; |
| } else { |
| // printf("Not lossless\n"); |
| cpi->mb.fwd_txm4x4 = vp9_fdct4x4; |
| cpi->mb.e_mbd.itxm_add = vp9_idct4x4_add; |
| } |
| } |
| |
| static void switch_tx_mode(VP9_COMP *cpi) { |
| if (cpi->sf.tx_size_search_method == USE_LARGESTALL && |
| cpi->common.tx_mode >= ALLOW_32X32) |
| cpi->common.tx_mode = ALLOW_32X32; |
| } |
| |
| static void encode_frame_internal(VP9_COMP *cpi) { |
| int mi_row; |
| MACROBLOCK * const x = &cpi->mb; |
| VP9_COMMON * const cm = &cpi->common; |
| MACROBLOCKD * const xd = &x->e_mbd; |
| |
| // fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n", |
| // cpi->common.current_video_frame, cpi->common.show_frame, |
| // cm->frame_type); |
| |
| // debug output |
| #if DBG_PRNT_SEGMAP |
| { |
| FILE *statsfile; |
| statsfile = fopen("segmap2.stt", "a"); |
| fprintf(statsfile, "\n"); |
| fclose(statsfile); |
| } |
| #endif |
| |
| vp9_zero(cm->counts.switchable_interp); |
| vp9_zero(cpi->tx_stepdown_count); |
| |
| xd->mi_8x8 = cm->mi_grid_visible; |
| // required for vp9_frame_init_quantizer |
| xd->mi_8x8[0] = cm->mi; |
| |
| xd->last_mi = cm->prev_mi; |
| |
| vp9_zero(cpi->common.counts.mv); |
| vp9_zero(cpi->coef_counts); |
| vp9_zero(cm->counts.eob_branch); |
| |
| cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 |
| && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; |
| switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless); |
| |
| vp9_frame_init_quantizer(cpi); |
| |
| vp9_initialize_rd_consts(cpi); |
| vp9_initialize_me_consts(cpi, cm->base_qindex); |
| switch_tx_mode(cpi); |
| |
| if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { |
| // Initialize encode frame context. |
| init_encode_frame_mb_context(cpi); |
| |
| // Build a frame level activity map |
| build_activity_map(cpi); |
| } |
| |
| // Re-initialize encode frame context. |
| init_encode_frame_mb_context(cpi); |
| |
| vp9_zero(cpi->rd_comp_pred_diff); |
| vp9_zero(cpi->rd_filter_diff); |
| vp9_zero(cpi->rd_tx_select_diff); |
| vp9_zero(cpi->rd_tx_select_threshes); |
| |
| set_prev_mi(cm); |
| |
| { |
| struct vpx_usec_timer emr_timer; |
| vpx_usec_timer_start(&emr_timer); |
| |
| { |
| // Take tiles into account and give start/end MB |
| int tile_col, tile_row; |
| TOKENEXTRA *tp = cpi->tok; |
| const int tile_cols = 1 << cm->log2_tile_cols; |
| const int tile_rows = 1 << cm->log2_tile_rows; |
| |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| TileInfo tile; |
| TOKENEXTRA *tp_old = tp; |
| |
| // For each row of SBs in the frame |
| vp9_tile_init(&tile, cm, tile_row, tile_col); |
| for (mi_row = tile.mi_row_start; |
| mi_row < tile.mi_row_end; mi_row += 8) |
| encode_sb_row(cpi, &tile, mi_row, &tp); |
| |
| cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old); |
| assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols)); |
| } |
| } |
| } |
| |
| vpx_usec_timer_mark(&emr_timer); |
| cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer); |
| } |
| |
| if (cpi->sf.skip_encode_sb) { |
| int j; |
| unsigned int intra_count = 0, inter_count = 0; |
| for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) { |
| intra_count += cpi->intra_inter_count[j][0]; |
| inter_count += cpi->intra_inter_count[j][1]; |
| } |
| cpi->sf.skip_encode_frame = ((intra_count << 2) < inter_count); |
| cpi->sf.skip_encode_frame &= (cm->frame_type != KEY_FRAME); |
| cpi->sf.skip_encode_frame &= cm->show_frame; |
| } else { |
| cpi->sf.skip_encode_frame = 0; |
| } |
| |
| #if 0 |
| // Keep record of the total distortion this time around for future use |
| cpi->last_frame_distortion = cpi->frame_distortion; |
| #endif |
| } |
| |
| static int check_dual_ref_flags(VP9_COMP *cpi) { |
| const int ref_flags = cpi->ref_frame_flags; |
| |
| if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) { |
| return 0; |
| } else { |
| return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) |
| + !!(ref_flags & VP9_ALT_FLAG)) >= 2; |
| } |
| } |
| |
| static int get_skip_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs) { |
| int x, y; |
| |
| for (y = 0; y < ymbs; y++) { |
| for (x = 0; x < xmbs; x++) { |
| if (!mi_8x8[y * mis + x]->mbmi.skip_coeff) |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static void set_txfm_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs, |
| TX_SIZE tx_size) { |
| int x, y; |
| |
| for (y = 0; y < ymbs; y++) { |
| for (x = 0; x < xmbs; x++) |
| mi_8x8[y * mis + x]->mbmi.tx_size = tx_size; |
| } |
| } |
| |
| static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO **mi_8x8, |
| int mis, TX_SIZE max_tx_size, int bw, int bh, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| VP9_COMMON * const cm = &cpi->common; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) { |
| return; |
| } else { |
| MB_MODE_INFO * const mbmi = &mi_8x8[0]->mbmi; |
| if (mbmi->tx_size > max_tx_size) { |
| const int ymbs = MIN(bh, cm->mi_rows - mi_row); |
| const int xmbs = MIN(bw, cm->mi_cols - mi_col); |
| |
| assert(vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) || |
| get_skip_flag(mi_8x8, mis, ymbs, xmbs)); |
| set_txfm_flag(mi_8x8, mis, ymbs, xmbs, max_tx_size); |
| } |
| } |
| } |
| |
| static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO **mi_8x8, |
| TX_SIZE max_tx_size, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| VP9_COMMON * const cm = &cpi->common; |
| const int mis = cm->mode_info_stride; |
| int bw, bh; |
| const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) |
| return; |
| |
| bw = num_8x8_blocks_wide_lookup[mi_8x8[0]->mbmi.sb_type]; |
| bh = num_8x8_blocks_high_lookup[mi_8x8[0]->mbmi.sb_type]; |
| |
| if (bw == bs && bh == bs) { |
| reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, bs, bs, mi_row, |
| mi_col, bsize); |
| } else if (bw == bs && bh < bs) { |
| reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, bs, hbs, mi_row, |
| mi_col, bsize); |
| reset_skip_txfm_size_b(cpi, mi_8x8 + hbs * mis, mis, max_tx_size, bs, hbs, |
| mi_row + hbs, mi_col, bsize); |
| } else if (bw < bs && bh == bs) { |
| reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, hbs, bs, mi_row, |
| mi_col, bsize); |
| reset_skip_txfm_size_b(cpi, mi_8x8 + hbs, mis, max_tx_size, hbs, bs, mi_row, |
| mi_col + hbs, bsize); |
| |
| } else { |
| const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize]; |
| int n; |
| |
| assert(bw < bs && bh < bs); |
| |
| for (n = 0; n < 4; n++) { |
| const int mi_dc = hbs * (n & 1); |
| const int mi_dr = hbs * (n >> 1); |
| |
| reset_skip_txfm_size_sb(cpi, &mi_8x8[mi_dr * mis + mi_dc], max_tx_size, |
| mi_row + mi_dr, mi_col + mi_dc, subsize); |
| } |
| } |
| } |
| |
| static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) { |
| VP9_COMMON * const cm = &cpi->common; |
| int mi_row, mi_col; |
| const int mis = cm->mode_info_stride; |
| // MODE_INFO *mi, *mi_ptr = cm->mi; |
| MODE_INFO **mi_8x8, **mi_ptr = cm->mi_grid_visible; |
| |
| for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8, mi_ptr += 8 * mis) { |
| mi_8x8 = mi_ptr; |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8, mi_8x8 += 8) { |
| reset_skip_txfm_size_sb(cpi, mi_8x8, txfm_max, mi_row, mi_col, |
| BLOCK_64X64); |
| } |
| } |
| } |
| |
| static int get_frame_type(VP9_COMP *cpi) { |
| int frame_type; |
| if (frame_is_intra_only(&cpi->common)) |
| frame_type = 0; |
| else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame) |
| frame_type = 3; |
| else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) |
| frame_type = 1; |
| else |
| frame_type = 2; |
| return frame_type; |
| } |
| |
| static void select_tx_mode(VP9_COMP *cpi) { |
| if (cpi->oxcf.lossless) { |
| cpi->common.tx_mode = ONLY_4X4; |
| } else if (cpi->common.current_video_frame == 0) { |
| cpi->common.tx_mode = TX_MODE_SELECT; |
| } else { |
| if (cpi->sf.tx_size_search_method == USE_LARGESTALL) { |
| cpi->common.tx_mode = ALLOW_32X32; |
| } else if (cpi->sf.tx_size_search_method == USE_FULL_RD) { |
| int frame_type = get_frame_type(cpi); |
| cpi->common.tx_mode = |
| cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] |
| > cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ? |
| ALLOW_32X32 : TX_MODE_SELECT; |
| } else { |
| unsigned int total = 0; |
| int i; |
| for (i = 0; i < TX_SIZES; ++i) |
| total += cpi->tx_stepdown_count[i]; |
| if (total) { |
| double fraction = (double)cpi->tx_stepdown_count[0] / total; |
| cpi->common.tx_mode = fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT; |
| // printf("fraction = %f\n", fraction); |
| } // else keep unchanged |
| } |
| } |
| } |
| |
| void vp9_encode_frame(VP9_COMP *cpi) { |
| VP9_COMMON * const cm = &cpi->common; |
| |
| // In the longer term the encoder should be generalized to match the |
| // decoder such that we allow compound where one of the 3 buffers has a |
| // different sign bias and that buffer is then the fixed ref. However, this |
| // requires further work in the rd loop. For now the only supported encoder |
| // side behavior is where the ALT ref buffer has opposite sign bias to |
| // the other two. |
| if (!frame_is_intra_only(cm)) { |
| if ((cm->ref_frame_sign_bias[ALTREF_FRAME] |
| == cm->ref_frame_sign_bias[GOLDEN_FRAME]) |
| || (cm->ref_frame_sign_bias[ALTREF_FRAME] |
| == cm->ref_frame_sign_bias[LAST_FRAME])) { |
| cm->allow_comp_inter_inter = 0; |
| } else { |
| cm->allow_comp_inter_inter = 1; |
| cm->comp_fixed_ref = ALTREF_FRAME; |
| cm->comp_var_ref[0] = LAST_FRAME; |
| cm->comp_var_ref[1] = GOLDEN_FRAME; |
| } |
| } |
| |
| if (cpi->sf.RD) { |
| int i, pred_type; |
| INTERPOLATION_TYPE filter_type; |
| /* |
| * This code does a single RD pass over the whole frame assuming |
| * either compound, single or hybrid prediction as per whatever has |
| * worked best for that type of frame in the past. |
| * It also predicts whether another coding mode would have worked |
| * better that this coding mode. If that is the case, it remembers |
| * that for subsequent frames. |
| * It does the same analysis for transform size selection also. |
| */ |
| int frame_type = get_frame_type(cpi); |
| |
| /* prediction (compound, single or hybrid) mode selection */ |
| if (frame_type == 3 || !cm->allow_comp_inter_inter) |
| pred_type = SINGLE_REFERENCE; |
| else if (cpi->rd_prediction_type_threshes[frame_type][1] |
| > cpi->rd_prediction_type_threshes[frame_type][0] |
| && cpi->rd_prediction_type_threshes[frame_type][1] |
| > cpi->rd_prediction_type_threshes[frame_type][2] |
| && check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100) |
| pred_type = COMPOUND_REFERENCE; |
| else if (cpi->rd_prediction_type_threshes[frame_type][0] |
| > cpi->rd_prediction_type_threshes[frame_type][2]) |
| pred_type = SINGLE_REFERENCE; |
| else |
| pred_type = REFERENCE_MODE_SELECT; |
| |
| /* filter type selection */ |
| // FIXME(rbultje) for some odd reason, we often select smooth_filter |
| // as default filter for ARF overlay frames. This is a REALLY BAD |
| // IDEA so we explicitly disable it here. |
| if (frame_type != 3 && |
| cpi->rd_filter_threshes[frame_type][1] > |
| cpi->rd_filter_threshes[frame_type][0] && |
| cpi->rd_filter_threshes[frame_type][1] > |
| cpi->rd_filter_threshes[frame_type][2] && |
| cpi->rd_filter_threshes[frame_type][1] > |
| cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) { |
| filter_type = EIGHTTAP_SMOOTH; |
| } else if (cpi->rd_filter_threshes[frame_type][2] > |
| cpi->rd_filter_threshes[frame_type][0] && |
| cpi->rd_filter_threshes[frame_type][2] > |
| cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) { |
| filter_type = EIGHTTAP_SHARP; |
| } else if (cpi->rd_filter_threshes[frame_type][0] > |
| cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) { |
| filter_type = EIGHTTAP; |
| } else { |
| filter_type = SWITCHABLE; |
| } |
| |
| cpi->mb.e_mbd.lossless = 0; |
| if (cpi->oxcf.lossless) { |
| cpi->mb.e_mbd.lossless = 1; |
| } |
| |
| /* transform size selection (4x4, 8x8, 16x16 or select-per-mb) */ |
| select_tx_mode(cpi); |
| cpi->common.reference_mode = pred_type; |
| cpi->common.mcomp_filter_type = filter_type; |
| encode_frame_internal(cpi); |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) { |
| const int diff = (int) (cpi->rd_comp_pred_diff[i] / cpi->common.MBs); |
| cpi->rd_prediction_type_threshes[frame_type][i] += diff; |
| cpi->rd_prediction_type_threshes[frame_type][i] >>= 1; |
| } |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| const int64_t diff = cpi->rd_filter_diff[i] / cpi->common.MBs; |
| cpi->rd_filter_threshes[frame_type][i] = |
| (cpi->rd_filter_threshes[frame_type][i] + diff) / 2; |
| } |
| |
| for (i = 0; i < TX_MODES; ++i) { |
| int64_t pd = cpi->rd_tx_select_diff[i]; |
| int diff; |
| if (i == TX_MODE_SELECT) |
| pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, |
| 2048 * (TX_SIZES - 1), 0); |
| diff = (int) (pd / cpi->common.MBs); |
| cpi->rd_tx_select_threshes[frame_type][i] += diff; |
| cpi->rd_tx_select_threshes[frame_type][i] /= 2; |
| } |
| |
| if (cpi->common.reference_mode == REFERENCE_MODE_SELECT) { |
| int single_count_zero = 0; |
| int comp_count_zero = 0; |
| |
| for (i = 0; i < COMP_INTER_CONTEXTS; i++) { |
| single_count_zero += cpi->comp_inter_count[i][0]; |
| comp_count_zero += cpi->comp_inter_count[i][1]; |
| } |
| |
| if (comp_count_zero == 0) { |
| cpi->common.reference_mode = SINGLE_REFERENCE; |
| vp9_zero(cpi->comp_inter_count); |
| } else if (single_count_zero == 0) { |
| cpi->common.reference_mode = COMPOUND_REFERENCE; |
| vp9_zero(cpi->comp_inter_count); |
| } |
| } |
| |
| if (cpi->common.tx_mode == TX_MODE_SELECT) { |
| int count4x4 = 0; |
| int count8x8_lp = 0, count8x8_8x8p = 0; |
| int count16x16_16x16p = 0, count16x16_lp = 0; |
| int count32x32 = 0; |
| |
| for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { |
| count4x4 += cm->counts.tx.p32x32[i][TX_4X4]; |
| count4x4 += cm->counts.tx.p16x16[i][TX_4X4]; |
| count4x4 += cm->counts.tx.p8x8[i][TX_4X4]; |
| |
| count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8]; |
| count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8]; |
| count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8]; |
| |
| count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16]; |
| count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16]; |
| count32x32 += cm->counts.tx.p32x32[i][TX_32X32]; |
| } |
| |
| if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 |
| && count32x32 == 0) { |
| cpi->common.tx_mode = ALLOW_8X8; |
| reset_skip_txfm_size(cpi, TX_8X8); |
| } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 |
| && count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) { |
| cpi->common.tx_mode = ONLY_4X4; |
| reset_skip_txfm_size(cpi, TX_4X4); |
| } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) { |
| cpi->common.tx_mode = ALLOW_32X32; |
| } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) { |
| cpi->common.tx_mode = ALLOW_16X16; |
| reset_skip_txfm_size(cpi, TX_16X16); |
| } |
| } |
| } else { |
| encode_frame_internal(cpi); |
| } |
| } |
| |
| static void sum_intra_stats(VP9_COMP *cpi, const MODE_INFO *mi) { |
| const MB_PREDICTION_MODE y_mode = mi->mbmi.mode; |
| const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode; |
| const BLOCK_SIZE bsize = mi->mbmi.sb_type; |
| |
| ++cpi->y_uv_mode_count[y_mode][uv_mode]; |
| |
| if (bsize < BLOCK_8X8) { |
| int idx, idy; |
| const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; |
| const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; |
| for (idy = 0; idy < 2; idy += num_4x4_blocks_high) |
| for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) |
| ++cpi->y_mode_count[0][mi->bmi[idy * 2 + idx].as_mode]; |
| } else { |
| ++cpi->y_mode_count[size_group_lookup[bsize]][y_mode]; |
| } |
| } |
| |
| // Experimental stub function to create a per MB zbin adjustment based on |
| // some previously calculated measure of MB activity. |
| static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) { |
| #if USE_ACT_INDEX |
| x->act_zbin_adj = *(x->mb_activity_ptr); |
| #else |
| int64_t a; |
| int64_t b; |
| int64_t act = *(x->mb_activity_ptr); |
| |
| // Apply the masking to the RD multiplier. |
| a = act + 4 * cpi->activity_avg; |
| b = 4 * act + cpi->activity_avg; |
| |
| if (act > cpi->activity_avg) |
| x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1; |
| else |
| x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b); |
| #endif |
| } |
| static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled, |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| VP9_COMMON * const cm = &cpi->common; |
| MACROBLOCK * const x = &cpi->mb; |
| MACROBLOCKD * const xd = &x->e_mbd; |
| MODE_INFO **mi_8x8 = xd->mi_8x8; |
| MODE_INFO *mi = mi_8x8[0]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| PICK_MODE_CONTEXT *ctx = get_block_context(x, bsize); |
| unsigned int segment_id = mbmi->segment_id; |
| const int mis = cm->mode_info_stride; |
| const int mi_width = num_8x8_blocks_wide_lookup[bsize]; |
| const int mi_height = num_8x8_blocks_high_lookup[bsize]; |
| x->skip_recode = !x->select_txfm_size && mbmi->sb_type >= BLOCK_8X8 && |
| (cpi->oxcf.aq_mode != COMPLEXITY_AQ); |
| x->skip_optimize = ctx->is_coded; |
| ctx->is_coded = 1; |
| x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct; |
| x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame && |
| x->q_index < QIDX_SKIP_THRESH); |
| if (x->skip_encode) |
| return; |
| |
| if (cm->frame_type == KEY_FRAME) { |
| if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { |
| adjust_act_zbin(cpi, x); |
| vp9_update_zbin_extra(cpi, x); |
| } |
| } else { |
| vp9_setup_interp_filters(xd, mbmi->interp_filter, cm); |
| |
| if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { |
| // Adjust the zbin based on this MB rate. |
| adjust_act_zbin(cpi, x); |
| } |
| |
| // Experimental code. Special case for gf and arf zeromv modes. |
| // Increase zbin size to suppress noise |
| cpi->zbin_mode_boost = 0; |
| if (cpi->zbin_mode_boost_enabled) { |
| if (is_inter_block(mbmi)) { |
| if (mbmi->mode == ZEROMV) { |
| if (mbmi->ref_frame[0] != LAST_FRAME) |
| cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; |
| else |
| cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; |
| } else if (mbmi->sb_type < BLOCK_8X8) { |
| cpi->zbin_mode_boost = SPLIT_MV_ZBIN_BOOST; |
| } else { |
| cpi->zbin_mode_boost = MV_ZBIN_BOOST; |
| } |
| } else { |
| cpi->zbin_mode_boost = INTRA_ZBIN_BOOST; |
| } |
| } |
| |
| vp9_update_zbin_extra(cpi, x); |
| } |
| |
| if (!is_inter_block(mbmi)) { |
| vp9_encode_intra_block_y(x, MAX(bsize, BLOCK_8X8)); |
| vp9_encode_intra_block_uv(x, MAX(bsize, BLOCK_8X8)); |
| if (output_enabled) |
| sum_intra_stats(cpi, mi); |
| } else { |
| int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[0])]; |
| YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx]; |
| YV12_BUFFER_CONFIG *second_ref_fb = NULL; |
| if (has_second_ref(mbmi)) { |
| idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[1])]; |
| second_ref_fb = &cm->yv12_fb[idx]; |
| } |
| |
| assert(cm->frame_type != KEY_FRAME); |
| |
| setup_pre_planes(xd, 0, ref_fb, mi_row, mi_col, |
| &xd->scale_factor[0]); |
| setup_pre_planes(xd, 1, second_ref_fb, mi_row, mi_col, |
| &xd->scale_factor[1]); |
| |
| vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8)); |
| } |
| |
| if (!is_inter_block(mbmi)) { |
| vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8)); |
| } else if (!x->skip) { |
| vp9_encode_sb(x, MAX(bsize, BLOCK_8X8)); |
| vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8)); |
| } else { |
| int mb_skip_context = xd->left_available ? mi_8x8[-1]->mbmi.skip_coeff : 0; |
| mb_skip_context += mi_8x8[-mis] ? mi_8x8[-mis]->mbmi.skip_coeff : 0; |
| |
| mbmi->skip_coeff = 1; |
| if (output_enabled) |
| cm->counts.mbskip[mb_skip_context][1]++; |
| reset_skip_context(xd, MAX(bsize, BLOCK_8X8)); |
| } |
| |
| if (output_enabled) { |
| if (cm->tx_mode == TX_MODE_SELECT && |
| mbmi->sb_type >= BLOCK_8X8 && |
| !(is_inter_block(mbmi) && |
| (mbmi->skip_coeff || |
| vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) { |
| ++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd), |
| &cm->counts.tx)[mbmi->tx_size]; |
| } else { |
| int x, y; |
| TX_SIZE tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter_block(&mi->mbmi)) { |
| tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode], |
| max_txsize_lookup[bsize]); |
| } else { |
| tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4; |
| } |
| |
| for (y = 0; y < mi_height; y++) |
| for (x = 0; x < mi_width; x++) |
| if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows) |
| mi_8x8[mis * y + x]->mbmi.tx_size = tx_size; |
| } |
| } |
| } |