blob: 38b9da88c05769e0729e7e70d99e597c14ebbafa [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <limits.h>
#include "av1/common/enums.h"
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/cfl.h"
#include "av1/common/mvref_common.h"
#include "av1/common/mv.h"
#include "av1/common/obmc.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/tip.h"
// This function will determine whether or not to create a warped
// prediction.
int av1_allow_warp(const MB_MODE_INFO *const mbmi,
const WarpTypesAllowed *const warp_types,
const WarpedMotionParams *const gm_params, int ref,
int build_for_obmc, const struct scale_factors *const sf,
WarpedMotionParams *final_warp_params) {
// Note: As per the spec, we must test the fixed point scales here, which are
// at a higher precision (1 << 14) than the xs and ys in subpel_params (that
// have 1 << 10 precision).
if (av1_is_scaled(sf)) return 0;
if (final_warp_params != NULL) *final_warp_params = default_warp_params;
if (build_for_obmc) return 0;
if (warp_types->local_warp_allowed && !mbmi->wm_params[ref].invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, &mbmi->wm_params[ref],
sizeof(*final_warp_params));
return 1;
} else if (warp_types->global_warp_allowed && !gm_params->invalid) {
if (final_warp_params != NULL)
memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
return 1;
}
return 0;
}
void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width,
int block_height, int pix_row, int pix_col,
int subsampling_x, int subsampling_y, int bit_depth,
int is_intrabc, const struct scale_factors *sf,
const struct buf_2d *ref_buf,
InterpFilter interp_filter) {
inter_pred_params->block_width = block_width;
inter_pred_params->block_height = block_height;
inter_pred_params->orig_block_width = block_width;
inter_pred_params->orig_block_height = block_height;
#if CONFIG_REFINEMV
inter_pred_params->original_pu_width = block_width;
inter_pred_params->original_pu_height = block_height;
#endif // CONFIG_REFINEMV
inter_pred_params->pix_row = pix_row;
inter_pred_params->pix_col = pix_col;
inter_pred_params->subsampling_x = subsampling_x;
inter_pred_params->subsampling_y = subsampling_y;
inter_pred_params->bit_depth = bit_depth;
inter_pred_params->is_intrabc = is_intrabc;
inter_pred_params->scale_factors = sf;
inter_pred_params->ref_frame_buf = *ref_buf;
inter_pred_params->mode = TRANSLATION_PRED;
inter_pred_params->comp_mode = UNIFORM_SINGLE;
#if CONFIG_REFINEMV
inter_pred_params->use_ref_padding = 0;
inter_pred_params->ref_area = NULL;
#endif // CONFIG_REFINEMV
#if CONFIG_D071_IMP_MSK_BLD
inter_pred_params->border_data.enable_bacp = 0;
inter_pred_params->border_data.bacp_block_data = NULL;
#endif // CONFIG_D071_IMP_MSK_BLD
if (is_intrabc) {
inter_pred_params->interp_filter_params[0] = &av1_intrabc_filter_params;
inter_pred_params->interp_filter_params[1] = &av1_intrabc_filter_params;
} else {
inter_pred_params->interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(interp_filter,
block_width);
inter_pred_params->interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(interp_filter,
block_height);
}
}
void av1_init_comp_mode(InterPredParams *inter_pred_params) {
inter_pred_params->comp_mode = UNIFORM_COMP;
}
void av1_init_warp_params(InterPredParams *inter_pred_params,
const WarpTypesAllowed *warp_types, int ref,
const MACROBLOCKD *xd, const MB_MODE_INFO *mi) {
if (inter_pred_params->block_height < 8 || inter_pred_params->block_width < 8)
return;
if (is_tip_ref_frame(mi->ref_frame[0])) return;
#if CONFIG_REFINEMV
// We do not do refineMV for warp blocks
// We may need to return from here.
if (mi->refinemv_flag) return;
#endif // CONFIG_REFINEMV
if (xd->cur_frame_force_integer_mv) return;
if (av1_allow_warp(mi, warp_types, &xd->global_motion[mi->ref_frame[ref]],
ref, 0, inter_pred_params->scale_factors,
&inter_pred_params->warp_params))
inter_pred_params->mode = WARP_PRED;
}
void av1_make_inter_predictor(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride,
InterPredParams *inter_pred_params,
const SubpelParams *subpel_params) {
assert(IMPLIES(inter_pred_params->conv_params.is_compound,
inter_pred_params->conv_params.dst != NULL));
// TODO(jingning): av1_warp_plane() can be further cleaned up.
if (inter_pred_params->mode == WARP_PRED) {
av1_warp_plane(
&inter_pred_params->warp_params, inter_pred_params->bit_depth,
inter_pred_params->ref_frame_buf.buf0,
inter_pred_params->ref_frame_buf.width,
inter_pred_params->ref_frame_buf.height,
inter_pred_params->ref_frame_buf.stride, dst,
inter_pred_params->pix_col, inter_pred_params->pix_row,
inter_pred_params->block_width, inter_pred_params->block_height,
dst_stride, inter_pred_params->subsampling_x,
inter_pred_params->subsampling_y, &inter_pred_params->conv_params);
} else if (inter_pred_params->mode == TRANSLATION_PRED) {
highbd_inter_predictor(
src, src_stride, dst, dst_stride, subpel_params,
inter_pred_params->block_width, inter_pred_params->block_height,
&inter_pred_params->conv_params,
inter_pred_params->interp_filter_params, inter_pred_params->bit_depth,
inter_pred_params->is_intrabc);
}
}
#if !CONFIG_WEDGE_MOD_EXT
static const uint8_t wedge_master_oblique_odd[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18,
37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static const uint8_t wedge_master_oblique_even[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27,
46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
static const uint8_t wedge_master_vertical[MASK_MASTER_SIZE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21,
43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
#else
/* clang-format off */
#if WEDGE_BLD_SIG
// rounded cosine and sine look-up tables given by round(32*cos(i))
static const int8_t wedge_cos_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
32, 31, 29, 23, 14,
// 8, 10, 12, 14, 15,
0,-14,-23,-29,-31,
// 16, 17, 18, 20, 22,
-32,-31,-29,-23,-14,
// 24, 26, 28, 30, 31
0, 14, 23, 29, 31
};
static const int8_t wedge_sin_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
0, -8,-14,-23,-29,
// 8, 10, 12, 14, 15,
-32,-29,-23,-14, -8,
// 16, 17, 18, 20, 22,
0, 8, 14, 23, 29,
// 24, 26, 28, 30, 31
32, 29, 23, 14, 8
};
// rounded sigmoid function look-up talbe given by round(1/(1+exp(-x)))
static const int8_t pos_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE]={
32, 32, 33, 33, 34, 34, 35, 35,
36, 36, 37, 37, 38, 38, 39, 39,
40, 40, 41, 41, 42, 42, 43, 43,
43, 44, 44, 45, 45, 46, 46, 46,
47, 47, 48, 48, 48, 49, 49, 49,
50, 50, 50, 51, 51, 51, 52, 52,
52, 53, 53, 53, 53, 54, 54, 54,
55, 55, 55, 55, 55, 56, 56, 56,
56, 57, 57, 57, 57, 57, 58, 58,
58, 58, 58, 58, 59, 59, 59, 59,
59, 59, 59, 60, 60, 60, 60, 60,
60, 60, 60, 60, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 62,
62, 62, 62, 62, 62, 62, 62, 62,
62, 62, 62, 62, 62, 62, 62, 62,
63, 63, 63, 63, 63, 63, 63, 64
};
static const int8_t neg_dist_2_bld_weight[WEDGE_BLD_LUT_SIZE]={
32, 32, 31, 31, 30, 30, 29, 29,
28, 28, 27, 27, 26, 26, 25, 25,
24, 24, 23, 23, 22, 22, 21, 21,
21, 20, 20, 19, 19, 18, 18, 18,
17, 17, 16, 16, 16, 15, 15, 15,
14, 14, 14, 13, 13, 13, 12, 12,
12, 11, 11, 11, 11, 10, 10, 10,
9, 9, 9, 9, 9, 8, 8, 8,
8, 7, 7, 7, 7, 7, 6, 6,
6, 6, 6, 6, 5, 5, 5, 5,
5, 5, 5, 4, 4, 4, 4, 4,
4, 4, 4, 4, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 2,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 0
};
#else
static const int8_t wedge_cos_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
8, 8, 8, 4, 4,
// 8, 10, 12, 14, 15,
0, -4, -4, -8, -8,
// 16, 17, 18, 20, 22,
-8, -8, -8, -4, -4,
// 24, 26, 28, 30, 31
0, 4, 4, 8, 8
};
static const int8_t wedge_sin_lut[WEDGE_ANGLES] = {
// 0, 1, 2, 4, 6,
0, -2, -4, -4, -8,
// 8, 10, 12, 14, 15,
-8, -8, -4, -4, -2,
// 16, 17, 18, 20, 22,
0, 2, 4, 4, 8,
// 24, 26, 28, 30, 31
8, 8, 4, 4, 2
};
#endif
/* clang-format on */
#endif // !CONFIG_WEDGE_MOD_EXT
#if !CONFIG_WEDGE_MOD_EXT
static AOM_INLINE void shift_copy(const uint8_t *src, uint8_t *dst, int shift,
int width) {
if (shift >= 0) {
memcpy(dst + shift, src, width - shift);
memset(dst, src[0], shift);
} else {
shift = -shift;
memcpy(dst, src + shift, width - shift);
memset(dst + width - shift, src[width - 1], shift);
}
}
/* clang-format off */
DECLARE_ALIGNED(16, static uint8_t,
wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]) = {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
#if CONFIG_EXT_RECUR_PARTITIONS
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
#endif // CONFIG_EXT_RECUR_PARTITIONS
{ 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, },
{ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, },
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
#if CONFIG_EXT_RECUR_PARTITIONS
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }, // not used
#endif // CONFIG_EXT_RECUR_PARTITIONS
};
/* clang-format on */
#endif // !CONFIG_WEDGE_MOD_EXT
// [negative][direction]
#if CONFIG_WEDGE_MOD_EXT
DECLARE_ALIGNED(
16, static uint8_t,
wedge_master_mask[2][WEDGE_ANGLES][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
#else
DECLARE_ALIGNED(
16, static uint8_t,
wedge_mask_obl[2][WEDGE_DIRECTIONS][MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
#endif // CONFIG_WEDGE_MOD_EXT
// 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound
// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE.
#if CONFIG_WEDGE_MOD_EXT
DECLARE_ALIGNED(
16, static uint8_t,
wedge_mask_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES * MAX_WEDGE_SQUARE]);
#if CONFIG_WEDGE_TMVP
DECLARE_ALIGNED(16, static uint8_t,
wedge_tmvp_decision_buf[2 * MAX_WEDGE_TYPES * H_WEDGE_ANGLES *
MAX_WEDGE_SQUARE]);
#endif // CONFIG_WEDGE_TMVP
#else
DECLARE_ALIGNED(16, static uint8_t,
wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]);
#if CONFIG_WEDGE_TMVP
DECLARE_ALIGNED(
16, static uint8_t,
wedge_tmvp_decision_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]);
#endif // CONFIG_WEDGE_TMVP
#endif // CONFIG_WEDGE_MOD_EXT
DECLARE_ALIGNED(16, static uint8_t,
smooth_interintra_mask_buf[INTERINTRA_MODES][BLOCK_SIZES_ALL]
[MAX_WEDGE_SQUARE]);
DECLARE_ALIGNED(16, static int8_t, cwp_mask[2][MAX_CWP_NUM][MAX_SB_SQUARE]);
static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2];
#if CONFIG_WEDGE_TMVP
static wedge_decisions_type wedge_tmvp_decisions[BLOCK_SIZES_ALL][2];
#endif // CONFIG_WEDGE_TMVP
#if CONFIG_WEDGE_MOD_EXT
static const wedge_code_type wedge_codebook_16[MAX_WEDGE_TYPES] = {
{ WEDGE_0, 5, 4 }, { WEDGE_0, 6, 4 }, { WEDGE_0, 7, 4 },
{ WEDGE_14, 4, 4 }, { WEDGE_14, 5, 4 }, { WEDGE_14, 6, 4 },
{ WEDGE_14, 7, 4 }, { WEDGE_27, 4, 4 }, { WEDGE_27, 5, 4 },
{ WEDGE_27, 6, 4 }, { WEDGE_27, 7, 4 }, { WEDGE_45, 4, 4 },
{ WEDGE_45, 5, 4 }, { WEDGE_45, 6, 4 }, { WEDGE_45, 7, 4 },
{ WEDGE_63, 4, 4 }, { WEDGE_63, 4, 3 }, { WEDGE_63, 4, 2 },
{ WEDGE_63, 4, 1 }, { WEDGE_90, 4, 3 }, { WEDGE_90, 4, 2 },
{ WEDGE_90, 4, 1 }, { WEDGE_117, 4, 4 }, { WEDGE_117, 4, 3 },
{ WEDGE_117, 4, 2 }, { WEDGE_117, 4, 1 }, { WEDGE_135, 4, 4 },
{ WEDGE_135, 3, 4 }, { WEDGE_135, 2, 4 }, { WEDGE_135, 1, 4 },
{ WEDGE_153, 4, 4 }, { WEDGE_153, 3, 4 }, { WEDGE_153, 2, 4 },
{ WEDGE_153, 1, 4 }, { WEDGE_166, 4, 4 }, { WEDGE_166, 3, 4 },
{ WEDGE_166, 2, 4 }, { WEDGE_166, 1, 4 }, { WEDGE_180, 3, 4 },
{ WEDGE_180, 2, 4 }, { WEDGE_180, 1, 4 }, { WEDGE_194, 3, 4 },
{ WEDGE_194, 2, 4 }, { WEDGE_194, 1, 4 }, { WEDGE_207, 3, 4 },
{ WEDGE_207, 2, 4 }, { WEDGE_207, 1, 4 }, { WEDGE_225, 3, 4 },
{ WEDGE_225, 2, 4 }, { WEDGE_225, 1, 4 }, { WEDGE_243, 4, 5 },
{ WEDGE_243, 4, 6 }, { WEDGE_243, 4, 7 }, { WEDGE_270, 4, 5 },
{ WEDGE_270, 4, 6 }, { WEDGE_270, 4, 7 }, { WEDGE_297, 4, 5 },
{ WEDGE_297, 4, 6 }, { WEDGE_297, 4, 7 }, { WEDGE_315, 5, 4 },
{ WEDGE_315, 6, 4 }, { WEDGE_315, 7, 4 }, { WEDGE_333, 5, 4 },
{ WEDGE_333, 6, 4 }, { WEDGE_333, 7, 4 }, { WEDGE_346, 5, 4 },
{ WEDGE_346, 6, 4 }, { WEDGE_346, 7, 4 },
};
#else
static const wedge_code_type wedge_codebook_16_hgtw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_hltw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_heqw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
#endif // CONFIG_WEDGE_MOD_EXT
#if CONFIG_WEDGE_MOD_EXT
#if CONFIG_WEDGE_TMVP
// Look up table of params for wedge mode for different block sizes.
const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X8],
wedge_tmvp_decisions[BLOCK_8X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X16],
wedge_tmvp_decisions[BLOCK_8X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X8],
wedge_tmvp_decisions[BLOCK_16X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X16],
wedge_tmvp_decisions[BLOCK_16X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X32],
wedge_tmvp_decisions[BLOCK_16X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X16],
wedge_tmvp_decisions[BLOCK_32X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X32],
wedge_tmvp_decisions[BLOCK_32X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X64],
wedge_tmvp_decisions[BLOCK_32X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X32],
wedge_tmvp_decisions[BLOCK_64X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X64],
wedge_tmvp_decisions[BLOCK_64X64] },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
#if CONFIG_EXT_RECUR_PARTITIONS
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
#endif // CONFIG_EXT_RECUR_PARTITIONS
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X32],
wedge_tmvp_decisions[BLOCK_8X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X8],
wedge_tmvp_decisions[BLOCK_32X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X64],
wedge_tmvp_decisions[BLOCK_16X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X16],
wedge_tmvp_decisions[BLOCK_64X16] },
#if CONFIG_EXT_RECUR_PARTITIONS
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X64],
wedge_tmvp_decisions[BLOCK_8X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X8],
wedge_tmvp_decisions[BLOCK_64X8] },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
#endif // CONFIG_EXT_RECUR_PARTITIONS
};
#else
const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X64] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#if CONFIG_EXT_RECUR_PARTITIONS
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#endif // CONFIG_EXT_RECUR_PARTITIONS
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_32X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_16X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X16] },
#if CONFIG_EXT_RECUR_PARTITIONS
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_8X64] },
{ MAX_WEDGE_TYPES, wedge_codebook_16, NULL, wedge_masks[BLOCK_64X8] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#endif // CONFIG_EXT_RECUR_PARTITIONS
};
#endif // CONFIG_WEDGE_TMVP
#else
#if CONFIG_WEDGE_TMVP
// Look up table of params for wedge mode for different block sizes.
const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8],
wedge_masks[BLOCK_8X8], wedge_tmvp_decisions[BLOCK_8X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16],
wedge_masks[BLOCK_8X16], wedge_tmvp_decisions[BLOCK_8X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8],
wedge_masks[BLOCK_16X8], wedge_tmvp_decisions[BLOCK_16X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16],
wedge_masks[BLOCK_16X16], wedge_tmvp_decisions[BLOCK_16X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32],
wedge_masks[BLOCK_16X32], wedge_tmvp_decisions[BLOCK_16X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16],
wedge_masks[BLOCK_32X16], wedge_tmvp_decisions[BLOCK_32X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32],
wedge_masks[BLOCK_32X32], wedge_tmvp_decisions[BLOCK_32X32] },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
#if CONFIG_EXT_RECUR_PARTITIONS
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
#endif // CONFIG_EXT_RECUR_PARTITIONS
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32],
wedge_masks[BLOCK_8X32], wedge_tmvp_decisions[BLOCK_8X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8],
wedge_masks[BLOCK_32X8], wedge_tmvp_decisions[BLOCK_32X8] },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
#if CONFIG_EXT_RECUR_PARTITIONS
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL, NULL },
#endif // CONFIG_EXT_RECUR_PARTITIONS
};
#else
const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL] = {
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8],
wedge_masks[BLOCK_8X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16],
wedge_masks[BLOCK_8X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8],
wedge_masks[BLOCK_16X8] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16],
wedge_masks[BLOCK_16X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32],
wedge_masks[BLOCK_16X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16],
wedge_masks[BLOCK_32X16] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32],
wedge_masks[BLOCK_32X32] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#if CONFIG_EXT_RECUR_PARTITIONS
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#endif // CONFIG_EXT_RECUR_PARTITIONS
{ MAX_WEDGE_TYPES, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32],
wedge_masks[BLOCK_8X32] },
{ MAX_WEDGE_TYPES, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8],
wedge_masks[BLOCK_32X8] },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#if CONFIG_EXT_RECUR_PARTITIONS
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
{ 0, NULL, NULL, NULL },
#endif // CONFIG_EXT_RECUR_PARTITIONS
};
#endif // CONFIG_WEDGE_TMVP
#endif
// Init the cwp masks, called by init_cwp_masks
static AOM_INLINE void build_cwp_mask(int8_t *mask, int stride,
BLOCK_SIZE plane_bsize, int8_t w) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) mask[j] = w;
mask += stride;
}
}
// Init the cwp masks
void init_cwp_masks() {
const int bs = BLOCK_128X128;
const int bw = block_size_wide[bs];
for (int list_idx = 0; list_idx < 2; ++list_idx) {
for (int idx = 0; idx < MAX_CWP_NUM; ++idx) {
int8_t weight = cwp_weighting_factor[list_idx][idx] * 4;
build_cwp_mask(cwp_mask[list_idx][idx], bw, bs, weight);
}
}
}
// Return the associated cwp mask
const int8_t *av1_get_cwp_mask(int list_idx, int idx) {
return cwp_mask[list_idx][idx];
}
static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg,
BLOCK_SIZE sb_type) {
const uint8_t *master;
const int bh = block_size_high[sb_type];
const int bw = block_size_wide[sb_type];
const wedge_code_type *a =
av1_wedge_params_lookup[sb_type].codebook + wedge_index;
int woff, hoff;
#if !CONFIG_WEDGE_MOD_EXT
const uint8_t wsignflip =
av1_wedge_params_lookup[sb_type].signflip[wedge_index];
#endif
assert(wedge_index >= 0 && wedge_index < get_wedge_types_lookup(sb_type));
woff = (a->x_offset * bw) >> 3;
hoff = (a->y_offset * bh) >> 3;
#if CONFIG_WEDGE_MOD_EXT
master = wedge_master_mask[neg][a->direction] +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
#else
master = wedge_mask_obl[neg ^ wsignflip][a->direction] +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
#endif // CONFIG_WEDGE_MOD_EXT
return master;
}
#if CONFIG_WEDGE_TMVP
// For each 8x8 block, decide (if using wedge mode), whether it should store
// both MVs as the TMVP MVs, or just 1 of them (and in this case which one to
// store).
static void get_wedge_tmvp_decision(const uint8_t *mask, int mask_stride,
int bw, int bh, uint8_t *decision,
int decision_stride) {
for (int h_start = 0; h_start < bh; h_start += 8) {
for (int w_start = 0; w_start < bw; w_start += 8) {
const uint8_t *mask_start = mask + h_start * mask_stride + w_start;
uint8_t *decision_start = decision + h_start * decision_stride + w_start;
int ref0_count = 0;
int ref1_count = 0;
for (int h = 0; h < 8; h++) {
for (int w = 0; w < 8; w++) {
if (mask_start[h * mask_stride + w] > 60) {
ref0_count++;
} else if (mask_start[h * mask_stride + w] < 4) {
ref1_count++;
}
}
}
int this_decision = 2;
if (ref0_count >= 60) {
this_decision = 0;
} else if (ref1_count >= 60) {
this_decision = 1;
}
for (int h = 0; h < 8; h++) {
for (int w = 0; w < 8; w++) {
decision_start[h * decision_stride + w] = this_decision;
}
}
}
}
}
#endif // CONFIG_WEDGE_TMVP
const uint8_t *av1_get_compound_type_mask(
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) {
#if !CONFIG_D071_IMP_MSK_BLD
assert(is_masked_compound_type(comp_data->type));
#endif // !CONFIG_D071_IMP_MSK_BLD
(void)sb_type;
switch (comp_data->type) {
case COMPOUND_WEDGE:
return av1_get_contiguous_soft_mask(comp_data->wedge_index,
comp_data->wedge_sign, sb_type);
#if CONFIG_D071_IMP_MSK_BLD
case COMPOUND_AVERAGE:
#endif // CONFIG_D071_IMP_MSK_BLD
case COMPOUND_DIFFWTD: return comp_data->seg_mask;
default: assert(0); return NULL;
}
}
static AOM_INLINE void diffwtd_mask_d16(
uint8_t *mask, int which_inverse, int mask_base, const CONV_BUF_TYPE *src0,
int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
ConvolveParams *conv_params, int bd) {
int round =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8);
int i, j, m, diff;
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]);
diff = ROUND_POWER_OF_TWO(diff, round);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * w + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void av1_build_compound_diffwtd_mask_d16_c(
uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const CONV_BUF_TYPE *src0,
int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, int h, int w,
ConvolveParams *conv_params, int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_d16(mask, 0, 38, src0, src0_stride, src1, src1_stride, h, w,
conv_params, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_d16(mask, 1, 38, src0, src0_stride, src1, src1_stride, h, w,
conv_params, bd);
break;
default: assert(0);
}
}
static AOM_FORCE_INLINE void diffwtd_mask_highbd(
uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0,
int src0_stride, const uint16_t *src1, int src1_stride, int h, int w,
const unsigned int bd) {
assert(bd >= 8);
if (bd == 8) {
if (which_inverse) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff = abs((int)src0[j] - (int)src1[j]) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
}
} else {
const unsigned int bd_shift = bd - 8;
if (which_inverse) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff =
(abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = AOM_BLEND_A64_MAX_ALPHA - m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
} else {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int diff =
(abs((int)src0[j] - (int)src1[j]) >> bd_shift) / DIFF_FACTOR;
unsigned int m = negative_to_zero(mask_base + diff);
m = AOMMIN(m, AOM_BLEND_A64_MAX_ALPHA);
mask[j] = m;
}
src0 += src0_stride;
src1 += src1_stride;
mask += w;
}
}
}
}
void av1_build_compound_diffwtd_mask_highbd_c(
uint8_t *mask, DIFFWTD_MASK_TYPE mask_type, const uint16_t *src0,
int src0_stride, const uint16_t *src1, int src1_stride, int h, int w,
int bd) {
switch (mask_type) {
case DIFFWTD_38:
diffwtd_mask_highbd(mask, 0, 38, src0, src0_stride, src1, src1_stride, h,
w, bd);
break;
case DIFFWTD_38_INV:
diffwtd_mask_highbd(mask, 1, 38, src0, src0_stride, src1, src1_stride, h,
w, bd);
break;
default: assert(0);
}
}
static AOM_INLINE void init_wedge_master_masks() {
#if CONFIG_WEDGE_MOD_EXT
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
for (int angle = 0; angle < WEDGE_ANGLES; angle++) {
int idx = 0;
// printf("angle: %d\n", angle);
for (int n = 0; n < h; n++) {
int y = ((n << 1) - h + 1) * wedge_sin_lut[angle];
for (int m = 0; m < w; m++, idx++) {
int d = ((m << 1) - w + 1) * wedge_cos_lut[angle] + y;
#if WEDGE_BLD_SIG
const int clamp_d = clamp(d, -127, 127);
wedge_master_mask[0][angle][idx] =
clamp_d >= 0 ? pos_dist_2_bld_weight[clamp_d]
: neg_dist_2_bld_weight[-clamp_d];
#else
wedge_master_mask[0][angle][idx] = clamp((d + 32), 0, 64);
#endif
wedge_master_mask[1][angle][idx] =
64 - wedge_master_mask[0][angle][idx];
}
}
}
#else
int i, j;
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
const int stride = MASK_MASTER_STRIDE;
// Note: index [0] stores the masters, and [1] its complement.
// Generate prototype by shifting the masters
int shift = h / 4;
for (i = 0; i < h; i += 2) {
shift_copy(wedge_master_oblique_even,
&wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride], shift,
MASK_MASTER_SIZE);
shift--;
shift_copy(wedge_master_oblique_odd,
&wedge_mask_obl[0][WEDGE_OBLIQUE63][(i + 1) * stride], shift,
MASK_MASTER_SIZE);
memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][i * stride],
wedge_master_vertical,
MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
memcpy(&wedge_mask_obl[0][WEDGE_VERTICAL][(i + 1) * stride],
wedge_master_vertical,
MASK_MASTER_SIZE * sizeof(wedge_master_vertical[0]));
}
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
const int msk = wedge_mask_obl[0][WEDGE_OBLIQUE63][i * stride + j];
wedge_mask_obl[0][WEDGE_OBLIQUE27][j * stride + i] = msk;
wedge_mask_obl[0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - msk;
wedge_mask_obl[1][WEDGE_OBLIQUE63][i * stride + j] =
wedge_mask_obl[1][WEDGE_OBLIQUE27][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - msk;
wedge_mask_obl[1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk;
const int mskx = wedge_mask_obl[0][WEDGE_VERTICAL][i * stride + j];
wedge_mask_obl[0][WEDGE_HORIZONTAL][j * stride + i] = mskx;
wedge_mask_obl[1][WEDGE_VERTICAL][i * stride + j] =
wedge_mask_obl[1][WEDGE_HORIZONTAL][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - mskx;
}
}
#endif
}
static AOM_INLINE void init_wedge_masks() {
uint8_t *dst = wedge_mask_buf;
BLOCK_SIZE bsize;
memset(wedge_masks, 0, sizeof(wedge_masks));
#if CONFIG_WEDGE_TMVP
uint8_t *dst_tmvp_decision = wedge_tmvp_decision_buf;
memset(wedge_tmvp_decisions, 0, sizeof(wedge_tmvp_decisions));
#endif // CONFIG_WEDGE_TMVP
for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) {
const wedge_params_type *wedge_params = &av1_wedge_params_lookup[bsize];
const int wtypes = wedge_params->wedge_types;
if (wtypes == 0) continue;
const uint8_t *mask;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
int w;
for (w = 0; w < wtypes; ++w) {
mask = get_wedge_mask_inplace(w, 0, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw,
bh);
wedge_params->masks[0][w] = dst;
#if CONFIG_WEDGE_TMVP
get_wedge_tmvp_decision(dst, bw, bw, bh, dst_tmvp_decision, bw);
wedge_params->tmvp_mv_decisions[0][w] = dst_tmvp_decision;
dst_tmvp_decision += bw * bh;
#endif // CONFIG_WEDGE_TMVP
dst += bw * bh;
mask = get_wedge_mask_inplace(w, 1, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw /* dst_stride */, bw,
bh);
wedge_params->masks[1][w] = dst;
#if CONFIG_WEDGE_TMVP
wedge_params->tmvp_mv_decisions[1][w] = dst_tmvp_decision;
get_wedge_tmvp_decision(dst, bw, bw, bh, dst_tmvp_decision, bw);
dst_tmvp_decision += bw * bh;
#endif // CONFIG_WEDGE_TMVP
dst += bw * bh;
}
assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf));
}
}
/* clang-format off */
static const uint8_t ii_weights1d[MAX_SB_SIZE] = {
60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32,
31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16,
16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8,
8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4,
4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
};
static uint8_t ii_size_scales[BLOCK_SIZES_ALL] = {
32, 16, 16, 16, 8, 8, 8, 4,
4, 4, 2, 2, 2, 1, 1, 1,
#if CONFIG_EXT_RECUR_PARTITIONS
0, 0, 0, // unused
#endif // CONFIG_EXT_RECUR_PARTITIONS
8, 8, 4, 4, 2, 2,
#if CONFIG_EXT_RECUR_PARTITIONS
4, 4, 2, 2, 2, 2,
#endif // CONFIG_EXT_RECUR_PARTITIONS
};
/* clang-format on */
static AOM_INLINE void build_smooth_interintra_mask(uint8_t *mask, int stride,
BLOCK_SIZE plane_bsize,
INTERINTRA_MODE mode) {
int i, j;
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
memset(mask, ii_weights1d[i * size_scale], bw * sizeof(mask[0]));
mask += stride;
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) mask[j] = ii_weights1d[j * size_scale];
mask += stride;
}
break;
case II_SMOOTH_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j)
mask[j] = ii_weights1d[(i < j ? i : j) * size_scale];
mask += stride;
}
break;
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
memset(mask, 32, bw * sizeof(mask[0]));
mask += stride;
}
break;
}
}
static AOM_INLINE void init_smooth_interintra_masks() {
for (int m = 0; m < INTERINTRA_MODES; ++m) {
for (int bs = 0; bs < BLOCK_SIZES_ALL; ++bs) {
const int bw = block_size_wide[bs];
const int bh = block_size_high[bs];
if (bw > MAX_WEDGE_SIZE || bh > MAX_WEDGE_SIZE) continue;
build_smooth_interintra_mask(smooth_interintra_mask_buf[m][bs], bw, bs,
m);
}
}
}
#if CONFIG_SUBBLK_REF_DS
unsigned int get_highbd_sad_ds(const uint16_t *src_ptr, int source_stride,
const uint16_t *ref_ptr, int ref_stride, int bd,
int bw, int bh) {
if (bd == 8) {
if (bw == 16 && bh == 8)
return aom_highbd_sad16x8_ds(src_ptr, source_stride, ref_ptr, ref_stride);
else if (bw == 16 && bh == 16)
return aom_highbd_sad16x16_ds(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 8 && bh == 8)
return aom_highbd_sad8x8_ds(src_ptr, source_stride, ref_ptr, ref_stride);
else if (bw == 8 && bh == 16)
return aom_highbd_sad8x16_ds(src_ptr, source_stride, ref_ptr, ref_stride);
#if CONFIG_SUBBLK_REF_EXT
else if (bw == 12 && bh == 12)
return aom_highbd_sad12x12_ds(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 20 && bh == 12)
return aom_highbd_sad20x12_ds(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 12 && bh == 20)
return aom_highbd_sad12x20_ds(src_ptr, source_stride, ref_ptr,
ref_stride);
else if (bw == 20 && bh == 20)
return aom_highbd_sad20x20_ds(src_ptr, source_stride, ref_ptr,
ref_stride);
#endif // CONFIG_SUBBLK_REF_EXT
else {
assert(0);
return 0;
}
} else if (bd == 10) {
if (bw == 16 && bh == 8)
return (
aom_highbd_sad16x8_ds(src_ptr, source_stride, ref_ptr, ref_stride) >>
2);
else if (bw == 16 && bh == 16)
return (
aom_highbd_sad16x16_ds(src_ptr, source_stride, ref_ptr, ref_stride) >>
2);
else if (bw == 8 && bh == 8)
return (
aom_highbd_sad8x8_ds(src_ptr, source_stride, ref_ptr, ref_stride) >>
2);
else if (bw == 8 && bh == 16)
return (
aom_highbd_sad8x16_ds(src_ptr, source_stride, ref_ptr, ref_stride) >>
2);
else {
assert(0);
return 0;
}
} else {
assert(0);
return 0;
}
}
#endif // CONFIG_SUBBLK_REF_DS
#if CONFIG_REFINEMV
// Compute the SAD values for refineMV modes
int get_refinemv_sad(uint16_t *src1, uint16_t *src2, int width, int height,
int bd) {
#if CONFIG_SUBBLK_REF_EXT
(void)bd;
#if CONFIG_SUBBLK_REF_DS
return get_highbd_sad_ds(src1, width, src2, width, 8, width, height);
#else
return get_highbd_sad(src1, width, src2, width, 8, width, height);
#endif
#else
#if CONFIG_SUBBLK_REF_DS
return get_highbd_sad_ds(src1, width, src2, width, bd, width, height);
#else
return get_highbd_sad(src1, width, src2, width, bd, width, height);
#endif // CONFIG_SUBBLK_REF_DS
#endif // CONFIG_SUBBLK_REF_EXT
}
#endif // CONFIG_REFINEMV
#if CONFIG_AFFINE_REFINEMENT || CONFIG_E125_MHCCP_SIMPLIFY
int64_t stable_mult_shift(const int64_t a, const int64_t b, const int shift,
const int msb_a, const int msb_b, const int max_bd,
int *rem_shift) {
assert(shift >= 0);
// Remaining bit shifts (may be used in the next stage of multiplcation)
int rem = AOMMAX(0, msb_a + msb_b - shift + 1 - max_bd);
if (rem_shift) *rem_shift += rem;
if (msb_a + msb_b + 1 <= max_bd)
return ROUND_POWER_OF_TWO_SIGNED_64(a * b, shift);
// To determine s1/s2/s3 in ((a>>s1)*(b>>s2))>>s3, consider the equation
// (1+msb_a-s1)+(1+msb_b-s2)+1 <= max_bd+rem,
// where better numerical stability is obtained when
// msb_a-s1 ~= msb_b-s2.
// This leads to the following solution
int msb_diff = abs(msb_a - msb_b);
// Total required shifts (s1 + s2)
int s = msb_a + msb_b - max_bd - rem + 3;
int diff = AOMMIN(s, msb_diff);
int s1 = (s - diff) >> 1;
int s2 = s1;
if (msb_a >= msb_b)
s1 += diff;
else
s2 += diff;
assert(s1 >= 0);
assert(s2 >= 0);
if (shift - s1 - s2 < 0) {
// bit depth not large enough to hold the result
return ((a > 0) ^ (b > 0)) ? -((1LL << (max_bd - 1)) - 1)
: ((1LL << (max_bd - 1)) - 1);
}
return ROUND_POWER_OF_TWO_SIGNED_64(
ROUND_POWER_OF_TWO_SIGNED_64(a, s1) * ROUND_POWER_OF_TWO_SIGNED_64(b, s2),
shift - s1 - s2);
}
#endif // CONFIG_AFFINE_REFINEMENT || CONFIG_E125_MHCCP_SIMPLIFY
#if CONFIG_AFFINE_REFINEMENT
#if AFFINE_FAST_WARP_METHOD == 2
#define BICUBIC_PHASE_BITS 6
#define BICUBIC_WARP_PREC_BITS 10
// Warp prediction using bicubic interpolation (effectively 4-tap filter)
void av1_warp_plane_bicubic(WarpedMotionParams *wm, int bd, const uint16_t *ref,
int width, int height, int stride, uint16_t *pred,
int p_col, int p_row, int p_width, int p_height,
int p_stride, int subsampling_x, int subsampling_y,
ConvolveParams *conv_params) {
(void)conv_params;
assert(wm->wmtype <= AFFINE);
assert(!is_uneven_wtd_comp_avg(conv_params));
assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
const int32_t *const mat = wm->wmmat;
// bicubic coefficient matrix is the following one divided by 6
const int bicubic_mat[4][4] = {
{ -1, 3, -3, 1 }, { 3, -6, 3, 0 }, { -2, -3, 6, -1 }, { 0, 6, 0, 0 }
};
const int onesixth_bits = 12;
const int onesixth = 683; // Integerized (1 << onesixth_bits) / 6
int32_t sum = 0;
int32_t tmp[4] = { 0 };
for (int i = p_row; i < p_row + p_height; i++) {
for (int j = p_col; j < p_col + p_width; j++) {
uint16_t *p = &pred[(i - p_row) * p_stride + (j - p_col)];
// Project to luma coordinates (if in a subsampled chroma plane), apply
// the affine transformation, then convert back to the original
// coordinates (if necessary)
const int32_t src_x = j << subsampling_x;
const int32_t src_y = i << subsampling_y;
const int64_t dst_x =
(int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0];
const int64_t dst_y =
(int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1];
const int64_t x = dst_x >> subsampling_x;
const int64_t y = dst_y >> subsampling_y;
const int32_t ix = (int32_t)(x >> WARPEDMODEL_PREC_BITS);
const int32_t ixs[4] = { clamp(ix - 1, 0, width - 1),
clamp(ix, 0, width - 1),
clamp(ix + 1, 0, width - 1),
clamp(ix + 2, 0, width - 1) };
const int32_t sx = x & ((1 << WARPEDMODEL_PREC_BITS) - 1);
const int32_t iy = (int32_t)(y >> WARPEDMODEL_PREC_BITS);
const int32_t iys[4] = { clamp(iy - 1, 0, height - 1),
clamp(iy, 0, height - 1),
clamp(iy + 1, 0, height - 1),
clamp(iy + 2, 0, height - 1) };
const int32_t sy = y & ((1 << WARPEDMODEL_PREC_BITS) - 1);
const int32_t spel_x =
ROUND_POWER_OF_TWO(sx, WARPEDMODEL_PREC_BITS - BICUBIC_PHASE_BITS);
const int32_t spel_y =
ROUND_POWER_OF_TWO(sy, WARPEDMODEL_PREC_BITS - BICUBIC_PHASE_BITS);
int32_t xx[4] = { spel_x * spel_x * spel_x, spel_x * spel_x, spel_x, 1 };
int32_t yy[4] = { spel_y * spel_y * spel_y, spel_y * spel_y, spel_y, 1 };
assert(onesixth_bits - BICUBIC_WARP_PREC_BITS >= 0);
// Horizontal filter
for (int k = 0; k < 4; k++) {
tmp[k] = 0;
for (int l = 0; l < 4; l++) {
int bits = (3 - l) * BICUBIC_PHASE_BITS + onesixth_bits -
BICUBIC_WARP_PREC_BITS;
tmp[k] += ROUND_POWER_OF_TWO_SIGNED(
xx[l] * bicubic_mat[l][k] * onesixth, bits);
}
}
for (int k = 0; k < 4; k++) {
xx[k] = 0;
for (int l = 0; l < 4; l++) {
xx[k] += tmp[l] * ref[iys[k] * stride + ixs[l]];
}
xx[k] = ROUND_POWER_OF_TWO(xx[k], BICUBIC_WARP_PREC_BITS);
}
// Vertical filter
for (int k = 0; k < 4; k++) {
tmp[k] = 0;
for (int l = 0; l < 4; l++) {
int bits = (3 - l) * BICUBIC_PHASE_BITS + onesixth_bits -
BICUBIC_WARP_PREC_BITS;
tmp[k] += ROUND_POWER_OF_TWO_SIGNED(
yy[l] * bicubic_mat[l][k] * onesixth, bits);
}
}
for (int l = 0; l < 4; l++) {
sum += tmp[l] * xx[l];
}
sum = ROUND_POWER_OF_TWO(sum, BICUBIC_WARP_PREC_BITS);
*p = clip_pixel_highbd(sum, bd);
}
}
}
#endif // AFFINE_FAST_WARP_METHOD == 2
void av1_warp_plane_bilinear_c(WarpedMotionParams *wm, int bd,
const uint16_t *ref, int width, int height,
int stride, uint16_t *pred, int p_col, int p_row,
int p_width, int p_height, int p_stride,
int subsampling_x, int subsampling_y,
ConvolveParams *conv_params) {
(void)conv_params;
#if AFFINE_FAST_WARP_METHOD == 3
#define BILINEAR_WARP_PREC_BITS 12
assert(wm->wmtype <= AFFINE);
assert(!is_uneven_wtd_comp_avg(conv_params));
assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
const int32_t *const mat = wm->wmmat;
for (int i = p_row; i < p_row + p_height; i++) {
for (int j = p_col; j < p_col + p_width; j++) {
uint16_t *p = &pred[(i - p_row) * p_stride + (j - p_col)];
// Project to luma coordinates (if in a subsampled chroma plane), apply
// the affine transformation, then convert back to the original
// coordinates (if necessary)
const int32_t src_x = j << subsampling_x;
const int32_t src_y = i << subsampling_y;
const int64_t dst_x =
(int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0];
const int64_t dst_y =
(int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1];
const int64_t x = dst_x >> subsampling_x;
const int64_t y = dst_y >> subsampling_y;
const int32_t ix = (int32_t)(x >> WARPEDMODEL_PREC_BITS);
const int32_t ix0 = clamp(ix, 0, width - 1);
const int32_t ix1 = clamp(ix + 1, 0, width - 1);
const int32_t sx = x & ((1 << WARPEDMODEL_PREC_BITS) - 1);
const int32_t iy = (int32_t)(y >> WARPEDMODEL_PREC_BITS);
const int32_t iy0 = clamp(iy, 0, height - 1);
const int32_t iy1 = clamp(iy + 1, 0, height - 1);
const int32_t sy = y & ((1 << WARPEDMODEL_PREC_BITS) - 1);
const int32_t unit_offset = 1 << BILINEAR_WARP_PREC_BITS;
const int32_t coeff_x = ROUND_POWER_OF_TWO(
sx, WARPEDMODEL_PREC_BITS - BILINEAR_WARP_PREC_BITS);
const int32_t coeff_y = ROUND_POWER_OF_TWO(
sy, WARPEDMODEL_PREC_BITS - BILINEAR_WARP_PREC_BITS);
// Horizontal filter
int32_t tmp0 = ref[iy0 * stride + ix0] * (unit_offset - coeff_x) +
ref[iy0 * stride + ix1] * coeff_x;
tmp0 = ROUND_POWER_OF_TWO(tmp0, BILINEAR_WARP_PREC_BITS);
int32_t tmp1 = ref[iy1 * stride + ix0] * (unit_offset - coeff_x) +
ref[iy1 * stride + ix1] * coeff_x;
tmp1 = ROUND_POWER_OF_TWO(tmp1, BILINEAR_WARP_PREC_BITS);
// Vertical filter
int32_t sum = tmp0 * (unit_offset - coeff_y) + tmp1 * coeff_y;
sum = ROUND_POWER_OF_TWO(sum, BILINEAR_WARP_PREC_BITS);
*p = clip_pixel_highbd(sum, bd);
}
}
#else
(void)wm;
(void)bd;
(void)ref;
(void)width;
(void)height;
(void)stride;
(void)pred;
(void)p_col;
(void)p_row;
(void)p_width;
(void)p_height;
(void)p_stride;
(void)subsampling_x;
(void)subsampling_y;
#endif // AFFINE_FAST_WARP_METHOD == 3
}
// Obtain the bit depth ranges for each row and column of a square matrix
void get_mat4d_shifts(const int64_t *mat, int *shifts, const int max_mat_bits) {
int bits[16] = { 0 };
for (int i = 0; i < 4; i++) {
for (int j = i; j < 4; j++)
bits[i * 4 + j] = 1 + get_msb_signed_64(mat[i * 4 + j]);
shifts[i] = -AOMMAX(0, (bits[i * 4 + i] - max_mat_bits + 1) >> 1);
}
for (int i = 0; i < 4; i++) {
for (int j = i; j < 4; j++) {
if (bits[i * 4 + j] + shifts[i] + shifts[j] > max_mat_bits)
shifts[shifts[i] < shifts[j] ? j : i]--;
}
}
// Get stats of bits after shifts
int bits_sum[4] = { 0 };
int bits_max[4] = { 0 };
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
int bits_ij =
(j >= i ? bits[i * 4 + j] : bits[j * 4 + i]) + shifts[i] + shifts[j];
bits_sum[i] += bits_ij;
bits_max[i] = AOMMAX(bits_max[i], bits_ij);
}
}
// For the i-th row/col, if bit depth does not exceeds the threshold,
// compute the gap of bit depth to that of the largest diagonal element,
// and apply an upshift based on this gap.
int max_sum = AOMMAX(AOMMAX(bits_sum[0], bits_sum[1]),
AOMMAX(bits_sum[2], bits_sum[3]));
for (int i = 0; i < 4; i++)
shifts[i] +=
AOMMIN((max_mat_bits - bits_max[i]) >> 1, (max_sum - bits_sum[i]) >> 2);
}
// Obtain the bit depth range of a vector
void get_vec_bit_ranges(const int64_t *vec, int *bits_max, const int dim) {
int bits = 0;
for (int i = 0; i < dim; i++) {
bits = 1 + get_msb_signed_64(vec[i]);
*bits_max = AOMMAX(*bits_max, bits);
}
}
#define MAX_LS_DIM 4
// Swap two rows for Gaussian elimination routine
void swap_rows(int64_t *mat, int64_t *sol, const int i, const int j,
const int dim) {
int64_t temp = sol[i];
sol[i] = sol[j];
sol[j] = temp;
for (int col = 0; col < dim; col++) {
temp = mat[i * dim + col];
mat[i * dim + col] = mat[j * dim + col];
mat[j * dim + col] = temp;
}
}
// For better precision, set this number as minimal bits for intermediate
// result of Gaussian elimination.
#define GE_MULT_PREC_BITS 12
// Perform Gaussian elimination routine to solve a matrix inverse problem
int gaussian_elimination(int64_t *mat, int64_t *sol, int *precbits,
const int dim) {
int shifts[MAX_LS_DIM] = { 0 };
int16_t inv_pivot[MAX_LS_DIM] = { 0 };
int16_t inv_pivot_shift[MAX_LS_DIM] = { 0 };
// Bit range adjustment: add shifts such that the bit depths of shifted mat
// and sol elements are capped by K-dim+1. This is because each element of
// mat and sol during forward elimination is updated at most dim-1 times.
// Each update is a subtraction that can increase the bit depth by 1 at the
// extreme case.
// Goal: shift Aij by si+sj+e bits, and shift bi by si+e+f bits. These shifts
// will satisfy
// 1+MSB(Aij)+si+sj+e <= (K-dim+1)-1 unsigned bits
// 1+MSB(bi)+si+e+f <= (K-dim+1)-1 unsigned bits
// precbits[i]-f+si <= 0
// The last constraint is preferred but not strictly required, since
// precbits[i]-f+si shifts will be applied to b at the end. Making all these
// shifts negative means there is no loss of precision during the Gaussian
// elimination procedure. One quick solution is given as follows:
// si=floor(min(K-dim+1-MSB(Aii), min(MSB(Aii))-MSB(Aii))/2)
// f=max_i(precbits[i]+si)
// e=min(K-dim+1-MSB(bi)-si) - max(precbits[i]+si)
int bd_cap = MAX_LS_BITS - dim;
int a_extra_shift = 64;
int b_extra_shift = -64;
int min_diag_msb = 64;
int mat_diag_bits[MAX_LS_DIM] = { 0 };
int sol_bits[MAX_LS_DIM] = { 0 };
for (int i = 0; i < dim; i++) {
mat_diag_bits[i] = 1 + get_msb_signed_64(mat[i * dim + i]);
min_diag_msb = AOMMIN(min_diag_msb, mat_diag_bits[i]);
sol_bits[i] = 1 + get_msb_signed_64(sol[i]);
}
for (int i = 0; i < dim; i++) {
shifts[i] =
-(AOMMAX(mat_diag_bits[i] - bd_cap, mat_diag_bits[i] - min_diag_msb) >>
1);
a_extra_shift = AOMMIN(a_extra_shift, bd_cap - sol_bits[i] - shifts[i]);
b_extra_shift = AOMMAX(b_extra_shift, precbits[i] + shifts[i]);
}
a_extra_shift -= b_extra_shift;
for (int i = 0; i < dim; i++) {
for (int j = 0; j < dim; j++) {
int abits = a_extra_shift + shifts[i] + shifts[j];
assert(a_extra_shift < 64);
mat[i * dim + j] =
abits >= 0 ? (mat[i * dim + j] * (1 << abits))
: ROUND_POWER_OF_TWO_SIGNED_64(mat[i * dim + j], -abits);
}
int bbits = shifts[i] + a_extra_shift + b_extra_shift;
sol[i] = bbits >= 0 ? (sol[i] * (1 << bbits))
: ROUND_POWER_OF_TWO_SIGNED_64(sol[i], -bbits);
precbits[i] = precbits[i] - b_extra_shift + shifts[i];
}
// Elimination for the i-th column
int64_t diff = 0;
for (int i = 0; i < dim; i++) {
int64_t pivot = mat[i * dim + i];
int idx_pivot = i;
for (int j = i + 1; j < dim; j++) {
int64_t new_pivot = mat[j * dim + i];
if (llabs(new_pivot) > llabs(pivot)) {
idx_pivot = j;
pivot = new_pivot;
}
}
// Check singularity
if (pivot == 0) return 0;
// Put the row with the pivot first, and get inverse of the pivot
if (i != idx_pivot) swap_rows(mat, sol, i, idx_pivot, dim);
inv_pivot[i] = (pivot > 0 ? 1 : -1) *
resolve_divisor_64(llabs(pivot), inv_pivot_shift + i);
for (int k = i + 1; k < dim; k++) {
// Compute Akj = Akj - Aki * Aij / Aii, while keeping all intermediate
// result within K bits
int msb_ki = get_msb_signed_64(mat[k * dim + i]);
int msb_invpiv = get_msb_signed(inv_pivot[i]);
// Apply an upshift first if intermediate results will be close to zero.
int inc_bits = AOMMAX(
0, GE_MULT_PREC_BITS - msb_ki - msb_invpiv + inv_pivot_shift[i]);
int fshift = inc_bits;
int64_t f = stable_mult_shift(mat[k * dim + i], (int64_t)inv_pivot[i],
inv_pivot_shift[i] - inc_bits, msb_ki,
msb_invpiv, MAX_LS_BITS, &fshift);
int msb_f = get_msb_signed_64(f);
mat[k * dim + i] = 0;
for (int j = i + 1; j < dim; j++) {
int msb_ij = get_msb_signed_64(mat[i * dim + j]);
diff = stable_mult_shift(mat[i * dim + j], f, fshift, msb_ij, msb_f,
MAX_LS_BITS, NULL);
mat[k * dim + j] -= diff;
}
int msb_sol = get_msb_signed_64(sol[i]);
diff = stable_mult_shift(sol[i], f, fshift, msb_sol, msb_f, MAX_LS_BITS,
NULL);
sol[k] -= diff;
}
}
// Backward substitution
for (int i = dim - 1; i >= 0; i--) {
// To reduce bit depth requirement, do a MSB check and downshift the entire
// matrix row: 1+MSB(Aij)+1+MSB(bj) <= K-1-2(3 subtractions), for all i,j.
int max_mult_bits = 0;
for (int j = i + 1; j < dim; j++)
max_mult_bits =
AOMMAX(max_mult_bits, 2 + get_msb_signed_64(mat[i * dim + j]) +
get_msb_signed_64(sol[j]));
int redbit = AOMMAX(0, max_mult_bits - MAX_LS_BITS + 3);
sol[i] = ROUND_POWER_OF_TWO_SIGNED_64(sol[i], redbit);
for (int j = i + 1; j < dim; j++) {
diff = ROUND_POWER_OF_TWO_SIGNED_64(mat[i * dim + j], redbit) * sol[j];
sol[i] = sol[i] - diff;
}
sol[i] = stable_mult_shift(sol[i], (int64_t)inv_pivot[i],
inv_pivot_shift[i] - redbit,
get_msb_signed_64(sol[i]),
get_msb_signed(inv_pivot[i]), MAX_LS_BITS, NULL);
}
// Apply remaining downscaling
for (int i = 0; i < dim; i++)
sol[i] = precbits[i] >= 0
? (sol[i] * (1 << precbits[i]))
: ROUND_POWER_OF_TWO_SIGNED_64(sol[i], -precbits[i]);
return 1;
}
// Solve a 4-dimensional matrix inverse
int solver_4d(int64_t *mat, int64_t *vec, int *precbits, int64_t *sol) {
memcpy(sol, vec, 4 * sizeof(int64_t));
int ret = gaussian_elimination(mat, sol, precbits, 4);
return ret;
}
#endif // CONFIG_AFFINE_REFINEMENT
// Restrict MV delta to 1 or 2 pixels. This restriction would reduce complexity
// in hardware.
#define OPFL_CLAMP_MV_DELTA 1
#define OPFL_MV_DELTA_LIMIT (1 << MV_REFINE_PREC_BITS)
// Divide d0 and d1 by their common factors (no divisions)
void reduce_temporal_dist(int *d0, int *d1) {
if (*d0 == 0 || *d1 == 0) return;
int sign0 = *d0 < 0;
int sign1 = *d1 < 0;
int mag0 = sign0 ? -(*d0) : (*d0);
int mag1 = sign1 ? -(*d1) : (*d1);
// Only do simple checks for the case |d0|=|d1| and for factor 2
if (mag0 == mag1) {
mag0 = mag1 = 1;
} else {
while (mag0 % 2 == 0 && mag1 % 2 == 0) {
assert(mag0 > 0 && mag1 > 0);
mag0 >>= 1;
mag1 >>= 1;
}
}
*d0 = sign0 ? -mag0 : mag0;
*d1 = sign1 ? -mag1 : mag1;
return;
}
void av1_opfl_build_inter_predictor(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
InterPredParams *inter_pred_params,
CalcSubpelParamsFunc calc_subpel_params_func, int ref, uint16_t *pred_dst
#if CONFIG_REFINEMV
,
const MV *const src_mv, int pu_width, int pu_height
#endif // CONFIG_REFINEMV
) {
assert(cm->seq_params.order_hint_info.enable_order_hint);
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
#if CONFIG_OPTFLOW_ON_TIP
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
#endif // CONFIG_OPTFLOW_ON_TIP
// Do references one at a time
const int is_compound = 0;
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
const WarpTypesAllowed warp_types = { is_global_mv_block(mi, wm->wmtype),
is_warp_mode(mi->motion_mode) };
#if CONFIG_OPTFLOW_ON_TIP
const struct scale_factors *const sf =
is_tip
? cm->tip_ref.ref_scale_factor[ref]
: (is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref]);
#else
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref];
#endif // CONFIG_OPTFLOW_ON_TIP
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
#if CONFIG_REFINEMV
const int row_start = (bw == 4) && ss_y ? -1 : 0;
const int col_start = (bh == 4) && ss_x ? -1 : 0;
#else
const BLOCK_SIZE bsize = mi->sb_type[PLANE_TYPE_Y];
const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0;
const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0;
#endif // CONFIG_REFINEMV
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
#if CONFIG_OPTFLOW_ON_TIP
const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
#else
struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
#endif // CONFIG_OPTFLOW_ON_TIP
av1_init_inter_params(inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf,
#if CONFIG_OPFL_BI
BILINEAR
#else
mi->interp_fltr
#endif
);
#if CONFIG_REFINEMV
inter_pred_params->original_pu_width = pu_width;
inter_pred_params->original_pu_height = pu_height;
#endif // CONFIG_REFINEMV
inter_pred_params->conv_params = get_conv_params_no_round(
0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
av1_init_warp_params(inter_pred_params, &warp_types, ref, xd, mi);
if (inter_pred_params->mode == WARP_PRED) return;
assert(mi->interinter_comp.type == COMPOUND_AVERAGE);
av1_build_one_inter_predictor(pred_dst, bw,
#if CONFIG_REFINEMV
src_mv,
#else
&mi->mv[ref].as_mv,
#endif // CONFIG_REFINEMV
inter_pred_params, xd, mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
}
void av1_bicubic_grad_interpolation_highbd_c(const int16_t *pred_src,
int16_t *x_grad, int16_t *y_grad,
const int bw, const int bh) {
#if OPFL_BICUBIC_GRAD
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
int id_prev, id_prev2, id_next, id_next2, is_boundary;
int32_t temp = 0;
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
// Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta)
id_prev = AOMMAX(j - 1, 0);
id_prev2 = AOMMAX(j - 2, 0);
id_next = AOMMIN(j + 1, bw - 1);
id_next2 = AOMMIN(j + 2, bw - 1);
is_boundary = (j + 1 > bw - 1 || j - 1 < 0);
temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] *
(int32_t)(pred_src[i * bw + id_next] -
pred_src[i * bw + id_prev]) +
coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] *
(int32_t)(pred_src[i * bw + id_next2] -
pred_src[i * bw + id_prev2]);
x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits),
INT16_MIN, INT16_MAX);
// Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j)
id_prev = AOMMAX(i - 1, 0);
id_prev2 = AOMMAX(i - 2, 0);
id_next = AOMMIN(i + 1, bh - 1);
id_next2 = AOMMIN(i + 2, bh - 1);
is_boundary = (i + 1 > bh - 1 || i - 1 < 0);
temp = coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][0][is_boundary] *
(int32_t)(pred_src[id_next * bw + j] -
pred_src[id_prev * bw + j]) +
coeffs_bicubic[SUBPEL_GRAD_DELTA_BITS][1][is_boundary] *
(int32_t)(pred_src[id_next2 * bw + j] -
pred_src[id_prev2 * bw + j]);
y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bicubic_bits),
INT16_MIN, INT16_MAX);
}
}
#else
(void)pred_src;
(void)x_grad;
(void)y_grad;
(void)bw;
(void)bh;
#endif // OPFL_BICUBIC_GRAD
}
#if OPFL_BILINEAR_GRAD
void av1_bilinear_grad_interpolation_c(const int16_t *pred_src, int16_t *x_grad,
int16_t *y_grad, const int bw,
const int bh) {
int id_next, id_prev, is_boundary;
int32_t temp = 0;
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
// Subtract interpolated pixel at (i, j+delta) by the one at (i, j-delta)
id_next = AOMMIN(j + 1, bw - 1);
id_prev = AOMMAX(j - 1, 0);
is_boundary = (j + 1 > bw - 1 || j - 1 < 0);
temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] *
(int32_t)(pred_src[i * bw + id_next] - pred_src[i * bw + id_prev]);
x_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits),
INT16_MIN, INT16_MAX);
// Subtract interpolated pixel at (i+delta, j) by the one at (i-delta, j)
id_next = AOMMIN(i + 1, bh - 1);
id_prev = AOMMAX(i - 1, 0);
is_boundary = (i + 1 > bh - 1 || i - 1 < 0);
temp = coeffs_bilinear[SUBPEL_GRAD_DELTA_BITS][is_boundary] *
(int32_t)(pred_src[id_next * bw + j] - pred_src[id_prev * bw + j]);
y_grad[i * bw + j] = clamp(ROUND_POWER_OF_TWO_SIGNED(temp, bilinear_bits),
INT16_MIN, INT16_MAX);
}
}
}
#endif // OPFL_BILINEAR_GRAD
void av1_compute_subpel_gradients_interp(int16_t *pred_dst, int bw, int bh,
int *grad_prec_bits, int16_t *x_grad,
int16_t *y_grad) {
// Reuse pixels in pred_dst to compute gradients
#if OPFL_BILINEAR_GRAD
(void)is_hbd;
av1_bilinear_grad_interpolation_c(pred_dst, x_grad, y_grad, bw, bh);
#else
#if CONFIG_OPFL_MV_SEARCH
if (bw < 8 || bh < 8)
av1_bicubic_grad_interpolation_highbd_c(pred_dst, x_grad, y_grad, bw, bh);
else
#endif // CONFIG_OPFL_MV_SEARCH
av1_bicubic_grad_interpolation_highbd(pred_dst, x_grad, y_grad, bw, bh);
#endif // OPFL_BILINEAR_GRAD
*grad_prec_bits = 3 - SUBPEL_GRAD_DELTA_BITS - 2;
}
#if CONFIG_AFFINE_REFINEMENT || CONFIG_OPFL_MV_SEARCH
// Apply average pooling to reduce the sizes of pred difference and gradients
// arrays. It reduces the complexity of the parameter solving routine
void av1_avg_pooling_pdiff_gradients_c(int16_t *pdiff, const int pstride,
int16_t *gx, int16_t *gy,
const int gstride, const int bw,
const int bh, const int n) {
const int bh_low = AOMMIN(bh, n);
const int bw_low = AOMMIN(bw, n);
if (bh == bh_low && bw == bw_low) return;
const int step_h = bh / bh_low;
const int step_w = bw / bw_low;
#if OPFL_DOWNSAMP_QUINCUNX
int avg_bits = get_msb_signed(step_h) + get_msb_signed(step_w) - 1;
#else
int avg_bits = get_msb_signed(step_h) + get_msb_signed(step_w);
#endif
for (int i = 0; i < bh_low; i++) {
for (int j = 0; j < bw_low; j++) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
int32_t tmp_gx = 0, tmp_gy = 0, tmp_pdiff = 0;
for (int k = 0; k < step_h; k++) {
for (int l = 0; l < step_w; l++) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i * step_h + j * step_w + k + l) % 2 == 1) continue;
#endif
tmp_gx += gx[(i * step_h + k) * gstride + (j * step_w + l)];
tmp_gy += gy[(i * step_h + k) * gstride + (j * step_w + l)];
tmp_pdiff += pdiff[(i * step_h + k) * pstride + (j * step_w + l)];
}
}
gx[i * gstride + j] =
(int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gx, avg_bits);
gy[i * gstride + j] =
(int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_gy, avg_bits);
pdiff[i * pstride + j] =
(int16_t)ROUND_POWER_OF_TWO_SIGNED(tmp_pdiff, avg_bits);
}
}
}
#endif // CONFIG_AFFINE_REFINEMENT || CONFIG_OPFL_MV_SEARCH
#if CONFIG_AFFINE_REFINEMENT
/* Map affine model parameters to warped motion parameters based on signed
temporal distance d (positive for past ref, negative for future ref).
For d < 0, let t = -d > 0, the affine model is
/x'\ = / cos(t*theta) -sin(t*theta) \ * /1+t*alpha 0 \ * /x\ + / t*tx \
\y'/ \ sin(t*theta) cos(t*theta) / \ 0 1+t*beta/ \y/ \ t*ty /
which is associated with warped motion matrix
/ (1+t*alpha)*cos(t*theta) -(1+t*beta)*sin(t*theta) t*tx \
A = | (1+t*alpha)*sin(t*theta) (1+t*beta)*cos(t*theta) t*ty |
\ 0 0 1 /
For d > 0, we let t = d > 0, and the warped motion matrix is given by the
inverse matrix of A. Approximate 1/(1+x) by 1-x, then
-1 / (1-t*alpha)*cos(t*theta) (1-t*alpha)*sin(t*theta) tx' \
A = | -(1-t*beta)*sin(t*theta) (1-t*beta)*cos(t*theta) ty' |
\ 0 0 1 /,
where tx' = -t*(1-t*alpha)*[cos(t*theta)*tx+sin(t*theta)*ty]
ty' = t*(1-t*beta)*[cos(t*theta)*tx+sin(t*theta)*ty]
*/
void get_ref_affine_params(int bw, int bh, int mi_x, int mi_y,
const AffineModelParams *am_params,
WarpedMotionParams *wm, const int d,
const MV *const mv) {
wm->invalid = 1;
const int unit_offset = 1 << WARPEDMODEL_PREC_BITS;
int64_t cos_angle = unit_offset;
int64_t sin_angle = 0;
const int64_t scale_x = unit_offset - d * am_params->scale_alpha;
const int64_t scale_y = unit_offset - d * am_params->scale_beta;
const int angle = -d * am_params->rot_angle;
cos_angle = unit_offset;
sin_angle = angle * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
wm->wmmat[2] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_x * cos_angle,
WARPEDMODEL_PREC_BITS);
wm->wmmat[5] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_y * cos_angle,
WARPEDMODEL_PREC_BITS);
if (d > 0) {
// Parameters of A^-1
wm->wmmat[3] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-scale_x * sin_angle,
WARPEDMODEL_PREC_BITS);
wm->wmmat[4] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_y * sin_angle,
WARPEDMODEL_PREC_BITS);
int64_t tmp_tx = (int64_t)wm->wmmat[2] * (int64_t)am_params->tran_x -
(int64_t)wm->wmmat[3] * (int64_t)am_params->tran_y;
int64_t tmp_ty = (int64_t)wm->wmmat[4] * (int64_t)am_params->tran_x +
(int64_t)wm->wmmat[5] * (int64_t)am_params->tran_y;
wm->wmmat[0] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-d * tmp_tx,
WARPEDMODEL_PREC_BITS);
wm->wmmat[1] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-d * tmp_ty,
WARPEDMODEL_PREC_BITS);
} else {
// Parameters of A
wm->wmmat[3] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(-scale_y * sin_angle,
WARPEDMODEL_PREC_BITS);
wm->wmmat[4] = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64(scale_x * sin_angle,
WARPEDMODEL_PREC_BITS);
wm->wmmat[0] = -d * am_params->tran_x;
wm->wmmat[1] = -d * am_params->tran_y;
}
wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
wm->wmmat[6] = wm->wmmat[7] = 0;
av1_reduce_warp_model(wm);
#if CONFIG_EXT_WARP_FILTER
av1_get_shear_params(wm);
#else
// check compatibility with the fast warp filter
if (!av1_get_shear_params(wm)) {
wm->wmmat[2] = default_warp_params.wmmat[2];
wm->wmmat[3] = default_warp_params.wmmat[3];
wm->wmmat[4] = default_warp_params.wmmat[4];
wm->wmmat[5] = default_warp_params.wmmat[5];
wm->alpha = wm->beta = wm->gamma = wm->delta = 0;
}
#endif // CONFIG_EXT_WARP_FILTER
// Apply offset based on the coordinate of the block center and the MV to
// convert the base point of warped motion from block center to the top-left
// pixel of the frame.
const int center_x = mi_x + bw / 2 - 1;
const int center_y = mi_y + bh / 2 - 1;
wm->wmmat[0] +=
mv->col * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
(center_x * (wm->wmmat[2] - unit_offset) + center_y * wm->wmmat[3]);
wm->wmmat[1] +=
mv->row * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
(center_x * wm->wmmat[4] + center_y * (wm->wmmat[5] - unit_offset));
wm->wmmat[0] = clamp(wm->wmmat[0], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
wm->wmmat[1] = clamp(wm->wmmat[1], -WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
wm->wmtype = AFFINE;
wm->invalid = 0;
}
// Find the maximum element of pdiff/gx/gy in absolute value
int find_max_matrix_element(const int16_t *pdiff, int pstride,
const int16_t *gx, const int16_t *gy, int gstride,
int bw, int bh) {
// TODO(kslu) do it in a better way to remove repeated computations, or
// handle this in gradient computation
int max_el = 0;
for (int i = 0; i < bh; i++) {
for (int j = 0; j < bw; j++) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
if (AOMMAX(i, j) >= AFFINE_AVG_MAX_SIZE) continue;
max_el = AOMMAX(max_el, abs((int)gx[i * gstride + j]));
max_el = AOMMAX(max_el, abs((int)gy[i * gstride + j]));
max_el = AOMMAX(max_el, abs((int)pdiff[i * pstride + j]));
}
}
return max_el;
}
// Autocorrelation matrix filling procedure for affine refinement.
void av1_calc_affine_autocorrelation_matrix_c(const int16_t *pdiff, int pstride,
const int16_t *gx,
const int16_t *gy, int gstride,
int bw, int bh,
#if CONFIG_AFFINE_REFINEMENT_SB
int x_offset, int y_offset,
#endif // CONFIG_AFFINE_REFINEMENT_SB
int64_t *mat_a, int64_t *vec_b) {
int x_range_log2 = get_msb(bw);
int y_range_log2 = get_msb(bh);
int step_h = AOMMAX(1, bh >> AFFINE_AVG_MAX_SIZE_LOG2);
int step_w = AOMMAX(1, bw >> AFFINE_AVG_MAX_SIZE_LOG2);
int npel_log2 = AOMMIN(AFFINE_AVG_MAX_SIZE_LOG2, x_range_log2) +
AOMMIN(AFFINE_AVG_MAX_SIZE_LOG2, y_range_log2);
#if OPFL_DOWNSAMP_QUINCUNX
npel_log2--;
#endif
// Check range of gradient and prediction differences. If maximum absolute
// value is very large, matrix A is likely to be clamped. To improve
// stability, we adaptively reduce the dynamic range here
int max_el = find_max_matrix_element(pdiff, pstride, gx, gy, gstride, bw, bh);
int max_el_msb = max_el > 0 ? get_msb(max_el) : 0;
int grad_bits =
AOMMAX(0, max_el_msb * 2 + npel_log2 +
AOMMAX(x_range_log2, y_range_log2) - AFFINE_GRAD_BITS_THR);
const int coords_bits = AOMMAX(
0, ((x_range_log2 + y_range_log2) >> 1) - AFFINE_COORDS_OFFSET_BITS);
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
if (AOMMAX(i, j) >= AFFINE_AVG_MAX_SIZE) continue;
#if CONFIG_AFFINE_REFINEMENT_SB
// Offsets are added in order to obtain affine parameter relative to
// original block center rather than the subblock center
const int x = step_w * j - bw / 2 + x_offset + 1;
const int y = step_h * i - bh / 2 + y_offset + 1;
#else
const int x = step_w * j - bw / 2 + 1;
const int y = step_h * i - bh / 2 + 1;
#endif // CONFIG_AFFINE_REFINEMENT_SB
int gidx = i * gstride + j;
int a[4];
a[0] =
ROUND_POWER_OF_TWO_SIGNED(-gx[gidx] * y + gy[gidx] * x, coords_bits);
a[1] =
ROUND_POWER_OF_TWO_SIGNED(gx[gidx] * x + gy[gidx] * y, coords_bits);
a[2] = gx[gidx];
a[3] = gy[gidx];
for (int s = 0; s < 4; ++s)
a[s] = clamp(a[s], -AFFINE_SAMP_CLAMP_VAL, AFFINE_SAMP_CLAMP_VAL);
const int d = clamp(pdiff[i * pstride + j], -AFFINE_SAMP_CLAMP_VAL,
AFFINE_SAMP_CLAMP_VAL);
for (int s = 0; s < 4; ++s) {
for (int t = 0; t <= s; ++t) {
mat_a[s * 4 + t] += ROUND_POWER_OF_TWO_SIGNED_64(
(int64_t)a[s] * (int64_t)a[t], grad_bits);
}
vec_b[s] +=
ROUND_POWER_OF_TWO_SIGNED_64((int64_t)a[s] * (int64_t)d, grad_bits);
}
}
// Do a range check and add a downshift if range is getting close to the bit
// depth cap. This check is done for every 16 pixels so it can be easily
// replicated in the SIMD version.
if (bw >= 16 || i % 2 == 1) {
int64_t max_autocorr =
AOMMAX(AOMMAX(mat_a[0], mat_a[5]), AOMMAX(mat_a[10], mat_a[15]));
int64_t max_xcorr = AOMMAX(AOMMAX(llabs(vec_b[0]), llabs(vec_b[1])),
AOMMAX(llabs(vec_b[2]), llabs(vec_b[3])));
if (get_msb_signed_64(AOMMAX(max_autocorr, max_xcorr)) >=
MAX_AFFINE_AUTOCORR_BITS - 2) {
for (int s = 0; s < 4; ++s) {
for (int t = 0; t <= s; ++t)
mat_a[s * 4 + t] =
ROUND_POWER_OF_TWO_SIGNED_64(mat_a[s * 4 + t], 1);
vec_b[s] = ROUND_POWER_OF_TWO_SIGNED_64(vec_b[s], 1);
}
grad_bits++;
}
}
}
for (int s = 0; s < 4; ++s) {
for (int t = s + 1; t < 4; ++t) mat_a[s * 4 + t] = mat_a[t * 4 + s];
}
const int rls_alpha = (bw * bh >> 4) * AFFINE_RLS_PARAM;
mat_a[0] += rls_alpha;
mat_a[5] += rls_alpha;
mat_a[10] += rls_alpha;
mat_a[15] += rls_alpha;
}
// Derivation of four parameters in the rotation-scale-translation affine model
// (in the pipeline where gradients are computed directly from d0*P0-d1*P1)
int av1_opfl_affine_refinement(const int16_t *pdiff, int pstride,
const int16_t *gx, const int16_t *gy,
int gstride, int bw, int bh,
#if CONFIG_AFFINE_REFINEMENT_SB
int x_offset, int y_offset,
#endif // CONFIG_AFFINE_REFINEMENT_SB
int grad_prec_bits,
AffineModelParams *am_params) {
int64_t mat_a[16] = { 0 };
int64_t vec_b[4] = { 0 };
int64_t vec_x[4];
#if !OPFL_DOWNSAMP_QUINCUNX
av1_calc_affine_autocorrelation_matrix(pdiff, pstride, gx, gy, gstride, bw,
bh,
#if CONFIG_AFFINE_REFINEMENT_SB
x_offset, y_offset,
#endif // CONFIG_AFFINE_REFINEMENT_SB
mat_a, vec_b);
#else
av1_calc_affine_autocorrelation_matrix_c(pdiff, pstride, gx, gy, gstride, bw,
bh,
#if CONFIG_AFFINE_REFINEMENT_SB
x_offset, y_offset,
#endif // CONFIG_AFFINE_REFINEMENT_SB
mat_a, vec_b);
#endif // !OPFL_DOWNSAMP_QUINCUNX
const int coords_bits =
AOMMAX(0, ((get_msb(bw) + get_msb(bh)) >> 1) - AFFINE_COORDS_OFFSET_BITS);
int prec_bits[4] = {
grad_prec_bits + AFFINE_PREC_BITS - coords_bits,
grad_prec_bits + AFFINE_PREC_BITS - coords_bits,
grad_prec_bits + AFFINE_PREC_BITS,
grad_prec_bits + AFFINE_PREC_BITS,
};
if (!solver_4d(mat_a, vec_b, prec_bits, vec_x)) return 1;
assert(WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS >= 0);
am_params->rot_angle = (int)vec_x[0];
am_params->scale_alpha =
(int)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->scale_beta =
(int)vec_x[1] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->tran_x =
(int)vec_x[2] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
am_params->tran_y =
(int)vec_x[3] * (1 << (WARPEDMODEL_PREC_BITS - AFFINE_PREC_BITS));
return 0;
}
#endif // CONFIG_AFFINE_REFINEMENT
// Solve vx and vy given pdiff = P0 - P1 and the gradients gx/gy of
// d0 * P0 - d1 * P1.
void av1_opfl_mv_refinement(const int16_t *pdiff, int pstride,
const int16_t *gx, const int16_t *gy, int gstride,
int bw, int bh, int d0, int d1, int grad_prec_bits,
int mv_prec_bits, int *vx0, int *vy0, int *vx1,
int *vy1) {
assert(IMPLIES(OPFL_DIST_RATIO_THR == 1, d0 + d1 == 0));
int64_t su2 = 0;
int64_t suv = 0;
int64_t sv2 = 0;
int64_t suw = 0;
int64_t svw = 0;
int grad_bits = 0;
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
#if OPFL_DOWNSAMP_QUINCUNX
if ((i + j) % 2 == 1) continue;
#endif
const int u =
clamp(gx[i * gstride + j], -OPFL_SAMP_CLAMP_VAL, OPFL_SAMP_CLAMP_VAL);
const int v =
clamp(gy[i * gstride + j], -OPFL_SAMP_CLAMP_VAL, OPFL_SAMP_CLAMP_VAL);
const int w = clamp(pdiff[i * pstride + j], -OPFL_SAMP_CLAMP_VAL,
OPFL_SAMP_CLAMP_VAL);
su2 += ROUND_POWER_OF_TWO_SIGNED_64(u * u, grad_bits);
suv += ROUND_POWER_OF_TWO_SIGNED_64(u * v, grad_bits);
sv2 += ROUND_POWER_OF_TWO_SIGNED_64(v * v, grad_bits);
suw += ROUND_POWER_OF_TWO_SIGNED_64(u * w, grad_bits);
svw += ROUND_POWER_OF_TWO_SIGNED_64(v * w, grad_bits);
}
// For every 8 pixels, do a range check and add a downshift if range is
// getting close to the max allowed bit depth
if (bw >= 8 || i % 2 == 1) {
// Do a range check and add a downshift if range is getting close to the
// bit depth cap
int64_t max_autocorr = AOMMAX(su2, sv2);
int64_t max_xcorr = AOMMAX(llabs(suw), llabs(svw));
if (get_msb_signed_64(AOMMAX(max_autocorr, max_xcorr)) >=
MAX_OPFL_AUTOCORR_BITS - 2) {
su2 = ROUND_POWER_OF_TWO_SIGNED_64(su2, 1);
suv = ROUND_POWER_OF_TWO_SIGNED_64(suv, 1);
sv2 = ROUND_POWER_OF_TWO_SIGNED_64(sv2, 1);
suw = ROUND_POWER_OF_TWO_SIGNED_64(suw, 1);
svw = ROUND_POWER_OF_TWO_SIGNED_64(svw, 1);
grad_bits++;
}
}
}
const int bits = mv_prec_bits + grad_prec_bits;
#if OPFL_REGULARIZED_LS
const int rls_alpha = (bw * bh >> 4) * OPFL_RLS_PARAM;
su2 += rls_alpha;
sv2 += rls_alpha;
#endif
// Solve 2x2 matrix inverse: [ su2 suv ] [ vx0 ] [ -suw ]
// [ suv sv2 ] * [ vy0 ] = [ -svw ]
int shifts[2] = { bits, bits };
int msb_su2 = 1 + get_msb_signed_64(su2);
int msb_sv2 = 1 + get_msb_signed_64(sv2);
int msb_suv = 1 + get_msb_signed_64(suv);
int msb_suw = 1 + get_msb_signed_64(suw);
int msb_svw = 1 + get_msb_signed_64(svw);
// Make sure the max bit depth of det, sol[0], and sol[1] are within
// MAX_LS_BITS
int max_mult_msb = AOMMAX(
msb_su2 + msb_sv2, AOMMAX(AOMMAX(msb_sv2 + msb_suw, msb_suv + msb_svw),
AOMMAX(msb_su2 + msb_svw, msb_suv + msb_suw)));
int redbit = AOMMAX(0, max_mult_msb - MAX_LS_BITS + 3) >> 1;
su2 = ROUND_POWER_OF_TWO_SIGNED_64(su2, redbit);
sv2 = ROUND_POWER_OF_TWO_SIGNED_64(sv2, redbit);
suv = ROUND_POWER_OF_TWO_SIGNED_64(suv, redbit);
suw = ROUND_POWER_OF_TWO_SIGNED_64(suw, redbit);
svw = ROUND_POWER_OF_TWO_SIGNED_64(svw, redbit);
const int64_t det = su2 * sv2 - suv * suv;
if (det <= 0) {
*vx0 = 0;
*vy0 = 0;
*vx1 = 0;
*vy1 = 0;
return;
}
int64_t sol[2] = { sv2 * suw - suv * svw, su2 * svw - suv * suw };
divide_and_round_array(sol, det, 2, shifts);
*vx0 = (int)-sol[0];
*vy0 = (int)-sol[1];
*vx1 = (*vx0) * d1;
*vy1 = (*vy0) * d1;
*vx0 = (*vx0) * d0;
*vy0 = (*vy0) * d0;
}
int av1_opfl_mv_refinement_nxn_c(const int16_t *pdiff, int pstride,
const int16_t *gx, const int16_t *gy,
int gstride, int bw, int bh, int n, int d0,
int d1, int grad_prec_bits, int mv_prec_bits,
int *vx0, int *vy0, int *vx1, int *vy1) {
assert(bw % n == 0 && bh % n == 0);
int n_blocks = 0;
for (int i = 0; i < bh; i += n) {
for (int j = 0; j < bw; j += n) {
av1_opfl_mv_refinement(pdiff + (i * pstride + j), pstride,
gx + (i * gstride + j), gy + (i * gstride + j),
gstride, n, n, d0, d1, grad_prec_bits,
mv_prec_bits, vx0 + n_blocks, vy0 + n_blocks,
vx1 + n_blocks, vy1 + n_blocks);
n_blocks++;
}
}
return n_blocks;
}
#if CONFIG_AFFINE_REFINEMENT
// Solve the affine model given pdiff = P0 - P1 and the gradients gx/gy of
// d0 * P0 - d1 * P1.
void av1_opfl_affine_refinement_mxn(int16_t *pdiff, int pstride, int16_t *gx,
int16_t *gy, int gstride, int bw, int bh,
int d0, int d1, int mi_x, int mi_y,
#if CONFIG_REFINEMV
const MV *const src_mv,
#endif // CONFIG_REFINEMV
int grad_prec_bits,
WarpedMotionParams *wms) {
int n_blocks = 0;
#if CONFIG_AFFINE_REFINEMENT_SB
int sub_bw = AOMMIN(AFFINE_MAX_UNIT, bw);
int sub_bh = AOMMIN(AFFINE_MAX_UNIT, bh);
#else
int sub_bw = bw;
int sub_bh = bh;
#endif // CONFIG_AFFINE_REFINEMENT_SB
for (int i = 0; i < bh; i += sub_bh) {
for (int j = 0; j < bw; j += sub_bw) {
av1_avg_pooling_pdiff_gradients(
pdiff + i * pstride + j, pstride, gx + i * gstride + j,
gy + i * gstride + j, gstride, sub_bw, sub_bh, AFFINE_AVG_MAX_SIZE);
AffineModelParams affine_params = default_affine_params;
// In some rare cases, the determinant in the solver may be zero or
// negative due to numerical errors. In this case we still set invalid=0,
// but the warped parameters remain the default values.
if (!av1_opfl_affine_refinement(
pdiff + i * pstride + j, pstride, gx + i * gstride + j,
gy + i * gstride + j, gstride, sub_bw, sub_bh,
#if CONFIG_AFFINE_REFINEMENT_SB
j + (sub_bw - bw) / 2, i + (sub_bh - bh) / 2,
#endif // CONFIG_AFFINE_REFINEMENT_SB
grad_prec_bits, &affine_params)) {
#if CONFIG_REFINEMV
get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params,
wms + n_blocks * 2, d0, &src_mv[0]);
get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params,
wms + n_blocks * 2 + 1, d1, &src_mv[1]);
#else
get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params,
wms + n_blocks * 2, d0, &mbmi->mv[0].as_mv);
get_ref_affine_params(bw, bh, mi_x, mi_y, &affine_params,
wms + n_blocks * 2 + 1, d1, &mbmi->mv[1].as_mv);
#endif // CONFIG_REFINEMV
}
n_blocks++;
}
}
}
#if AFFINE_OPFL_BASED_ON_SAD
// TODO(kslu) use SIMD versions
static INLINE unsigned int sad_generic(const uint16_t *a, int a_stride,
const uint16_t *b, int b_stride,
int width, int height) {
int y, x;
unsigned int sad = 0;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
sad += abs(a[x] - b[x]);
}
a += a_stride;
b += b_stride;
}
return sad;
}
#endif // AFFINE_OPFL_BASED_ON_SAD
// Update predicted blocks (P0 & P1) and their gradients based on the affine
// model derived from the first DAMR step
void update_pred_grad_with_affine_model(MACROBLOCKD *xd, int plane, int bw,
int bh, WarpedMotionParams *wms,
int mi_x, int mi_y, int16_t *tmp0,
int16_t *tmp1, int16_t *gx0,
int16_t *gy0, const int d0,
const int d1, int *grad_prec_bits) {
uint16_t *dst_warped =
(uint16_t *)aom_memalign(16, 2 * bw * bh * sizeof(uint16_t));
struct macroblockd_plane *const pd = &xd->plane[plane];
ConvolveParams conv_params =
get_conv_params_no_round(0, plane, NULL, 0, 0, xd->bd);
for (int ref = 0; ref < 2; ref++) {
struct buf_2d *const pre_buf = &pd->pre[ref];
#if CONFIG_AFFINE_REFINEMENT_SB
int sub_bw = AOMMIN(AFFINE_MAX_UNIT, bw);
int sub_bh = AOMMIN(AFFINE_MAX_UNIT, bh);
int nb = 0;
for (int i = 0; i < bh; i += sub_bh) {
for (int j = 0; j < bw; j += sub_bw) {
#if AFFINE_FAST_WARP_METHOD == 3
av1_warp_plane_bilinear(
wms + 2 * nb + ref, xd->bd, pre_buf->buf0, pre_buf->width,
pre_buf->height, pre_buf->stride,
&dst_warped[ref * bw * bh + i * bw + j], mi_x + j, mi_y + i, sub_bw,
sub_bh, bw, pd->subsampling_x, pd->subsampling_y, &conv_params);
#elif AFFINE_FAST_WARP_METHOD == 2
av1_warp_plane_bicubic(
wms + 2 * nb + ref, xd->bd, pre_buf->buf0, pre_buf->width,
pre_buf->height, pre_buf->stride,
&dst_warped[ref * bw * bh + i * bw + j], mi_x + j, mi_y + i, sub_bw,
sub_bh, bw, pd->subsampling_x, pd->subsampling_y, &conv_params);
#elif AFFINE_FAST_WARP_METHOD == 1 && CONFIG_EXT_WARP_FILTER
av1_warp_plane_ext(wms + 2 * nb + ref, xd->bd, pre_buf->buf0,
pre_buf->width, pre_buf->height, pre_buf->stride,
&dst_warped[ref * bw * bh + i * bw + j], mi_x + j,
mi_y + i, sub_bw, sub_bh, bw, pd->subsampling_x,
pd->subsampling_y, &conv_params);
#else // AFFINE_FAST_WARP_METHOD == 0
av1_warp_plane(wms + 2 * nb + ref, xd->bd, pre_buf->buf0,
pre_buf->width, pre_buf->height, pre_buf->stride,
&dst_warped[ref * bw * bh + i * bw + j], mi_x + j,
mi_y + i, sub_bw, sub_bh, bw, pd->subsampling_x,
pd->subsampling_y, &conv_params);
#endif // AFFINE_FAST_WARP_METHOD == 3
nb++;
}
}
#else
#if AFFINE_FAST_WARP_METHOD == 3
av1_warp_plane_bilinear(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width,
pre_buf->height, pre_buf->stride,
&dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw,
pd->subsampling_x, pd->subsampling_y, &conv_params);
#elif AFFINE_FAST_WARP_METHOD == 2
av1_warp_plane_bicubic(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width,
pre_buf->height, pre_buf->stride,
&dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw,
pd->subsampling_x, pd->subsampling_y, &conv_params);
#elif AFFINE_FAST_WARP_METHOD == 1 && CONFIG_EXT_WARP_FILTER
av1_warp_plane_ext(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width,
pre_buf->height, pre_buf->stride,
&dst_warped[ref * bw * bh], mi_x, mi_y, bw, bh, bw,
pd->subsampling_x, pd->subsampling_y, &conv_params);
#else // AFFINE_FAST_WARP_METHOD == 0
av1_warp_plane(&wms[ref], xd->bd, pre_buf->buf0, pre_buf->width,
pre_buf->height, pre_buf->stride, &dst_warped[ref * bw * bh],
mi_x, mi_y, bw, bh, bw, pd->subsampling_x, pd->subsampling_y,
&conv_params);
#endif // AFFINE_FAST_WARP_METHOD == 3
#endif // CONFIG_AFFINE_REFINEMENT_SB
}
av1_copy_pred_array_highbd(&dst_warped[0], &dst_warped[bw * bh], tmp0, tmp1,
bw, bh, d0, d1, 0);
// Buffers gx0 and gy0 are used to store the gradients of tmp0
av1_compute_subpel_gradients_interp(tmp0, bw, bh, grad_prec_bits, gx0, gy0);
aom_free(dst_warped);
}
#endif // CONFIG_AFFINE_REFINEMENT
static AOM_FORCE_INLINE void compute_pred_using_interp_grad_highbd(
const uint16_t *src1, const uint16_t *src2, int16_t *dst1, int16_t *dst2,
int bw, int bh, int d0, int d1, int centered) {
for (int i = 0; i < bh; ++i) {
for (int j = 0; j < bw; ++j) {
// To avoid overflow, we clamp d0*P0-d1*P1 and P0-P1.
int32_t tmp_dst =
d0 * (int32_t)src1[i * bw + j] - d1 * (int32_t)src2[i * bw + j];
if (centered) tmp_dst = ROUND_POWER_OF_TWO_SIGNED(tmp_dst, 1);
dst1[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX);
if (dst2) {
tmp_dst = (int32_t)src1[i * bw + j] - (int32_t)src2[i * bw + j];
dst2[i * bw + j] = clamp(tmp_dst, INT16_MIN, INT16_MAX);
}
}
}
}
void av1_copy_pred_array_highbd_c(const uint16_t *src1, const uint16_t *src2,
int16_t *dst1, int16_t *dst2, int bw, int bh,
int d0, int d1, int centered) {
compute_pred_using_interp_grad_highbd(src1, src2, dst1, dst2, bw, bh, d0, d1,
centered);
}
void av1_get_optflow_based_mv(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mbmi,
int_mv *mv_refined, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func, int16_t *gx0, int16_t *gy0,
int16_t *gx1, int16_t *gy1,
#if CONFIG_AFFINE_REFINEMENT
WarpedMotionParams *wms, int *use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
int *vx0, int *vy0, int *vx1, int *vy1, uint16_t *dst0, uint16_t *dst1
#if CONFIG_OPTFLOW_ON_TIP
,
int do_pred, int use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
#if CONFIG_REFINEMV
,
MV *best_mv_ref, int pu_width, int pu_height
#endif // CONFIG_REFINEMV
) {
#if CONFIG_AFFINE_REFINEMENT
*use_affine_opfl = 0;
#endif // CONFIG_AFFINE_REFINEMENT
const int target_prec = MV_REFINE_PREC_BITS;
const int n = opfl_get_subblock_size(bw, bh, plane
#if CONFIG_OPTFLOW_ON_TIP
,
use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
);
int n_blocks = (bw / n) * (bh / n);
// Convert output MV to 1/16th pel
assert(MV_REFINE_PREC_BITS >= 3);
const int mv_mult = 1 << (MV_REFINE_PREC_BITS - 3);
for (int mvi = 0; mvi < n_blocks; mvi++) {
mv_refined[mvi * 2].as_mv.row =
clamp(mv_refined[mvi * 2].as_mv.row * mv_mult, INT16_MIN, INT16_MAX);
mv_refined[mvi * 2].as_mv.col =
clamp(mv_refined[mvi * 2].as_mv.col * mv_mult, INT16_MIN, INT16_MAX);
mv_refined[mvi * 2 + 1].as_mv.row = clamp(
mv_refined[mvi * 2 + 1].as_mv.row * mv_mult, INT16_MIN, INT16_MAX);
mv_refined[mvi * 2 + 1].as_mv.col = clamp(
mv_refined[mvi * 2 + 1].as_mv.col * mv_mult, INT16_MIN, INT16_MAX);
}
// Obtain d0 and d1
int d0, d1;
#if CONFIG_OPTFLOW_ON_TIP
if (mbmi->ref_frame[0] == TIP_FRAME) {
d0 = cm->tip_ref.ref_offset[0];
d1 = cm->tip_ref.ref_offset[1];
} else {
#endif // CONFIG_OPTFLOW_ON_TIP
const RefCntBuffer *const r0_buf =
get_ref_frame_buf(cm, mbmi->ref_frame[0]);
const RefCntBuffer *const r1_buf =
get_ref_frame_buf(cm, mbmi->ref_frame[1]);
#if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
d0 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->display_order_hint,
r0_buf->display_order_hint);
d1 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->display_order_hint,
r1_buf->display_order_hint);
#else
d0 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->order_hint, r0_buf->order_hint);
d1 = get_relative_dist(&cm->seq_params.order_hint_info,
cm->cur_frame->order_hint, r1_buf->order_hint);
#endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC
#if CONFIG_OPTFLOW_ON_TIP
}
#endif // CONFIG_OPTFLOW_ON_TIP
if (d0 == 0 || d1 == 0) {
// Though OPFL is disabled when the distance from either of the reference
// frames is zero, the MV offset buffers are still used to update the
// mv_delta buffer. Hence, memset the MV offset buffers vx and vy to zero.
av1_zero_array(vx0, n_blocks);
av1_zero_array(vx1, n_blocks);
av1_zero_array(vy0, n_blocks);
av1_zero_array(vy1, n_blocks);
return;
}
reduce_temporal_dist(&d0, &d1);
#if CONFIG_OPTFLOW_ON_TIP
if (do_pred) {
#endif // CONFIG_OPTFLOW_ON_TIP
// Obrain P0 and P1
InterPredParams params0, params1;
av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params0, calc_subpel_params_func, 0,
dst0
#if CONFIG_REFINEMV
,
&best_mv_ref[0], pu_width, pu_height
#endif // CONFIG_REFINEMV
);
av1_opfl_build_inter_predictor(cm, xd, plane, mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params1, calc_subpel_params_func, 1,
dst1
#if CONFIG_REFINEMV
,
&best_mv_ref[1], pu_width, pu_height
#endif // CONFIG_REFINEMV
);
#if CONFIG_OPTFLOW_ON_TIP
}
#endif // CONFIG_OPTFLOW_ON_TIP
int grad_prec_bits;
// Compute gradients of P0 and P1 with interpolation
(void)gx1;
(void)gy1;
// Compute tmp1 = P0 - P1 and gradients of tmp0 = d0 * P0 - d1 * P1
#if CONFIG_OPTFLOW_ON_TIP
const int tmp_w = (mbmi->ref_frame[0] == TIP_FRAME) ? bw : MAX_SB_SIZE;
const int tmp_h = (mbmi->ref_frame[0] == TIP_FRAME) ? bh : MAX_SB_SIZE;
int16_t *tmp0 = (int16_t *)aom_memalign(16, tmp_w * tmp_h * sizeof(int16_t));
int16_t *tmp1 = (int16_t *)aom_memalign(16, tmp_w * tmp_h * sizeof(int16_t));
#else
int16_t *tmp0 =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
int16_t *tmp1 =
(int16_t *)aom_memalign(16, MAX_SB_SIZE * MAX_SB_SIZE * sizeof(int16_t));
#endif // CONFIG_OPTFLOW_ON_TIP
av1_copy_pred_array_highbd(dst0, dst1, tmp0, tmp1, bw, bh, d0, d1, 0);
// Buffers gx0 and gy0 are used to store the gradients of tmp0
av1_compute_subpel_gradients_interp(tmp0, bw, bh, &grad_prec_bits, gx0, gy0);
#if CONFIG_AFFINE_REFINEMENT
#if AFFINE_OPFL_BASED_ON_SAD
const unsigned int sad_thr = 1;
if (mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START && wms) {
unsigned int sad_pred = sad_generic(dst0, bw, dst1, bw, bw, bh);
if (sad_pred >= sad_thr * bw * bh) *use_affine_opfl = 1;
}
#endif
if (mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START && wms &&
*use_affine_opfl) {
av1_opfl_affine_refinement_mxn(tmp1, bw, gx0, gy0, bw, bw, bh, d0, d1, mi_x,
mi_y,
#if CONFIG_REFINEMV
best_mv_ref,
#endif // CONFIG_REFINEMV
grad_prec_bits, wms);
update_pred_grad_with_affine_model(xd, plane, bw, bh, wms, mi_x, mi_y, tmp0,
tmp1, gx0, gy0, d0, d1, &grad_prec_bits);
// Subblock wise translational refinement
if (damr_refine_subblock(plane, bw, bh, mbmi->comp_refine_type, n, n)) {
// Find translational parameters per subblock.
n_blocks = av1_opfl_mv_refinement_nxn(tmp1, bw, gx0, gy0, bw, bw, bh, n,
d0, d1, grad_prec_bits, target_prec,
vx0, vy0, vx1, vy1);
}
} else {
n_blocks = av1_opfl_mv_refinement_nxn(tmp1, bw, gx0, gy0, bw, bw, bh, n, d0,
d1, grad_prec_bits, target_prec, vx0,
vy0, vx1, vy1);
}
#else
n_blocks = av1_opfl_mv_refinement_nxn(tmp1, bw, gx0, gy0, bw, bw, bh, n, d0,
d1, grad_prec_bits, target_prec, vx0,
vy0, vx1, vy1);
#endif // CONFIG_AFFINE_REFINEMENT
aom_free(tmp0);
aom_free(tmp1);
for (int i = 0; i < n_blocks; i++) {
#if OPFL_CLAMP_MV_DELTA
vy0[i] = clamp(vy0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
vx0[i] = clamp(vx0[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
vy1[i] = clamp(vy1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
vx1[i] = clamp(vx1[i], -OPFL_MV_DELTA_LIMIT, OPFL_MV_DELTA_LIMIT);
#endif
mv_refined[i * 2].as_mv.row =
clamp(mv_refined[i * 2].as_mv.row + vy0[i], INT16_MIN, INT16_MAX);
mv_refined[i * 2].as_mv.col =
clamp(mv_refined[i * 2].as_mv.col + vx0[i], INT16_MIN, INT16_MAX);
mv_refined[i * 2 + 1].as_mv.row =
clamp(mv_refined[i * 2 + 1].as_mv.row + vy1[i], INT16_MIN, INT16_MAX);
mv_refined[i * 2 + 1].as_mv.col =
clamp(mv_refined[i * 2 + 1].as_mv.col + vx1[i], INT16_MIN, INT16_MAX);
}
}
#if CONFIG_D071_IMP_MSK_BLD
int is_out_of_frame_block(const InterPredParams *inter_pred_params,
int frame_width, int frame_height, int sub_block_id) {
for (int ref = 0; ref < 2; ref++) {
const BacpBlockData *const b_data =
&inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref];
if (b_data->x0 < 0 || b_data->x0 > frame_width - 1 || b_data->x1 < 0 ||
b_data->x1 > frame_width
|| b_data->y0 < 0 || b_data->y0 > frame_height - 1 || b_data->y1 < 0 ||
b_data->y1 > frame_height) {
return 1;
}
}
return 0;
}
#endif // CONFIG_D071_IMP_MSK_BLD
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0
void av1_init_wedge_masks() {
init_wedge_master_masks();
init_wedge_masks();
init_smooth_interintra_masks();
}
static AOM_INLINE void build_masked_compound_no_round(
uint16_t *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride,
const CONV_BUF_TYPE *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w, InterPredParams *inter_pred_params) {
#if CONFIG_D071_IMP_MSK_BLD
const int ssy = (inter_pred_params->conv_params.plane &&
comp_data->type == COMPOUND_AVERAGE)
? 0
: inter_pred_params->subsampling_y;
const int ssx = (inter_pred_params->conv_params.plane &&
comp_data->type == COMPOUND_AVERAGE)
? 0
: inter_pred_params->subsampling_x;
#else
const int ssy = inter_pred_params->subsampling_y;
const int ssx = inter_pred_params->subsampling_x;
#endif // CONFIG_D071_IMP_MSK_BLD
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
const int mask_stride = block_size_wide[sb_type];
aom_highbd_blend_a64_d16_mask(dst, dst_stride, src0, src0_stride, src1,
src1_stride, mask, mask_stride, w, h, ssx, ssy,
&inter_pred_params->conv_params,
inter_pred_params->bit_depth);
}
#if !CONFIG_D071_IMP_MSK_BLD
static
#endif
void
make_masked_inter_predictor(const uint16_t *pre, int pre_stride,
uint16_t *dst, int dst_stride,
InterPredParams *inter_pred_params,
const SubpelParams *subpel_params
#if CONFIG_D071_IMP_MSK_BLD
,
int use_bacp, int sub_block_id
#endif // CONFIG_D071_IMP_MSK_BLD
) {
const INTERINTER_COMPOUND_DATA *comp_data = &inter_pred_params->mask_comp;
BLOCK_SIZE sb_type = inter_pred_params->sb_type;
// We're going to call av1_make_inter_predictor to generate a prediction into
// a temporary buffer, then will blend that temporary buffer with that from
// the other reference.
DECLARE_ALIGNED(32, uint16_t, tmp_buf[MAX_SB_SQUARE]);
const int tmp_buf_stride = MAX_SB_SIZE;
CONV_BUF_TYPE *org_dst = inter_pred_params->conv_params.dst;
int org_dst_stride = inter_pred_params->conv_params.dst_stride;
CONV_BUF_TYPE *tmp_buf16 = (CONV_BUF_TYPE *)tmp_buf;
inter_pred_params->conv_params.dst = tmp_buf16;
inter_pred_params->conv_params.dst_stride = tmp_buf_stride;
assert(inter_pred_params->conv_params.do_average == 0);
// This will generate a prediction in tmp_buf for the second reference
av1_make_inter_predictor(pre, pre_stride, tmp_buf, MAX_SB_SIZE,
inter_pred_params, subpel_params);
if (!inter_pred_params->conv_params.plane &&
comp_data->type == COMPOUND_DIFFWTD) {
av1_build_compound_diffwtd_mask_d16(
comp_data->seg_mask, comp_data->mask_type, org_dst, org_dst_stride,
tmp_buf16, tmp_buf_stride, inter_pred_params->block_height,
inter_pred_params->block_width, &inter_pred_params->conv_params,
inter_pred_params->bit_depth);
}
#if CONFIG_D071_IMP_MSK_BLD
// Mask is generated from luma and reuse for chroma
const int generate_mask_for_this_plane =
(!inter_pred_params->conv_params.plane ||
comp_data->type == COMPOUND_AVERAGE);
if (use_bacp && generate_mask_for_this_plane) {
uint8_t *mask = comp_data->seg_mask;
int mask_stride = block_size_wide[sb_type];
BacpBlockData *b_data_0 =
&inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 0];
BacpBlockData *b_data_1 =
&inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + 1];
for (int i = 0; i < inter_pred_params->block_height; ++i) {
for (int j = 0; j < inter_pred_params->block_width; ++j) {
int x = b_data_0->x0 + j;
int y = b_data_0->y0 + i;
int p0_available =
(x >= 0 && x < inter_pred_params->ref_frame_buf.width && y >= 0 &&
y < inter_pred_params->ref_frame_buf.height);
x = b_data_1->x0 + j;
y = b_data_1->y0 + i;
int p1_available =
(x >= 0 && x < inter_pred_params->ref_frame_buf.width && y >= 0 &&
y < inter_pred_params->ref_frame_buf.height);
if (p0_available && !p1_available) {
mask[j] = AOM_BLEND_A64_MAX_ALPHA - DEFAULT_IMP_MSK_WT;
} else if (!p0_available && p1_available) {
mask[j] = DEFAULT_IMP_MSK_WT;
} else if (comp_data->type == COMPOUND_AVERAGE) {
mask[j] = AOM_BLEND_A64_MAX_ALPHA >> 1;
}
}
mask += mask_stride;
}
}
#endif // CONFIG_D071_IMP_MSK_BLD
build_masked_compound_no_round(
dst, dst_stride, org_dst, org_dst_stride, tmp_buf16, tmp_buf_stride,
comp_data, sb_type, inter_pred_params->block_height,
inter_pred_params->block_width, inter_pred_params);
#if CONFIG_D071_IMP_MSK_BLD
// restore to previous state
inter_pred_params->conv_params.dst = org_dst;
inter_pred_params->conv_params.dst_stride = org_dst_stride;
#endif // CONFIG_D071_IMP_MSK_BLD
}
// Makes the interpredictor for the region by dividing it up into nxn blocks
// and running the interpredictor code on each one.
void make_inter_pred_of_nxn(
uint16_t *dst, int dst_stride, int_mv *const mv_refined, int *vxy_bufs,
const int vxy_size, InterPredParams *inter_pred_params, MACROBLOCKD *xd,
int mi_x, int mi_y,
#if CONFIG_AFFINE_REFINEMENT
const AV1_COMMON *cm, int pu_width, int plane,
CompoundRefineType comp_refine_type, WarpedMotionParams *wms, int_mv *mv,
const int use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func,
#if CONFIG_OPTFLOW_ON_TIP
int use_4x4,
#endif // CONFIG_OPTFLOW_ON_TIP
SubpelParams *subpel_params) {
int opfl_sub_bw = OF_BSIZE;
int opfl_sub_bh = OF_BSIZE;
const int is_subsampling_422 =
plane && (xd->plane[plane].subsampling_x == 1 &&
xd->plane[plane].subsampling_y == 0);
opfl_subblock_size_plane(xd, plane,
#if CONFIG_OPTFLOW_ON_TIP
use_4x4,
#endif // CONFIG_OPTFLOW_ON_TIP
&opfl_sub_bw, &opfl_sub_bh);
int n_blocks = 0;
int bw = inter_pred_params->orig_block_width;
int bh = inter_pred_params->orig_block_height;
int sub_bw = opfl_sub_bw;
int sub_bh = opfl_sub_bh;
#if CONFIG_AFFINE_REFINEMENT
MV ref_mv = mv_refined[ref].as_mv;
if (comp_refine_type >= COMP_AFFINE_REFINE_START &&
!damr_refine_subblock(plane, bw, bh, comp_refine_type, sub_bw, sub_bh)) {
sub_bw = bw;
sub_bh = bh;
}
const int unit_offset = 1 << WARPEDMODEL_PREC_BITS;
#if AFFINE_CHROMA_REFINE_METHOD >= 2
if (wms && comp_refine_type >= COMP_AFFINE_REFINE_START && plane) {
WarpedMotionParams ref_wm = wms ? wms[ref] : default_warp_params;
// Apply offsets based on the affine parameters. bw, bh, and wm are
// for luma plane, so compute the warp MV in luma and then scale it
// for chroma
const int32_t blk_offset_x_hp =
ref_wm.wmmat[0] - mv->as_mv.col * (1 << (WARPEDMODEL_PREC_BITS - 3)) +
mi_x * (ref_wm.wmmat[2] - unit_offset) + mi_y * ref_wm.wmmat[3];
const int32_t blk_offset_y_hp =
ref_wm.wmmat[1] - mv->as_mv.row * (1 << (WARPEDMODEL_PREC_BITS - 3)) +
mi_x * ref_wm.wmmat[4] + mi_y * (ref_wm.wmmat[5] - unit_offset);
ref_mv.col += ROUND_POWER_OF_TWO_SIGNED(
blk_offset_x_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS);
ref_mv.row += ROUND_POWER_OF_TWO_SIGNED(
blk_offset_y_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS);
}
#else
(void)mv;
#endif
#endif // CONFIG_AFFINE_REFINEMENT
assert(bw % sub_bw == 0);
assert(bh % sub_bh == 0);
CONV_BUF_TYPE *orig_conv_dst = inter_pred_params->conv_params.dst;
inter_pred_params->block_width = sub_bw;
inter_pred_params->block_height = sub_bh;
MV *subblock_mv;
MV avg_mv;
uint16_t *pre;
int src_stride = 0;
#if CONFIG_AFFINE_REFINEMENT_SB
int sb_idx = 0;
int affine_sub_bw =
AOMMIN(AFFINE_MAX_UNIT >> inter_pred_params->subsampling_x, bw);
int affine_sub_bh =
AOMMIN(AFFINE_MAX_UNIT >> inter_pred_params->subsampling_y, bh);
int wms_stride = bw / affine_sub_bw;
#endif // CONFIG_AFFINE_REFINEMENT_SB
int *vx = &vxy_bufs[vxy_size * ref];
int *vy = &vxy_bufs[vxy_size * (2 + ref)];
// Process whole nxn blocks.
for (int j = 0; j < bh; j += sub_bh) {
for (int i = 0; i < bw; i += sub_bw) {
#if CONFIG_AFFINE_REFINEMENT_SB
// Identify warped parameter to used for this nxn subblock
sb_idx = (j / affine_sub_bh) * wms_stride + (i / affine_sub_bw);
WarpedMotionParams *wms_sb = wms ? (wms + 2 * sb_idx) : NULL;
#else
WarpedMotionParams *wms_sb = wms;
#endif // CONFIG_AFFINE_REFINEMENT_SB
#if CONFIG_AFFINE_REFINEMENT
int delta_idx = (j / sub_bh) * (pu_width / sub_bw) + (i / sub_bw);
if (wms_sb && comp_refine_type >= COMP_AFFINE_REFINE_START &&
use_affine_opfl) {
// If warped model is not valid, wmmat[0] and wmmat[1] remain the
// translational offset parameters in block-relative coordinates. Here
// they are applied as MV offsets for simple translational prediction
WarpedMotionParams this_wm = wms_sb[ref];
if (this_wm.invalid
#if !CONFIG_EXT_WARP_FILTER
|| sub_bh < 8 || sub_bw < 8
#endif // !CONFIG_EXT_WARP_FILTER
#if AFFINE_CHROMA_REFINE_METHOD >= 2
|| plane
#endif // AFFINE_CHROMA_REFINE_METHOD >= 2
) {
// When warp prediction is not allowed, apply translational prediction
// based on warp parameters
inter_pred_params->mode = TRANSLATION_PRED;
MV cur_mv = ref_mv;
WarpedMotionParams ref_wm =
wms_sb ? wms_sb[ref] : default_warp_params;
// Apply offsets based on current subblock center position
const int subblk_center_x = (i + sub_bw / 2 - 1)
<< inter_pred_params->subsampling_x;
const int subblk_center_y = (j + sub_bh / 2 - 1)
<< inter_pred_params->subsampling_y;
const int32_t subblk_offset_x_hp =
subblk_center_x * (ref_wm.wmmat[2] - unit_offset) +
subblk_center_y * ref_wm.wmmat[3];
const int32_t subblk_offset_y_hp =
subblk_center_x * ref_wm.wmmat[4] +
subblk_center_y * (ref_wm.wmmat[5] - unit_offset);
cur_mv.col += ROUND_POWER_OF_TWO_SIGNED(
subblk_offset_x_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS);
cur_mv.row += ROUND_POWER_OF_TWO_SIGNED(
subblk_offset_y_hp, WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS);
#if AFFINE_CHROMA_REFINE_METHOD == 3
if (comp_refine_type == COMP_REFINE_ROTZOOM4P_SUBBLK2P
#if !CONFIG_EXT_WARP_FILTER
&& n > 4
#endif // !CONFIG_EXT_WARP_FILTER
) {
// If this is a 4x4 colocated chroma block of a 8x8 luma block,
// colocated subblocks will be 2x2. In this case we take the average
// of 4 refined MVs and use it to refine prediction at 4x4 level.
if (bw == 4 && bh == 4 && sub_bw == 4 && sub_bh == 4) {
cur_mv.col +=
ROUND_POWER_OF_TWO_SIGNED(vx[0] + vx[1] + vx[2] + vx[3], 2);
cur_mv.row +=
ROUND_POWER_OF_TWO_SIGNED(vy[0] + vy[1] + vy[2] + vy[3], 2);
} else if (bw == 4 && bh == 8 && sub_bw == 4 && sub_bh == 4 &&
is_subsampling_422) {
cur_mv.col += ROUND_POWER_OF_TWO_SIGNED(
vx[delta_idx * 2] + vx[delta_idx * 2 + 1], 1);
cur_mv.row += ROUND_POWER_OF_TWO_SIGNED(
vy[delta_idx * 2] + vy[delta_idx * 2 + 1], 1);
} else {
cur_mv.col += vx[delta_idx];
cur_mv.row += vy[delta_idx];
}
}
#endif // AFFINE_CHROMA_REFINE_METHOD == 3
subblock_mv = &cur_mv;
subblock_mv->col = clamp(subblock_mv->col, MV_LOW + 1, MV_UPP - 1);
subblock_mv->row = clamp(subblock_mv->row, MV_LOW + 1, MV_UPP - 1);
} else {
// Overwrite inter_pred_params to trigger warped prediction in
// av1_make_inter_predictor()
inter_pred_params->mode = WARP_PRED;
inter_pred_params->warp_params = this_wm;
if (comp_refine_type == COMP_REFINE_ROTZOOM4P_SUBBLK2P
#if !CONFIG_EXT_WARP_FILTER
&& n > 4
#endif // !CONFIG_EXT_WARP_FILTER
) {
// If this is a 4x4 colocated chroma block of a 8x8 luma block,
// colocated subblocks will be 2x2. In this case we take the average
// of 4 refined MVs and use it to refine prediction at 4x4 level.
if (bw == 4 && bh == 4 && sub_bw == 4 && sub_bh == 4) {
inter_pred_params->warp_params.wmmat[0] +=
(vx[0] + vx[1] + vx[2] + vx[3]) *
(1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 2));
inter_pred_params->warp_params.wmmat[1] +=
(vy[0] + vy[1] + vy[2] + vy[3]) *
(1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 2));
} else if (bw == 4 && bh == 8 && sub_bw == 4 && sub_bh == 4 &&
is_subsampling_422) {
inter_pred_params->warp_params.wmmat[0] +=
(vx[delta_idx * 2] + vx[(delta_idx * 2) + 1]) *
(1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 1));
inter_pred_params->warp_params.wmmat[1] +=
(vy[delta_idx * 2] + vy[(delta_idx * 2) + 1]) *
(1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS - 1));
} else {
inter_pred_params->warp_params.wmmat[0] +=
vx[delta_idx] *
(1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS));
inter_pred_params->warp_params.wmmat[1] +=
vy[delta_idx] *
(1 << (WARPEDMODEL_PREC_BITS - MV_REFINE_PREC_BITS));
}
inter_pred_params->warp_params.wmmat[0] =
clamp(inter_pred_params->warp_params.wmmat[0],
-WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
inter_pred_params->warp_params.wmmat[1] =
clamp(inter_pred_params->warp_params.wmmat[1],
-WARPEDMODEL_TRANS_CLAMP,
WARPEDMODEL_TRANS_CLAMP - unit_offset);
}
subblock_mv = &mv_refined[ref].as_mv;
}
} else {
if (bw == 4 && bh == 4 && sub_bw == 4 && sub_bh == 4) {
avg_mv.row =
ROUND_POWER_OF_TWO_SIGNED(mv_refined[0 * 2 + ref].as_mv.row +
mv_refined[1 * 2 + ref].as_mv.row +
mv_refined[2 * 2 + ref].as_mv.row +
mv_refined[3 * 2 + ref].as_mv.row,
2);
avg_mv.col =
ROUND_POWER_OF_TWO_SIGNED(mv_refined[0 * 2 + ref].as_mv.col +
mv_refined[1 * 2 + ref].as_mv.col +
mv_refined[2 * 2 + ref].as_mv.col +
mv_refined[3 * 2 + ref].as_mv.col,
2);
subblock_mv = &avg_mv;
} else if (bw == 4 && bh == 8 && sub_bw == 4 && sub_bh == 4 &&
is_subsampling_422) {
const int sub_idx = delta_idx * 2;
avg_mv.row = ROUND_POWER_OF_TWO_SIGNED(
mv_refined[sub_idx * 2 + ref].as_mv.row +
mv_refined[(sub_idx + 1) * 2 + ref].as_mv.row,
1);
avg_mv.col = ROUND_POWER_OF_TWO_SIGNED(
mv_refined[sub_idx * 2 + ref].as_mv.col +
mv_refined[(sub_idx + 1) * 2 + ref].as_mv.col,
1);
subblock_mv = &avg_mv;
} else {
subblock_mv = &(mv_refined[n_blocks * 2 + ref].as_mv);
}
}
const int width = (cm->mi_params.mi_cols << MI_SIZE_LOG2);
const int height = (cm->mi_params.mi_rows << MI_SIZE_LOG2);
inter_pred_params->dist_to_top_edge = -GET_MV_SUBPEL(mi_y + j);
inter_pred_params->dist_to_bottom_edge =
GET_MV_SUBPEL(height - bh - mi_y - j);
inter_pred_params->dist_to_left_edge = -GET_MV_SUBPEL(mi_x + i);
inter_pred_params->dist_to_right_edge =
GET_MV_SUBPEL(width - bw - mi_x - i);
#else
subblock_mv = &(mv_refined[n_blocks * 2 + ref].as_mv);
#endif // CONFIG_AFFINE_REFINEMENT
calc_subpel_params_func(subblock_mv, inter_pred_params, xd, mi_x + i,
mi_y + j, ref, 1, mc_buf, &pre, subpel_params,
&src_stride);
#if CONFIG_D071_IMP_MSK_BLD
int use_bacp = 0;
assert(inter_pred_params->mask_comp.type == COMPOUND_AVERAGE);
assert(inter_pred_params->comp_mode == UNIFORM_COMP);
int stored_do_average = inter_pred_params->conv_params.do_average;
InterCompMode stored_comp_mode = inter_pred_params->comp_mode;
uint8_t *stored_seg_mask = inter_pred_params->mask_comp.seg_mask;
if (inter_pred_params->border_data.enable_bacp) {
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x0 =
subpel_params->x0;
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].x1 =
subpel_params->x1;
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y0 =
subpel_params->y0;
inter_pred_params->border_data.bacp_block_data[n_blocks * 2 + ref].y1 =
subpel_params->y1;
if (ref == 1) {
use_bacp = is_out_of_frame_block(
inter_pred_params, inter_pred_params->ref_frame_buf.width,
inter_pred_params->ref_frame_buf.height, n_blocks);
if (use_bacp &&
inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) {
inter_pred_params->conv_params.do_average = 0;
inter_pred_params->comp_mode = MASK_COMP;
inter_pred_params->mask_comp.seg_mask = xd->seg_mask;
}
}
}
assert(IMPLIES(ref == 0, !use_bacp));
if (use_bacp) {
assert(inter_pred_params->comp_mode == MASK_COMP);
make_masked_inter_predictor(pre, src_stride, dst, dst_stride,
inter_pred_params, subpel_params, use_bacp,
n_blocks);
} else {
#endif
av1_make_inter_predictor(pre, src_stride, dst, dst_stride,
inter_pred_params, subpel_params);
#if CONFIG_D071_IMP_MSK_BLD
}
// Restored to original inter_pred_params
if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) {
inter_pred_params->conv_params.do_average = stored_do_average;
inter_pred_params->comp_mode = stored_comp_mode;
inter_pred_params->mask_comp.seg_mask = stored_seg_mask;
}
#endif // CONFIG_D071_IMP_MSK_BLD
n_blocks++;
dst += sub_bw;
inter_pred_params->conv_params.dst += sub_bw;
inter_pred_params->pix_col += sub_bw;
}
dst -= bw;
inter_pred_params->conv_params.dst -= bw;
inter_pred_params->pix_col -= bw;
dst += sub_bh * dst_stride;
inter_pred_params->conv_params.dst +=
sub_bh * inter_pred_params->conv_params.dst_stride;
inter_pred_params->pix_row += sub_bh;
}
inter_pred_params->conv_params.dst = orig_conv_dst;
}
// Use a second pass of motion compensation to rebuild inter predictor
void av1_opfl_rebuild_inter_predictor(
uint16_t *dst, int dst_stride, int plane, int_mv *const mv_refined,
int *vxy_bufs, const int vxy_size, InterPredParams *inter_pred_params,
MACROBLOCKD *xd, int mi_x, int mi_y,
#if CONFIG_AFFINE_REFINEMENT
const AV1_COMMON *cm, int pu_width, CompoundRefineType comp_refine_type,
WarpedMotionParams *wms, int_mv *mv, const int use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func
#if CONFIG_OPTFLOW_ON_TIP
,
int use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
) {
SubpelParams subpel_params;
make_inter_pred_of_nxn(dst, dst_stride, mv_refined, vxy_bufs, vxy_size,
inter_pred_params, xd, mi_x, mi_y,
#if CONFIG_AFFINE_REFINEMENT
cm, pu_width, plane, comp_refine_type, wms, mv,
use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
ref, mc_buf, calc_subpel_params_func,
#if CONFIG_OPTFLOW_ON_TIP
use_4x4,
#endif // CONFIG_OPTFLOW_ON_TIP
&subpel_params);
}
void av1_build_one_inter_predictor(
uint16_t *dst, int dst_stride, const MV *const src_mv,
InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y,
int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func) {
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, 0,
mc_buf, &src, &subpel_params, &src_stride);
#if CONFIG_D071_IMP_MSK_BLD
int use_bacp = 0;
int sub_block_id = 0;
if (inter_pred_params->border_data.enable_bacp) {
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x0 =
subpel_params.x0;
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].x1 =
subpel_params.x1;
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y0 =
subpel_params.y0;
inter_pred_params->border_data.bacp_block_data[2 * sub_block_id + ref].y1 =
subpel_params.y1;
if (ref == 1) {
use_bacp = is_out_of_frame_block(
inter_pred_params, inter_pred_params->ref_frame_buf.width,
inter_pred_params->ref_frame_buf.height, sub_block_id);
if (use_bacp && inter_pred_params->mask_comp.type == COMPOUND_AVERAGE) {
inter_pred_params->conv_params.do_average = 0;
inter_pred_params->comp_mode = MASK_COMP;
inter_pred_params->mask_comp.seg_mask = xd->seg_mask;
}
}
}
assert(IMPLIES(ref == 0, !use_bacp));
#endif // CONFIG_D071_IMP_MSK_BLD
if (inter_pred_params->comp_mode == UNIFORM_SINGLE ||
inter_pred_params->comp_mode == UNIFORM_COMP) {
av1_make_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params);
#if CONFIG_D071_IMP_MSK_BLD
assert(IMPLIES(use_bacp, ref == 0));
assert(use_bacp == 0);
#endif // CONFIG_D071_IMP_MSK_BLD
} else {
make_masked_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params
#if CONFIG_D071_IMP_MSK_BLD
,
use_bacp, 0
#endif // CONFIG_D071_IMP_MSK_BLD
);
#if CONFIG_D071_IMP_MSK_BLD
assert(IMPLIES(inter_pred_params->border_data.enable_bacp, ref == 1));
#endif // CONFIG_D071_IMP_MSK_BLD
}
}
#if CONFIG_EXPLICIT_BAWP
// Derive the offset value of block adaptive weighted prediction
// mode. One row from the top boundary and one column from the left boundary
// are used in the less square error process.
static void derive_explicit_bawp_offsets(MACROBLOCKD *xd, uint16_t *recon_top,
uint16_t *recon_left, int rec_stride,
uint16_t *ref_top, uint16_t *ref_left,
int ref_stride, int ref, int plane,
int bw, int bh) {
MB_MODE_INFO *mbmi = xd->mi[0];
#if CONFIG_BAWP_CHROMA
assert(mbmi->bawp_flag[0] > 1);
#else
assert(mbmi->bawp_flag > 1);
#endif // CONFIG_BAWP_CHROMA
// only integer position of reference, may need to consider
// fractional position of ref samples
int count = 0;
int sum_x = 0, sum_y = 0;
if (xd->up_available) {
for (int i = 0; i < bw; ++i) {
sum_x += ref_top[i];
sum_y += recon_top[i];
}
count += bw;
}
if (xd->left_available) {
for (int i = 0; i < bh; ++i) {
sum_x += ref_left[0];
sum_y += recon_left[0];
recon_left += rec_stride;
ref_left += ref_stride;
}
count += bh;
}
const int16_t shift = 8; // maybe a smaller value can be used
if (count > 0) {
const int beta = derive_linear_parameters_beta(
sum_x, sum_y, count, shift, mbmi->bawp_alpha[plane][ref]);
mbmi->bawp_beta[plane][ref] = beta;
} else {
mbmi->bawp_beta[plane][ref] = -(1 << shift);
}
}
#endif // CONFIG_EXPLICIT_BAWP
#if CONFIG_BAWP
#if CONFIG_BAWP_ACROSS_SCALES_FIX
// The below functions are used for scaling X, Y position
// for BAWP with across scale prediction
// In future, more generalized implementations for all inter-coding tools
// are required for supporting across scale prediction
static INLINE int scaled_x_gen(int val, const struct scale_factors *sf) {
const int64_t tval = (int64_t)val * sf->x_scale_fp;
return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval, REF_SCALE_SHIFT);
}
static INLINE int scaled_y_gen(int val, const struct scale_factors *sf) {
const int64_t tval = (int64_t)val * sf->y_scale_fp;
return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval, REF_SCALE_SHIFT);
}
#endif // CONFIG_BAWP_ACROSS_SCALES_FIX
// Derive the scaling factor and offset of block adaptive weighted prediction
// mode. One row from the top boundary and one column from the left boundary
// are used in the less square error process.
static void derive_bawp_parameters(MACROBLOCKD *xd, uint16_t *recon_top,
uint16_t *recon_left, int rec_stride,
uint16_t *ref_top, uint16_t *ref_left,
int ref_stride, int ref, int plane, int bw,
#if CONFIG_BAWP_ACROSS_SCALES_FIX
int bh, const struct scale_factors *sf) {
#else // CONFIG_BAWP_ACROSS_SCALES_FIX
int bh) {
#endif // CONFIG_BAWP_ACROSS_SCALES_FIX
MB_MODE_INFO *mbmi = xd->mi[0];
#if CONFIG_BAWP_CHROMA
assert(mbmi->bawp_flag[0] >= 1);
#else
assert(mbmi->bawp_flag == 1);
#endif // CONFIG_BAWP_CHROMA
// only integer position of reference, may need to consider
// fractional position of ref samples
int count = 0;
int sum_x = 0, sum_y = 0, sum_xy = 0, sum_xx = 0;
if (xd->up_available) {
#if CONFIG_BAWP_ACROSS_SCALES_FIX
if (sf->x_scale_fp != REF_NO_SCALE) {
for (int i = 0; i < bw; i++) {
int idx = scaled_x_gen(i, sf);
sum_x += ref_top[idx];
sum_y += recon_top[i];
sum_xy += ref_top[idx] * recon_top[i];
sum_xx += ref_top[idx] * ref_top[idx];
}
} else {
#endif // CONFIG_BAWP_ACROSS_SCALES_FIX
for (int i = 0; i < bw; ++i) {
sum_x += ref_top[i];
sum_y += recon_top[i];
sum_xy += ref_top[i] * recon_top[i];
sum_xx += ref_top[i] * ref_top[i];
}
#if CONFIG_BAWP_ACROSS_SCALES_FIX
}
#endif // CONFIG_BAWP_ACROSS_SCALES_FIX
count += bw;
}
if (xd->left_available) {
#if CONFIG_BAWP_ACROSS_SCALES_FIX
if (sf->y_scale_fp != REF_NO_SCALE) {
for (int i = 0; i < bh; i++) {
int ref_left_tmp_idx = scaled_y_gen(i, sf) * ref_stride;
sum_x += ref_left[ref_left_tmp_idx];
sum_y += recon_left[0];
sum_xy += ref_left[ref_left_tmp_idx] * recon_left[0];
sum_xx += ref_left[ref_left_tmp_idx] * ref_left[ref_left_tmp_idx];
recon_left += rec_stride;
}
} else {
#endif // CONFIG_BAWP_ACROSS_SCALES_FIX
for (int i = 0; i < bh; ++i) {
sum_x += ref_left[0];
sum_y += recon_left[0];
sum_xy += ref_left[0] * recon_left[0];
sum_xx += ref_left[0] * ref_left[0];
recon_left += rec_stride;
ref_left += ref_stride;
}
#if CONFIG_BAWP_ACROSS_SCALES_FIX
}
#endif // CONFIG_BAWP_ACROSS_SCALES_FIX
count += bh;
}
const int16_t shift = 8; // maybe a smaller value can be used
if (count > 0) {
#if CONFIG_BAWP_CHROMA
if (plane == 0) {
const int16_t alpha = derive_linear_parameters_alpha(
sum_x, sum_y, sum_xx, sum_xy, count, shift, 1);
mbmi->bawp_alpha[plane][ref] = (alpha == 0) ? (1 << shift) : alpha;
} else {
mbmi->bawp_alpha[plane][ref] = mbmi->bawp_alpha[0][ref];
}
#else
const int16_t alpha = derive_linear_parameters_alpha(
sum_x, sum_y, sum_xx, sum_xy, count, shift, 1);
mbmi->bawp_alpha[plane][ref] = (alpha == 0) ? (1 << shift) : alpha;
#endif // CONFIG_BAWP_CHROMA
const int beta = derive_linear_parameters_beta(
sum_x, sum_y, count, shift, mbmi->bawp_alpha[plane][ref]);
mbmi->bawp_beta[plane][ref] = beta;
} else {
mbmi->bawp_alpha[plane][ref] = 1 << shift;
mbmi->bawp_beta[plane][ref] = -(1 << shift);
}
}
// generate inter prediction of a block coded in bwap mode enabled
void av1_build_one_bawp_inter_predictor(
uint16_t *dst, int dst_stride, const MV *const src_mv,
InterPredParams *inter_pred_params, const AV1_COMMON *cm, MACROBLOCKD *xd,
const BUFFER_SET *dst_orig, int bw, int bh, int mi_x, int mi_y, int ref,
int plane, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
calc_subpel_params_func(src_mv, inter_pred_params, xd, mi_x, mi_y, ref, 0,
mc_buf, &src, &subpel_params, &src_stride);
assert(inter_pred_params->comp_mode == UNIFORM_SINGLE);
if (inter_pred_params->comp_mode == UNIFORM_SINGLE ||
inter_pred_params->comp_mode == UNIFORM_COMP) {
av1_make_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params);
} else {
make_masked_inter_predictor(src, src_stride, dst, dst_stride,
inter_pred_params, &subpel_params
#if CONFIG_D071_IMP_MSK_BLD
,
0, 0
#endif // CONFIG_D071_IMP_MSK_BLD
);
}
const int shift = 8;
MB_MODE_INFO *mbmi = xd->mi[0];
struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_BAWP_ACROSS_SCALES_FIX
const struct scale_factors *sf = inter_pred_params->scale_factors;
const int x_off = scaled_x_gen(mbmi->mv[ref].as_mv.col, sf) >> 3;
const int y_off = scaled_y_gen(mbmi->mv[ref].as_mv.row, sf) >> 3;
const int x_off_p = x_off >> inter_pred_params->subsampling_x;
const int y_off_p = y_off >> inter_pred_params->subsampling_y;
const int mi_x_p = scaled_x_gen(mi_x, sf) >> inter_pred_params->subsampling_x;
const int mi_y_p = scaled_y_gen(mi_y, sf) >> inter_pred_params->subsampling_y;
const int width_p =
(sf->x_scale_fp != REF_NO_SCALE)
? pd->pre[ref].width >> inter_pred_params->subsampling_x
: cm->width >> inter_pred_params->subsampling_x;
const int height_p =
(sf->y_scale_fp != REF_NO_SCALE)
? pd->pre[ref].height >> inter_pred_params->subsampling_y
: cm->height >> inter_pred_params->subsampling_y;
int ref_w = scaled_x_gen(bw, sf);
if ((mi_x_p + ref_w) >= width_p) ref_w = width_p - mi_x_p;
int ref_h = scaled_y_gen(bh, sf);
if ((mi_y_p + ref_h) >= height_p) ref_h = height_p - mi_y_p;
#else // CONFIG_BAWP_ACROSS_SCALES_FIX
const int x_off = mbmi->mv[ref].as_mv.col >> 3;
const int y_off = mbmi->mv[ref].as_mv.row >> 3;
const int x_off_p = x_off >> inter_pred_params->subsampling_x;
const int y_off_p = y_off >> inter_pred_params->subsampling_y;
const int mi_x_p = mi_x >> inter_pred_params->subsampling_x;
const int mi_y_p = mi_y >> inter_pred_params->subsampling_y;
const int width_p = cm->width >> inter_pred_params->subsampling_x;
const int height_p = cm->height >> inter_pred_params->subsampling_y;
int ref_w = bw;
if ((mi_x_p + bw) >= width_p) ref_w = width_p - mi_x_p;
int ref_h = bh;
if ((mi_y_p + bh) >= height_p) ref_h = height_p - mi_y_p;
#endif // CONFIG_BAWP_ACROSS_SCALES_FIX
#if CONFIG_BAWP_ACROSS_SCALES_FIX
if ((mi_x_p + x_off_p - scaled_x_gen(BAWP_REF_LINES, sf)) < 0 ||
(mi_y_p + y_off_p - scaled_y_gen(BAWP_REF_LINES, sf)) < 0 || ref_w <= 0 ||
ref_h <= 0 ||
#else // CONFIG_BAWP_ACROSS_SCALES_FIX
if ((mi_x_p + x_off_p - BAWP_REF_LINES) < 0 ||
(mi_y_p + y_off_p - BAWP_REF_LINES) < 0 ||
#endif // CONFIG_BAWP_ACROSS_SCALES_FIX
(mi_x_p + ref_w + x_off_p) >= width_p ||
(mi_y_p + ref_h + y_off_p) >= height_p) {
mbmi->bawp_alpha[plane][ref] = 1 << shift;
mbmi->bawp_beta[plane][ref] = -(1 << shift);
} else {
uint16_t *recon_buf = xd->plane[plane].dst.buf;
int recon_stride = xd->plane[plane].dst.stride;
if (dst_orig != NULL) {
recon_buf = dst_orig->plane[plane];
recon_stride = dst_orig->stride[plane];
}
uint16_t *recon_top = recon_buf - BAWP_REF_LINES * recon_stride;
uint16_t *recon_left = recon_buf - BAWP_REF_LINES;
// the picture boundary limitation to be checked.
#if CONFIG_BAWP_ACROSS_SCALES_FIX
int ref_stride = pd->pre[ref].stride;
uint16_t *ref_buf = pd->pre[ref].buf + y_off_p * ref_stride + x_off_p;
if (sf->x_scale_fp != REF_NO_SCALE || sf->y_scale_fp != REF_NO_SCALE) {
const int mi_x_p_unscaled = mi_x >> inter_pred_params->subsampling_x;
const int mi_y_p_unscaled = mi_y >> inter_pred_params->subsampling_y;
const int width_p_unscaled =
cm->width >> inter_pred_params->subsampling_x;
const int height_p_unscaled =
cm->height >> inter_pred_params->subsampling_y;
ref_w = bw;
if ((mi_x_p_unscaled + bw) >= width_p_unscaled)
ref_w = width_p_unscaled - mi_x_p_unscaled;
ref_h = bh;
if ((mi_y_p_unscaled + bh) >= height_p_unscaled)
ref_h = height_p_unscaled - mi_y_p_unscaled;
calc_subpel_params_func(&mbmi->mv[ref].as_mv, inter_pred_params, xd, mi_x,
mi_y, ref, 0, mc_buf, &ref_buf, &subpel_params,
&ref_stride);
}
uint16_t *ref_top = ref_buf - ref_stride * scaled_y_gen(BAWP_REF_LINES, sf);
uint16_t *ref_left = ref_buf - scaled_x_gen(BAWP_REF_LINES, sf);
#else // CONFIG_BAWP_ACROSS_SCALES_FIX
const int ref_stride = pd->pre[ref].stride;
uint16_t *ref_buf = pd->pre[ref].buf + y_off_p * ref_stride + x_off_p;
uint16_t *ref_top = ref_buf - BAWP_REF_LINES * ref_stride;
uint16_t *ref_left = ref_buf - BAWP_REF_LINES;
#endif // CONFIG_BAWP_ACROSS_SCALES_FIX
#if CONFIG_EXPLICIT_BAWP
#if CONFIG_BAWP_CHROMA
if (mbmi->bawp_flag[0] > 1 && plane == 0) {
#else
if (mbmi->bawp_flag > 1) {
#endif // CONFIG_BAWP_CHROMA
const int first_ref_dist =
cm->ref_frame_relative_dist[mbmi->ref_frame[0]];
const int bawp_scale_table[3][EXPLICIT_BAWP_SCALE_CNT] = { { -1, 1 },
{ -2, 2 },
{ -3, 3 } };
const int list_index =
(mbmi->mode == NEARMV) ? 0 : (mbmi->mode == AMVDNEWMV ? 1 : 2);
#if CONFIG_BAWP_CHROMA
int delta_scales = bawp_scale_table[list_index][mbmi->bawp_flag[0] - 2];
#else
int delta_scales = bawp_scale_table[list_index][mbmi->bawp_flag - 2];
#endif // CONFIG_BAWP_CHROMA
const int delta_sign = delta_scales > 0 ? 1 : -1;
const int delta_magtitude = delta_sign * delta_scales;
if (first_ref_dist > 4) delta_scales = delta_sign * (delta_magtitude + 1);
mbmi->bawp_alpha[plane][ref] = 256 + (delta_scales * 16);
derive_explicit_bawp_offsets(xd, recon_top, recon_left, recon_stride,
ref_top, ref_left, ref_stride, ref, plane,
ref_w, ref_h);
} else
#endif // CONFIG_EXPLICIT_BAWP
derive_bawp_parameters(xd, recon_top, recon_left, recon_stride, ref_top,
#if CONFIG_BAWP_ACROSS_SCALES_FIX
ref_left, ref_stride, ref, plane, ref_w, ref_h,
sf);
#else // CONFIG_BAWP_ACROSS_SCALES_FIX
ref_left, ref_stride, ref, plane, ref_w, ref_h);
#endif // CONFIG_BAWP_ACROSS_SCALES_FIX
}
int16_t alpha = mbmi->bawp_alpha[plane][ref];
int32_t beta = mbmi->bawp_beta[plane][ref];
for (int j = 0; j < bh; ++j) {
for (int i = 0; i < bw; ++i) {
dst[j * dst_stride + i] = clip_pixel_highbd(
(dst[j * dst_stride + i] * alpha + beta) >> shift, xd->bd);
}
}
}
#endif // CONFIG_BAWP
// True if the following hold:
// 1. Not intrabc and not build_for_obmc
// 2. At least one dimension is size 4 with subsampling
// 3. If sub-sampled, none of the previous blocks around the sub-sample
// are intrabc or inter-blocks
static bool is_sub8x8_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd,
const MB_MODE_INFO *mi, int plane, int is_intrabc,
int build_for_obmc) {
if (is_intrabc || build_for_obmc) {
return false;
}
if (!(plane &&
(mi->sb_type[PLANE_TYPE_UV] != mi->chroma_ref_info.bsize_base)))
return false;
// For sub8x8 chroma blocks, we may be covering more than one luma block's
// worth of pixels. Thus (mi_row, mi_col) may not be the correct coordinates
// for the top-left corner of the prediction source. So, we need to find the
// correct top-left corner (row_start, col_start).
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int row_start =
plane ? mi->chroma_ref_info.mi_row_chroma_base - mi_row : 0;
const int col_start =
plane ? mi->chroma_ref_info.mi_col_chroma_base - mi_col : 0;
const BLOCK_SIZE plane_bsize =
plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y];
const int plane_mi_height = mi_size_high[plane_bsize];
const int plane_mi_width = mi_size_wide[plane_bsize];
const int mi_rows = cm->mi_params.mi_rows;
const int mi_cols = cm->mi_params.mi_cols;
// Scan through all the blocks in the current chroma unit
for (int row = 0; row < plane_mi_height; ++row) {
const int row_coord = row_start + row;
if (mi_row + row_coord >= mi_rows) break;
for (int col = 0; col < plane_mi_width; ++col) {
const int col_coord = col_start + col;
if (mi_col + col_coord >= mi_cols) break;
// For the blocks at the lower right of the final chroma block, the mis
// are not set up correctly yet, so we do not check them.
if ((row_coord >= 0 && col_coord > 0) ||
(col_coord >= 0 && row_coord > 0)) {
break;
}
const MB_MODE_INFO *this_mbmi =
xd->mi[row_coord * xd->mi_stride + col_coord];
assert(this_mbmi != NULL);
if (!is_inter_block(this_mbmi, xd->tree_type)) return false;
if (is_intrabc_block(this_mbmi, xd->tree_type)) return false;
}
}
return true;
}
static void build_inter_predictors_sub8x8(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi,
int mi_x, int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const bool ss_x = pd->subsampling_x;
const bool ss_y = pd->subsampling_y;
const BLOCK_SIZE plane_bsize =
plane ? mi->chroma_ref_info.bsize_base : mi->sb_type[PLANE_TYPE_Y];
const int plane_mi_height = mi_size_high[plane_bsize];
const int plane_mi_width = mi_size_wide[plane_bsize];
assert(!is_intrabc_block(mi, xd->tree_type));
// For sub8x8 chroma blocks, we may be covering more than one luma block's
// worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
// the top-left corner of the prediction source - the correct top-left corner
// is at (pre_x, pre_y).
const int row_start =
plane ? (mi->chroma_ref_info.mi_row_chroma_base - xd->mi_row) : 0;
const int col_start =
plane ? (mi->chroma_ref_info.mi_col_chroma_base - xd->mi_col) : 0;
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
const int mi_stride = xd->mi_stride;
const int mi_rows = cm->mi_params.mi_rows;
const int mi_cols = cm->mi_params.mi_cols;
const int mb_to_top_edge_start = xd->mb_to_top_edge;
const int mb_to_left_edge_start = xd->mb_to_left_edge;
const int mb_to_bottom_edge_start = xd->mb_to_bottom_edge;
const int mb_to_right_edge_start = xd->mb_to_right_edge;
// Row progress keeps track of which mi block in the row has been set.
SUB_8_BITMASK_T row_progress[MAX_MI_LUMA_SIZE_FOR_SUB_8] = { 0 };
assert(plane_mi_height <= MAX_MI_LUMA_SIZE_FOR_SUB_8);
assert(plane_mi_width <= MAX_MI_LUMA_SIZE_FOR_SUB_8);
assert(MAX_MI_LUMA_SIZE_FOR_SUB_8 == SUB_8_BITMASK_SIZE);
for (int mi_row = 0; mi_row < plane_mi_height; mi_row++) {
if (xd->mi_row + row_start + mi_row >= mi_rows) break;
for (int mi_col = 0; mi_col < plane_mi_width; mi_col++) {
if (xd->mi_col + col_start + mi_col >= mi_cols) break;
const SUB_8_BITMASK_T check_flag = 1 << (SUB_8_BITMASK_SIZE - 1 - mi_col);
if (row_progress[mi_row] & check_flag) {
continue;
}
const MB_MODE_INFO *this_mbmi =
xd->mi[(row_start + mi_row) * mi_stride + (col_start + mi_col)];
assert(this_mbmi != NULL);
const BLOCK_SIZE bsize = this_mbmi->sb_type[PLANE_TYPE_Y];
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
int row = row_start + mi_row + xd->mi_row;
int col = col_start + mi_col + xd->mi_col;
xd->mb_to_top_edge = -GET_MV_SUBPEL(row * MI_SIZE);
xd->mb_to_bottom_edge =
GET_MV_SUBPEL((cm->mi_params.mi_rows - mi_height - row) * MI_SIZE);
xd->mb_to_left_edge = -GET_MV_SUBPEL((col * MI_SIZE));
xd->mb_to_right_edge =
GET_MV_SUBPEL((cm->mi_params.mi_cols - mi_width - col) * MI_SIZE);
// The flag here is a block of mi_width many 1s offset by the mi_col.
// For example, if the current mi_col is 2, and the mi_width is 2, then
// the flag will be 00110000. We or this with row_progress to update the
// blocks that have been coded.
// Note that because we are always coding in a causal order, we could
// technically simplify the bitwise operation, and use the flag 11110000
// in the above example instead. However, we are not taking this approach
// here to keep the logic simpler.
const SUB_8_BITMASK_T set_flag =
((SUB_8_BITMASK_ON << (SUB_8_BITMASK_SIZE - mi_width)) &
SUB_8_BITMASK_ON) >>
mi_col;
for (int mi_row_offset = 0; mi_row_offset < mi_height; mi_row_offset++) {
row_progress[mi_row + mi_row_offset] |= set_flag;
}
assert(is_inter_block(this_mbmi, xd->tree_type));
const int chroma_width = block_size_wide[bsize] >> ss_x;
const int chroma_height = block_size_high[bsize] >> ss_y;
const int pixel_row = (MI_SIZE * mi_row >> ss_y);
const int pixel_col = (MI_SIZE * mi_col >> ss_x);
#if CONFIG_EXT_RECUR_PARTITIONS
// TODO(yuec): enabling compound prediction in none sub8x8 mbs in the
// group
bool is_compound = 0;
#else
bool is_compound = has_second_ref(this_mbmi);
#endif // CONFIG_EXT_RECUR_PARTITIONS
struct buf_2d *const dst_buf = &pd->dst;
uint16_t *dst = dst_buf->buf + dst_buf->stride * pixel_row + pixel_col;
int ref = 0;
const RefCntBuffer *ref_buf =
get_ref_frame_buf(cm, this_mbmi->ref_frame[ref]);
const struct scale_factors *ref_scale_factors =
get_ref_scale_factors_const(cm, this_mbmi->ref_frame[ref]);
const struct scale_factors *const sf = ref_scale_factors;
const struct buf_2d pre_buf = {
NULL,
(plane == 1) ? ref_buf->buf.u_buffer : ref_buf->buf.v_buffer,
ref_buf->buf.uv_crop_width,
ref_buf->buf.uv_crop_height,
ref_buf->buf.uv_stride,
};
const MV mv = this_mbmi->mv[ref].as_mv;
InterPredParams inter_pred_params;
av1_init_inter_params(
&inter_pred_params, chroma_width, chroma_height, pre_y + pixel_row,
pre_x + pixel_col, pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, &pre_buf, this_mbmi->interp_fltr);
inter_pred_params.conv_params =
get_conv_params_no_round(ref, plane, NULL, 0, is_compound, xd->bd);
#if CONFIG_COMPOUND_4XN
if (is_thin_4xn_nx4_block(bsize) && has_second_ref(this_mbmi)) {
assert(this_mbmi->interinter_comp.type != COMPOUND_DIFFWTD);
}
#endif // CONFIG_COMPOUND_4XN
av1_build_one_inter_predictor(
dst, dst_buf->stride, &mv, &inter_pred_params, xd, mi_x + pixel_col,
mi_y + pixel_row, ref, mc_buf, calc_subpel_params_func);
}
}
xd->mb_to_top_edge = mb_to_top_edge_start;
xd->mb_to_bottom_edge = mb_to_bottom_edge_start;
xd->mb_to_left_edge = mb_to_left_edge_start;
xd->mb_to_right_edge = mb_to_right_edge_start;
}
#if CONFIG_REFINEMV
// Padding if the pixel position falls outside of the defined reference area
static void refinemv_highbd_pad_mc_border(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int x0,
int y0, int b_w, int b_h,
const ReferenceArea *ref_area) {
// Get a pointer to the start of the real data for this row.
const uint16_t *ref_row = src - x0 - y0 * src_stride;
if (y0 >= ref_area->pad_block.y1)
ref_row += (ref_area->pad_block.y1 - 1) * src_stride;
else if (y0 >= ref_area->pad_block.y0)
ref_row += y0 * src_stride;
else
ref_row += ref_area->pad_block.y0 * src_stride;
do {
int right = 0, copy;
int left = x0 < ref_area->pad_block.x0 ? ref_area->pad_block.x0 - x0 : 0;
if (left > b_w) left = b_w;
if (x0 + b_w > ref_area->pad_block.x1)
right = x0 + b_w - ref_area->pad_block.x1;
if (right > b_w) right = b_w;
copy = b_w - left - right;
if (left) aom_memset16(dst, ref_row[ref_area->pad_block.x0], left);
if (copy) memcpy(dst + left, ref_row + x0 + left, copy * sizeof(uint16_t));
if (right)
aom_memset16(dst + left + copy, ref_row[ref_area->pad_block.x1 - 1],
right);
dst += dst_stride;
++y0;
if (y0 > ref_area->pad_block.y0 && y0 < ref_area->pad_block.y1)
ref_row += src_stride;
} while (--b_h);
}
// check if padding is required during motion compensation
// return 1 means reference pixel is outside of the reference range and padding
// is required return 0 means no padding.
int update_extend_mc_border_params(const struct scale_factors *const sf,
struct buf_2d *const pre_buf, MV32 scaled_mv,
PadBlock *block, int subpel_x_mv,
int subpel_y_mv, int do_warp, int is_intrabc,
int *x_pad, int *y_pad,
const ReferenceArea *ref_area) {
// Get reference width and height.
int frame_width = pre_buf->width;
int frame_height = pre_buf->height;
// Do border extension if there is motion or
// width/height is not a multiple of 8 pixels.
// Extension is needed in optical flow refinement to obtain MV offsets
(void)scaled_mv;
if (!is_intrabc && !do_warp) {
if (subpel_x_mv || (sf->x_step_q4 != SUBPEL_SHIFTS)) {
block->x0 -= AOM_INTERP_EXTEND - 1;
block->x1 += AOM_INTERP_EXTEND;
*x_pad = 1;
}
if (subpel_y_mv || (sf->y_step_q4 != SUBPEL_SHIFTS)) {
block->y0 -= AOM_INTERP_EXTEND - 1;
block->y1 += AOM_INTERP_EXTEND;
*y_pad = 1;
}
// Skip border extension if block is inside the frame.
if (block->x0 < 0 || block->x1 > frame_width - 1 || block->y0 < 0 ||
block->y1 > frame_height - 1) {
return 1;
}
if (ref_area) {
// Skip border extension if block is in the reference area.
if (block->x0 < ref_area->pad_block.x0 ||
block->x1 > ref_area->pad_block.x1 ||
block->y0 < ref_area->pad_block.y0 ||
block->y1 > ref_area->pad_block.y1) {
return 1;
}
}
}
return 0;
};
// perform padding of the motion compensated block if requires.
// Padding is performed if the motion compensated block is partially out of the
// reference area.
static void refinemv_extend_mc_border(
const struct scale_factors *const sf, struct buf_2d *const pre_buf,
MV32 scaled_mv, PadBlock block, int subpel_x_mv, int subpel_y_mv,
int do_warp, int is_intrabc, uint16_t *paded_ref_buf,
int paded_ref_buf_stride, uint16_t **pre, int *src_stride,
const ReferenceArea *ref_area) {
int x_pad = 0, y_pad = 0;
if (update_extend_mc_border_params(sf, pre_buf, scaled_mv, &block,
subpel_x_mv, subpel_y_mv, do_warp,
is_intrabc, &x_pad, &y_pad, ref_area)) {
// printf(" Out of border \n");
// Get reference block pointer.
const uint16_t *const buf_ptr =
pre_buf->buf0 + block.y0 * pre_buf->stride + block.x0;
int buf_stride = pre_buf->stride;
const int b_w = block.x1 - block.x0;
const int b_h = block.y1 - block.y0;
refinemv_highbd_pad_mc_border(buf_ptr, buf_stride, paded_ref_buf,
paded_ref_buf_stride, block.x0, block.y0, b_w,
b_h, ref_area);
*src_stride = paded_ref_buf_stride;
*pre = paded_ref_buf +
y_pad * (AOM_INTERP_EXTEND - 1) * paded_ref_buf_stride +
x_pad * (AOM_INTERP_EXTEND - 1);
}
}
void dec_calc_subpel_params(const MV *const src_mv,
InterPredParams *const inter_pred_params,
const MACROBLOCKD *const xd, int mi_x, int mi_y,
uint16_t **pre, SubpelParams *subpel_params,
int *src_stride, PadBlock *block,
int use_optflow_refinement, MV32 *scaled_mv,
int *subpel_x_mv, int *subpel_y_mv) {
const struct scale_factors *sf = inter_pred_params->scale_factors;
struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf;
#if CONFIG_REFINEMV
const int bw = inter_pred_params->original_pu_width;
const int bh = inter_pred_params->original_pu_height;
#else
// Use original block size to clamp MV and to extend block boundary
const int bw = use_optflow_refinement ? inter_pred_params->orig_block_width
: inter_pred_params->block_width;
const int bh = use_optflow_refinement ? inter_pred_params->orig_block_height
: inter_pred_params->block_height;
#endif // CONFIG_REFINEMV
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int ssx = inter_pred_params->subsampling_x;
int ssy = inter_pred_params->subsampling_y;
int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
if (use_optflow_refinement) {
orig_pos_y += ROUND_POWER_OF_TWO_SIGNED(src_mv->row * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssy);
orig_pos_x += ROUND_POWER_OF_TWO_SIGNED(src_mv->col * (1 << SUBPEL_BITS),
MV_REFINE_PREC_BITS + ssx);
} else {
orig_pos_y += src_mv->row * (1 << (1 - ssy));
orig_pos_x += src_mv->col * (1 << (1 - ssx));
}
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params->xs = sf->x_step_q4;
subpel_params->ys = sf->y_step_q4;
// Get reference block top left coordinate.
block->x0 = pos_x >> SCALE_SUBPEL_BITS;
block->y0 = pos_y >> SCALE_SUBPEL_BITS;
// Get reference block bottom right coordinate.
block->x1 =
((pos_x + (inter_pred_params->block_width - 1) * subpel_params->xs) >>
SCALE_SUBPEL_BITS) +
1;
block->y1 =
((pos_y + (inter_pred_params->block_height - 1) * subpel_params->ys) >>
SCALE_SUBPEL_BITS) +
1;
MV temp_mv;
temp_mv = clamp_mv_to_umv_border_sb(
xd, src_mv, bw, bh, use_optflow_refinement,
inter_pred_params->subsampling_x, inter_pred_params->subsampling_y);
*scaled_mv = av1_scale_mv(&temp_mv, mi_x, mi_y, sf);
scaled_mv->row += SCALE_EXTRA_OFF;
scaled_mv->col += SCALE_EXTRA_OFF;
*subpel_x_mv = scaled_mv->col & SCALE_SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SCALE_SUBPEL_MASK;
} else {
// Get block position in current frame.
int pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
int pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, src_mv, bw, bh, use_optflow_refinement,
inter_pred_params->subsampling_x, inter_pred_params->subsampling_y);
subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
// Get reference block top left coordinate.
pos_x += mv_q4.col;
pos_y += mv_q4.row;
block->x0 = pos_x >> SUBPEL_BITS;
block->y0 = pos_y >> SUBPEL_BITS;
// Get reference block bottom right coordinate.
block->x1 =
(pos_x >> SUBPEL_BITS) + (inter_pred_params->block_width - 1) + 1;
block->y1 =
(pos_y >> SUBPEL_BITS) + (inter_pred_params->block_height - 1) + 1;
scaled_mv->row = mv_q4.row;
scaled_mv->col = mv_q4.col;
*subpel_x_mv = scaled_mv->col & SUBPEL_MASK;
*subpel_y_mv = scaled_mv->row & SUBPEL_MASK;
}
*pre = pre_buf->buf0 + block->y0 * pre_buf->stride + block->x0;
*src_stride = pre_buf->stride;
#if CONFIG_D071_IMP_MSK_BLD
if (inter_pred_params->border_data.enable_bacp) {
subpel_params->x0 = block->x0;
subpel_params->x1 = block->x1;
subpel_params->y0 = block->y0;
subpel_params->y1 = block->y1;
}
#endif // CONFIG_D071_IMP_MSK_BLD
}
void common_calc_subpel_params_and_extend(
const MV *const src_mv, InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y, int ref,
int use_optflow_refinement, uint16_t **mc_buf, uint16_t **pre,
SubpelParams *subpel_params, int *src_stride) {
(void)ref;
(void)mc_buf;
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
assert(inter_pred_params->use_ref_padding);
dec_calc_subpel_params(
src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride,
&block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv);
// printf(" Use ref padding \n");
const int paded_ref_buf_stride =
inter_pred_params->ref_area->paded_ref_buf_stride;
refinemv_extend_mc_border(
inter_pred_params->scale_factors, &inter_pred_params->ref_frame_buf,
scaled_mv, block, subpel_x_mv, subpel_y_mv,
inter_pred_params->mode == WARP_PRED, inter_pred_params->is_intrabc,
&inter_pred_params->ref_area->paded_ref_buf[0], paded_ref_buf_stride, pre,
src_stride, inter_pred_params->ref_area);
}
static void get_ref_area_info(const MV *const src_mv,
InterPredParams *const inter_pred_params,
MACROBLOCKD *const xd, int mi_x, int mi_y,
int use_optflow_refinement, uint16_t **pre,
SubpelParams *subpel_params, int *src_stride,
ReferenceArea *ref_area) {
PadBlock block;
MV32 scaled_mv;
int subpel_x_mv, subpel_y_mv;
dec_calc_subpel_params(
src_mv, inter_pred_params, xd, mi_x, mi_y, pre, subpel_params, src_stride,
&block, use_optflow_refinement, &scaled_mv, &subpel_x_mv, &subpel_y_mv);
struct buf_2d *const pre_buf = &inter_pred_params->ref_frame_buf;
int frame_height = pre_buf->height;
int frame_width = pre_buf->width;
block.x0 -= REF_LEFT_BORDER;
block.x1 += REF_RIGHT_BORDER;
block.y0 -= REF_TOP_BORDER;
block.y1 += REF_BOTTOM_BORDER;
ref_area->pad_block.x0 = CLIP(block.x0, 0, frame_width - 1);
ref_area->pad_block.y0 = CLIP(block.y0, 0, frame_height - 1);
ref_area->pad_block.x1 = CLIP(block.x1, 1, frame_width);
ref_area->pad_block.y1 = CLIP(block.y1, 1, frame_height);
}
void av1_get_reference_area_with_padding(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, MB_MODE_INFO *mi,
const MV mv[2], int bw, int bh,
int mi_x, int mi_y,
ReferenceArea ref_area[2],
int pu_width, int pu_height) {
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
assert(IMPLIES(!is_tip, has_second_ref(mi)));
assert(!is_intrabc_block(mi, xd->tree_type));
struct macroblockd_plane *const pd = &xd->plane[plane];
int row_start = 0;
int col_start = 0;
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
const int pre_x = ((mi_x + MI_SIZE * col_start) >> pd->subsampling_x);
const int pre_y = ((mi_y + MI_SIZE * row_start) >> pd->subsampling_y);
for (int ref = 0; ref < 2; ++ref) {
const struct scale_factors *const sf =
is_tip ? cm->tip_ref.ref_scale_factor[ref]
: xd->block_ref_scale_factors[ref];
const struct buf_2d *const pre_buf = &pd->pre[ref];
// initialize the reference buffer
ref_area[ref].pad_block.x0 = 0;
ref_area[ref].pad_block.y0 = 0;
ref_area[ref].pad_block.x1 = cm->width;
ref_area[ref].pad_block.y1 = cm->height;
ref_area[ref].paded_ref_buf_stride = REF_BUFFER_WIDTH;
InterPredParams inter_pred_params;
av1_init_inter_params(&inter_pred_params, bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
inter_pred_params.original_pu_width = pu_width;
inter_pred_params.original_pu_height = pu_height;
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
assert(!inter_pred_params.use_ref_padding);
const MV *src_mv = ref == 0 ? &mv[0] : &mv[1];
get_ref_area_info(src_mv, &inter_pred_params, xd, mi_x, mi_y, 0, &src,
&subpel_params, &src_stride, &ref_area[ref]);
}
}
int av1_refinemv_build_predictors_and_get_sad(
MACROBLOCKD *xd, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst_ref0,
uint16_t *dst_ref1, MV mv0, MV mv1, InterPredParams *inter_pred_params) {
for (int ref = 0; ref < 2; ref++) {
SubpelParams subpel_params;
uint16_t *src;
int src_stride;
uint16_t *dst_ref = ref == 0 ? dst_ref0 : dst_ref1;
MV *src_mv = ref == 0 ? &mv0 : &mv1;
#if CONFIG_SUBBLK_REF_EXT
src_mv->row -= 8 * SUBBLK_REF_EXT_LINES;
src_mv->col -= 8 * SUBBLK_REF_EXT_LINES;
#endif // CONFIG_SUBBLK_REF_EXT
calc_subpel_params_func(src_mv, &inter_pred_params[ref], xd, mi_x, mi_y,
ref, 0, mc_buf, &src, &subpel_params, &src_stride);
assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE ||
inter_pred_params[ref].comp_mode == UNIFORM_COMP);
av1_make_inter_predictor(src, src_stride, dst_ref, bw,
&inter_pred_params[ref], &subpel_params);
}
return get_refinemv_sad(dst_ref0, dst_ref1, bw, bh, xd->bd);
}
void apply_mv_refinement(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y,
uint16_t **mc_buf, const MV mv[2],
CalcSubpelParamsFunc calc_subpel_params_func,
int pre_x, int pre_y, uint16_t *dst_ref0,
uint16_t *dst_ref1, MV *best_mv_ref, int pu_width,
int pu_height) {
// initialize basemv as best MV
best_mv_ref[0] = mv[0];
best_mv_ref[1] = mv[1];
#if CONFIG_SUBBLK_REF_EXT
bw += 2 * SUBBLK_REF_EXT_LINES;
bh += 2 * SUBBLK_REF_EXT_LINES;
#endif // CONFIG_SUBBLK_REF_EXT
const MV center_mvs[2] = { best_mv_ref[0], best_mv_ref[1] };
assert(mi->refinemv_flag < REFINEMV_NUM_MODES);
assert(cm->seq_params.enable_refinemv);
// Generate MV independent inter_pred_params for both references
InterPredParams inter_pred_params[2];
for (int ref = 0; ref < 2; ref++) {
const int is_compound = 0;
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
const int is_tip = mi->ref_frame[0] == TIP_FRAME;
assert(is_intrabc == 0);
assert(plane == 0);
struct macroblockd_plane *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
const struct scale_factors *const sf =
is_tip ? cm->tip_ref.ref_scale_factor[ref]
: (is_intrabc ? &cm->sf_identity
: xd->block_ref_scale_factors[ref]);
const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
av1_init_inter_params(&inter_pred_params[ref], bw, bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, BILINEAR);
#if CONFIG_REFINEMV
inter_pred_params[ref].original_pu_width = pu_width;
inter_pred_params[ref].original_pu_height = pu_height;
#endif // CONFIG_REFINEMV
inter_pred_params[ref].conv_params = get_conv_params_no_round(
0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
assert(inter_pred_params[ref].mode == TRANSLATION_PRED);
assert(inter_pred_params[ref].comp_mode == UNIFORM_SINGLE);
assert(inter_pred_params[ref].conv_params.is_compound == 0);
assert(inter_pred_params[ref].conv_params.do_average == 0);
assert(mi->interinter_comp.type == COMPOUND_AVERAGE);
}
#if !SINGLE_STEP_SEARCH
// Search integer-delta values
int search_range = 2;
#endif
int switchable_refinemv_flags =
(mi->ref_frame[0] != TIP_FRAME) && switchable_refinemv_flag(cm, mi);
// If we signal the refinemv_flags we do not select sad0
// Set sad0 a large value so that it does not be selected
int sad0 = switchable_refinemv_flags
? (INT32_MAX >> 1)
: av1_refinemv_build_predictors_and_get_sad(
xd, bw, bh, mi_x, mi_y, mc_buf, calc_subpel_params_func,
dst_ref0, dst_ref1, center_mvs[0], center_mvs[1],
inter_pred_params);
#if !CONFIG_SUBBLK_REF_EXT
assert(IMPLIES(mi->ref_frame[0] == TIP_FRAME, bw == 8 && bh == 8));
#endif // !CONFIG_SUBBLK_REF_EXT
if (mi->ref_frame[0] == TIP_FRAME) {
const int tip_sad_thres = bw * bh;
if (!switchable_refinemv_flags && sad0 < tip_sad_thres) return;
}
if (!switchable_refinemv_flags) {
int shift = 3;
int th = (bw * bh) << 1;
sad0 -= (sad0 >> shift);
assert(sad0 >= 0);
if (sad0 < th) return;
}
int min_sad = sad0;
MV refined_mv0, refined_mv1;
refined_mv0 = center_mvs[0];
refined_mv1 = center_mvs[1];
int et_sad_th = (bw * bh) << 1;
#if !SINGLE_STEP_SEARCH
uint8_t already_searched[5][5];
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 5; j++) {
already_searched[i][j] = 0;
}
}
#endif
MV best_offset = { 0, 0 };
#if SINGLE_STEP_SEARCH
const int num_neighbors = 24;
static const MV neighbors[24] = {
{ -1, -1 }, { -1, 0 }, { -1, 1 }, { 0, 1 }, { 1, 1 }, { 1, 0 },
{ 1, -1 }, { 0, -1 }, { 0, -2 }, { -1, -2 }, { -2, -2 }, { -2, -1 },
{ -2, 0 }, { -2, 1 }, { -2, 2 }, { -1, 2 }, { 0, 2 }, { 1, 2 },
{ 2, 2 }, { 2, 1 }, { 2, 0 }, { 2, -1 }, { 2, -2 }, { 1, -2 }
};
#else
const int num_neighbors = 8;
// Apply two-step full pel refinement
static const MV neighbors[8] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 },
{ 1, -1 }, { 1, 1 }, { -1, -1 }, { -1, 1 } };
const int num_iterations = search_range;
already_searched[0 + search_range][0 + search_range] =
1; // center point is already searched before
for (int ite = 0; ite < num_iterations; ++ite) {
#endif // SINGLE_STEP_SEARCH
int best_idx = -1;
for (int idx = 0; idx < num_neighbors; ++idx) {
MV offset = { best_offset.row + neighbors[idx].row,
best_offset.col + neighbors[idx].col };
#if !SINGLE_STEP_SEARCH
if (already_searched[offset.row + search_range][offset.col + search_range])
continue;
#endif
refined_mv0.row = center_mvs[0].row + 8 * offset.row;
refined_mv0.col = center_mvs[0].col + 8 * offset.col;
refined_mv1.row = center_mvs[1].row - 8 * offset.row;
refined_mv1.col = center_mvs[1].col - 8 * offset.col;
int this_sad = av1_refinemv_build_predictors_and_get_sad(
xd, bw, bh, mi_x, mi_y, mc_buf, calc_subpel_params_func, dst_ref0,
dst_ref1, refined_mv0, refined_mv1, inter_pred_params);
#if !SINGLE_STEP_SEARCH
already_searched[offset.row + search_range][offset.col + search_range] = 1;
#endif
if (this_sad < min_sad) {
min_sad = this_sad;
best_idx = idx;
// if the SAD is less than predefined threshold consider this candidate
// as good enough to skip rest of the search.
if (min_sad < et_sad_th) {
best_mv_ref[0] = refined_mv0;
best_mv_ref[1] = refined_mv1;
return;
}
}
}
// if the center is best, skip rest of the search.
if (best_idx == -1) {
best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row;
best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col;
best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row;
best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col;
return;
}
if (best_idx >= 0) {
best_offset.row += neighbors[best_idx].row;
best_offset.col += neighbors[best_idx].col;
}
#if !SINGLE_STEP_SEARCH
}
#endif
best_mv_ref[0].row = center_mvs[0].row + 8 * best_offset.row;
best_mv_ref[0].col = center_mvs[0].col + 8 * best_offset.col;
best_mv_ref[1].row = center_mvs[1].row - 8 * best_offset.row;
best_mv_ref[1].col = center_mvs[1].col - 8 * best_offset.col;
assert(min_sad <= sad0);
assert(IMPLIES(switchable_refinemv_flags,
!(best_mv_ref[0].row == center_mvs[0].row &&
best_mv_ref[0].col == center_mvs[0].col &&
best_mv_ref[1].row == center_mvs[1].row &&
best_mv_ref[1].col == center_mvs[1].col)));
}
// This function consolidates the refinemv enabling check for both TIP ref mode
// blocks and non-TIP ref mode blocks.
static AOM_INLINE int is_sub_block_refinemv_enabled(const AV1_COMMON *cm,
const MB_MODE_INFO *mi,
int build_for_obmc,
int plane,
int tip_ref_frame) {
if (tip_ref_frame) {
return (plane == 0);
} else {
int apply_sub_block_refinemv =
mi->refinemv_flag && (!build_for_obmc) &&
#if CONFIG_AFFINE_REFINEMENT
(is_damr_allowed_with_refinemv(mi->mode) ||
mi->comp_refine_type < COMP_AFFINE_REFINE_START) &&
#endif // CONFIG_AFFINE_REFINEMENT
!is_tip_ref_frame(mi->ref_frame[0]);
#if CONFIG_AFFINE_REFINEMENT
if (apply_sub_block_refinemv && default_refinemv_modes(cm, mi))
#else
if (apply_sub_block_refinemv && default_refinemv_modes(mi))
#endif // CONFIG_AFFINE_REFINEMENT
apply_sub_block_refinemv &=
(mi->comp_group_idx == 0 &&
mi->interinter_comp.type == COMPOUND_AVERAGE);
return apply_sub_block_refinemv;
}
}
// check if the refinemv mode is allowed for a given block
static INLINE int is_mv_refine_allowed(const AV1_COMMON *cm,
const MB_MODE_INFO *mbmi, int plane) {
if (plane != 0) return 0;
if (is_tip_ref_frame(mbmi->ref_frame[0]))
return is_refinemv_allowed_tip_blocks(cm, mbmi);
return 1;
}
// Check if the optical flow MV refinement is enabled for a given block.
static AOM_INLINE int is_optflow_refinement_enabled(const AV1_COMMON *cm,
#if CONFIG_COMPOUND_4XN
const MACROBLOCKD *xd,
#endif // CONFIG_COMPOUND_4XN
const MB_MODE_INFO *mi,
int plane,
int tip_ref_frame) {
if (tip_ref_frame) {
return (opfl_allowed_for_cur_refs(cm,
#if CONFIG_COMPOUND_4XN
xd,
#endif // CONFIG_COMPOUND_4XN
mi) &&
plane == 0);
} else {
return (opfl_allowed_for_cur_block(cm,
#if CONFIG_COMPOUND_4XN
xd,
#endif // CONFIG_COMPOUND_4XN
mi));
}
}
// Calculate the SAD of 2 compound prediction blocks and use it to decide
// whether or not to skip the optical flow MV refinement for the TIP block.
static AOM_INLINE int skip_opfl_refine_with_tip(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, int bw, int bh,
int pu_width, int pu_height, int mi_x, int mi_y, uint16_t **mc_buf,
MV best_mv_ref[2], CalcSubpelParamsFunc calc_subpel_params_func,
uint16_t *dst0, uint16_t *dst1) {
MB_MODE_INFO mbmi;
memset(&mbmi, 0, sizeof(mbmi));
mbmi.mv[0].as_mv = best_mv_ref[0];
mbmi.mv[1].as_mv = best_mv_ref[1];
mbmi.ref_frame[0] = TIP_FRAME;
mbmi.ref_frame[1] = NONE_FRAME;
#if CONFIG_TIP_DIRECT_FRAME_MV
mbmi.interp_fltr = cm->tip_interp_filter;
#else
mbmi.interp_fltr = EIGHTTAP_REGULAR;
#endif // CONFIG_TIP_DIRECT_FRAME_MV
mbmi.use_intrabc[xd->tree_type == CHROMA_PART] = 0;
mbmi.use_intrabc[0] = 0;
mbmi.mode = NEWMV;
mbmi.motion_mode = SIMPLE_TRANSLATION;
mbmi.sb_type[PLANE_TYPE_Y] = BLOCK_8X8;
mbmi.interinter_comp.type = COMPOUND_AVERAGE;
mbmi.max_mv_precision = MV_PRECISION_ONE_EIGHTH_PEL;
mbmi.pb_mv_precision = MV_PRECISION_ONE_EIGHTH_PEL;
#if CONFIG_AFFINE_REFINEMENT
mbmi.comp_refine_type = COMP_REFINE_SUBBLK2P;
#endif
#if CONFIG_MORPH_PRED
mbmi.morph_pred = 0;
#endif // CONFIG_MORPH_PRED
InterPredParams params0, params1;
av1_opfl_build_inter_predictor(cm, xd, plane, &mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params0, calc_subpel_params_func, 0,
dst0
#if CONFIG_REFINEMV
,
&best_mv_ref[0], pu_width, pu_height
#endif // CONFIG_REFINEMV
);
av1_opfl_build_inter_predictor(cm, xd, plane, &mbmi, bw, bh, mi_x, mi_y,
mc_buf, &params1, calc_subpel_params_func, 1,
dst1
#if CONFIG_REFINEMV
,
&best_mv_ref[1], pu_width, pu_height
#endif // CONFIG_REFINEMV
);
const int bd = cm->seq_params.bit_depth;
const unsigned int sad_thres =
cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT ? 15 : 6;
const unsigned int sad = get_highbd_sad(dst0, bw, dst1, bw, bd, 8, 8);
return (sad < sad_thres);
}
static void build_inter_predictors_8x8_and_bigger_refinemv(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi,
int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
MV mi_mv[2], CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst,
int dst_stride,
#if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
int subblk_start_x, int subblk_start_y,
#endif // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
int pu_width, int pu_height, uint16_t *dst0_16_refinemv,
uint16_t *dst1_16_refinemv, int row_start, int col_start, MV *sb_refined_mv,
MV *chroma_refined_mv, int build_for_refine_mv_only,
ReferenceArea ref_area[2], int_mv *mv_refined) {
const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]);
const int is_compound = has_second_ref(mi) || tip_ref_frame;
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
assert(!is_intrabc_block(mi, xd->tree_type));
assert(is_compound);
#if CONFIG_BAWP_CHROMA
assert(!mi->bawp_flag[0]);
#else
assert(!mi->bawp_flag);
#endif // CONFIG_BAWP_CHROMA
assert(!build_for_obmc);
assert(!is_masked_compound_type(mi->interinter_comp.type));
assert(mi->cwp_idx == CWP_EQUAL);
int is_global[2] = { 0, 0 };
if (!tip_ref_frame) {
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const WarpedMotionParams *const wm =
&xd->global_motion[mi->ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, wm->wmtype);
}
}
assert(!is_global[0] && !is_global[1]);
const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y;
int apply_refinemv = is_mv_refine_allowed(cm, mi, plane);
MV best_mv_ref[2] = { mi_mv[0], mi_mv[1] };
if (apply_refinemv) {
uint16_t *dst_ref0 = NULL, *dst_ref1 = NULL;
dst_ref0 = &dst0_16_refinemv[0];
dst_ref1 = &dst1_16_refinemv[0];
apply_mv_refinement(cm, xd, plane, mi, bw, bh, mi_x, mi_y, mc_buf, mi_mv,
calc_subpel_params_func, pre_x, pre_y, dst_ref0,
dst_ref1, best_mv_ref, pu_width, pu_height);
if (sb_refined_mv) {
// store the DMVR refined MV so that chroma can use it
sb_refined_mv[0] = best_mv_ref[0];
sb_refined_mv[1] = best_mv_ref[1];
}
assert(IMPLIES(plane, !build_for_refine_mv_only));
// if build_for_refine_mv_only is non-zero, we build only to get the
// refinemv values The actual prediction values are not necessary
if (build_for_refine_mv_only) {
return;
}
} else if (!tip_ref_frame) {
best_mv_ref[0] = chroma_refined_mv[0];
best_mv_ref[1] = chroma_refined_mv[1];
}
if (tip_ref_frame) {
mv_refined[0].as_mv.row = best_mv_ref[0].row * (1 << (1 - ss_y));
mv_refined[0].as_mv.col = best_mv_ref[0].col * (1 << (1 - ss_x));
mv_refined[1].as_mv.row = best_mv_ref[1].row * (1 << (1 - ss_y));
mv_refined[1].as_mv.col = best_mv_ref[1].col * (1 << (1 - ss_x));
}
int use_optflow_refinement =
is_optflow_refinement_enabled(cm,
#if CONFIG_COMPOUND_4XN
xd,
#endif // CONFIG_COMPOUND_4XN
mi, plane, tip_ref_frame);
assert(IMPLIES(use_optflow_refinement,
cm->features.opfl_refine_type != REFINE_NONE));
assert(IMPLIES(use_optflow_refinement, !build_for_obmc));
// Optical flow refinement with masked comp types or with non-sharp
// interpolation filter should only exist in REFINE_ALL.
assert(IMPLIES(
use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE,
cm->features.opfl_refine_type == REFINE_ALL));
assert(IMPLIES(use_optflow_refinement && tip_ref_frame, plane == 0));
int use_4x4 = tip_ref_frame ? 0 : 1;
int n = opfl_get_subblock_size(bw, bh, plane
#if CONFIG_OPTFLOW_ON_TIP
,
use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
);
const int n_blocks = (bw / n) * (bh / n);
// optical flow refined MVs in a subblock (16x16) unit
int_mv mv_refined_sb[4 * 2];
memset(mv_refined_sb, 0, 4 * 2 * sizeof(int_mv));
const int opfl_mv_stride = pu_width / n;
const int opfl_sb_idx =
(subblk_start_y / n) * opfl_mv_stride + subblk_start_x / n;
const int sb_rows = bh / n;
const int sb_cols = bw / n;
#if CONFIG_AFFINE_REFINEMENT
int use_affine_opfl = use_optflow_refinement &&
is_damr_allowed_with_refinemv(mi->mode) &&
mi->comp_refine_type >= COMP_AFFINE_REFINE_START;
WarpedMotionParams wms[2];
wms[0] = wms[1] = default_warp_params;
const int wms_stride = pu_width / bw;
const int sb_idx = (subblk_start_y / bh) * wms_stride + subblk_start_x / bw;
#if AFFINE_CHROMA_REFINE_METHOD > 0
if (use_affine_opfl && plane) {
use_affine_opfl = xd->use_affine_opfl;
memcpy(wms, xd->wm_params_sb + 2 * sb_idx, 2 * sizeof(wms[0]));
// Optical flow refined luma MVs are reused for chroma only when affine
// refinement is applied
for (int i = 0; i < sb_rows; i++) {
for (int j = 0; j < sb_cols; j++) {
int mvidx = opfl_sb_idx + i * opfl_mv_stride + j;
int mvidx_sb = i * sb_cols + j;
mv_refined_sb[2 * mvidx_sb].as_mv = mv_refined[2 * mvidx].as_mv;
mv_refined_sb[2 * mvidx_sb + 1].as_mv = mv_refined[2 * mvidx + 1].as_mv;
}
}
}
#endif
#endif // CONFIG_AFFINE_REFINEMENT
if (use_optflow_refinement && plane == 0) {
// Pointers to hold optical flow MV offsets in a subblock unit.
int vx0_sb[4] = { 0 };
int vx1_sb[4] = { 0 };
int vy0_sb[4] = { 0 };
int vy1_sb[4] = { 0 };
// Pointers to hold gradient and dst buffers.
int16_t *gx0 = xd->opfl_gxy_bufs;
int16_t *gx1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 1);
int16_t *gy0 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 2);
int16_t *gy1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 3);
// Initialize refined mv
const MV mv0 = best_mv_ref[0];
const MV mv1 = best_mv_ref[1];
// Refine MV using optical flow. The final output MV will be in 1/16
// precision.
uint16_t *dst0 = xd->opfl_dst_bufs;
uint16_t *dst1 = xd->opfl_dst_bufs + MAX_SB_SQUARE;
if (tip_ref_frame) {
use_optflow_refinement = !skip_opfl_refine_with_tip(
cm, xd, plane, bw, bh, pu_width, pu_height, mi_x, mi_y, mc_buf,
best_mv_ref, calc_subpel_params_func, dst0, dst1);
}
int do_pred = tip_ref_frame ? 0 : 1;
if (use_optflow_refinement) {
for (int mvi = 0; mvi < n_blocks; mvi++) {
mv_refined_sb[mvi * 2].as_mv = mv0;
mv_refined_sb[mvi * 2 + 1].as_mv = mv1;
}
av1_get_optflow_based_mv(cm, xd, plane, mi, mv_refined_sb, bw, bh, mi_x,
mi_y, mc_buf, calc_subpel_params_func, gx0, gy0,
gx1, gy1,
#if CONFIG_AFFINE_REFINEMENT
use_affine_opfl ? wms : NULL, &use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
vx0_sb, vy0_sb, vx1_sb, vy1_sb, dst0, dst1,
#if CONFIG_OPTFLOW_ON_TIP
use_4x4, do_pred,
#endif // CONFIG_OPTFLOW_ON_TIP
best_mv_ref, pu_width, pu_height);
for (int i = 0; i < sb_rows; i++) {
for (int j = 0; j < sb_cols; j++) {
int mvidx = opfl_sb_idx + i * opfl_mv_stride + j;
int mvidx_sb = i * sb_cols + j;
mv_refined[2 * mvidx].as_mv = mv_refined_sb[2 * mvidx_sb].as_mv;
mv_refined[2 * mvidx + 1].as_mv =
mv_refined_sb[2 * mvidx_sb + 1].as_mv;
// Store subblock MV delta at the prediction block level
xd->opfl_vxy_bufs[mvidx] = vx0_sb[mvidx_sb];
xd->opfl_vxy_bufs[N_OF_OFFSETS * 1 + mvidx] = vx1_sb[mvidx_sb];
xd->opfl_vxy_bufs[N_OF_OFFSETS * 2 + mvidx] = vy0_sb[mvidx_sb];
xd->opfl_vxy_bufs[N_OF_OFFSETS * 3 + mvidx] = vy1_sb[mvidx_sb];
}
}
#if CONFIG_AFFINE_REFINEMENT
xd->use_affine_opfl = use_affine_opfl;
memcpy(xd->wm_params_sb + 2 * sb_idx, wms, 2 * sizeof(wms[0]));
#endif // CONFIG_AFFINE_REFINEMENT
}
}
#if CONFIG_D071_IMP_MSK_BLD
BacpBlockData bacp_block_data[2 * N_OF_OFFSETS];
uint8_t use_bacp = tip_ref_frame ? cm->features.enable_imp_msk_bld
: !build_for_obmc &&
use_border_aware_compound(cm, mi) &&
mi->cwp_idx == CWP_EQUAL &&
cm->features.enable_imp_msk_bld;
#endif // CONFIG_D071_IMP_MSK_BLD
int opfl_sub_bw = OF_BSIZE;
int opfl_sub_bh = OF_BSIZE;
opfl_subblock_size_plane(xd, plane,
#if CONFIG_OPTFLOW_ON_TIP
use_4x4,
#endif // CONFIG_OPTFLOW_ON_TIP
&opfl_sub_bw, &opfl_sub_bh);
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf =
tip_ref_frame ? cm->tip_ref.ref_scale_factor[ref]
: xd->block_ref_scale_factors[ref];
struct buf_2d *const pre_buf = &pd->pre[ref];
const MV mv = best_mv_ref[ref];
const WarpTypesAllowed warp_types = { is_global[ref],
is_warp_mode(mi->motion_mode) };
InterPredParams inter_pred_params;
const int comp_bw = tip_ref_frame ? (bw >> ss_x) : bw;
const int comp_bh = tip_ref_frame ? (bh >> ss_y) : bh;
av1_init_inter_params(&inter_pred_params, comp_bw, comp_bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
#if CONFIG_REFINEMV
const int use_ref_padding = tip_ref_frame ? apply_refinemv : 1;
if (use_ref_padding) {
inter_pred_params.use_ref_padding = 1;
inter_pred_params.ref_area = &ref_area[ref];
}
#endif // CONFIG_REFINEMV
inter_pred_params.original_pu_width = pu_width;
inter_pred_params.original_pu_height = pu_height;
if (is_compound) av1_init_comp_mode(&inter_pred_params);
#if CONFIG_D071_IMP_MSK_BLD
inter_pred_params.border_data.enable_bacp = use_bacp;
inter_pred_params.border_data.bacp_block_data =
&bacp_block_data[0]; // Always point to the first ref
#endif // CONFIG_D071_IMP_MSK_BLD
inter_pred_params.conv_params = get_conv_params_no_round(
ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
if (!build_for_obmc) {
av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);
assert(inter_pred_params.mode != WARP_PRED);
}
#if CONFIG_D071_IMP_MSK_BLD
if (is_compound) {
inter_pred_params.sb_type =
tip_ref_frame ? BLOCK_8X8 : mi->sb_type[PLANE_TYPE_Y];
inter_pred_params.mask_comp = mi->interinter_comp;
}
#endif // CONFIG_D071_IMP_MSK_BLD
#if CONFIG_AFFINE_REFINEMENT
if (use_optflow_refinement && (use_affine_opfl || plane == 0)) {
#else
if (use_optflow_refinement && plane == 0) {
#endif // CONFIG_AFFINE_REFINEMENT
inter_pred_params.interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr,
opfl_sub_bw);
inter_pred_params.interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr,
opfl_sub_bh);
av1_opfl_rebuild_inter_predictor(
dst, dst_stride, plane, mv_refined_sb, xd->opfl_vxy_bufs,
N_OF_OFFSETS, &inter_pred_params, xd, mi_x, mi_y,
#if CONFIG_AFFINE_REFINEMENT
cm, pu_width, mi->comp_refine_type, use_affine_opfl ? wms : NULL,
&mi->mv[ref], use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
ref, mc_buf, calc_subpel_params_func
#if CONFIG_OPTFLOW_ON_TIP
,
use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
);
continue;
}
av1_build_one_inter_predictor(dst, dst_stride, &mv, &inter_pred_params, xd,
mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
}
}
#endif // CONFIG_REFINEMV
static void build_inter_predictors_8x8_and_bigger(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi,
#if CONFIG_BAWP
const BUFFER_SET *dst_orig,
#endif // CONFIG_BAWP
int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
MV mi_mv[2], CalcSubpelParamsFunc calc_subpel_params_func, uint16_t *dst,
int dst_stride, int pu_width, int pu_height,
#if CONFIG_REFINEMV
int build_for_refine_mv_only,
#endif // CONFIG_REFINEMV
bool *ext_warp_used, int_mv *mv_refined) {
#if CONFIG_COMPOUND_4XN
// In case of chroma, even for 4xN and Nx4 blocks, single prediction is used.
int singleref_for_compound =
plane && has_second_ref(mi) &&
is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]);
#endif // CONFIG_COMPOUND_4XN
const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]);
const int is_compound = (
#if CONFIG_COMPOUND_4XN
!singleref_for_compound &&
#endif // CONFIG_COMPOUND_4XN
has_second_ref(mi)) ||
tip_ref_frame;
if (tip_ref_frame) mi->comp_refine_type = COMP_REFINE_SUBBLK2P;
const int is_intrabc = is_intrabc_block(mi, xd->tree_type);
assert(IMPLIES(is_intrabc, !is_compound));
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
#if CONFIG_REFINEMV
assert(IMPLIES(mi->refinemv_flag, !is_intrabc));
assert(IMPLIES(mi->refinemv_flag && !build_for_obmc, is_compound));
assert(IMPLIES(
!build_for_obmc && mi->refinemv_flag && switchable_refinemv_flag(cm, mi),
mi->interinter_comp.type == COMPOUND_AVERAGE));
#if CONFIG_BAWP_CHROMA
assert(IMPLIES(mi->refinemv_flag, mi->bawp_flag[0] == 0));
#else
assert(IMPLIES(mi->refinemv_flag, mi->bawp_flag == 0));
#endif // CONFIG_BAWP_CHROMA
assert(IMPLIES(mi->refinemv_flag, mi->interp_fltr == MULTITAP_SHARP));
assert(IMPLIES(tip_ref_frame,
mi->use_intrabc[0] == 0 && mi->use_intrabc[1] == 0));
assert(IMPLIES(tip_ref_frame, mi->motion_mode == SIMPLE_TRANSLATION));
assert(IMPLIES(tip_ref_frame, mi->interinter_comp.type == COMPOUND_AVERAGE));
#if CONFIG_COMPOUND_4XN
assert(IMPLIES(
mi->refinemv_flag,
!is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART])));
if (is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART]) &&
has_second_ref(mi)) {
assert(mi->interinter_comp.type != COMPOUND_DIFFWTD);
}
#endif // CONFIG_COMPOUND_4XN
if (is_sub_block_refinemv_enabled(cm, mi, build_for_obmc, plane,
tip_ref_frame)) {
assert(IMPLIES(mi->refinemv_flag, mi->cwp_idx == CWP_EQUAL));
assert(IMPLIES(tip_ref_frame, plane == 0));
int refinemv_sb_size_width =
AOMMIN((REFINEMV_SUBBLOCK_WIDTH >> pd->subsampling_x), bw);
int refinemv_sb_size_height =
AOMMIN(REFINEMV_SUBBLOCK_HEIGHT >> pd->subsampling_y, bh);
#if CONFIG_SUBBLK_REF_EXT
uint16_t
dst0_16_refinemv[(REFINEMV_SUBBLOCK_WIDTH + 2 * SUBBLK_REF_EXT_LINES) *
(REFINEMV_SUBBLOCK_HEIGHT + 2 * SUBBLK_REF_EXT_LINES)];
uint16_t
dst1_16_refinemv[(REFINEMV_SUBBLOCK_WIDTH + 2 * SUBBLK_REF_EXT_LINES) *
(REFINEMV_SUBBLOCK_HEIGHT + 2 * SUBBLK_REF_EXT_LINES)];
#else
uint16_t
dst0_16_refinemv[REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT];
uint16_t
dst1_16_refinemv[REFINEMV_SUBBLOCK_WIDTH * REFINEMV_SUBBLOCK_HEIGHT];
#endif // CONFIG_SUBBLK_REF_EXT
ReferenceArea ref_area[2];
#if !CONFIG_SUBBLK_PAD
av1_get_reference_area_with_padding(cm, xd, plane, mi, mi_mv, bw, bh, mi_x,
mi_y, ref_area, pu_width, pu_height);
#endif //! CONFIG_SUBBLK_PAD
CONV_BUF_TYPE *tmp_conv_dst = xd->tmp_conv_dst;
assert(bw % refinemv_sb_size_width == 0);
assert(bh % refinemv_sb_size_height == 0);
for (int h = 0; h < bh; h += refinemv_sb_size_height) {
for (int w = 0; w < bw; w += refinemv_sb_size_width) {
uint16_t *dst_buf = dst + h * dst_stride + w;
xd->tmp_conv_dst = tmp_conv_dst + h * MAX_SB_SIZE + w;
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
int row_start =
plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
int col_start =
plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
MV luma_refined_mv[2] = { { mi->mv[0].as_mv.row, mi->mv[0].as_mv.col },
{ mi->mv[1].as_mv.row,
mi->mv[1].as_mv.col } };
MV chroma_refined_mv[2] = {
{ mi->mv[0].as_mv.row, mi->mv[0].as_mv.col },
{ mi->mv[1].as_mv.row, mi->mv[1].as_mv.col }
};
if (plane != 0) {
int luma_h = (h << pd->subsampling_y);
int luma_w = (w << pd->subsampling_x);
REFINEMV_SUBMB_INFO *refinemv_subinfo =
&xd->refinemv_subinfo[(luma_h >> MI_SIZE_LOG2) * MAX_MIB_SIZE +
(luma_w >> MI_SIZE_LOG2)];
chroma_refined_mv[0] = refinemv_subinfo->refinemv[0].as_mv;
chroma_refined_mv[1] = refinemv_subinfo->refinemv[1].as_mv;
}
#if CONFIG_SUBBLK_PAD
// sub_mi_x, and sub_mi_y are the top-left position of the luma samples
// of the sub-block
const int sub_mi_x = mi_x + w * (1 << pd->subsampling_x);
const int sub_mi_y = mi_y + h * (1 << pd->subsampling_y);
av1_get_reference_area_with_padding(
cm, xd, plane, mi, mi_mv, refinemv_sb_size_width,
refinemv_sb_size_height, sub_mi_x, sub_mi_y, ref_area, pu_width,
pu_height);
#endif // CONFIG_SUBBLK_PAD
// mi_x, and mi_y are the top-left position of the luma samples of the
// sub-block
build_inter_predictors_8x8_and_bigger_refinemv(
cm, xd, plane, mi, build_for_obmc, refinemv_sb_size_width,
refinemv_sb_size_height, mi_x + w * (1 << pd->subsampling_x),
mi_y + h * (1 << pd->subsampling_y), mc_buf, mi_mv,
calc_subpel_params_func, dst_buf, dst_stride,
#if CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
w, h,
#endif // CONFIG_AFFINE_REFINEMENT || CONFIG_REFINED_MVS_IN_TMVP
pu_width, pu_height, dst0_16_refinemv, dst1_16_refinemv, row_start,
col_start, plane == 0 ? luma_refined_mv : NULL, chroma_refined_mv,
build_for_refine_mv_only, ref_area, mv_refined);
if (plane == 0 && !tip_ref_frame) {
REFINEMV_SUBMB_INFO *refinemv_subinfo =
&xd->refinemv_subinfo[(h >> MI_SIZE_LOG2) * MAX_MIB_SIZE +
(w >> MI_SIZE_LOG2)];
fill_subblock_refine_mv(refinemv_subinfo, refinemv_sb_size_width,
refinemv_sb_size_height, luma_refined_mv[0],
luma_refined_mv[1]);
}
}
}
xd->tmp_conv_dst = tmp_conv_dst;
return;
}
#endif // CONFIG_REFINEMV
int is_global[2] = { 0, 0 };
if (!tip_ref_frame) {
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const WarpedMotionParams *const wm =
&xd->global_motion[mi->ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, wm->wmtype);
}
}
int row_start = 0;
int col_start = 0;
if (!build_for_obmc) {
const int mi_row = -xd->mb_to_top_edge >> MI_SUBPEL_SIZE_LOG2;
const int mi_col = -xd->mb_to_left_edge >> MI_SUBPEL_SIZE_LOG2;
row_start = plane ? (mi->chroma_ref_info.mi_row_chroma_base - mi_row) : 0;
col_start = plane ? (mi->chroma_ref_info.mi_col_chroma_base - mi_col) : 0;
}
const int pre_x = (mi_x + MI_SIZE * col_start) >> pd->subsampling_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> pd->subsampling_y;
#if CONFIG_REFINEMV
MV best_mv_ref[2] = { mi_mv[0], mi_mv[1] };
#endif // CONFIG_REFINEMV
if (tip_ref_frame) {
mv_refined[0].as_mv.row = best_mv_ref[0].row * (1 << (1 - ss_y));
mv_refined[0].as_mv.col = best_mv_ref[0].col * (1 << (1 - ss_x));
mv_refined[1].as_mv.row = best_mv_ref[1].row * (1 << (1 - ss_y));
mv_refined[1].as_mv.col = best_mv_ref[1].col * (1 << (1 - ss_x));
}
int use_optflow_refinement =
is_optflow_refinement_enabled(cm,
#if CONFIG_COMPOUND_4XN
xd,
#endif // CONFIG_COMPOUND_4XN
mi, plane, tip_ref_frame);
int use_4x4 = tip_ref_frame ? 0 : 1;
assert(IMPLIES(use_optflow_refinement,
cm->features.opfl_refine_type != REFINE_NONE));
assert(IMPLIES(use_optflow_refinement, !build_for_obmc));
// Optical flow refinement with masked comp types or with non-sharp
// interpolation filter should only exist in REFINE_ALL.
assert(IMPLIES(
use_optflow_refinement && mi->interinter_comp.type != COMPOUND_AVERAGE,
cm->features.opfl_refine_type == REFINE_ALL));
assert(IMPLIES(use_optflow_refinement && tip_ref_frame, plane == 0));
#if CONFIG_COMPOUND_4XN
assert(IMPLIES(
use_optflow_refinement,
!is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART])));
#endif // CONFIG_COMPOUND_4XN
#if CONFIG_AFFINE_REFINEMENT
int use_affine_opfl = mi->comp_refine_type >= COMP_AFFINE_REFINE_START;
#if CONFIG_AFFINE_REFINEMENT_SB
WarpedMotionParams wms[2 * NUM_AFFINE_PARAMS];
for (int i = 0; i < 2 * NUM_AFFINE_PARAMS; i++) wms[i] = default_warp_params;
#if AFFINE_CHROMA_REFINE_METHOD > 0
if (use_optflow_refinement && plane) {
use_affine_opfl = xd->use_affine_opfl;
memcpy(mv_refined, xd->mv_refined, 2 * N_OF_OFFSETS * sizeof(*mv_refined));
memcpy(wms, xd->wm_params_sb, 2 * NUM_AFFINE_PARAMS * sizeof(wms[0]));
}
#endif
#else
WarpedMotionParams wms[2];
wms[0] = default_warp_params;
wms[1] = default_warp_params;
#if AFFINE_CHROMA_REFINE_METHOD > 0
if (use_optflow_refinement && plane) {
wms[0] = mi->wm_params[0];
wms[1] = mi->wm_params[1];
}
#endif
#endif // CONFIG_AFFINE_REFINEMENT_SB
#endif // CONFIG_AFFINE_REFINEMENT
#if CONFIG_COMPOUND_4XN
assert(IMPLIES(
use_optflow_refinement,
!is_thin_4xn_nx4_block(mi->sb_type[xd->tree_type == CHROMA_PART])));
#endif // CONFIG_COMPOUND_4XN
// Pointers to gradient and dst buffers
if (use_optflow_refinement && plane == 0) {
// Pointers to hold optical flow MV offsets.
int *vx0 = xd->opfl_vxy_bufs;
int *vx1 = xd->opfl_vxy_bufs + (N_OF_OFFSETS * 1);
int *vy0 = xd->opfl_vxy_bufs + (N_OF_OFFSETS * 2);
int *vy1 = xd->opfl_vxy_bufs + (N_OF_OFFSETS * 3);
#if CONFIG_AFFINE_REFINEMENT
assert(mi->comp_refine_type > COMP_REFINE_NONE);
assert(IMPLIES(mi->comp_refine_type >= COMP_AFFINE_REFINE_START,
is_affine_refinement_allowed(cm, xd, mi->mode)));
#endif // CONFIG_AFFINE_REFINEMENT
// Allocate gradient and dst buffers
const int n = opfl_get_subblock_size(bw, bh, plane
#if CONFIG_OPTFLOW_ON_TIP
,
use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
);
const int n_blocks = (bw / n) * (bh / n);
int16_t *gx0 = xd->opfl_gxy_bufs;
int16_t *gx1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 1);
int16_t *gy0 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 2);
int16_t *gy1 = xd->opfl_gxy_bufs + (MAX_SB_SQUARE * 3);
// Initialize refined mv
#if CONFIG_REFINEMV
const MV mv0 = best_mv_ref[0];
const MV mv1 = best_mv_ref[1];
#else
const MV mv0 = mi->mv[0].as_mv;
const MV mv1 = mi->mv[1].as_mv;
#endif // CONFIG_REFINEMV
// Refine MV using optical flow. The final output MV will be in 1/16
// precision.
uint16_t *dst0 = xd->opfl_dst_bufs;
uint16_t *dst1 = xd->opfl_dst_bufs + MAX_SB_SQUARE;
if (tip_ref_frame) {
use_optflow_refinement = !skip_opfl_refine_with_tip(
cm, xd, plane, bw, bh, pu_width, pu_height, mi_x, mi_y, mc_buf,
best_mv_ref, calc_subpel_params_func, dst0, dst1);
}
if (use_optflow_refinement) {
int do_pred = tip_ref_frame ? 0 : 1;
for (int mvi = 0; mvi < n_blocks; mvi++) {
mv_refined[mvi * 2].as_mv = mv0;
mv_refined[mvi * 2 + 1].as_mv = mv1;
}
av1_get_optflow_based_mv(cm, xd, plane, mi, mv_refined, bw, bh, mi_x,
mi_y, mc_buf, calc_subpel_params_func, gx0, gy0,
gx1, gy1,
#if CONFIG_AFFINE_REFINEMENT
wms, &use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
vx0, vy0, vx1, vy1, dst0, dst1
#if CONFIG_OPTFLOW_ON_TIP
,
use_4x4, do_pred
#endif // CONFIG_OPTFLOW_ON_TIP
#if CONFIG_REFINEMV
,
best_mv_ref, bw, bh
#endif // CONFIG_REFINEMV
);
#if CONFIG_AFFINE_REFINEMENT
xd->use_affine_opfl = use_affine_opfl;
memcpy(xd->mv_refined, mv_refined,
2 * N_OF_OFFSETS * sizeof(*mv_refined));
#endif
#if CONFIG_AFFINE_REFINEMENT_SB
memcpy(xd->wm_params_sb, wms, 2 * NUM_AFFINE_PARAMS * sizeof(wms[0]));
#elif CONFIG_AFFINE_REFINEMENT
// parameters derived are saved here and may be reused by chroma
mi->wm_params[0] = wms[0];
mi->wm_params[1] = wms[1];
#endif // CONFIG_AFFINE_REFINEMENT_SB
}
}
int opfl_sub_bw = OF_BSIZE;
int opfl_sub_bh = OF_BSIZE;
opfl_subblock_size_plane(xd, plane,
#if CONFIG_OPTFLOW_ON_TIP
use_4x4,
#endif // CONFIG_OPTFLOW_ON_TIP
&opfl_sub_bw, &opfl_sub_bh);
#if CONFIG_D071_IMP_MSK_BLD
BacpBlockData bacp_block_data[2 * N_OF_OFFSETS];
uint8_t use_bacp = tip_ref_frame ? cm->features.enable_imp_msk_bld
: !build_for_obmc &&
use_border_aware_compound(cm, mi) &&
mi->cwp_idx == CWP_EQUAL &&
cm->features.enable_imp_msk_bld;
#endif // CONFIG_D071_IMP_MSK_BLD
#if CONFIG_COMPOUND_4XN
assert(IMPLIES(singleref_for_compound, !is_compound));
#endif // CONFIG_COMPOUND_4XN
for (int ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf =
tip_ref_frame ? cm->tip_ref.ref_scale_factor[ref]
: (is_intrabc ? &cm->sf_identity
: xd->block_ref_scale_factors[ref]);
struct buf_2d *const pre_buf = is_intrabc ? &pd->dst : &pd->pre[ref];
const MV mv = mi_mv[ref];
const WarpTypesAllowed warp_types = { is_global[ref],
is_warp_mode(mi->motion_mode) };
InterPredParams inter_pred_params;
const int comp_bw = tip_ref_frame ? (bw >> ss_x) : bw;
const int comp_bh = tip_ref_frame ? (bh >> ss_y) : bh;
av1_init_inter_params(&inter_pred_params, comp_bw, comp_bh, pre_y, pre_x,
pd->subsampling_x, pd->subsampling_y, xd->bd,
mi->use_intrabc[0], sf, pre_buf, mi->interp_fltr);
inter_pred_params.original_pu_width = pu_width;
inter_pred_params.original_pu_height = pu_height;
if (is_compound) av1_init_comp_mode(&inter_pred_params);
#if CONFIG_D071_IMP_MSK_BLD
inter_pred_params.border_data.enable_bacp = use_bacp;
inter_pred_params.border_data.bacp_block_data =
&bacp_block_data[0]; // Always point to the first ref
#endif // CONFIG_D071_IMP_MSK_BLD
inter_pred_params.conv_params = get_conv_params_no_round(
ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
if (!build_for_obmc) {
av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi);
#if CONFIG_EXT_WARP_FILTER
if (inter_pred_params.mode == WARP_PRED &&
!inter_pred_params.warp_params.use_affine_filter) {
*ext_warp_used = true;
}
#if CONFIG_AFFINE_REFINEMENT
if (use_optflow_refinement &&
mi->comp_refine_type >= COMP_AFFINE_REFINE_START &&
opfl_sub_bw == 4 && opfl_sub_bh == 4)
*ext_warp_used = true;
#endif // CONFIG_AFFINE_REFINEMENT
#endif // CONFIG_EXT_WARP_FILTER
}
#if CONFIG_D071_IMP_MSK_BLD
if (is_compound) {
inter_pred_params.sb_type =
tip_ref_frame ? BLOCK_8X8 : mi->sb_type[PLANE_TYPE_Y];
inter_pred_params.mask_comp = mi->interinter_comp;
}
#endif // CONFIG_D071_IMP_MSK_BLD
if (is_masked_compound_type(mi->interinter_comp.type)) {
#if !CONFIG_D071_IMP_MSK_BLD
inter_pred_params.sb_type = mi->sb_type[PLANE_TYPE_Y];
inter_pred_params.mask_comp = mi->interinter_comp;
#endif // !CONFIG_D071_IMP_MSK_BLD
if (ref == 1) {
inter_pred_params.conv_params.do_average = 0;
inter_pred_params.comp_mode = MASK_COMP;
}
// Assign physical buffer.
inter_pred_params.mask_comp.seg_mask = xd->seg_mask;
}
if (ref == 1 && inter_pred_params.conv_params.do_average == 1) {
if (get_cwp_idx(mi) != CWP_EQUAL) {
int8_t weight = get_cwp_idx(mi);
assert(mi->cwp_idx >= CWP_MIN && mi->cwp_idx <= CWP_MAX);
inter_pred_params.conv_params.fwd_offset = weight;
inter_pred_params.conv_params.bck_offset =
(1 << CWP_WEIGHT_BITS) - weight;
}
}
#if CONFIG_AFFINE_REFINEMENT
if (use_optflow_refinement &&
#if AFFINE_CHROMA_REFINE_METHOD > 0
(mi->comp_refine_type >= COMP_AFFINE_REFINE_START || plane == 0)
#else
mi->comp_refine_type >= COMP_AFFINE_REFINE_START && plane == 0
#endif
) {
#else
if (use_optflow_refinement && plane == 0) {
#endif // CONFIG_AFFINE_REFINEMENT
inter_pred_params.interp_filter_params[0] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr,
opfl_sub_bw);
inter_pred_params.interp_filter_params[1] =
av1_get_interp_filter_params_with_block_size(mi->interp_fltr,
opfl_sub_bh);
av1_opfl_rebuild_inter_predictor(
dst, dst_stride, plane, mv_refined, xd->opfl_vxy_bufs, N_OF_OFFSETS,
&inter_pred_params, xd, mi_x, mi_y,
#if CONFIG_AFFINE_REFINEMENT
cm, bw, mi->comp_refine_type, wms, &mi->mv[ref], use_affine_opfl,
#endif // CONFIG_AFFINE_REFINEMENT
ref, mc_buf, calc_subpel_params_func
#if CONFIG_OPTFLOW_ON_TIP
,
use_4x4
#endif // CONFIG_OPTFLOW_ON_TIP
);
continue;
}
#if CONFIG_BAWP
#if CONFIG_BAWP_CHROMA
if (mi->bawp_flag[0] > 0 && (plane == 0 || mi->bawp_flag[1]) &&
!build_for_obmc) {
#else
if (mi->bawp_flag > 0 && plane == 0 && !build_for_obmc) {
#endif // CONFIG_BAWP_CHROMA
av1_build_one_bawp_inter_predictor(
dst, dst_stride, &mv, &inter_pred_params, cm, xd, dst_orig, bw, bh,
mi_x, mi_y, ref, plane, mc_buf, calc_subpel_params_func);
continue;
}
#endif // CONFIG_BAWP
av1_build_one_inter_predictor(dst, dst_stride, &mv, &inter_pred_params, xd,
mi_x, mi_y, ref, mc_buf,
calc_subpel_params_func);
}
}
// Find the start row/col and end row/col for a given TIP prediction block.
static AOM_INLINE void set_tip_start_end_location(
int start_pixel_col, int start_pixel_row, int block_width, int block_height,
int *tpl_start_col, int *tpl_start_row, int *tpl_end_col,
int *tpl_end_row) {
// define the block start and end pixel locations
const int bw = (block_width << MI_SIZE_LOG2);
const int bh = (block_height << MI_SIZE_LOG2);
int end_pixel_row = start_pixel_row + bh;
int end_pixel_col = start_pixel_col + bw;
// convert the pixel block location to MV field grid location
*tpl_start_row = start_pixel_row >> TMVP_MI_SZ_LOG2;
*tpl_end_row = (end_pixel_row + TMVP_MI_SIZE - 1) >> TMVP_MI_SZ_LOG2;
*tpl_start_col = start_pixel_col >> TMVP_MI_SZ_LOG2;
*tpl_end_col = (end_pixel_col + TMVP_MI_SIZE - 1) >> TMVP_MI_SZ_LOG2;
}
// This function consolidates the prediction process of the TIP ref mode block
// and the non-TIP ref mode block.
static void build_inter_predictors_8x8_and_bigger_facade(
const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, MB_MODE_INFO *mi,
#if CONFIG_BAWP
const BUFFER_SET *dst_orig,
#endif // CONFIG_BAWP
int build_for_obmc, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func
#if CONFIG_REFINEMV
,
int build_for_refine_mv_only
#endif // CONFIG_REFINEMV
) {
const int tip_ref_frame = is_tip_ref_frame(mi->ref_frame[0]);
bool ext_warp_used = false;
struct macroblockd_plane *pd = &xd->plane[plane];
struct buf_2d *dst_buf = &pd->dst;
const int dst_stride = dst_buf->stride;
uint16_t *const dst = dst_buf->buf;
if (tip_ref_frame) {
int tpl_start_col, tpl_start_row, tpl_end_col, tpl_end_row;
set_tip_start_end_location(mi_x, mi_y, xd->width, xd->height,
&tpl_start_col, &tpl_start_row, &tpl_end_col,
&tpl_end_row);
// TMVP_MI_SIZE_UV is the block size in luma unit for Chroma
// TIP interpolation, will convert to the step size in TMVP 8x8 unit
const int unit_blk_size = (plane == 0) ? TMVP_MI_SIZE : TMVP_MI_SIZE_UV;
const int step = (unit_blk_size >> TMVP_MI_SZ_LOG2);
for (int blk_row = tpl_start_row; blk_row < tpl_end_row; blk_row += step) {
for (int blk_col = tpl_start_col; blk_col < tpl_end_col;
blk_col += step) {
const int tpl_row = blk_row << TMVP_MI_SZ_LOG2;
const int tpl_col = blk_col << TMVP_MI_SZ_LOG2;
const int row_offset = (blk_row - tpl_start_row);
const int col_offset = (blk_col - tpl_start_col);
const int tip_mv_offset = (row_offset * TIP_MV_STRIDE + col_offset)
<< 1;
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
MV tip_mv[2];
int_mv tip_mv_tmp[2];
get_tip_mv(cm, &mi->mv[0].as_mv, blk_col, blk_row, tip_mv_tmp);
tip_mv[0] = tip_mv_tmp[0].as_mv;
tip_mv[1] = tip_mv_tmp[1].as_mv;
dst_buf->buf = dst +
((row_offset << TMVP_MI_SZ_LOG2) >> ss_y) * dst_stride +
((col_offset << TMVP_MI_SZ_LOG2) >> ss_x);
build_inter_predictors_8x8_and_bigger(
cm, xd, plane, mi,
#if CONFIG_BAWP
dst_orig,
#endif
build_for_obmc, unit_blk_size, unit_blk_size, tpl_col, tpl_row,
mc_buf, tip_mv, calc_subpel_params_func, dst_buf->buf, dst_stride,
bw, bh,
#if CONFIG_REFINEMV
build_for_refine_mv_only,
#endif // CONFIG_REFINEMV
&ext_warp_used, &xd->mv_refined[tip_mv_offset]);
}
}
dst_buf->buf = dst;
} else {
MV mv[2] = { mi->mv[0].as_mv, mi->mv[1].as_mv };
build_inter_predictors_8x8_and_bigger(cm, xd, plane, mi,
#if CONFIG_BAWP
dst_orig,
#endif
build_for_obmc, bw, bh, mi_x, mi_y,
mc_buf, mv, calc_subpel_params_func,
dst, dst_stride, bw, bh,
#if CONFIG_REFINEMV
build_for_refine_mv_only,
#endif // CONFIG_REFINEMV
&ext_warp_used, xd->mv_refined);
}
}
void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, MB_MODE_INFO *mi,
#if CONFIG_BAWP
const BUFFER_SET *dst_orig,
#endif
#if CONFIG_REFINEMV
int build_for_refine_mv_only,
#endif // CONFIG_REFINEMV
int build_for_obmc, int bw, int bh, int mi_x,
int mi_y, uint16_t **mc_buf,
CalcSubpelParamsFunc calc_subpel_params_func) {
if (plane == AOM_PLANE_Y)
memset(xd->mv_refined, 0, 2 * N_OF_OFFSETS * sizeof(int_mv));
// just for debugging purpose
// Can be removed later on
if (mi->mode == WARPMV) {
#if CONFIG_SEP_COMP_DRL
assert(mi->ref_mv_idx[0] == 0);
assert(mi->ref_mv_idx[1] == 0);
#else
assert(mi->ref_mv_idx == 0);
#endif // CONFIG_SEP_COMP_DRL
assert(mi->motion_mode == WARP_DELTA || mi->motion_mode == WARPED_CAUSAL);
}
if (is_sub8x8_inter(cm, xd, mi, plane, is_intrabc_block(mi, xd->tree_type),
build_for_obmc)) {
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(bw < 8 || bh < 8);
#endif // !CONFIG_EXT_RECUR_PARTITIONS
build_inter_predictors_sub8x8(cm, xd, plane, mi, mi_x, mi_y, mc_buf,
calc_subpel_params_func);
} else {
build_inter_predictors_8x8_and_bigger_facade(
cm, xd, plane, mi,
#if CONFIG_BAWP
dst_orig,
#endif
build_for_obmc, bw, bh, mi_x, mi_y, mc_buf, calc_subpel_params_func
#if CONFIG_REFINEMV
,
build_for_refine_mv_only
#endif // CONFIG_REFINEMV
);
}
}
void av1_setup_dst_planes(struct macroblockd_plane *planes,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const int plane_start, const int plane_end,
const CHROMA_REF_INFO *chroma_ref_info) {
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = plane_start; i < AOMMIN(plane_end, MAX_MB_PLANE); ++i) {
struct macroblockd_plane *const pd = &planes[i];
const int is_uv = i > 0;
setup_pred_plane(&pd->dst, src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, NULL, pd->subsampling_x, pd->subsampling_y,
chroma_ref_info);
}
}
void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf, const int num_planes,
const CHROMA_REF_INFO *chroma_ref_info) {
if (src != NULL) {
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
const int is_uv = i > 0;
setup_pred_plane(&pd->pre[idx], src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row,
mi_col, sf, pd->subsampling_x, pd->subsampling_y,
chroma_ref_info);
}
}
}
// obmc_mask_N[overlap_position]
static const uint8_t obmc_mask_1[1] = { 64 };
DECLARE_ALIGNED(2, static const uint8_t, obmc_mask_2[2]) = { 45, 64 };
DECLARE_ALIGNED(4, static const uint8_t, obmc_mask_4[4]) = { 39, 50, 59, 64 };
static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 };
static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54,
56, 58, 60, 61, 64, 64, 64, 64 };
static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44,
45, 47, 48, 50, 51, 52, 53, 55,
56, 57, 58, 59, 60, 60, 61, 62,
64, 64, 64, 64, 64, 64, 64, 64 };
static const uint8_t obmc_mask_64[64] = {
33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44,
45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56,
56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62,
62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
const uint8_t *av1_get_obmc_mask(int length) {
switch (length) {
case 1: return obmc_mask_1;
case 2: return obmc_mask_2;
case 4: return obmc_mask_4;
case 8: return obmc_mask_8;
case 16: return obmc_mask_16;
case 32: return obmc_mask_32;
case 64: return obmc_mask_64;
default: assert(0); return NULL;
}
}
static INLINE void increment_uint8_t_ptr(MACROBLOCKD *xd, int rel_mi_row,
int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *mi,
void *fun_ctxt, const int num_planes) {
(void)xd;
(void)rel_mi_row;
(void)rel_mi_col;
(void)op_mi_size;
(void)dir;
(void)mi;
++*(uint8_t *)fun_ctxt;
(void)num_planes;
}
void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd) {
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->overlappable_neighbors[0] = 0;
mbmi->overlappable_neighbors[1] = 0;
if (!is_motion_variation_allowed_bsize(mbmi->sb_type[PLANE_TYPE_Y],
xd->mi_row, xd->mi_col))
return;
foreach_overlappable_nb_above(cm, xd, INT_MAX, increment_uint8_t_ptr,
&mbmi->overlappable_neighbors[0], true);
if (mbmi->overlappable_neighbors[0]) return;
foreach_overlappable_nb_left(cm, xd, INT_MAX, increment_uint8_t_ptr,
&mbmi->overlappable_neighbors[1]);
}
// HW does not support < 4x4 prediction. To limit the bandwidth requirement, if
// block-size of current plane is smaller than 8x8, always only blend with the
// left neighbor(s) (skip blending with the above side).
#define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable
int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize,
const struct macroblockd_plane *pd, int dir) {
const BLOCK_SIZE bsize_plane =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
switch (bsize_plane) {
#if DISABLE_CHROMA_U8X8_OBMC
case BLOCK_4X4:
case BLOCK_8X4:
case BLOCK_4X8: return 1; break;
#else
case BLOCK_4X4:
case BLOCK_8X4:
case BLOCK_4X8: return dir == 0; break;
#endif
default: return 0;
}
}
void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) {
mbmi->ref_frame[1] = NONE_FRAME;
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
return;
}
struct obmc_inter_pred_ctxt {
uint16_t **adjacent;
int *adjacent_stride;
};
static INLINE void build_obmc_inter_pred_above(
MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *above_mi, void *fun_ctxt, const int num_planes) {
(void)above_mi;
(void)rel_mi_row;
(void)dir;
struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
const int overlap =
AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x;
const int bh = overlap >> pd->subsampling_y;
const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
const int dst_stride = pd->dst.stride;
uint16_t *const dst = &pd->dst.buf[plane_col];
const int tmp_stride = ctxt->adjacent_stride[plane];
const uint16_t *const tmp = &ctxt->adjacent[plane][plane_col];
const uint8_t *const mask = av1_get_obmc_mask(bh);
aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bw, bh, xd->bd);
}
}
static INLINE void build_obmc_inter_pred_left(
MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *left_mi, void *fun_ctxt, const int num_planes) {
(void)left_mi;
(void)rel_mi_col;
(void)dir;
struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
const int overlap =
AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = overlap >> pd->subsampling_x;
const int bh = (op_mi_size * MI_SIZE) >> pd->subsampling_y;
const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
const int dst_stride = pd->dst.stride;
uint16_t *const dst = &pd->dst.buf[plane_row * dst_stride];
const int tmp_stride = ctxt->adjacent_stride[plane];
const uint16_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride];
const uint8_t *const mask = av1_get_obmc_mask(bw);
aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bw, bh, xd->bd);
}
}
// This function combines motion compensated predictions that are generated by
// top/left neighboring blocks' inter predictors with the regular inter
// prediction. We assume the original prediction (bmc) is stored in
// xd->plane[].dst.buf
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint16_t *above[MAX_MB_PLANE],
int above_stride[MAX_MB_PLANE],
uint16_t *left[MAX_MB_PLANE],
int left_stride[MAX_MB_PLANE]) {
const BLOCK_SIZE bsize = xd->mi[0]->sb_type[PLANE_TYPE_Y];
// handle above row
struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride };
foreach_overlappable_nb_above(
cm, xd, max_neighbor_obmc[mi_size_wide_log2[bsize]],
build_obmc_inter_pred_above, &ctxt_above, false);
// handle left column
struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride };
foreach_overlappable_nb_left(cm, xd,
max_neighbor_obmc[mi_size_high_log2[bsize]],
build_obmc_inter_pred_left, &ctxt_left);
}
void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint16_t **dst_buf1,
uint16_t **dst_buf2) {
dst_buf1[0] = xd->tmp_obmc_bufs[0];
dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE;
dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2;
dst_buf2[0] = xd->tmp_obmc_bufs[1];
dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE;
dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2;
}
void av1_setup_build_prediction_by_above_pred(
MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt,
const int num_planes) {
const int above_mi_col = xd->mi_col + rel_mi_col;
av1_modify_neighbor_predictor_for_obmc(above_mbmi);
for (int j = 0; j < num_planes; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, ctxt->tmp_buf[j], ctxt->tmp_width[j],
ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col,
NULL, pd->subsampling_x, pd->subsampling_y, NULL);
}
const int num_refs = 1 + has_second_ref(above_mbmi);
for (int ref = 0; ref < num_refs; ++ref) {
const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
const struct scale_factors *const sf =
get_ref_scale_factors_const(ctxt->cm, frame);
xd->block_ref_scale_factors[ref] = sf;
if ((!av1_is_valid_scale(sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, &ref_buf->buf, xd->mi_row, above_mi_col, sf,
num_planes, NULL);
}
xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col);
xd->mb_to_right_edge =
ctxt->mb_to_far_edge +
(xd->width - rel_mi_col - above_mi_width) * MI_SIZE * 8;
}
void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row,
uint8_t left_mi_height,
MB_MODE_INFO *left_mbmi,
struct build_prediction_ctxt *ctxt,
const int num_planes) {
const int left_mi_row = xd->mi_row + rel_mi_row;
av1_modify_neighbor_predictor_for_obmc(left_mbmi);
for (int j = 0; j < num_planes; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, ctxt->tmp_buf[j], ctxt->tmp_width[j],
ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0,
NULL, pd->subsampling_x, pd->subsampling_y, NULL);
}
const int num_refs = 1 + has_second_ref(left_mbmi);
for (int ref = 0; ref < num_refs; ++ref) {
const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame);
const struct scale_factors *const ref_scale_factors =
get_ref_scale_factors_const(ctxt->cm, frame);
xd->block_ref_scale_factors[ref] = ref_scale_factors;
if ((!av1_is_valid_scale(ref_scale_factors)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, &ref_buf->buf, left_mi_row, xd->mi_col,
ref_scale_factors, num_planes, NULL);
}
xd->mb_to_top_edge = GET_MV_SUBPEL(MI_SIZE * (-left_mi_row));
xd->mb_to_bottom_edge =
ctxt->mb_to_far_edge +
GET_MV_SUBPEL((xd->height - rel_mi_row - left_mi_height) * MI_SIZE);
}
static AOM_INLINE void combine_interintra_highbd(
INTERINTRA_MODE mode, int8_t use_wedge_interintra, int8_t wedge_index,
int8_t wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint16_t *comppred8, int compstride, const uint16_t *interpred8,
int interstride, const uint16_t *intrapred8, int intrastride, int bd) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
if (use_wedge_interintra) {
if (av1_is_wedge_used(bsize)) {
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
const int subh = 2 * mi_size_high[bsize] == bh;
const int subw = 2 * mi_size_wide[bsize] == bw;
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask,
block_size_wide[bsize], bw, bh, subw, subh, bd);
}
return;
}
uint8_t mask[MAX_SB_SQUARE];
build_smooth_interintra_mask(mask, bw, plane_bsize, mode);
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask, bw, bw, bh, 0, 0,
bd);
}
#if CONFIG_EXT_RECUR_PARTITIONS
void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
MACROBLOCKD *xd, int plane,
const BUFFER_SET *ctx,
uint16_t *dst, int dst_stride) {
#else
void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
const BUFFER_SET *ctx,
uint16_t *dst, int dst_stride) {
#endif // CONFIG_EXT_RECUR_PARTITIONS
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ssx = xd->plane[plane].subsampling_x;
const int ssy = xd->plane[plane].subsampling_y;
#if CONFIG_EXT_RECUR_PARTITIONS
BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy);
#else
BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ssx, ssy);
#endif // CONFIG_EXT_RECUR_PARTITIONS
PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->interintra_mode];
assert(xd->mi[0]->angle_delta[PLANE_TYPE_Y] == 0);
assert(xd->mi[0]->angle_delta[PLANE_TYPE_UV] == 0);
assert(xd->mi[0]->filter_intra_mode_info.use_filter_intra == 0);
assert(xd->mi[0]->use_intrabc[PLANE_TYPE_Y] == 0);
#if CONFIG_NEW_TX_PARTITION
xd->mi[0]->txb_idx = 0;
#endif // CONFIG_NEW_TX_PARTITION
av1_predict_intra_block(cm, xd, pd->width, pd->height,
max_txsize_rect_lookup[plane_bsize], mode, 0, 0,
FILTER_INTRA_MODES, ctx->plane[plane],
ctx->stride[plane], dst, dst_stride, 0, 0, plane);
}
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
const uint16_t *inter_pred, int inter_stride,
const uint16_t *intra_pred, int intra_stride) {
const int ssx = xd->plane[plane].subsampling_x;
const int ssy = xd->plane[plane].subsampling_y;
BLOCK_SIZE plane_bsize =
get_mb_plane_block_size(xd, xd->mi[0], plane, ssx, ssy);
#if !CONFIG_EXT_RECUR_PARTITIONS
assert(plane_bsize == get_plane_block_size(bsize, ssx, ssy));
#endif // !CONFIG_EXT_RECUR_PARTITIONS
combine_interintra_highbd(
xd->mi[0]->interintra_mode, xd->mi[0]->use_wedge_interintra,
xd->mi[0]->interintra_wedge_index, INTERINTRA_WEDGE_SIGN, bsize,
plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
inter_pred, inter_stride, intra_pred, intra_stride, xd->bd);
}
// build interintra_predictors for one plane
void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint16_t *pred, int stride,
const BUFFER_SET *ctx, int plane,
BLOCK_SIZE bsize) {
assert(bsize < BLOCK_SIZES_ALL);
DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]);
#if CONFIG_EXT_RECUR_PARTITIONS
av1_build_intra_predictors_for_interintra(cm, xd, plane, ctx, intrapredictor,
MAX_SB_SIZE);
#else
av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx,
intrapredictor, MAX_SB_SIZE);
#endif // CONFIG_EXT_RECUR_PARTITIONS
av1_combine_interintra(xd, bsize, plane, pred, stride, intrapredictor,
MAX_SB_SIZE);
}
int av1_get_mpp_flag_context(const AV1_COMMON *cm, const MACROBLOCKD *xd) {
(void)cm;
const MB_MODE_INFO *const above_mi = xd->above_mbmi;
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
const int above_mpp_flag =
(above_mi && is_inter_block(above_mi, SHARED_PART) &&
!is_intrabc_block(above_mi, SHARED_PART))
? (above_mi->most_probable_pb_mv_precision ==
above_mi->pb_mv_precision)
: 0;
const int left_mpp_flag =
(left_mi && is_inter_block(left_mi, SHARED_PART) &&
!is_intrabc_block(left_mi, SHARED_PART))
? (left_mi->most_probable_pb_mv_precision == left_mi->pb_mv_precision)
: 0;
return (above_mpp_flag + left_mpp_flag);
}
#if CONFIG_REFINEMV
// Derive the context index for refinemv flag
int av1_get_refinemv_context(const AV1_COMMON *cm, const MACROBLOCKD *xd,
BLOCK_SIZE bsize) {
(void)cm;
(void)bsize;
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (mbmi->skip_mode) return 0;
return (1 + (mbmi->mode - NEAR_NEARMV));
}
#endif // CONFIG_REFINEMV
int av1_get_pb_mv_precision_down_context(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
(void)cm;
const MB_MODE_INFO *const above_mi = xd->above_mbmi;
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
const int above_down =
(above_mi && is_inter_block(above_mi, SHARED_PART) &&
!is_intrabc_block(above_mi, SHARED_PART))
? above_mi->max_mv_precision - above_mi->pb_mv_precision
: 0;
const int left_down =
(left_mi && is_inter_block(left_mi, SHARED_PART) &&
!is_intrabc_block(left_mi, SHARED_PART)) // && !left_mi->skip_mode)
? left_mi->max_mv_precision - left_mi->pb_mv_precision
: 0;
assert(above_down >= 0);
assert(left_down >= 0);
return (above_down + left_down > 0);
}
int av1_get_mv_class_context(const MvSubpelPrecision pb_mv_precision) {
return pb_mv_precision;
}
void set_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) {
mbmi->pb_mv_precision = precision;
}
#if BUGFIX_AMVD_AMVR
// set the mv precision for amvd applied mode
void set_amvd_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision) {
mbmi->pb_mv_precision =
precision <= MV_PRECISION_QTR_PEL ? precision : MV_PRECISION_QTR_PEL;
}
#endif // BUGFIX_AMVD_AMVR
int av1_get_pb_mv_precision_index(const MB_MODE_INFO *mbmi) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int coded_precision_idx = -1;
for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0;
precision_dx--) {
MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx];
if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) {
coded_precision_idx++;
if (pb_mv_precision == mbmi->pb_mv_precision) return coded_precision_idx;
}
}
assert(0);
return coded_precision_idx;
}
MvSubpelPrecision av1_get_precision_from_index(MB_MODE_INFO *mbmi,
int precision_idx_coded_value) {
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
int coded_precision_idx = -1;
MvSubpelPrecision pb_mv_precision = NUM_MV_PRECISIONS;
for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0;
precision_dx--) {
pb_mv_precision = precision_def->precision[precision_dx];
if (pb_mv_precision != mbmi->most_probable_pb_mv_precision) {
coded_precision_idx++;
if (coded_precision_idx == precision_idx_coded_value)
return pb_mv_precision;
}
}
assert(0);
return pb_mv_precision;
}
void set_most_probable_mv_precision(const AV1_COMMON *const cm,
MB_MODE_INFO *mbmi,
const BLOCK_SIZE bsize) {
(void)bsize;
(void)cm;
const PRECISION_SET *precision_def =
&av1_mv_precision_sets[mbmi->mb_precision_set];
mbmi->most_probable_pb_mv_precision =
precision_def->precision[precision_def->num_precisions - 1];
#if CONFIG_DEBUG
int mpp_found = 0;
for (int precision_dx = precision_def->num_precisions - 1; precision_dx >= 0;
precision_dx--) {
MvSubpelPrecision pb_mv_precision = precision_def->precision[precision_dx];
if (pb_mv_precision == mbmi->most_probable_pb_mv_precision) {
mpp_found = 1;
break;
}
}
(void)mpp_found;
assert(mpp_found);
#endif
}
void set_precision_set(const AV1_COMMON *const cm, MACROBLOCKD *const xd,
MB_MODE_INFO *mbmi, const BLOCK_SIZE bsize,
#if CONFIG_SEP_COMP_DRL
int *ref_mv_idx) {
#else
uint8_t ref_mv_idx) {
#endif // CONFIG_SEP_COMP_DRL
(void)bsize;
(void)cm;
(void)xd;
(void)ref_mv_idx;
int set_idx = 0;
int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL)
? NUMBER_OF_PRECISION_SETS
: 0;
mbmi->mb_precision_set = set_idx + offset_idx;
}
void set_default_precision_set(const AV1_COMMON *const cm, MB_MODE_INFO *mbmi,
const BLOCK_SIZE bsize) {
(void)bsize;
(void)cm;
int set_idx = 0;
int offset_idx = (mbmi->max_mv_precision == MV_PRECISION_QTR_PEL)
? NUMBER_OF_PRECISION_SETS
: 0;
mbmi->mb_precision_set = set_idx + offset_idx;
}
void set_default_max_mv_precision(MB_MODE_INFO *mbmi,
MvSubpelPrecision precision) {
mbmi->max_mv_precision = precision;
}
MvSubpelPrecision av1_get_mbmi_max_mv_precision(const AV1_COMMON *const cm,
const SB_INFO *sbi,
const MB_MODE_INFO *mbmi) {
(void)mbmi;
(void)sbi;
return cm->features.fr_mv_precision;
}
int is_pb_mv_precision_active(const AV1_COMMON *const cm,
const MB_MODE_INFO *mbmi,
const BLOCK_SIZE bsize) {
(void)bsize;
if (enable_adaptive_mvd_resolution(cm, mbmi)) return 0;
return cm->seq_params.enable_flex_mvres &&
(mbmi->max_mv_precision >= MV_PRECISION_HALF_PEL) &&
cm->features.use_pb_mv_precision &&
have_newmv_in_inter_mode(mbmi->mode);
}
#if CONFIG_REFINEMV
// Copy mv0 and mv1 to the sub-blocks
// submi is the top-left corner of the sub-block need to fill
// bw is the block width in the unit of pixel
// bh is the block height in unit of pixel
void fill_subblock_refine_mv(REFINEMV_SUBMB_INFO *refinemv_subinfo, int bw,
int bh, MV mv0, MV mv1) {
const int stride = MAX_MIB_SIZE;
for (int y = 0; y < (bh >> MI_SIZE_LOG2); y++) {
for (int x = 0; x < (bw >> MI_SIZE_LOG2); x++) {
refinemv_subinfo[x].refinemv[0].as_mv = mv0;
refinemv_subinfo[x].refinemv[1].as_mv = mv1;
}
refinemv_subinfo += stride;
}
}
#endif // CONFIG_REFINEMV
#if CONFIG_MORPH_PRED
// Let the dst buffer point to the given position (x, y) in the src buffer.
static void set_buffer(struct buf_2d *dst, uint16_t *src, int width, int height,
int stride, int x, int y) {
dst->buf = src + y * stride + x;
dst->buf0 = src;
dst->width = width;
dst->height = height;
dst->stride = stride;
}
static bool fetch_neighbor_recon_regions(
const AV1_COMMON *const cm, MACROBLOCKD *const xd, const BLOCK_SIZE bsize,
const int mi_row, const int mi_col, struct buf_2d *cur_template_recon,
struct buf_2d *ref_template_recon, int *template_width,
int *template_height) {
MB_MODE_INFO *mbmi = xd->mi[0];
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
FULLPEL_MV dv = get_fullmv_from_mv(&mbmi->mv[0].as_mv);
const int tgt_width = TEMPLATE_SIZE;
const int tgt_height = TEMPLATE_SIZE;
const int cur_x = mi_col * MI_SIZE;
const int cur_y = mi_row * MI_SIZE;
const int cur_tmplt_x = AOMMAX(cur_x - tgt_width, 0);
const int cur_tmplt_y = AOMMAX(cur_y - tgt_height, 0);
const int ref_tmplt_x = AOMMAX(cur_x + dv.col - tgt_width, 0);
const int ref_tmplt_y = AOMMAX(cur_y + dv.row - tgt_height, 0);
// Restriction: the reference block's template can't be outside the local
// 64x64 block for local intra block copy.
// If local intra block copy extends to 128x128, one has to change the
// restrictions here to make it match.
const int ref_x = AOMMAX(cur_x + dv.col, 0);
const int ref_y = AOMMAX(cur_y + dv.row, 0);
const int is_same_unit_x = (cur_x >> 6) == (ref_x >> 6);
const int is_same_unit_y = (cur_y >> 6) == (ref_y >> 6);
if (is_same_unit_x && is_same_unit_y) {
if (ref_x > 0 && (ref_x % 64 == 0)) return false;
if (ref_y > 0 && (ref_y % 64 == 0)) return false;
}
// Restriction: the reference block's template can't be outside the current
// tile.
const TileInfo *const tile = &xd->tile;
// Is the source top-left inside the current tile?
const int tile_top_edge = tile->mi_row_start * MI_SIZE;
if (ref_tmplt_y < tile_top_edge) return false;
const int tile_left_edge = tile->mi_col_start * MI_SIZE;
if (ref_tmplt_x < tile_left_edge) return false;
// Is the bottom right inside the current tile?
const int ref_bottom_edge = cur_y + dv.row + bh;
const int tile_bottom_edge = tile->mi_row_end * MI_SIZE;
if (ref_bottom_edge > tile_bottom_edge) return false;
const int ref_right_edge = cur_x + dv.col + bw;
const int tile_right_edge = tile->mi_col_end * MI_SIZE;
if (ref_right_edge > tile_right_edge) return false;
// The current block's template can't be outside the current tile too.
if (cur_tmplt_y < tile_top_edge) return false;
if (cur_tmplt_x < tile_left_edge) return false;
const int cur_tmplt_width = cur_x - cur_tmplt_x;
const int cur_tmplt_height = cur_y - cur_tmplt_y;
const int ref_tmplt_width = cur_x + dv.col - ref_tmplt_x;
const int ref_tmplt_height = cur_y + dv.row - ref_tmplt_y;
if (cur_tmplt_width <= 0 || cur_tmplt_height <= 0 || ref_tmplt_width <= 0 ||
ref_tmplt_height <= 0) {
return false;
}
*template_width = AOMMIN(cur_tmplt_width, ref_tmplt_width);
*template_height = AOMMIN(cur_tmplt_height, ref_tmplt_height);
const YV12_BUFFER_CONFIG *const recon_buffer = &cm->cur_frame->buf;
set_buffer(cur_template_recon, recon_buffer->buffers[0], *template_width,
*template_height, recon_buffer->strides[0], cur_tmplt_x,
cur_tmplt_y);
set_buffer(ref_template_recon, recon_buffer->buffers[0], *template_width,
*template_height, recon_buffer->strides[0], ref_tmplt_x,
ref_tmplt_y);
return true;
}
static bool derive_linear_params_from_template(
const AV1_COMMON *const cm, const int mi_row, const int mi_col,
const uint16_t *src, const int src_stride, const uint16_t *pred,
const int pred_stride, const int width, const int height,
const int template_width, const int template_height, int *alpha,
int *beta) {
const uint16_t *src_ptr = src;
const uint16_t *pred_ptr = pred;
int sum_x = 0;
int sum_y = 0;
int sum_xy = 0;
int sum_xx = 0;
int count = 0;
const int frame_width = cm->width;
const int frame_height = cm->height;
const int x_start = mi_col * MI_SIZE;
const int y_start = mi_row * MI_SIZE;
if (x_start >= frame_width || y_start >= frame_height) return false;
int x_max = template_width + AOMMIN(width, frame_width - x_start);
int y_max = AOMMIN(template_height, frame_height - y_start);
for (int y = 0; y < y_max; ++y) {
for (int x = 0; x < x_max; ++x) {
sum_x += pred_ptr[x];
sum_y += src_ptr[x];
sum_xy += src_ptr[x] * pred_ptr[x];
sum_xx += pred_ptr[x] * pred_ptr[x];
}
count += x_max;
src_ptr += src_stride;
pred_ptr += pred_stride;
}
x_max = AOMMIN(template_width, frame_width - x_start);
y_max = AOMMIN(height, frame_height - y_start);
for (int y = 0; y < y_max; ++y) {
for (int x = 0; x < x_max; ++x) {
sum_x += pred_ptr[x];
sum_y += src_ptr[x];
sum_xy += src_ptr[x] * pred_ptr[x];
sum_xx += pred_ptr[x] * pred_ptr[x];
}
count += x_max;
src_ptr += src_stride;
pred_ptr += pred_stride;
}
if (count == 0) return false;
*alpha = derive_linear_parameters_alpha(sum_x, sum_y, sum_xx, sum_xy, count,
MORPH_FIT_SHIFT, 0);
*beta = derive_linear_parameters_beta(sum_x, sum_y, count, MORPH_FIT_SHIFT,
*alpha);
return true;
}
void av1_build_linear_predictor(uint16_t *dst, const int dst_stride,
const int width, const int height,
const int alpha, const int beta,
const int bit_depth) {
const int alpha_shift = alpha;
const int beta_shift = beta;
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
dst[x] = clip_pixel_highbd(
ROUND_POWER_OF_TWO_SIGNED(alpha_shift * dst[x] + beta_shift,
MORPH_FIT_SHIFT),
bit_depth);
}
dst += dst_stride;
}
}
bool av1_build_morph_pred(const AV1_COMMON *const cm, MACROBLOCKD *const xd,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col) {
// Predictor, i.e., the reconstructed block found from intrabc.
struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
uint16_t *const dst = pd->dst.buf;
const int dst_stride = pd->dst.stride;
const int width = block_size_wide[bsize];
const int height = block_size_high[bsize];
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->morph_alpha = 0;
mbmi->morph_beta = 0;
struct buf_2d cur_template_recon;
struct buf_2d ref_template_recon;
int template_width = width >> 1;
int template_height = height >> 1;
const bool valid_region = fetch_neighbor_recon_regions(
cm, xd, bsize, mi_row, mi_col, &cur_template_recon, &ref_template_recon,
&template_width, &template_height);
if (!valid_region) return false;
const bool valid_params = derive_linear_params_from_template(
cm, mi_row, mi_col, cur_template_recon.buf, cur_template_recon.stride,
ref_template_recon.buf, ref_template_recon.stride, width, height,
template_width, template_height, &mbmi->morph_alpha, &mbmi->morph_beta);
if (!valid_params) return false;
av1_build_linear_predictor(dst, dst_stride, width, height, mbmi->morph_alpha,
mbmi->morph_beta, xd->bd);
return true;
}
#endif // CONFIG_MORPH_PRED