| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <stdio.h> |
| |
| #include "aom/aom_encoder.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_dsp/bitwriter_buffer.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/bitops.h" |
| #include "aom_ports/mem_ops.h" |
| #include "aom_ports/system_state.h" |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/enums.h" |
| #if CONFIG_BITSTREAM_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_BITSTREAM_DEBUG |
| |
| #include "common/md5_utils.h" |
| #include "common/rawenc.h" |
| |
| #include "av1/common/blockd.h" |
| #include "av1/common/cdef.h" |
| #include "av1/common/ccso.h" |
| #include "av1/common/cfl.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/entropymv.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/tile_common.h" |
| |
| #include "av1/encoder/bitstream.h" |
| #include "av1/encoder/cost.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/mcomp.h" |
| #include "av1/encoder/palette.h" |
| #include "av1/encoder/pickrst.h" |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/tokenize.h" |
| |
| // Silence compiler warning for unused static functions |
| static void image2yuvconfig_upshift(aom_image_t *hbd_img, |
| const aom_image_t *img, |
| YV12_BUFFER_CONFIG *yv12) AOM_UNUSED; |
| #include "av1/av1_iface_common.h" |
| |
| #define ENC_MISMATCH_DEBUG 0 |
| |
| static INLINE void write_uniform(aom_writer *w, int n, int v) { |
| const int l = get_unsigned_bits(n); |
| const int m = (1 << l) - n; |
| if (l == 0) return; |
| if (v < m) { |
| aom_write_literal(w, v, l - 1); |
| } else { |
| aom_write_literal(w, m + ((v - m) >> 1), l - 1); |
| aom_write_literal(w, (v - m) & 1, 1); |
| } |
| } |
| |
| static AOM_INLINE void loop_restoration_write_sb_coeffs( |
| AV1_COMMON *cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui, |
| aom_writer *const w, int plane, FRAME_COUNTS *counts); |
| |
| #if CONFIG_COMBINE_PC_NS_WIENER |
| static AOM_INLINE void write_wienerns_framefilters( |
| AV1_COMMON *cm, MACROBLOCKD *xd, int plane, aom_writer *wb, |
| int16_t *frame_filter_dictionary, int dict_stride); |
| #endif // CONFIG_COMBINE_PC_NS_WIENER |
| |
| #if CONFIG_IBC_SR_EXT |
| static AOM_INLINE void write_intrabc_info( |
| #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| int max_bvp_drl_bits, |
| #endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| #if CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED |
| const AV1_COMMON *const cm, |
| #endif // CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED |
| MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, |
| aom_writer *w); |
| #endif // CONFIG_IBC_SR_EXT |
| |
| #if !CONFIG_AIMC |
| static AOM_INLINE void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx, |
| const MB_MODE_INFO *mi, |
| const MB_MODE_INFO *neighbors0, |
| const MB_MODE_INFO *neighbors1, |
| PREDICTION_MODE mode, |
| aom_writer *w) { |
| assert(!is_intrabc_block(mi, SHARED_PART)); |
| (void)mi; |
| aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, neighbors0, neighbors1), |
| INTRA_MODES); |
| } |
| #endif // !CONFIG_AIMC |
| static AOM_INLINE void write_inter_mode( |
| aom_writer *w, PREDICTION_MODE mode, FRAME_CONTEXT *ec_ctx, |
| const int16_t mode_ctx, const AV1_COMMON *const cm, const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize |
| |
| ) { |
| #if CONFIG_OPTIMIZE_CTX_TIP_WARP |
| if (is_tip_ref_frame(mbmi->ref_frame[0])) { |
| const int tip_pred_index = |
| tip_pred_mode_to_index[mode - SINGLE_INTER_MODE_START]; |
| aom_write_symbol(w, tip_pred_index, ec_ctx->tip_pred_mode_cdf, |
| TIP_PRED_MODES); |
| return; |
| } |
| #endif // CONFIG_OPTIMIZE_CTX_TIP_WARP |
| |
| if (is_warpmv_mode_allowed(cm, mbmi, bsize)) { |
| const int16_t iswarpmvmode_ctx = inter_warpmv_mode_ctx(cm, xd, mbmi); |
| aom_write_symbol(w, mode == WARPMV, |
| ec_ctx->inter_warp_mode_cdf[iswarpmvmode_ctx], 2); |
| if (mode == WARPMV) return; |
| } else { |
| assert(mode != WARPMV); |
| } |
| |
| const int16_t ismode_ctx = inter_single_mode_ctx(mode_ctx); |
| aom_write_symbol(w, mode - SINGLE_INTER_MODE_START, |
| ec_ctx->inter_single_mode_cdf[ismode_ctx], |
| INTER_SINGLE_MODES); |
| } |
| |
| static void write_drl_idx(int max_drl_bits, const int16_t mode_ctx, |
| FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, |
| aom_writer *w) { |
| (void)mbmi_ext_frame; |
| #if !CONFIG_SKIP_MODE_ENHANCEMENT |
| assert(!mbmi->skip_mode); |
| #endif // !CONFIG_SKIP_MODE_ENHANCEMENT |
| assert(IMPLIES(mbmi->mode == WARPMV, 0)); |
| // Write the DRL index as a sequence of bits encoding a decision tree: |
| // 0 -> 0 10 -> 1 110 -> 2 111 -> 3 |
| // Also use the number of reference MVs for a frame type to reduce the |
| // number of bits written if there are less than 4 valid DRL indices. |
| #if CONFIG_SEP_COMP_DRL |
| if (has_second_drl(mbmi)) { |
| if (mbmi->mode == NEAR_NEWMV) |
| max_drl_bits = AOMMIN(max_drl_bits, SEP_COMP_DRL_SIZE); |
| else |
| assert(mbmi->mode == NEAR_NEARMV); |
| } |
| |
| #if CONFIG_SAME_REF_COMPOUND |
| if (!mbmi->skip_mode && mbmi->ref_frame[0] == mbmi->ref_frame[1] && |
| has_second_drl(mbmi) && mbmi->mode == NEAR_NEARMV) |
| assert(mbmi->ref_mv_idx[0] < mbmi->ref_mv_idx[1]); |
| #endif // CONFIG_SAME_REF_COMPOUND |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| if (mbmi->skip_mode) |
| assert(mbmi->ref_mv_idx[0] < |
| mbmi_ext_frame->skip_mvp_candidate_list.ref_mv_count); |
| else |
| #endif // CONFIG_SKIP_MODE_ENHANCEMENT |
| assert(mbmi->ref_mv_idx[0] < mbmi_ext_frame->ref_mv_count[0]); |
| if (has_second_drl(mbmi)) |
| assert(mbmi->ref_mv_idx[1] < mbmi_ext_frame->ref_mv_count[1]); |
| assert(mbmi->ref_mv_idx[0] < max_drl_bits + 1); |
| if (has_second_drl(mbmi)) assert(mbmi->ref_mv_idx[1] < max_drl_bits + 1); |
| for (int ref = 0; ref < 1 + has_second_drl(mbmi); ref++) { |
| for (int idx = 0; idx < max_drl_bits; ++idx) { |
| #if CONFIG_SAME_REF_COMPOUND |
| if (ref && !mbmi->skip_mode && mbmi->ref_frame[0] == mbmi->ref_frame[1] && |
| mbmi->mode == NEAR_NEARMV && idx <= mbmi->ref_mv_idx[0]) |
| continue; |
| #endif // CONFIG_SAME_REF_COMPOUND |
| aom_cdf_prob *drl_cdf = av1_get_drl_cdf(mbmi, ec_ctx, mode_ctx, idx); |
| aom_write_symbol(w, mbmi->ref_mv_idx[ref] != idx, drl_cdf, 2); |
| if (mbmi->ref_mv_idx[ref] == idx) break; |
| } |
| } |
| #else |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| if (mbmi->skip_mode) |
| assert(mbmi->ref_mv_idx < |
| mbmi_ext_frame->skip_mvp_candidate_list.ref_mv_count); |
| else |
| #endif // CONFIG_SKIP_MODE_ENHANCEMENT |
| assert(mbmi->ref_mv_idx < mbmi_ext_frame->ref_mv_count); |
| assert(mbmi->ref_mv_idx < max_drl_bits + 1); |
| for (int idx = 0; idx < max_drl_bits; ++idx) { |
| aom_cdf_prob *drl_cdf = av1_get_drl_cdf(mbmi, ec_ctx, mode_ctx, idx); |
| aom_write_symbol(w, mbmi->ref_mv_idx != idx, drl_cdf, 2); |
| if (mbmi->ref_mv_idx == idx) break; |
| } |
| #endif // CONFIG_SEP_COMP_DRL |
| } |
| |
| static void write_warp_ref_idx(FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, |
| aom_writer *w) { |
| assert(mbmi->warp_ref_idx < mbmi->max_num_warp_candidates); |
| assert(mbmi->max_num_warp_candidates <= MAX_WARP_REF_CANDIDATES); |
| |
| if (mbmi->max_num_warp_candidates <= 1) { |
| return; |
| } |
| int max_idx_bits = mbmi->max_num_warp_candidates - 1; |
| for (int bit_idx = 0; bit_idx < max_idx_bits; ++bit_idx) { |
| aom_cdf_prob *warp_ref_idx_cdf = av1_get_warp_ref_idx_cdf(ec_ctx, bit_idx); |
| aom_write_symbol(w, mbmi->warp_ref_idx != bit_idx, warp_ref_idx_cdf, 2); |
| |
| if (mbmi->warp_ref_idx == bit_idx) break; |
| } |
| } |
| |
| static void write_warpmv_with_mvd_flag(FRAME_CONTEXT *ec_ctx, |
| const MB_MODE_INFO *mbmi, |
| aom_writer *w) { |
| aom_write_symbol(w, mbmi->warpmv_with_mvd_flag, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| ec_ctx->warpmv_with_mvd_flag_cdf, |
| #else |
| ec_ctx |
| ->warpmv_with_mvd_flag_cdf[mbmi->sb_type[PLANE_TYPE_Y]], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| 2); |
| } |
| |
| // Write scale mode flag for joint mvd coding mode |
| static AOM_INLINE void write_jmvd_scale_mode(MACROBLOCKD *xd, aom_writer *w, |
| const MB_MODE_INFO *const mbmi) { |
| if (!is_joint_mvd_coding_mode(mbmi->mode)) return; |
| const int is_joint_amvd_mode = is_joint_amvd_coding_mode(mbmi->mode); |
| aom_cdf_prob *jmvd_scale_mode_cdf = |
| is_joint_amvd_mode ? xd->tile_ctx->jmvd_amvd_scale_mode_cdf |
| : xd->tile_ctx->jmvd_scale_mode_cdf; |
| const int jmvd_scale_cnt = is_joint_amvd_mode ? JOINT_AMVD_SCALE_FACTOR_CNT |
| : JOINT_NEWMV_SCALE_FACTOR_CNT; |
| |
| aom_write_symbol(w, mbmi->jmvd_scale_mode, jmvd_scale_mode_cdf, |
| jmvd_scale_cnt); |
| } |
| |
| // Write the index for the weighting factor of compound weighted prediction |
| static AOM_INLINE void write_cwp_idx(MACROBLOCKD *xd, aom_writer *w, |
| const AV1_COMMON *const cm, |
| const MB_MODE_INFO *const mbmi) { |
| const int8_t final_idx = get_cwp_coding_idx(mbmi->cwp_idx, 1, cm, mbmi); |
| |
| int bit_cnt = 0; |
| const int ctx = 0; |
| for (int idx = 0; idx < MAX_CWP_NUM - 1; ++idx) { |
| aom_write_symbol(w, final_idx != idx, |
| xd->tile_ctx->cwp_idx_cdf[ctx][bit_cnt], 2); |
| if (final_idx == idx) break; |
| ++bit_cnt; |
| } |
| } |
| |
| static AOM_INLINE void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w, |
| PREDICTION_MODE mode, |
| const AV1_COMMON *cm, |
| const MB_MODE_INFO *const mbmi, |
| const int16_t mode_ctx) { |
| assert(is_inter_compound_mode(mode)); |
| int comp_mode_idx = opfl_get_comp_idx(mode); |
| aom_write_symbol(w, comp_mode_idx, |
| xd->tile_ctx->inter_compound_mode_cdf[mode_ctx], |
| INTER_COMPOUND_REF_TYPES); |
| if (cm->features.opfl_refine_type == REFINE_SWITCHABLE && |
| opfl_allowed_for_cur_refs(cm, |
| #if CONFIG_COMPOUND_4XN |
| xd, |
| #endif // CONFIG_COMPOUND_4XN |
| mbmi)) { |
| const int use_optical_flow = mode >= NEAR_NEARMV_OPTFLOW; |
| #if CONFIG_AFFINE_REFINEMENT |
| const int allow_translational = is_translational_refinement_allowed( |
| cm, |
| #if CONFIG_COMPOUND_4XN |
| mbmi->sb_type[xd->tree_type == CHROMA_PART], |
| #endif // CONFIG_COMPOUND_4XN |
| comp_idx_to_opfl_mode[comp_mode_idx]); |
| const int allow_affine = is_affine_refinement_allowed( |
| cm, xd, comp_idx_to_opfl_mode[comp_mode_idx]); |
| if (use_optical_flow) { |
| assert(IMPLIES(allow_translational, |
| mbmi->comp_refine_type > COMP_REFINE_NONE)); |
| assert(IMPLIES(allow_affine, |
| mbmi->comp_refine_type >= COMP_AFFINE_REFINE_START)); |
| } |
| if (allow_affine || allow_translational) |
| #endif // CONFIG_AFFINE_REFINEMENT |
| aom_write_symbol(w, use_optical_flow, |
| xd->tile_ctx->use_optflow_cdf[mode_ctx], 2); |
| } |
| } |
| |
| #if CONFIG_NEW_TX_PARTITION |
| static void write_tx_partition(MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, |
| TX_SIZE max_tx_size, int blk_row, int blk_col, |
| aom_writer *w) { |
| int plane_type = (xd->tree_type == CHROMA_PART); |
| const int max_blocks_high = max_block_high(xd, mbmi->sb_type[plane_type], 0); |
| const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type[plane_type], 0); |
| const BLOCK_SIZE bsize = mbmi->sb_type[plane_type]; |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| #if CONFIG_IMPROVEIDTX_CTXS |
| const int is_fsc = (xd->mi[0]->fsc_mode[xd->tree_type == CHROMA_PART] && |
| plane_type == PLANE_TYPE_Y); |
| #endif // CONFIG_IMPROVEIDTX_CTXS |
| const int txb_size_index = |
| is_inter ? av1_get_txb_size_index(bsize, blk_row, blk_col) : 0; |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| if (is_inter || (!is_inter && block_signals_txsize(bsize))) { |
| const TX_PARTITION_TYPE partition = mbmi->tx_partition_type[txb_size_index]; |
| #if !CONFIG_TX_PARTITION_CTX |
| const int is_rect = is_rect_tx(max_tx_size); |
| #endif // !CONFIG_TX_PARTITION_CTX |
| const int allow_horz = allow_tx_horz_split(max_tx_size); |
| const int allow_vert = allow_tx_vert_split(max_tx_size); |
| #if CONFIG_TX_PARTITION_CTX |
| const int bsize_group = size_to_tx_part_group_lookup[bsize]; |
| const int txsize_group = size_to_tx_type_group_lookup[bsize]; |
| int do_partition = 0; |
| if (allow_horz || allow_vert) { |
| do_partition = (partition != TX_PARTITION_NONE); |
| aom_cdf_prob *do_partition_cdf = |
| #if CONFIG_IMPROVEIDTX_CTXS |
| ec_ctx->txfm_do_partition_cdf[is_fsc][is_inter][bsize_group]; |
| #else |
| ec_ctx->txfm_do_partition_cdf[is_inter][bsize_group]; |
| #endif // CONFIG_IMPROVEIDTX_CTXS |
| aom_write_symbol(w, do_partition, do_partition_cdf, 2); |
| } |
| |
| if (do_partition) { |
| if (allow_horz && allow_vert) { |
| assert(txsize_group > 0); |
| aom_cdf_prob *partition_type_cdf = |
| #if CONFIG_IMPROVEIDTX_CTXS |
| ec_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter] |
| [txsize_group - 1]; |
| #else |
| ec_ctx->txfm_4way_partition_type_cdf[is_inter][txsize_group - 1]; |
| #endif // CONFIG_IMPROVEIDTX_CTXS |
| aom_write_symbol(w, partition - 1, partition_type_cdf, |
| TX_PARTITION_TYPE_NUM); |
| } else if (allow_horz || allow_vert) { |
| int has_first_split = 0; |
| if (partition == TX_PARTITION_VERT_M || |
| partition == TX_PARTITION_HORZ_M) |
| has_first_split = 1; |
| |
| if (txsize_group) { |
| aom_cdf_prob *partition_type_cdf = |
| #if CONFIG_IMPROVEIDTX_CTXS |
| ec_ctx->txfm_4way_partition_type_cdf[is_fsc][is_inter] |
| [txsize_group - 1]; |
| #else |
| ec_ctx->txfm_4way_partition_type_cdf[is_inter][txsize_group - 1]; |
| #endif // CONFIG_IMPROVEIDTX_CTXS |
| aom_write_symbol(w, has_first_split, partition_type_cdf, |
| TX_PARTITION_TYPE_NUM); |
| } |
| } |
| } |
| |
| #else |
| if (allow_horz && allow_vert) { |
| const int split4_ctx = |
| is_inter ? txfm_partition_split4_inter_context( |
| xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, bsize, max_tx_size) |
| : get_tx_size_context(xd); |
| aom_cdf_prob *split4_cdf = |
| is_inter ? ec_ctx->inter_4way_txfm_partition_cdf[is_rect][split4_ctx] |
| : ec_ctx->intra_4way_txfm_partition_cdf[is_rect][split4_ctx]; |
| const TX_PARTITION_TYPE split4_partition = |
| get_split4_partition(partition); |
| aom_write_symbol(w, split4_partition, split4_cdf, 4); |
| } else if (allow_horz || allow_vert) { |
| const int has_first_split = partition != TX_PARTITION_NONE; |
| aom_cdf_prob *split2_cdf = is_inter |
| ? ec_ctx->inter_2way_txfm_partition_cdf |
| : ec_ctx->intra_2way_txfm_partition_cdf; |
| aom_write_symbol(w, has_first_split, split2_cdf, 2); |
| } else { |
| assert(!allow_horz && !allow_vert); |
| assert(partition == PARTITION_NONE); |
| } |
| #endif // CONFIG_TX_PARTITION_CTX |
| } |
| #if !CONFIG_TX_PARTITION_CTX |
| if (is_inter) { |
| const TX_SIZE tx_size = mbmi->inter_tx_size[txb_size_index]; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, |
| max_tx_size); |
| } |
| #endif // !CONFIG_TX_PARTITION_CTX |
| } |
| #else |
| static AOM_INLINE void write_tx_size_vartx(MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi, |
| TX_SIZE tx_size, int depth, |
| int blk_row, int blk_col, |
| aom_writer *w) { |
| FRAME_CONTEXT *const ec_ctx = xd->tile_ctx; |
| int plane_type = (xd->tree_type == CHROMA_PART); |
| const int max_blocks_high = max_block_high(xd, mbmi->sb_type[plane_type], 0); |
| const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type[plane_type], 0); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (depth == MAX_VARTX_DEPTH) { |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| return; |
| } |
| const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, |
| mbmi->sb_type[plane_type], tx_size); |
| const int txb_size_index = |
| av1_get_txb_size_index(mbmi->sb_type[plane_type], blk_row, blk_col); |
| const int write_txfm_partition = |
| tx_size == mbmi->inter_tx_size[txb_size_index]; |
| if (write_txfm_partition) { |
| aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2); |
| |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| // TODO(yuec): set correct txfm partition update for qttx |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| |
| aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2); |
| |
| if (sub_txs == TX_4X4) { |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, sub_txs, tx_size); |
| return; |
| } |
| |
| assert(bsw > 0 && bsh > 0); |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| int offsetr = blk_row + row; |
| int offsetc = blk_col + col; |
| write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w); |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_selected_tx_size(const MACROBLOCKD *xd, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| if (block_signals_txsize(bsize)) { |
| const TX_SIZE tx_size = mbmi->tx_size; |
| const int tx_size_ctx = get_tx_size_context(xd); |
| const int depth = tx_size_to_depth(tx_size, bsize); |
| const int max_depths = bsize_to_max_depth(bsize); |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| |
| assert(depth >= 0 && depth <= max_depths); |
| assert(!is_inter_block(mbmi, xd->tree_type)); |
| assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); |
| aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], |
| max_depths + 1); |
| } |
| } |
| #endif // CONFIG_NEW_TX_PARTITION |
| |
| static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| int segment_id, const MB_MODE_INFO *mi, aom_writer *w) { |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { |
| return 1; |
| } else { |
| const int skip_txfm = mi->skip_txfm[xd->tree_type == CHROMA_PART]; |
| const int ctx = av1_get_skip_txfm_context(xd); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| aom_write_symbol(w, skip_txfm, ec_ctx->skip_txfm_cdfs[ctx], 2); |
| return skip_txfm; |
| } |
| } |
| |
| static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| int segment_id, const MB_MODE_INFO *mi, |
| aom_writer *w) { |
| if (!cm->current_frame.skip_mode_info.skip_mode_flag) return 0; |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { |
| return 0; |
| } |
| const int skip_mode = mi->skip_mode; |
| if (!is_comp_ref_allowed(mi->sb_type[xd->tree_type == CHROMA_PART])) { |
| assert(!skip_mode); |
| return 0; |
| } |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| // These features imply single-reference mode, while skip mode implies |
| // compound reference. Hence, the two are mutually exclusive. |
| // In other words, skip_mode is implicitly 0 here. |
| assert(!skip_mode); |
| return 0; |
| } |
| const int ctx = av1_get_skip_mode_context(xd); |
| aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2); |
| return skip_mode; |
| } |
| |
| static AOM_INLINE void write_is_inter(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, int segment_id, |
| aom_writer *w, const int is_inter |
| #if CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT |
| , |
| const int skip_txfm |
| #endif // CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT |
| ) { |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| assert(is_inter); |
| return; |
| } |
| const int ctx = av1_get_intra_inter_context(xd); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| #if CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT |
| aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[skip_txfm][ctx], 2); |
| #else |
| aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2); |
| #endif // CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT |
| } |
| |
| #if CONFIG_WEDGE_MOD_EXT |
| static void write_wedge_mode(aom_writer *w, FRAME_CONTEXT *ec_ctx, |
| const BLOCK_SIZE bsize, const int8_t wedge_index) { |
| #if CONFIG_D149_CTX_MODELING_OPT |
| (void)bsize; |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| const int wedge_angle = wedge_index_2_angle[wedge_index]; |
| const int wedge_dist = wedge_index_2_dist[wedge_index]; |
| const int wedge_angle_dir = (wedge_angle >= H_WEDGE_ANGLES); |
| aom_write_symbol(w, wedge_angle_dir, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| ec_ctx->wedge_angle_dir_cdf, |
| #else |
| ec_ctx->wedge_angle_dir_cdf[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| 2); |
| |
| if (wedge_angle_dir == 0) { |
| aom_write_symbol(w, wedge_angle, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| ec_ctx->wedge_angle_0_cdf, |
| #else |
| ec_ctx->wedge_angle_0_cdf[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| H_WEDGE_ANGLES); |
| } else { |
| assert(wedge_angle >= H_WEDGE_ANGLES); |
| aom_write_symbol(w, (wedge_angle - H_WEDGE_ANGLES), |
| #if CONFIG_D149_CTX_MODELING_OPT |
| ec_ctx->wedge_angle_1_cdf, |
| #else |
| ec_ctx->wedge_angle_1_cdf[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| H_WEDGE_ANGLES); |
| } |
| |
| if ((wedge_angle >= H_WEDGE_ANGLES) || |
| (wedge_angle == WEDGE_90 || wedge_angle == WEDGE_180)) { |
| assert(wedge_dist != 0); |
| aom_write_symbol(w, wedge_dist - 1, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| ec_ctx->wedge_dist_cdf2, |
| #else |
| ec_ctx->wedge_dist_cdf2[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| NUM_WEDGE_DIST - 1); |
| } else { |
| aom_write_symbol(w, wedge_dist, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| ec_ctx->wedge_dist_cdf, |
| #else |
| ec_ctx->wedge_dist_cdf[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| NUM_WEDGE_DIST); |
| } |
| } |
| #endif // CONFIG_WEDGE_MOD_EXT |
| |
| static void write_warp_delta_param(const MACROBLOCKD *xd, int index, int value, |
| aom_writer *w) { |
| assert(2 <= index && index <= 5); |
| int index_type = (index == 2 || index == 5) ? 0 : 1; |
| int coded_value = (value / WARP_DELTA_STEP) + WARP_DELTA_CODED_MAX; |
| assert(0 <= coded_value && coded_value < WARP_DELTA_NUM_SYMBOLS); |
| // Check that the value will round-trip properly |
| assert((coded_value - WARP_DELTA_CODED_MAX) * WARP_DELTA_STEP == value); |
| |
| aom_write_symbol(w, coded_value, |
| xd->tile_ctx->warp_delta_param_cdf[index_type], |
| WARP_DELTA_NUM_SYMBOLS); |
| } |
| |
| static void write_warp_delta(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, |
| aom_writer *w) { |
| assert(mbmi->warp_ref_idx < mbmi->max_num_warp_candidates); |
| if (!allow_warp_parameter_signaling(cm, mbmi)) { |
| return; |
| } |
| |
| const WarpedMotionParams *params = &mbmi->wm_params[0]; |
| WarpedMotionParams base_params; |
| av1_get_warp_base_params(cm, mbmi, &base_params, NULL, |
| mbmi_ext_frame->warp_param_stack); |
| |
| // The RDO stage should not give us a model which is not warpable. |
| // Such models can still be signalled, but are effectively useless |
| // as we'll just fall back to translational motion |
| assert(!params->invalid); |
| |
| // TODO(rachelbarker): Allow signaling warp type? |
| write_warp_delta_param(xd, 2, params->wmmat[2] - base_params.wmmat[2], w); |
| write_warp_delta_param(xd, 3, params->wmmat[3] - base_params.wmmat[3], w); |
| } |
| |
| static AOM_INLINE void write_motion_mode( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) { |
| const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y]; |
| const int allowed_motion_modes = |
| #if CONFIG_SEP_COMP_DRL |
| motion_mode_allowed(cm, xd, mbmi_ext_frame->ref_mv_stack[0], mbmi); |
| #else |
| motion_mode_allowed(cm, xd, mbmi_ext_frame->ref_mv_stack, mbmi); |
| #endif // CONFIG_SEP_COMP_DRL |
| assert((allowed_motion_modes & (1 << mbmi->motion_mode)) != 0); |
| assert((cm->features.enabled_motion_modes & (1 << mbmi->motion_mode)) != 0); |
| |
| MOTION_MODE motion_mode = mbmi->motion_mode; |
| |
| // Note(rachelbarker): Both of the conditions in brackets here are used in |
| // various places to mean "is this block interintra?". This assertion is a |
| // quick check to ensure these conditions can't get out of sync. |
| #if !CONFIG_INTERINTRA_IMPROVEMENT |
| assert((mbmi->ref_frame[1] == INTRA_FRAME) == (motion_mode == INTERINTRA)); |
| #endif // !CONFIG_INTERINTRA_IMPROVEMENT |
| |
| if (mbmi->mode == WARPMV) { |
| assert(mbmi->motion_mode == WARP_DELTA || |
| mbmi->motion_mode == WARPED_CAUSAL); |
| // Signal if the motion mode is WARP_CAUSAL or WARP_DELTA |
| if (allowed_motion_modes & (1 << WARPED_CAUSAL)) { |
| aom_write_symbol(w, motion_mode == WARPED_CAUSAL, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| xd->tile_ctx->warped_causal_warpmv_cdf, |
| #else |
| xd->tile_ctx->warped_causal_warpmv_cdf[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| 2); |
| } |
| return; |
| } |
| |
| if (allowed_motion_modes & (1 << INTERINTRA)) { |
| const int bsize_group = size_group_lookup[bsize]; |
| aom_write_symbol(w, motion_mode == INTERINTRA, |
| xd->tile_ctx->interintra_cdf[bsize_group], 2); |
| if (motion_mode == INTERINTRA) { |
| aom_write_symbol(w, mbmi->interintra_mode, |
| xd->tile_ctx->interintra_mode_cdf[bsize_group], |
| INTERINTRA_MODES); |
| if (av1_is_wedge_used(bsize)) { |
| aom_write_symbol(w, mbmi->use_wedge_interintra, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| xd->tile_ctx->wedge_interintra_cdf, |
| #else |
| xd->tile_ctx->wedge_interintra_cdf[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| 2); |
| if (mbmi->use_wedge_interintra) { |
| #if CONFIG_WEDGE_MOD_EXT |
| write_wedge_mode(w, xd->tile_ctx, bsize, |
| mbmi->interintra_wedge_index); |
| #else |
| aom_write_symbol(w, mbmi->interintra_wedge_index, |
| xd->tile_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES); |
| #endif // CONFIG_WEDGE_MOD_EXT |
| } |
| } |
| return; |
| } |
| } |
| |
| if (allowed_motion_modes & (1 << OBMC_CAUSAL)) { |
| aom_write_symbol(w, motion_mode == OBMC_CAUSAL, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| xd->tile_ctx->obmc_cdf, |
| #else |
| xd->tile_ctx->obmc_cdf[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| 2); |
| |
| if (motion_mode == OBMC_CAUSAL) { |
| return; |
| } |
| } |
| |
| if (allowed_motion_modes & (1 << WARP_EXTEND)) { |
| #if CONFIG_OPTIMIZE_CTX_TIP_WARP |
| const int ctx = av1_get_warp_extend_ctx(xd); |
| aom_write_symbol(w, motion_mode == WARP_EXTEND, |
| xd->tile_ctx->warp_extend_cdf[ctx], 2); |
| #else |
| const int ctx1 = av1_get_warp_extend_ctx1(xd, mbmi); |
| const int ctx2 = av1_get_warp_extend_ctx2(xd, mbmi); |
| aom_write_symbol(w, motion_mode == WARP_EXTEND, |
| xd->tile_ctx->warp_extend_cdf[ctx1][ctx2], 2); |
| #endif // CONFIG_OPTIMIZE_CTX_TIP_WARP |
| if (motion_mode == WARP_EXTEND) { |
| return; |
| } |
| } |
| |
| if (allowed_motion_modes & (1 << WARPED_CAUSAL)) { |
| aom_write_symbol(w, motion_mode == WARPED_CAUSAL, |
| #if CONFIG_D149_CTX_MODELING_OPT && !NO_D149_FOR_WARPED_CAUSAL |
| xd->tile_ctx->warped_causal_cdf, |
| #else |
| xd->tile_ctx->warped_causal_cdf[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT && !NO_D149_FOR_WARPED_CAUSAL |
| 2); |
| |
| if (motion_mode == WARPED_CAUSAL) { |
| return; |
| } |
| } |
| |
| if (allowed_motion_modes & (1 << WARP_DELTA)) { |
| aom_write_symbol(w, motion_mode == WARP_DELTA, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| xd->tile_ctx->warp_delta_cdf, |
| #else |
| xd->tile_ctx->warp_delta_cdf[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| 2); |
| } |
| } |
| |
| static AOM_INLINE void write_delta_qindex(const MACROBLOCKD *xd, |
| int delta_qindex, aom_writer *w) { |
| int sign = delta_qindex < 0; |
| int abs = sign ? -delta_qindex : delta_qindex; |
| int rem_bits, thr; |
| int smallval = abs < DELTA_Q_SMALL ? 1 : 0; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf, |
| DELTA_Q_PROBS + 1); |
| |
| if (!smallval) { |
| rem_bits = get_msb(abs - 1); |
| thr = (1 << rem_bits) + 1; |
| aom_write_literal(w, rem_bits - 1, 3); |
| aom_write_literal(w, abs - thr, rem_bits); |
| } |
| if (abs > 0) { |
| aom_write_bit(w, sign); |
| } |
| } |
| |
| static AOM_INLINE void write_delta_lflevel(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, int lf_id, |
| int delta_lflevel, aom_writer *w) { |
| int sign = delta_lflevel < 0; |
| int abs = sign ? -delta_lflevel : delta_lflevel; |
| int rem_bits, thr; |
| int smallval = abs < DELTA_LF_SMALL ? 1 : 0; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| if (cm->delta_q_info.delta_lf_multi) { |
| assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT |
| : FRAME_LF_COUNT - 2)); |
| aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), |
| ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1); |
| } else { |
| aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf, |
| DELTA_LF_PROBS + 1); |
| } |
| |
| if (!smallval) { |
| rem_bits = get_msb(abs - 1); |
| thr = (1 << rem_bits) + 1; |
| aom_write_literal(w, rem_bits - 1, 3); |
| aom_write_literal(w, abs - thr, rem_bits); |
| } |
| if (abs > 0) { |
| aom_write_bit(w, sign); |
| } |
| } |
| |
| #if CONFIG_PALETTE_IMPROVEMENTS |
| static AOM_INLINE void pack_map_tokens(const MACROBLOCKD *xd, aom_writer *w, |
| const TokenExtra **tp, int n, int cols, |
| int rows, int plane |
| #if CONFIG_PALETTE_LINE_COPY |
| , |
| const bool direction_allowed |
| #endif // CONFIG_PALETTE_LINE_COPY |
| |
| ) { |
| const TokenExtra *p = *tp; |
| #if CONFIG_PALETTE_LINE_COPY |
| const int direction = (direction_allowed) ? p->direction : 0; |
| if (direction_allowed) { |
| aom_write_symbol(w, p->direction, xd->tile_ctx->palette_direction_cdf, 2); |
| } |
| #else |
| const int direction = 0; |
| #endif // CONFIG_PALETTE_LINE_COPY |
| const int ax1_limit = direction ? rows : cols; |
| const int ax2_limit = direction ? cols : rows; |
| |
| // for (int y = 0; y < rows; y++) { |
| for (int ax2 = 0; ax2 < ax2_limit; ax2++) { |
| assert(p->identity_row_ctx >= 0 && |
| p->identity_row_ctx < PALETTE_ROW_FLAG_CONTEXTS); |
| int identity_row_flag = p->identity_row_flag; |
| const int ctx = p->identity_row_ctx; |
| // Derive the cdf corresponding to identity_row using the context |
| // (i.e.,identify_row_ctx) stored during the encoding. |
| aom_cdf_prob *identity_row_cdf = |
| plane ? xd->tile_ctx->identity_row_cdf_uv[ctx] |
| : xd->tile_ctx->identity_row_cdf_y[ctx]; |
| |
| #if CONFIG_PALETTE_LINE_COPY |
| aom_write_symbol(w, identity_row_flag, identity_row_cdf, 3); |
| #else |
| aom_write_symbol(w, identity_row_flag, identity_row_cdf, 2); |
| #endif // CONFIG_PALETTE_LINE_COPY |
| // for (int x = 0; x < cols; x++) { |
| for (int ax1 = 0; ax1 < ax1_limit; ax1++) { |
| // if (y == 0 && x == 0) { |
| if (ax2 == 0 && ax1 == 0) { |
| write_uniform(w, n, p->token); |
| } else { |
| #if CONFIG_PALETTE_LINE_COPY |
| if (!(identity_row_flag == 2) && |
| (!(identity_row_flag == 1) || ax1 == 0)) { |
| #else |
| if (!identity_row_flag || ax1 == 0) { |
| #endif // CONFIG_PALETTE_LINE_COPY |
| assert(p->color_map_palette_size_idx >= 0 && |
| p->color_map_ctx_idx >= 0); |
| aom_cdf_prob *color_map_pb_cdf = |
| plane ? xd->tile_ctx->palette_uv_color_index_cdf |
| [p->color_map_palette_size_idx][p->color_map_ctx_idx] |
| : xd->tile_ctx->palette_y_color_index_cdf |
| [p->color_map_palette_size_idx][p->color_map_ctx_idx]; |
| aom_write_symbol(w, p->token, color_map_pb_cdf, n); |
| } |
| } |
| #if CONFIG_PALETTE_LINE_COPY |
| p++; |
| #else |
| if (!identity_row_flag || ax1 == 0) p++; |
| #endif |
| } |
| } |
| *tp = p; |
| } |
| #else |
| static AOM_INLINE void pack_map_tokens(const MACROBLOCKD *xd, aom_writer *w, |
| const TokenExtra **tp, int n, int num, |
| int plane) { |
| const TokenExtra *p = *tp; |
| write_uniform(w, n, p->token); // The first color index. |
| ++p; |
| --num; |
| for (int i = 0; i < num; ++i) { |
| assert(p->color_map_palette_size_idx >= 0 && p->color_map_ctx_idx >= 0); |
| aom_cdf_prob *color_map_pb_cdf = |
| plane ? xd->tile_ctx |
| ->palette_uv_color_index_cdf[p->color_map_palette_size_idx] |
| [p->color_map_ctx_idx] |
| : xd->tile_ctx |
| ->palette_y_color_index_cdf[p->color_map_palette_size_idx] |
| [p->color_map_ctx_idx]; |
| aom_write_symbol(w, p->token, color_map_pb_cdf, n); |
| ++p; |
| } |
| *tp = p; |
| } |
| #endif // CONFIG_PALETTE_IMPROVEMENTS |
| |
| static AOM_INLINE void av1_write_coeffs_txb_facade( |
| aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, MACROBLOCKD *xd, |
| MB_MODE_INFO *mbmi, int plane, int block, int blk_row, int blk_col, |
| TX_SIZE tx_size) { |
| // code significance and TXB |
| const int code_rest = |
| av1_write_sig_txtype(cm, x, w, blk_row, blk_col, plane, block, tx_size); |
| const TX_TYPE tx_type = |
| av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size, |
| cm->features.reduced_tx_set_used); |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| if (code_rest) { |
| if ((mbmi->fsc_mode[xd->tree_type == CHROMA_PART] && |
| get_primary_tx_type(tx_type) == IDTX && plane == PLANE_TYPE_Y) || |
| use_inter_fsc(cm, plane, tx_type, is_inter)) { |
| av1_write_coeffs_txb_skip(cm, x, w, blk_row, blk_col, plane, block, |
| tx_size); |
| } else { |
| av1_write_coeffs_txb(cm, x, w, blk_row, blk_col, plane, block, tx_size); |
| } |
| } |
| } |
| |
| static AOM_INLINE void pack_txb_tokens( |
| aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, const TokenExtra **tp, |
| const TokenExtra *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, |
| int plane, BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, int block, |
| int blk_row, int blk_col, TX_SIZE tx_size, TOKEN_STATS *token_stats) { |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| #if CONFIG_NEW_TX_PARTITION |
| const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); |
| const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane); |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x, |
| pd->subsampling_y) |
| : mbmi->inter_tx_size[index]; |
| #else |
| const BLOCK_SIZE bsize_base = get_bsize_base(xd, mbmi, plane); |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_max_uv_txsize(bsize_base, pd->subsampling_x, |
| pd->subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, |
| blk_col)]; |
| #endif // CONFIG_NEW_TX_PARTITION |
| #else |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_max_uv_txsize(mbmi->sb_type[plane > 0], pd->subsampling_x, |
| pd->subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, |
| blk_col)]; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| if (tx_size == plane_tx_size || plane) { |
| av1_write_coeffs_txb_facade(w, cm, x, xd, mbmi, plane, block, blk_row, |
| blk_col, tx_size); |
| #if CONFIG_RD_DEBUG |
| TOKEN_STATS tmp_token_stats; |
| init_token_stats(&tmp_token_stats); |
| token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost; |
| token_stats->cost += tmp_token_stats.cost; |
| #endif |
| } else { |
| #if CONFIG_NEW_TX_PARTITION |
| (void)tp; |
| (void)tok_end; |
| (void)token_stats; |
| (void)bit_depth; |
| TX_SIZE sub_txs[MAX_TX_PARTITIONS] = { 0 }; |
| TXB_POS_INFO txb_pos; |
| get_tx_partition_sizes(mbmi->tx_partition_type[index], tx_size, &txb_pos, |
| sub_txs); |
| for (int txb_idx = 0; txb_idx < txb_pos.n_partitions; ++txb_idx) { |
| const TX_SIZE sub_tx = sub_txs[txb_idx]; |
| const int bsw = tx_size_wide_unit[sub_tx]; |
| const int bsh = tx_size_high_unit[sub_tx]; |
| const int sub_step = bsw * bsh; |
| const int offsetr = blk_row + txb_pos.row_offset[txb_idx]; |
| const int offsetc = blk_col + txb_pos.col_offset[txb_idx]; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| av1_write_coeffs_txb_facade(w, cm, x, xd, mbmi, plane, block, offsetr, |
| offsetc, sub_tx); |
| #if CONFIG_RD_DEBUG |
| TOKEN_STATS tmp_token_stats; |
| init_token_stats(&tmp_token_stats); |
| token_stats->txb_coeff_cost_map[offsetr][offsetc] = tmp_token_stats.cost; |
| token_stats->cost += tmp_token_stats.cost; |
| #endif |
| block += sub_step; |
| } |
| |
| #else |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int step = bsh * bsw; |
| |
| assert(bsw > 0 && bsh > 0); |
| |
| for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { |
| for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { |
| const int offsetr = blk_row + r; |
| const int offsetc = blk_col + c; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize, |
| bit_depth, block, offsetr, offsetc, sub_txs, |
| token_stats); |
| block += step; |
| } |
| } |
| #endif // CONFIG_NEW_TX_PARTITION |
| } |
| } |
| |
| static INLINE void set_spatial_segment_id( |
| const CommonModeInfoParams *const mi_params, uint8_t *segment_ids, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, int segment_id) { |
| const int mi_offset = mi_row * mi_params->mi_cols + mi_col; |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| const int xmis = AOMMIN(mi_params->mi_cols - mi_col, bw); |
| const int ymis = AOMMIN(mi_params->mi_rows - mi_row, bh); |
| |
| for (int y = 0; y < ymis; ++y) { |
| for (int x = 0; x < xmis; ++x) { |
| segment_ids[mi_offset + y * mi_params->mi_cols + x] = segment_id; |
| } |
| } |
| } |
| |
| int av1_neg_interleave(int x, int ref, int max) { |
| assert(x < max); |
| const int diff = x - ref; |
| if (!ref) return x; |
| if (ref >= (max - 1)) return -x + max - 1; |
| if (2 * ref < max) { |
| if (abs(diff) <= ref) { |
| if (diff > 0) |
| return (diff << 1) - 1; |
| else |
| return ((-diff) << 1); |
| } |
| return x; |
| } else { |
| if (abs(diff) < (max - ref)) { |
| if (diff > 0) |
| return (diff << 1) - 1; |
| else |
| return ((-diff) << 1); |
| } |
| return (max - x) - 1; |
| } |
| } |
| |
| static AOM_INLINE void write_segment_id(AV1_COMP *cpi, |
| const MB_MODE_INFO *const mbmi, |
| aom_writer *w, |
| const struct segmentation *seg, |
| struct segmentation_probs *segp, |
| int skip_txfm) { |
| if (!seg->enabled || !seg->update_map) return; |
| |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| int cdf_num; |
| const int pred = av1_get_spatial_seg_pred(cm, xd, &cdf_num); |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| |
| if (skip_txfm) { |
| // Still need to transmit tx size for intra blocks even if skip_txfm is |
| // true. Changing segment_id may make the tx size become invalid, e.g |
| // changing from lossless to lossy. |
| assert(is_inter_block(mbmi, xd->tree_type) || |
| !cpi->enc_seg.has_lossless_segment); |
| set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, |
| mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row, |
| mi_col, pred); |
| set_spatial_segment_id(&cm->mi_params, cpi->enc_seg.map, |
| mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row, |
| mi_col, pred); |
| /* mbmi is read only but we need to update segment_id */ |
| ((MB_MODE_INFO *)mbmi)->segment_id = pred; |
| return; |
| } |
| |
| const int coded_id = |
| av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1); |
| aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; |
| aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS); |
| set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, |
| mbmi->sb_type[xd->tree_type == CHROMA_PART], mi_row, |
| mi_col, mbmi->segment_id); |
| } |
| |
| static AOM_INLINE void write_single_ref( |
| const MACROBLOCKD *xd, const RefFramesInfo *const ref_frames_info, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MV_REFERENCE_FRAME ref = mbmi->ref_frame[0]; |
| const int n_refs = ref_frames_info->num_total_refs; |
| assert(ref < n_refs); |
| for (int i = 0; i < n_refs - 1; i++) { |
| const int bit = ref == i; |
| aom_write_symbol(w, bit, av1_get_pred_cdf_single_ref(xd, i, n_refs), 2); |
| if (bit) return; |
| } |
| assert(ref == (n_refs - 1)); |
| } |
| |
| static AOM_INLINE void write_compound_ref( |
| const MACROBLOCKD *xd, const RefFramesInfo *const ref_frames_info, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; |
| MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; |
| const int n_refs = ref_frames_info->num_total_refs; |
| #if CONFIG_SAME_REF_COMPOUND |
| int may_have_same_ref_comp = ref_frames_info->num_same_ref_compound > 0; |
| if (ref_frames_info->num_same_ref_compound > 0) { |
| assert(n_refs >= 1); |
| assert(ref0 <= ref1); |
| } else { |
| #endif // CONFIG_SAME_REF_COMPOUND |
| assert(n_refs >= 2); |
| assert(ref0 < ref1); |
| #if CONFIG_SAME_REF_COMPOUND |
| } |
| #endif // CONFIG_SAME_REF_COMPOUND |
| int n_bits = 0; |
| |
| #if CONFIG_SAME_REF_COMPOUND |
| for (int i = 0; |
| (i < n_refs + n_bits - 2 || may_have_same_ref_comp) && n_bits < 2; i++) { |
| const int bit = |
| ((n_bits == 0) && (ref0 == i)) || ((n_bits == 1) && (ref1 == i)); |
| #else |
| for (int i = 0; i < n_refs + n_bits - 2 && n_bits < 2; i++) { |
| const int bit = ref0 == i || ref1 == i; |
| #endif // CONFIG_SAME_REF_COMPOUND |
| // bit_type: -1 for ref0, 0 for opposite sided ref1, 1 for same sided ref1 |
| const int bit_type = |
| n_bits == 0 ? -1 |
| : av1_get_compound_ref_bit_type(ref_frames_info, ref0, i); |
| // Implicitly signal a 1 in either case: |
| // 1) ref0 = RANKED_REF0_TO_PRUNE - 1 |
| // 2) no reference is signaled yet, the next ref is not allowed for same |
| // ref compound, and there are only two references left (this case |
| // should only be met when same ref compound is on, where the |
| // following bit may be 0 or 1). |
| int implicit_ref_bit = n_bits == 0 && i >= RANKED_REF0_TO_PRUNE - 1; |
| #if CONFIG_SAME_REF_COMPOUND |
| implicit_ref_bit |= n_bits == 0 && i >= n_refs - 2 && |
| i + 1 >= ref_frames_info->num_same_ref_compound; |
| assert(IMPLIES(n_bits == 0 && i >= n_refs - 2, |
| i < ref_frames_info->num_same_ref_compound)); |
| #endif // CONFIG_SAME_REF_COMPOUND |
| if (!implicit_ref_bit) { |
| aom_write_symbol( |
| w, bit, |
| av1_get_pred_cdf_compound_ref(xd, i, n_bits, bit_type, n_refs), 2); |
| } |
| n_bits += bit; |
| #if CONFIG_SAME_REF_COMPOUND |
| if (i < ref_frames_info->num_same_ref_compound && may_have_same_ref_comp) { |
| may_have_same_ref_comp = |
| !bit && i + 1 < ref_frames_info->num_same_ref_compound; |
| i -= bit; |
| } else { |
| may_have_same_ref_comp = 0; |
| } |
| #endif // CONFIG_SAME_REF_COMPOUND |
| } |
| assert(IMPLIES(n_bits < 2, ref1 == n_refs - 1)); |
| #if CONFIG_SAME_REF_COMPOUND |
| if (ref_frames_info->num_same_ref_compound == 0) |
| #endif // CONFIG_SAME_REF_COMPOUND |
| assert(IMPLIES(n_bits < 1, ref0 == n_refs - 2)); |
| } |
| |
| // This function encodes the reference frame |
| static AOM_INLINE void write_ref_frames(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int is_compound = has_second_ref(mbmi); |
| const int segment_id = mbmi->segment_id; |
| |
| // If segment level coding of this signal is disabled... |
| // or the segment allows multiple reference frame options |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| assert(mbmi->ref_frame[0] == get_closest_pastcur_ref_index(cm)); |
| assert(!is_compound); |
| } else { |
| // does the feature use compound prediction or not |
| // (if not specified at the frame/segment level) |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { |
| if (is_comp_ref_allowed(mbmi->sb_type[PLANE_TYPE_Y])) |
| aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(cm, xd), 2); |
| } else { |
| assert((!is_compound) == |
| (cm->current_frame.reference_mode == SINGLE_REFERENCE)); |
| } |
| |
| if (is_compound) { |
| write_compound_ref(xd, &cm->ref_frames_info, w); |
| } else { |
| write_single_ref(xd, &cm->ref_frames_info, w); |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_filter_intra_mode_info( |
| const AV1_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, |
| aom_writer *w) { |
| if (av1_filter_intra_allowed(cm, mbmi |
| #if CONFIG_LOSSLESS_DPCM |
| , |
| xd |
| #endif |
| ) && |
| xd->tree_type != CHROMA_PART) { |
| aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| xd->tile_ctx->filter_intra_cdfs, |
| #else |
| xd->tile_ctx |
| ->filter_intra_cdfs[mbmi->sb_type[PLANE_TYPE_Y]], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| 2); |
| if (mbmi->filter_intra_mode_info.use_filter_intra) { |
| const FILTER_INTRA_MODE mode = |
| mbmi->filter_intra_mode_info.filter_intra_mode; |
| aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf, |
| FILTER_INTRA_MODES); |
| } |
| } |
| } |
| |
| #if !CONFIG_AIMC |
| static AOM_INLINE void write_angle_delta(aom_writer *w, int angle_delta, |
| aom_cdf_prob *cdf) { |
| aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| #endif // !CONFIG_AIMC |
| |
| static AOM_INLINE void write_mb_interp_filter(AV1_COMMON *const cm, |
| const MACROBLOCKD *xd, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| if (!av1_is_interp_needed(cm, xd)) { |
| #if CONFIG_DEBUG |
| // Sharp filter is always used whenever optical flow refinement is applied. |
| int mb_interp_filter = (opfl_allowed_for_cur_block(cm, |
| |
| #if CONFIG_COMPOUND_4XN |
| xd, |
| #endif // CONFIG_COMPOUND_4XN |
| mbmi) |
| |
| #if CONFIG_REFINEMV |
| || mbmi->refinemv_flag |
| #endif // CONFIG_REFINEMV |
| || is_tip_ref_frame(mbmi->ref_frame[0])) |
| ? MULTITAP_SHARP |
| : cm->features.interp_filter; |
| assert(mbmi->interp_fltr == av1_unswitchable_filter(mb_interp_filter)); |
| (void)mb_interp_filter; |
| #endif // CONFIG_DEBUG |
| return; |
| } |
| if (cm->features.interp_filter == SWITCHABLE) { |
| if (opfl_allowed_for_cur_block(cm, |
| #if CONFIG_COMPOUND_4XN |
| xd, |
| #endif // CONFIG_COMPOUND_4XN |
| mbmi) |
| #if CONFIG_REFINEMV |
| || mbmi->refinemv_flag |
| #endif // CONFIG_REFINEMV |
| || is_tip_ref_frame(mbmi->ref_frame[0])) { |
| assert(mbmi->interp_fltr == MULTITAP_SHARP); |
| return; |
| } |
| const int ctx = av1_get_pred_context_switchable_interp(xd, 0); |
| const InterpFilter filter = mbmi->interp_fltr; |
| aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx], |
| SWITCHABLE_FILTERS); |
| ++cm->cur_frame->interp_filter_selected[filter]; |
| } |
| } |
| |
| // Transmit color values with delta encoding. Write the first value as |
| // literal, and the deltas between each value and the previous one. "min_val" is |
| // the smallest possible value of the deltas. |
| static AOM_INLINE void delta_encode_palette_colors(const int *colors, int num, |
| int bit_depth, int min_val, |
| aom_writer *w) { |
| if (num <= 0) return; |
| assert(colors[0] < (1 << bit_depth)); |
| aom_write_literal(w, colors[0], bit_depth); |
| if (num == 1) return; |
| int max_delta = 0; |
| int deltas[PALETTE_MAX_SIZE]; |
| memset(deltas, 0, sizeof(deltas)); |
| for (int i = 1; i < num; ++i) { |
| assert(colors[i] < (1 << bit_depth)); |
| const int delta = colors[i] - colors[i - 1]; |
| deltas[i - 1] = delta; |
| assert(delta >= min_val); |
| if (delta > max_delta) max_delta = delta; |
| } |
| const int min_bits = bit_depth - 3; |
| int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); |
| assert(bits <= bit_depth); |
| int range = (1 << bit_depth) - colors[0] - min_val; |
| aom_write_literal(w, bits - min_bits, 2); |
| for (int i = 0; i < num - 1; ++i) { |
| aom_write_literal(w, deltas[i] - min_val, bits); |
| range -= deltas[i]; |
| bits = AOMMIN(bits, av1_ceil_log2(range)); |
| } |
| } |
| |
| // Transmit luma palette color values. First signal if each color in the color |
| // cache is used. Those colors that are not in the cache are transmitted with |
| // delta encoding. |
| static AOM_INLINE void write_palette_colors_y( |
| const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi, |
| int bit_depth, aom_writer *w) { |
| const int n = pmi->palette_size[0]; |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 0, color_cache); |
| int out_cache_colors[PALETTE_MAX_SIZE]; |
| uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; |
| const int n_out_cache = |
| av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, |
| cache_color_found, out_cache_colors); |
| int n_in_cache = 0; |
| for (int i = 0; i < n_cache && n_in_cache < n; ++i) { |
| const int found = cache_color_found[i]; |
| aom_write_bit(w, found); |
| n_in_cache += found; |
| } |
| assert(n_in_cache + n_out_cache == n); |
| delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w); |
| } |
| |
| // Write chroma palette color values. U channel is handled similarly to the luma |
| // channel. For v channel, either use delta encoding or transmit raw values |
| // directly, whichever costs less. |
| static AOM_INLINE void write_palette_colors_uv( |
| const MACROBLOCKD *const xd, const PALETTE_MODE_INFO *const pmi, |
| int bit_depth, aom_writer *w) { |
| const int n = pmi->palette_size[1]; |
| const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE; |
| const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE; |
| // U channel colors. |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 1, color_cache); |
| int out_cache_colors[PALETTE_MAX_SIZE]; |
| uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; |
| const int n_out_cache = av1_index_color_cache( |
| color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors); |
| int n_in_cache = 0; |
| for (int i = 0; i < n_cache && n_in_cache < n; ++i) { |
| const int found = cache_color_found[i]; |
| aom_write_bit(w, found); |
| n_in_cache += found; |
| } |
| delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w); |
| |
| // V channel colors. Don't use color cache as the colors are not sorted. |
| const int max_val = 1 << bit_depth; |
| int zero_count = 0, min_bits_v = 0; |
| int bits_v = |
| av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); |
| const int rate_using_delta = |
| 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; |
| const int rate_using_raw = bit_depth * n; |
| if (rate_using_delta < rate_using_raw) { // delta encoding |
| assert(colors_v[0] < (1 << bit_depth)); |
| aom_write_bit(w, 1); |
| aom_write_literal(w, bits_v - min_bits_v, 2); |
| aom_write_literal(w, colors_v[0], bit_depth); |
| for (int i = 1; i < n; ++i) { |
| assert(colors_v[i] < (1 << bit_depth)); |
| if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit. |
| aom_write_literal(w, 0, bits_v); |
| continue; |
| } |
| const int delta = abs((int)colors_v[i] - colors_v[i - 1]); |
| const int sign_bit = colors_v[i] < colors_v[i - 1]; |
| if (delta <= max_val - delta) { |
| aom_write_literal(w, delta, bits_v); |
| aom_write_bit(w, sign_bit); |
| } else { |
| aom_write_literal(w, max_val - delta, bits_v); |
| aom_write_bit(w, !sign_bit); |
| } |
| } |
| } else { // Transmit raw values. |
| aom_write_bit(w, 0); |
| for (int i = 0; i < n; ++i) { |
| assert(colors_v[i] < (1 << bit_depth)); |
| aom_write_literal(w, colors_v[i], bit_depth); |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_palette_mode_info(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, |
| const MB_MODE_INFO *const mbmi, |
| aom_writer *w) { |
| const int num_planes = av1_num_planes(cm); |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| assert(av1_allow_palette(cm->features.allow_screen_content_tools, bsize)); |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| if (mbmi->mode == DC_PRED && xd->tree_type != CHROMA_PART) { |
| const int n = pmi->palette_size[0]; |
| const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd); |
| aom_write_symbol( |
| w, n > 0, |
| xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2); |
| if (n > 0) { |
| aom_write_symbol(w, n - PALETTE_MIN_SIZE, |
| xd->tile_ctx->palette_y_size_cdf[bsize_ctx], |
| PALETTE_SIZES); |
| write_palette_colors_y(xd, pmi, cm->seq_params.bit_depth, w); |
| } |
| } |
| |
| const int uv_dc_pred = num_planes > 1 && xd->tree_type != LUMA_PART && |
| mbmi->uv_mode == UV_DC_PRED && xd->is_chroma_ref; |
| if (uv_dc_pred) { |
| const int n = pmi->palette_size[1]; |
| const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); |
| aom_write_symbol(w, n > 0, |
| xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2); |
| if (n > 0) { |
| aom_write_symbol(w, n - PALETTE_MIN_SIZE, |
| xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], |
| PALETTE_SIZES); |
| write_palette_colors_uv(xd, pmi, cm->seq_params.bit_depth, w); |
| } |
| } |
| } |
| |
| void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, |
| TX_TYPE tx_type, TX_SIZE tx_size, aom_writer *w, |
| const int plane, const int eob, const int dc_skip) { |
| if (plane != PLANE_TYPE_Y || dc_skip) return; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| PREDICTION_MODE intra_dir; |
| if (mbmi->filter_intra_mode_info.use_filter_intra) |
| intra_dir = |
| fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]; |
| else |
| intra_dir = get_intra_mode(mbmi, AOM_PLANE_Y); |
| const FeatureFlags *const features = &cm->features; |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 && |
| ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) || |
| (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && |
| !mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| #if CONFIG_TX_TYPE_FLEX_IMPROVE |
| const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size]; |
| #endif // CONFIG_TX_TYPE_FLEX_IMPROVE |
| const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; |
| const TxSetType tx_set_type = av1_get_ext_tx_set_type( |
| tx_size, is_inter, features->reduced_tx_set_used); |
| const int eset = |
| get_ext_tx_set(tx_size, is_inter, features->reduced_tx_set_used); |
| // eset == 0 should correspond to a set with only DCT_DCT and there |
| // is no need to send the tx_type |
| assert(eset > 0); |
| const int size_info = av1_size_class[tx_size]; |
| if (!is_inter) { |
| const int mode_info = av1_md_class[intra_dir]; |
| (void)mode_info; |
| assert(tx_set_type == EXT_NEW_TX_SET |
| ? av1_mdtx_used_flag[av1_size_class[tx_size]][mode_info] |
| [get_primary_tx_type(tx_type)] |
| : av1_ext_tx_used[tx_set_type][get_primary_tx_type(tx_type)]); |
| } |
| |
| if (is_inter) { |
| const int eob_tx_ctx = get_lp2tx_ctx(tx_size, get_txb_bwl(tx_size), eob); |
| #if CONFIG_TX_TYPE_FLEX_IMPROVE |
| if (tx_set_type != EXT_TX_SET_LONG_SIDE_64 && |
| tx_set_type != EXT_TX_SET_LONG_SIDE_32) { |
| aom_write_symbol( |
| w, av1_ext_tx_ind[tx_set_type][get_primary_tx_type(tx_type)], |
| ec_ctx->inter_ext_tx_cdf[eset][eob_tx_ctx][square_tx_size], |
| av1_num_ext_tx_set[tx_set_type]); |
| } else { |
| bool is_long_side_dct = |
| is_dct_type(tx_size, get_primary_tx_type(tx_type)); |
| if (tx_size_sqr_up == TX_32X32) { |
| aom_write_symbol(w, is_long_side_dct, ec_ctx->tx_ext_32_cdf[is_inter], |
| 2); |
| } |
| int tx_type_idx = get_idx_from_txtype_for_large_txfm( |
| tx_set_type, get_primary_tx_type(tx_type), |
| is_long_side_dct); // 0: DCT_DCT, 1: ADST, 2: FLIPADST, |
| // 3: Identity |
| |
| aom_write_symbol( |
| w, tx_type_idx, |
| ec_ctx->inter_ext_tx_short_side_cdf[eob_tx_ctx][square_tx_size], 4); |
| } |
| #else |
| aom_write_symbol( |
| w, av1_ext_tx_ind[tx_set_type][get_primary_tx_type(tx_type)], |
| ec_ctx->inter_ext_tx_cdf[eset][eob_tx_ctx][square_tx_size], |
| av1_num_ext_tx_set[tx_set_type]); |
| #endif // CONFIG_TX_TYPE_FLEX_IMPROVE |
| } else { |
| if (mbmi->fsc_mode[xd->tree_type == CHROMA_PART]) { |
| return; |
| } |
| #if CONFIG_TX_TYPE_FLEX_IMPROVE |
| if (tx_set_type != EXT_TX_SET_LONG_SIDE_64 && |
| tx_set_type != EXT_TX_SET_LONG_SIDE_32) { |
| aom_write_symbol( |
| w, |
| av1_tx_type_to_idx(get_primary_tx_type(tx_type), tx_set_type, |
| intra_dir, size_info), |
| #if CONFIG_INTRA_TX_IST_PARSE |
| ec_ctx->intra_ext_tx_cdf[eset + features->reduced_tx_set_used] |
| [square_tx_size], |
| #else |
| ec_ctx->intra_ext_tx_cdf[eset + features->reduced_tx_set_used] |
| [square_tx_size][intra_dir], |
| #endif // CONFIG_INTRA_TX_IST_PARSE |
| features->reduced_tx_set_used |
| ? av1_num_reduced_tx_set |
| : av1_num_ext_tx_set_intra[tx_set_type]); |
| } else { |
| int is_long_side_dct = |
| is_dct_type(tx_size, get_primary_tx_type(tx_type)); |
| if (tx_size_sqr_up == TX_32X32) { |
| aom_write_symbol(w, is_long_side_dct, ec_ctx->tx_ext_32_cdf[is_inter], |
| 2); |
| } |
| |
| int tx_type_idx = get_idx_from_txtype_for_large_txfm( |
| tx_set_type, get_primary_tx_type(tx_type), |
| is_long_side_dct); // 0: DCT_DCT, 1: ADST, 2: FLIPADST, |
| // 3: Identity |
| aom_write_symbol(w, tx_type_idx, |
| ec_ctx->intra_ext_tx_short_side_cdf[square_tx_size], |
| 4); |
| } |
| #else |
| aom_write_symbol( |
| w, |
| av1_tx_type_to_idx(get_primary_tx_type(tx_type), tx_set_type, |
| intra_dir, size_info), |
| #if CONFIG_INTRA_TX_IST_PARSE |
| ec_ctx->intra_ext_tx_cdf[eset + features->reduced_tx_set_used] |
| [square_tx_size], |
| #else |
| ec_ctx->intra_ext_tx_cdf[eset + features->reduced_tx_set_used] |
| [square_tx_size][intra_dir], |
| #endif // CONFIG_INTRA_TX_IST_PARSE |
| features->reduced_tx_set_used |
| ? av1_num_reduced_tx_set |
| : av1_num_ext_tx_set_intra[tx_set_type]); |
| #endif // CONFIG_TX_TYPE_FLEX_IMPROVE |
| } |
| } |
| } |
| |
| void av1_write_cctx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, |
| CctxType cctx_type, TX_SIZE tx_size, aom_writer *w) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| assert(xd->is_chroma_ref); |
| if (((!cm->seg.enabled && cm->quant_params.base_qindex > 0) || |
| (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && |
| !mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; |
| int above_cctx, left_cctx; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| get_above_and_left_cctx_type(cm, xd, &above_cctx, &left_cctx); |
| #else |
| get_above_and_left_cctx_type(cm, xd, tx_size, &above_cctx, &left_cctx); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| const int cctx_ctx = get_cctx_context(xd, &above_cctx, &left_cctx); |
| aom_write_symbol(w, cctx_type, |
| ec_ctx->cctx_type_cdf[square_tx_size][cctx_ctx], |
| CCTX_TYPES); |
| } |
| } |
| |
| // This function writes a 'secondary tx set' onto the bitstream |
| static void write_sec_tx_set(FRAME_CONTEXT *ec_ctx, aom_writer *w, |
| MB_MODE_INFO *mbmi, TX_TYPE tx_type) { |
| TX_TYPE stx_set_flag = get_secondary_tx_set(tx_type); |
| assert(stx_set_flag <= IST_SET_SIZE - 1); |
| if (get_primary_tx_type(tx_type) == ADST_ADST) stx_set_flag -= IST_DIR_SIZE; |
| assert(stx_set_flag < IST_DIR_SIZE); |
| uint8_t intra_mode = get_intra_mode(mbmi, PLANE_TYPE_Y); |
| #if CONFIG_INTRA_TX_IST_PARSE |
| aom_write_symbol(w, most_probable_stx_mapping[intra_mode][stx_set_flag], |
| ec_ctx->most_probable_stx_set_cdf, IST_DIR_SIZE); |
| #else |
| uint8_t stx_set_ctx = stx_transpose_mapping[intra_mode]; |
| assert(stx_set_ctx < IST_DIR_SIZE); |
| aom_write_symbol(w, stx_set_flag, ec_ctx->stx_set_cdf[stx_set_ctx], |
| IST_DIR_SIZE); |
| #endif // CONFIG_INTRA_TX_IST_PARSE |
| } |
| |
| void av1_write_sec_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, |
| TX_TYPE tx_type, TX_SIZE tx_size, uint16_t eob, |
| aom_writer *w) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const FeatureFlags *const features = &cm->features; |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| if (get_ext_tx_types(tx_size, is_inter, features->reduced_tx_set_used) > 1 && |
| ((!cm->seg.enabled && cm->quant_params.base_qindex > 0) || |
| (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && |
| !mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; |
| const TX_TYPE stx_flag = get_secondary_tx_type(tx_type); |
| assert(stx_flag <= STX_TYPES - 1); |
| if (block_signals_sec_tx_type(xd, tx_size, tx_type, eob)) { |
| aom_write_symbol(w, stx_flag, ec_ctx->stx_cdf[is_inter][square_tx_size], |
| STX_TYPES); |
| #if CONFIG_IST_SET_FLAG |
| if (stx_flag > 0 && !is_inter) write_sec_tx_set(ec_ctx, w, mbmi, tx_type); |
| #endif // CONFIG_IST_SET_FLAG |
| } |
| } else if (!xd->lossless[mbmi->segment_id]) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; |
| TX_TYPE stx_flag = get_secondary_tx_type(tx_type); |
| assert(stx_flag <= STX_TYPES - 1); |
| if (block_signals_sec_tx_type(xd, tx_size, tx_type, eob)) { |
| aom_write_symbol(w, stx_flag, ec_ctx->stx_cdf[is_inter][square_tx_size], |
| STX_TYPES); |
| #if CONFIG_IST_SET_FLAG |
| if (stx_flag > 0 && !is_inter) write_sec_tx_set(ec_ctx, w, mbmi, tx_type); |
| #endif // CONFIG_IST_SET_FLAG |
| } |
| } |
| } |
| |
| #if !CONFIG_AIMC |
| static AOM_INLINE void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx, |
| BLOCK_SIZE bsize, |
| PREDICTION_MODE mode, |
| aom_writer *w) { |
| aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]], |
| INTRA_MODES); |
| } |
| #endif // !CONFIG_AIMC |
| static AOM_INLINE void write_mrl_index(FRAME_CONTEXT *ec_ctx, |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| const MB_MODE_INFO *neighbor0, |
| const MB_MODE_INFO *neighbor1, |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| uint8_t mrl_index, aom_writer *w) { |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| int ctx = get_mrl_index_ctx(neighbor0, neighbor1); |
| aom_cdf_prob *mrl_cdf = ec_ctx->mrl_index_cdf[ctx]; |
| aom_write_symbol(w, mrl_index, mrl_cdf, MRL_LINE_NUMBER); |
| #else |
| aom_write_symbol(w, mrl_index, ec_ctx->mrl_index_cdf, MRL_LINE_NUMBER); |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| } |
| |
| #if CONFIG_LOSSLESS_DPCM |
| static AOM_INLINE void write_dpcm_index(FRAME_CONTEXT *ec_ctx, |
| uint8_t dpcm_mode, aom_writer *w) { |
| aom_write_symbol(w, dpcm_mode, ec_ctx->dpcm_cdf, 2); |
| } |
| |
| static AOM_INLINE void write_dpcm_vert_horz_mode(FRAME_CONTEXT *ec_ctx, |
| uint8_t dpcm_vert_horz_mode, |
| aom_writer *w) { |
| aom_write_symbol(w, dpcm_vert_horz_mode, ec_ctx->dpcm_vert_horz_cdf, 2); |
| } |
| |
| static AOM_INLINE void write_dpcm_uv_index(FRAME_CONTEXT *ec_ctx, |
| uint8_t dpcm_uv_mode, |
| aom_writer *w) { |
| aom_write_symbol(w, dpcm_uv_mode, ec_ctx->dpcm_uv_cdf, 2); |
| } |
| |
| static AOM_INLINE void write_dpcm_uv_vert_horz_mode( |
| FRAME_CONTEXT *ec_ctx, uint8_t dpcm_uv_vert_horz_mode, aom_writer *w) { |
| aom_write_symbol(w, dpcm_uv_vert_horz_mode, ec_ctx->dpcm_uv_vert_horz_cdf, 2); |
| } |
| #endif // CONFIG_LOSSLESS_DPCM |
| |
| static AOM_INLINE void write_fsc_mode(uint8_t fsc_mode, aom_writer *w, |
| aom_cdf_prob *fsc_cdf) { |
| aom_write_symbol(w, fsc_mode, fsc_cdf, FSC_MODES); |
| } |
| |
| static AOM_INLINE void write_cfl_index(FRAME_CONTEXT *ec_ctx, uint8_t cfl_index, |
| aom_writer *w) { |
| #if CONFIG_ENABLE_MHCCP |
| aom_write_symbol(w, cfl_index, ec_ctx->cfl_index_cdf, CFL_TYPE_COUNT - 1); |
| #else |
| aom_write_symbol(w, cfl_index, ec_ctx->cfl_index_cdf, CFL_TYPE_COUNT); |
| #endif // CONFIG_ENABLE_MHCCP |
| } |
| |
| #if CONFIG_ENABLE_MHCCP |
| // write MHCCP filter direction |
| static AOM_INLINE void write_mh_dir(aom_cdf_prob *mh_dir_cdf, uint8_t mh_dir, |
| aom_writer *w) { |
| aom_write_symbol(w, mh_dir, mh_dir_cdf, MHCCP_MODE_NUM); |
| } |
| #endif // CONFIG_ENABLE_MHCCP |
| |
| #if !CONFIG_AIMC |
| static AOM_INLINE void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx, |
| UV_PREDICTION_MODE uv_mode, |
| PREDICTION_MODE y_mode, |
| CFL_ALLOWED_TYPE cfl_allowed, |
| aom_writer *w) { |
| aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode], |
| UV_INTRA_MODES - !cfl_allowed); |
| } |
| #endif // !CONFIG_AIMC |
| static AOM_INLINE void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, |
| uint8_t idx, int8_t joint_sign, |
| aom_writer *w) { |
| aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS); |
| // Magnitudes are only signaled for nonzero codes. |
| if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
| aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE); |
| } |
| if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
| aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE); |
| } |
| } |
| |
| static AOM_INLINE void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd, |
| aom_writer *w, int skip) { |
| if (cm->features.coded_lossless || is_global_intrabc_allowed(cm)) return; |
| #if CONFIG_FIX_CDEF_SYNTAX |
| if (!cm->cdef_info.cdef_frame_enable) return; |
| #endif // CONFIG_FIX_CDEF_SYNTAX |
| // At the start of a superblock, mark that we haven't yet written CDEF |
| // strengths for any of the CDEF units contained in this superblock. |
| const int sb_mask = (cm->mib_size - 1); |
| const int mi_row_in_sb = (xd->mi_row & sb_mask); |
| const int mi_col_in_sb = (xd->mi_col & sb_mask); |
| if (mi_row_in_sb == 0 && mi_col_in_sb == 0) { |
| av1_zero(xd->cdef_transmitted); |
| } |
| |
| // CDEF unit size is 64x64 irrespective of the superblock size. |
| const int cdef_size = 1 << (6 - MI_SIZE_LOG2); |
| |
| // Find index of this CDEF unit in this superblock. |
| const int index = av1_get_cdef_transmitted_index(xd->mi_row, xd->mi_col); |
| |
| // Write CDEF strength to the first non-skip coding block in this CDEF unit. |
| if (!xd->cdef_transmitted[index] && !skip) { |
| // CDEF strength for this CDEF unit needs to be stored in the MB_MODE_INFO |
| // of the 1st block in this CDEF unit. |
| const int first_block_mask = ~(cdef_size - 1); |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int grid_idx = |
| get_mi_grid_idx(mi_params, xd->mi_row & first_block_mask, |
| xd->mi_col & first_block_mask); |
| const MB_MODE_INFO *const mbmi = mi_params->mi_grid_base[grid_idx]; |
| aom_write_literal(w, mbmi->cdef_strength, cm->cdef_info.cdef_bits); |
| xd->cdef_transmitted[index] = true; |
| } |
| } |
| |
| static AOM_INLINE void write_ccso(AV1_COMMON *cm, MACROBLOCKD *const xd, |
| aom_writer *w) { |
| if (cm->features.coded_lossless) return; |
| if (is_global_intrabc_allowed(cm)) return; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| const int blk_size_y = |
| (1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_y - MI_SIZE_LOG2)) - 1; |
| const int blk_size_x = |
| (1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_x - MI_SIZE_LOG2)) - 1; |
| const MB_MODE_INFO *mbmi = |
| mi_params->mi_grid_base[(mi_row & ~blk_size_y) * mi_params->mi_stride + |
| (mi_col & ~blk_size_x)]; |
| |
| if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) && |
| cm->ccso_info.ccso_enable[0]) { |
| aom_write_symbol(w, mbmi->ccso_blk_y == 0 ? 0 : 1, |
| xd->tile_ctx->ccso_cdf[0], 2); |
| xd->ccso_blk_y = mbmi->ccso_blk_y; |
| } |
| |
| if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) && |
| cm->ccso_info.ccso_enable[1]) { |
| aom_write_symbol(w, mbmi->ccso_blk_u == 0 ? 0 : 1, |
| xd->tile_ctx->ccso_cdf[1], 2); |
| xd->ccso_blk_u = mbmi->ccso_blk_u; |
| } |
| |
| if (!(mi_row & blk_size_y) && !(mi_col & blk_size_x) && |
| cm->ccso_info.ccso_enable[2]) { |
| aom_write_symbol(w, mbmi->ccso_blk_v == 0 ? 0 : 1, |
| xd->tile_ctx->ccso_cdf[2], 2); |
| xd->ccso_blk_v = mbmi->ccso_blk_v; |
| } |
| } |
| |
| static AOM_INLINE void write_inter_segment_id( |
| AV1_COMP *cpi, aom_writer *w, const struct segmentation *const seg, |
| struct segmentation_probs *const segp, int skip, int preskip) { |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| AV1_COMMON *const cm = &cpi->common; |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| |
| if (seg->update_map) { |
| if (preskip) { |
| if (!seg->segid_preskip) return; |
| } else { |
| if (seg->segid_preskip) return; |
| if (skip) { |
| write_segment_id(cpi, mbmi, w, seg, segp, 1); |
| if (seg->temporal_update) mbmi->seg_id_predicted = 0; |
| return; |
| } |
| } |
| if (seg->temporal_update) { |
| const int pred_flag = mbmi->seg_id_predicted; |
| aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd); |
| aom_write_symbol(w, pred_flag, pred_cdf, 2); |
| if (!pred_flag) { |
| write_segment_id(cpi, mbmi, w, seg, segp, 0); |
| } |
| if (pred_flag) { |
| set_spatial_segment_id(&cm->mi_params, cm->cur_frame->seg_map, |
| mbmi->sb_type[PLANE_TYPE_Y], mi_row, mi_col, |
| mbmi->segment_id); |
| } |
| } else { |
| write_segment_id(cpi, mbmi, w, seg, segp, 0); |
| } |
| } |
| } |
| |
| // If delta q is present, writes delta_q index. |
| // Also writes delta_q loop filter levels, if present. |
| static AOM_INLINE void write_delta_q_params(AV1_COMP *cpi, int skip, |
| aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| |
| if (delta_q_info->delta_q_present_flag) { |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| const int super_block_upper_left = |
| ((xd->mi_row & (cm->mib_size - 1)) == 0) && |
| ((xd->mi_col & (cm->mib_size - 1)) == 0); |
| |
| if ((bsize != cm->sb_size || skip == 0) && super_block_upper_left) { |
| assert(mbmi->current_qindex > 0); |
| const int reduced_delta_qindex = |
| (mbmi->current_qindex - xd->current_base_qindex) / |
| delta_q_info->delta_q_res; |
| write_delta_qindex(xd, reduced_delta_qindex, w); |
| xd->current_base_qindex = mbmi->current_qindex; |
| if (delta_q_info->delta_lf_present_flag) { |
| if (delta_q_info->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| int reduced_delta_lflevel = |
| (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / |
| delta_q_info->delta_lf_res; |
| write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w); |
| xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; |
| } |
| } else { |
| int reduced_delta_lflevel = |
| (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / |
| delta_q_info->delta_lf_res; |
| write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w); |
| xd->delta_lf_from_base = mbmi->delta_lf_from_base; |
| } |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_AIMC |
| // write mode set index and mode index in set for y component |
| static AOM_INLINE void write_intra_luma_mode(MACROBLOCKD *const xd, |
| aom_writer *w) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int mode_idx = mbmi->y_mode_idx; |
| assert(mode_idx >= 0 && mode_idx < LUMA_MODE_COUNT); |
| assert(mbmi->joint_y_mode_delta_angle >= 0 && |
| mbmi->joint_y_mode_delta_angle < LUMA_MODE_COUNT); |
| if (mbmi->joint_y_mode_delta_angle < NON_DIRECTIONAL_MODES_COUNT) |
| assert(mbmi->joint_y_mode_delta_angle == mbmi->y_mode_idx); |
| const int context = get_y_mode_idx_ctx(xd); |
| int mode_set_index = mode_idx < FIRST_MODE_COUNT ? 0 : 1; |
| mode_set_index += ((mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT); |
| aom_write_symbol(w, mode_set_index, ec_ctx->y_mode_set_cdf, INTRA_MODE_SETS); |
| if (mode_set_index == 0) { |
| aom_write_symbol(w, mode_idx, ec_ctx->y_mode_idx_cdf_0[context], |
| FIRST_MODE_COUNT); |
| } else { |
| aom_write_symbol( |
| w, |
| mode_idx - FIRST_MODE_COUNT - (mode_set_index - 1) * SECOND_MODE_COUNT, |
| ec_ctx->y_mode_idx_cdf_1[context], SECOND_MODE_COUNT); |
| } |
| if (mbmi->joint_y_mode_delta_angle < NON_DIRECTIONAL_MODES_COUNT) |
| assert(mbmi->joint_y_mode_delta_angle == mbmi->y_mode_idx); |
| } |
| |
| static AOM_INLINE void write_intra_uv_mode(MACROBLOCKD *const xd, |
| CFL_ALLOWED_TYPE cfl_allowed, |
| aom_writer *w) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| if (cfl_allowed) { |
| const int cfl_ctx = get_cfl_ctx(xd); |
| aom_write_symbol(w, mbmi->uv_mode == UV_CFL_PRED, ec_ctx->cfl_cdf[cfl_ctx], |
| 2); |
| if (mbmi->uv_mode == UV_CFL_PRED) return; |
| } |
| |
| const int uv_mode_idx = mbmi->uv_mode_idx; |
| assert(uv_mode_idx >= 0 && uv_mode_idx < UV_INTRA_MODES); |
| const int context = av1_is_directional_mode(mbmi->mode) ? 1 : 0; |
| aom_write_symbol(w, uv_mode_idx, ec_ctx->uv_mode_cdf[context], |
| UV_INTRA_MODES - 1); |
| } |
| #endif // CONFIG_AIMC |
| |
| static AOM_INLINE void write_intra_prediction_modes(AV1_COMP *cpi, |
| int is_keyframe, |
| aom_writer *w) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const PREDICTION_MODE mode = mbmi->mode; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| #if !CONFIG_AIMC |
| const int use_angle_delta = av1_use_angle_delta(bsize); |
| #endif // !CONFIG_AIMC |
| |
| // Y mode. |
| if (xd->tree_type != CHROMA_PART) { |
| #if CONFIG_LOSSLESS_DPCM |
| if (xd->lossless[mbmi->segment_id]) { |
| write_dpcm_index(ec_ctx, mbmi->use_dpcm_y, w); |
| } |
| #endif // CONFIG_LOSSLESS_DPCM |
| #if CONFIG_AIMC |
| #if CONFIG_LOSSLESS_DPCM |
| if (xd->lossless[mbmi->segment_id]) { |
| if (mbmi->use_dpcm_y == 0) { |
| write_intra_luma_mode(xd, w); |
| } else { |
| write_dpcm_vert_horz_mode(ec_ctx, mbmi->dpcm_mode_y, w); |
| } |
| } else { |
| write_intra_luma_mode(xd, w); |
| } |
| #else // CONFIG_LOSSLESS_DPCM |
| write_intra_luma_mode(xd, w); |
| #endif // CONFIG_LOSSLESS_DPCM |
| if (allow_fsc_intra(cm, |
| #if !CONFIG_LOSSLESS_DPCM |
| xd, |
| #endif // CONFIG_LOSSLESS_DPCM |
| bsize, mbmi) && |
| xd->tree_type != CHROMA_PART) { |
| aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, is_keyframe); |
| write_fsc_mode(mbmi->fsc_mode[xd->tree_type == CHROMA_PART], w, fsc_cdf); |
| } |
| #else |
| if (is_keyframe) { |
| write_intra_y_mode_kf(ec_ctx, mbmi, xd->neighbors[0], xd->neighbors[1], |
| mode, w); |
| } else { |
| write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w); |
| } |
| |
| if (allow_fsc_intra(cm, |
| #if !CONFIG_LOSSLESS_DPCM |
| xd, |
| #endif // CONFIG_LOSSLESS_DPCM |
| bsize, mbmi) && |
| xd->tree_type != CHROMA_PART) { |
| aom_cdf_prob *fsc_cdf = get_fsc_mode_cdf(xd, bsize, is_keyframe); |
| write_fsc_mode(mbmi->fsc_mode[xd->tree_type == CHROMA_PART], w, fsc_cdf); |
| } |
| // Y angle delta. |
| if (use_angle_delta && av1_is_directional_mode(mode)) { |
| write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], |
| ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][mode - V_PRED]); |
| } |
| #endif // CONFIG_AIMC |
| // Encoding reference line index |
| #if CONFIG_LOSSLESS_DPCM |
| if (cm->seq_params.enable_mrls && av1_is_directional_mode(mode)) { |
| if (xd->lossless[mbmi->segment_id]) { |
| if (mbmi->use_dpcm_y == 0) { |
| write_mrl_index(ec_ctx, |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| xd->neighbors[0], xd->neighbors[1], |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| mbmi->mrl_index, w); |
| } |
| } else { |
| write_mrl_index(ec_ctx, |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| xd->neighbors[0], xd->neighbors[1], |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| mbmi->mrl_index, w); |
| } |
| } |
| #else // CONFIG_LOSSLESS_DPCM |
| if (cm->seq_params.enable_mrls && av1_is_directional_mode(mode)) { |
| write_mrl_index(ec_ctx, |
| #if CONFIG_IMPROVED_INTRA_DIR_PRED |
| xd->neighbors[0], xd->neighbors[1], |
| #endif // CONFIG_IMPROVED_INTRA_DIR_PRED |
| mbmi->mrl_index, w); |
| } |
| #endif // CONFIG_LOSSLESS_DPCM |
| } |
| |
| // UV mode and UV angle delta. |
| if (!cm->seq_params.monochrome && xd->is_chroma_ref && |
| xd->tree_type != LUMA_PART) { |
| const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
| #if CONFIG_AIMC |
| #if CONFIG_LOSSLESS_DPCM |
| if (xd->lossless[mbmi->segment_id]) { |
| write_dpcm_uv_index(ec_ctx, mbmi->use_dpcm_uv, w); |
| if (mbmi->use_dpcm_uv == 0) { |
| write_intra_uv_mode(xd, is_cfl_allowed(xd), w); |
| } else { |
| write_dpcm_uv_vert_horz_mode(ec_ctx, mbmi->dpcm_mode_uv, w); |
| } |
| } else { |
| write_intra_uv_mode(xd, is_cfl_allowed(xd), w); |
| } |
| #else // CONFIG_LOSSLESS_DPCM |
| write_intra_uv_mode(xd, is_cfl_allowed(xd), w); |
| #endif // CONFIG_LOSSLESS_DPCM |
| #else |
| write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w); |
| if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) { |
| if (cm->seq_params.enable_sdp) { |
| write_angle_delta( |
| w, mbmi->angle_delta[PLANE_TYPE_UV], |
| ec_ctx->angle_delta_cdf[PLANE_TYPE_UV][uv_mode - V_PRED]); |
| } else { |
| write_angle_delta( |
| w, mbmi->angle_delta[PLANE_TYPE_UV], |
| ec_ctx->angle_delta_cdf[PLANE_TYPE_Y][uv_mode - V_PRED]); |
| } |
| } |
| #endif // CONFIG_AIMC |
| if (uv_mode == UV_CFL_PRED) { |
| write_cfl_index(ec_ctx, mbmi->cfl_idx, w); |
| #if CONFIG_ENABLE_MHCCP |
| if (mbmi->cfl_idx == CFL_MULTI_PARAM_V) { |
| const uint8_t mh_size_group = fsc_bsize_groups[bsize]; |
| aom_cdf_prob *mh_dir_cdf = ec_ctx->filter_dir_cdf[mh_size_group]; |
| write_mh_dir(mh_dir_cdf, mbmi->mh_dir, w); |
| } |
| #endif // CONFIG_ENABLE_MHCCP |
| if (mbmi->cfl_idx == 0) |
| write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); |
| } |
| } |
| |
| // Palette. |
| if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { |
| write_palette_mode_info(cm, xd, mbmi, w); |
| } |
| |
| // Filter intra. |
| write_filter_intra_mode_info(cm, xd, mbmi, w); |
| } |
| |
| static INLINE int16_t mode_context_analyzer( |
| const int16_t mode_context, const MV_REFERENCE_FRAME *const rf) { |
| if (!is_inter_ref_frame(rf[1])) return mode_context; |
| |
| #if CONFIG_C076_INTER_MOD_CTX |
| return mode_context & NEWMV_CTX_MASK; |
| #else |
| const int16_t newmv_ctx = mode_context & NEWMV_CTX_MASK; |
| const int16_t refmv_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| |
| const int16_t comp_ctx = compound_mode_ctx_map[refmv_ctx >> 1][AOMMIN( |
| newmv_ctx, COMP_NEWMV_CTXS - 1)]; |
| return comp_ctx; |
| #endif // CONFIG_C076_INTER_MOD_CTX |
| } |
| |
| static INLINE int_mv get_ref_mv_from_stack( |
| int ref_idx, const MV_REFERENCE_FRAME *ref_frame, int ref_mv_idx, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame |
| #if CONFIG_SEP_COMP_DRL |
| , |
| const MB_MODE_INFO *mbmi |
| #endif // CONFIG_SEP_COMP_DRL |
| ) { |
| const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); |
| #if CONFIG_SEP_COMP_DRL |
| const CANDIDATE_MV *curr_ref_mv_stack = |
| has_second_drl(mbmi) ? mbmi_ext_frame->ref_mv_stack[ref_idx] |
| : mbmi_ext_frame->ref_mv_stack[0]; |
| #else |
| const CANDIDATE_MV *curr_ref_mv_stack = mbmi_ext_frame->ref_mv_stack; |
| #endif // CONFIG_SEP_COMP_DRL |
| |
| if (is_inter_ref_frame(ref_frame[1])) { |
| assert(ref_idx == 0 || ref_idx == 1); |
| #if CONFIG_SEP_COMP_DRL |
| return ref_idx && !has_second_drl(mbmi) |
| ? curr_ref_mv_stack[ref_mv_idx].comp_mv |
| #else |
| return ref_idx ? curr_ref_mv_stack[ref_mv_idx].comp_mv |
| #endif // CONFIG_SEP_COMP_DRL |
| : curr_ref_mv_stack[ref_mv_idx].this_mv; |
| } |
| |
| assert(ref_idx == 0); |
| #if CONFIG_SEP_COMP_DRL |
| if (ref_mv_idx < mbmi_ext_frame->ref_mv_count[0]) { |
| #else |
| if (ref_mv_idx < mbmi_ext_frame->ref_mv_count) { |
| #endif // CONFIG_SEP_COMP_DRL |
| return curr_ref_mv_stack[ref_mv_idx].this_mv; |
| } else if (is_tip_ref_frame(ref_frame_type)) { |
| int_mv zero_mv; |
| zero_mv.as_int = 0; |
| return zero_mv; |
| } else { |
| return mbmi_ext_frame->global_mvs[ref_frame_type]; |
| } |
| } |
| |
| static INLINE int_mv get_ref_mv(const MACROBLOCK *x, int ref_idx) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| #if CONFIG_SEP_COMP_DRL |
| const int ref_mv_idx = get_ref_mv_idx(mbmi, ref_idx); |
| #else |
| const int ref_mv_idx = mbmi->ref_mv_idx; |
| #endif // CONFIG_SEP_COMP_DRL |
| assert(IMPLIES(have_nearmv_newmv_in_inter_mode(mbmi->mode), |
| has_second_ref(mbmi))); |
| return get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, ref_mv_idx, |
| #if CONFIG_SEP_COMP_DRL |
| x->mbmi_ext_frame, mbmi); |
| #else |
| x->mbmi_ext_frame); |
| #endif // CONFIG_SEP_COMP_DRL |
| } |
| |
| #if CONFIG_REFINEMV |
| // This function write the refinemv_flag ( if require) to the bitstream |
| static void write_refinemv_flag(const AV1_COMMON *const cm, |
| MACROBLOCKD *const xd, aom_writer *w, |
| BLOCK_SIZE bsize) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| int signal_refinemv = switchable_refinemv_flag(cm, mbmi); |
| |
| if (signal_refinemv) { |
| const int refinemv_ctx = av1_get_refinemv_context(cm, xd, bsize); |
| assert(mbmi->refinemv_flag < REFINEMV_NUM_MODES); |
| aom_write_symbol(w, mbmi->refinemv_flag, |
| xd->tile_ctx->refinemv_flag_cdf[refinemv_ctx], |
| REFINEMV_NUM_MODES); |
| |
| } else { |
| assert(mbmi->refinemv_flag == get_default_refinemv_flag(cm, mbmi)); |
| } |
| } |
| #endif // CONFIG_REFINEMV |
| |
| static void write_pb_mv_precision(const AV1_COMMON *const cm, |
| MACROBLOCKD *const xd, aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(mbmi->pb_mv_precision <= mbmi->max_mv_precision); |
| assert(mbmi->max_mv_precision == xd->sbi->sb_mv_precision); |
| |
| assert(av1_get_mbmi_max_mv_precision(cm, xd->sbi, mbmi) == |
| mbmi->max_mv_precision); |
| |
| #if !CONFIG_C071_SUBBLK_WARPMV |
| assert(check_mv_precision(cm, mbmi)); |
| #endif // !CONFIG_C071_SUBBLK_WARPMV |
| |
| const int down_ctx = av1_get_pb_mv_precision_down_context(cm, xd); |
| |
| assert(mbmi->most_probable_pb_mv_precision <= mbmi->max_mv_precision); |
| assert(mbmi->most_probable_pb_mv_precision == |
| cm->features.most_probable_fr_mv_precision); |
| |
| // One binary symbol is used to signal if the precision is same as the most |
| // probable precision. |
| // mpp_flag == 1 indicates that the precision is same as the most probable |
| // precision in current implementaion, the most probable precision is same as |
| // the maximum precision value of the block. |
| const int mpp_flag_context = av1_get_mpp_flag_context(cm, xd); |
| const int mpp_flag = |
| (mbmi->pb_mv_precision == mbmi->most_probable_pb_mv_precision); |
| aom_write_symbol(w, mpp_flag, |
| xd->tile_ctx->pb_mv_mpp_flag_cdf[mpp_flag_context], 2); |
| |
| if (!mpp_flag) { |
| const PRECISION_SET *precision_def = |
| &av1_mv_precision_sets[mbmi->mb_precision_set]; |
| |
| // instead of directly signaling the precision value, we signal index ( i.e. |
| // down) of the precision |
| int down = av1_get_pb_mv_precision_index(mbmi); |
| int nsymbs = precision_def->num_precisions - 1; |
| assert(down >= 0 && down <= nsymbs); |
| aom_write_symbol( |
| w, down, |
| xd->tile_ctx->pb_mv_precision_cdf[down_ctx][mbmi->max_mv_precision - |
| MV_PRECISION_HALF_PEL], |
| nsymbs); |
| } |
| } |
| |
| static AOM_INLINE void pack_inter_mode_mvs(AV1_COMP *cpi, aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const struct segmentation *const seg = &cm->seg; |
| struct segmentation_probs *const segp = &ec_ctx->seg; |
| #if CONFIG_COMPOUND_WARP_CAUSAL |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| #else |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| #endif // CONFIG_COMPOUND_WARP_CAUSAL |
| const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = x->mbmi_ext_frame; |
| const PREDICTION_MODE mode = mbmi->mode; |
| const int segment_id = mbmi->segment_id; |
| const BLOCK_SIZE bsize = mbmi->sb_type[PLANE_TYPE_Y]; |
| const MvSubpelPrecision pb_mv_precision = mbmi->pb_mv_precision; |
| |
| #if CONFIG_IBC_SR_EXT |
| const int is_intrabc = is_intrabc_block(mbmi, xd->tree_type); |
| const int is_inter = is_inter_block(mbmi, xd->tree_type) && !is_intrabc; |
| #else |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| #endif // CONFIG_IBC_SR_EXT |
| const int is_compound = has_second_ref(mbmi); |
| int ref; |
| |
| write_inter_segment_id(cpi, w, seg, segp, 0, 1); |
| write_skip_mode(cm, xd, segment_id, mbmi, w); |
| |
| #if CONFIG_SKIP_TXFM_OPT |
| if (!mbmi->skip_mode) { |
| write_is_inter(cm, xd, mbmi->segment_id, w, is_inter); |
| |
| #if CONFIG_IBC_SR_EXT |
| if (!is_inter && |
| av1_allow_intrabc(cm, xd |
| #if CONFIG_ENABLE_IBC_NAT |
| , |
| bsize |
| #endif // CONFIG_ENABLE_IBC_NAT |
| ) && |
| xd->tree_type != CHROMA_PART) { |
| const int use_intrabc = is_intrabc_block(mbmi, xd->tree_type); |
| if (xd->tree_type == CHROMA_PART) assert(use_intrabc == 0); |
| #if CONFIG_NEW_CONTEXT_MODELING |
| const int intrabc_ctx = get_intrabc_ctx(xd); |
| aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf[intrabc_ctx], 2); |
| #else |
| aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); |
| #endif // CONFIG_NEW_CONTEXT_MODELING |
| } |
| #endif // CONFIG_IBC_SR_EXT |
| } |
| |
| int skip = 0; |
| if (is_inter |
| #if CONFIG_IBC_SR_EXT |
| || (!is_inter && is_intrabc_block(mbmi, xd->tree_type)) |
| #endif // CONFIG_IBC_SR_EXT |
| ) { |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| skip = write_skip(cm, xd, segment_id, mbmi, w); |
| #else |
| assert(IMPLIES(mbmi->skip_mode, |
| mbmi->skip_txfm[xd->tree_type == CHROMA_PART])); |
| skip = mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w); |
| #endif // !CONFIG_SKIP_MODE_ENHANCEMENT |
| } |
| #else |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| const int skip = write_skip(cm, xd, segment_id, mbmi, w); |
| #else |
| assert( |
| IMPLIES(mbmi->skip_mode, mbmi->skip_txfm[xd->tree_type == CHROMA_PART])); |
| const int skip = |
| mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w); |
| #endif // !CONFIG_SKIP_MODE_ENHANCEMENT |
| #endif // CONFIG_SKIP_TXFM_OPT |
| write_inter_segment_id(cpi, w, seg, segp, skip, 0); |
| |
| write_cdef(cm, xd, w, skip); |
| |
| if (cm->seq_params.enable_ccso) write_ccso(cm, xd, w); |
| |
| write_delta_q_params(cpi, skip, w); |
| |
| #if CONFIG_REFINEMV |
| assert(IMPLIES(mbmi->refinemv_flag, |
| mbmi->skip_mode ? is_refinemv_allowed_skip_mode(cm, mbmi) |
| : is_refinemv_allowed(cm, mbmi, bsize))); |
| if (mbmi->refinemv_flag && switchable_refinemv_flag(cm, mbmi)) { |
| assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE); |
| assert(mbmi->comp_group_idx == 0); |
| #if CONFIG_BAWP_CHROMA |
| assert(mbmi->bawp_flag[0] == 0); |
| #else |
| assert(mbmi->bawp_flag == 0); |
| #endif // CONFIG_BAWP_CHROMA |
| } |
| assert(IMPLIES(mbmi->refinemv_flag, mbmi->cwp_idx == CWP_EQUAL)); |
| #endif // CONFIG_REFINEMV |
| // Just for debugging purpose |
| if (mbmi->mode == WARPMV) { |
| assert(mbmi->skip_mode == 0); |
| assert(mbmi->motion_mode == WARP_DELTA || |
| mbmi->motion_mode == WARPED_CAUSAL); |
| #if CONFIG_SEP_COMP_DRL |
| assert(get_ref_mv_idx(mbmi, 0) == 0); |
| assert(get_ref_mv_idx(mbmi, 1) == 0); |
| #else |
| assert(mbmi->ref_mv_idx == 0); |
| #endif // CONFIG_SEP_COMP_DRL |
| assert(!is_tip_ref_frame(mbmi->ref_frame[0])); |
| assert(is_inter); |
| assert(!have_drl_index(mode)); |
| assert(mbmi->pb_mv_precision == mbmi->max_mv_precision); |
| #if CONFIG_BAWP |
| #if CONFIG_BAWP_CHROMA |
| assert(mbmi->bawp_flag[0] == 0); |
| #else |
| assert(mbmi->bawp_flag == 0); |
| #endif // CONFIG_BAWP_CHROMA |
| #endif |
| } |
| |
| #if !CONFIG_SKIP_TXFM_OPT |
| if (!mbmi->skip_mode) |
| write_is_inter(cm, xd, mbmi->segment_id, w, is_inter |
| #if CONFIG_CONTEXT_DERIVATION |
| , |
| skip |
| #endif // CONFIG_CONTEXT_DERIVATION |
| ); |
| #endif // !CONFIG_SKIP_TXFM_OPT |
| |
| #if CONFIG_IBC_SR_EXT |
| if (!is_inter && |
| av1_allow_intrabc(cm, xd |
| #if CONFIG_ENABLE_IBC_NAT |
| , |
| bsize |
| #endif // CONFIG_ENABLE_IBC_NAT |
| ) && |
| xd->tree_type != CHROMA_PART) { |
| write_intrabc_info( |
| #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| cm->features.max_bvp_drl_bits, |
| #endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| #if CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED |
| cm, |
| #endif // CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED |
| xd, mbmi_ext_frame, w); |
| if (is_intrabc_block(mbmi, xd->tree_type)) return; |
| } |
| #endif // CONFIG_IBC_SR_EXT |
| |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| if (mbmi->skip_mode) { |
| av1_collect_neighbors_ref_counts(xd); |
| write_drl_idx(cm->features.max_drl_bits, mbmi_ext_frame->mode_context, |
| ec_ctx, mbmi, mbmi_ext_frame, w); |
| return; |
| } |
| #else |
| if (mbmi->skip_mode) return; |
| #endif // CONFIG_SKIP_MODE_ENHANCEMENT |
| if (!is_inter) { |
| write_intra_prediction_modes(cpi, 0, w); |
| } else { |
| int16_t mode_ctx; |
| |
| av1_collect_neighbors_ref_counts(xd); |
| |
| if (cm->features.tip_frame_mode && |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| is_tip_allowed_bsize(mbmi)) { |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| is_tip_allowed_bsize(bsize)) { |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| const int tip_ctx = get_tip_ctx(xd); |
| aom_write_symbol(w, is_tip_ref_frame(mbmi->ref_frame[0]), |
| ec_ctx->tip_cdf[tip_ctx], 2); |
| } |
| |
| if (!is_tip_ref_frame(mbmi->ref_frame[0])) write_ref_frames(cm, xd, w); |
| |
| mode_ctx = |
| mode_context_analyzer(mbmi_ext_frame->mode_context, mbmi->ref_frame); |
| |
| const int jmvd_base_ref_list = get_joint_mvd_base_ref_list(cm, mbmi); |
| |
| // If segment skip is not enabled code the mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { |
| if (is_inter_compound_mode(mode)) |
| write_inter_compound_mode(xd, w, mode, cm, mbmi, mode_ctx); |
| else if (is_inter_singleref_mode(mode)) |
| write_inter_mode(w, mode, ec_ctx, mode_ctx, cm, xd, mbmi, bsize); |
| |
| #if CONFIG_BAWP |
| #if CONFIG_BAWP_CHROMA |
| if (cm->features.enable_bawp && |
| av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) { |
| #if CONFIG_EXPLICIT_BAWP |
| aom_write_symbol(w, mbmi->bawp_flag[0] > 0, xd->tile_ctx->bawp_cdf[0], |
| 2); |
| if (mbmi->bawp_flag[0] > 0 && av1_allow_explicit_bawp(mbmi)) { |
| const int ctx_index = |
| (mbmi->mode == NEARMV) ? 0 : (mbmi->mode == AMVDNEWMV ? 1 : 2); |
| aom_write_symbol(w, mbmi->bawp_flag[0] > 1, |
| xd->tile_ctx->explicit_bawp_cdf[ctx_index], 2); |
| if (mbmi->bawp_flag[0] > 1) { |
| aom_write_symbol(w, mbmi->bawp_flag[0] - 2, |
| xd->tile_ctx->explicit_bawp_scale_cdf, |
| EXPLICIT_BAWP_SCALE_CNT); |
| } |
| } |
| #else |
| aom_write_symbol(w, mbmi->bawp_flag[0] == 1, xd->tile_ctx->bawp_cdf[0], |
| 2); |
| #endif // CONFIG_EXPLICIT_BAWP |
| } |
| |
| if (mbmi->bawp_flag[0]) { |
| aom_write_symbol(w, mbmi->bawp_flag[1] == 1, xd->tile_ctx->bawp_cdf[1], |
| 2); |
| } |
| #else |
| if (cm->features.enable_bawp && |
| av1_allow_bawp(mbmi, xd->mi_row, xd->mi_col)) { |
| #if CONFIG_EXPLICIT_BAWP |
| aom_write_symbol(w, mbmi->bawp_flag > 0, xd->tile_ctx->bawp_cdf, 2); |
| if (mbmi->bawp_flag > 0 && av1_allow_explicit_bawp(mbmi)) { |
| const int ctx_index = |
| (mbmi->mode == NEARMV) ? 0 : (mbmi->mode == AMVDNEWMV ? 1 : 2); |
| aom_write_symbol(w, mbmi->bawp_flag > 1, |
| xd->tile_ctx->explicit_bawp_cdf[ctx_index], 2); |
| if (mbmi->bawp_flag > 1) { |
| aom_write_symbol(w, mbmi->bawp_flag - 2, |
| xd->tile_ctx->explicit_bawp_scale_cdf, |
| EXPLICIT_BAWP_SCALE_CNT); |
| } |
| } |
| #else |
| aom_write_symbol(w, mbmi->bawp_flag == 1, xd->tile_ctx->bawp_cdf, 2); |
| #endif // CONFIG_EXPLICIT_BAWP |
| } |
| #endif // CONFIG_BAWP_CHROMA |
| #endif // CONFIG_BAWP |
| #if CONFIG_COMPOUND_WARP_CAUSAL |
| if (is_motion_variation_allowed_bsize(mbmi->sb_type[PLANE_TYPE_Y], |
| xd->mi_row, xd->mi_col) && |
| !is_tip_ref_frame(mbmi->ref_frame[0]) && !mbmi->skip_mode && |
| (!has_second_ref(mbmi) || is_compound_warp_causal_allowed( |
| #if CONFIG_COMPOUND_4XN |
| xd, |
| #endif // CONFIG_COMPOUND_4XN |
| mbmi))) { |
| int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; |
| mbmi->num_proj_ref[0] = mbmi->num_proj_ref[1] = 0; |
| mbmi->num_proj_ref[0] = av1_findSamples(cm, xd, pts, pts_inref, 0); |
| if (has_second_ref(mbmi)) |
| mbmi->num_proj_ref[1] = av1_findSamples(cm, xd, pts, pts_inref, 1); |
| } |
| #endif |
| write_motion_mode(cm, xd, mbmi, mbmi_ext_frame, w); |
| int is_warpmv_warp_causal = |
| ((mbmi->motion_mode == WARPED_CAUSAL) && mbmi->mode == WARPMV); |
| if (mbmi->motion_mode == WARP_DELTA || is_warpmv_warp_causal) |
| write_warp_ref_idx(xd->tile_ctx, mbmi, w); |
| |
| if (allow_warpmv_with_mvd_coding(cm, mbmi)) { |
| write_warpmv_with_mvd_flag(xd->tile_ctx, mbmi, w); |
| } else { |
| assert(mbmi->warpmv_with_mvd_flag == 0); |
| } |
| |
| write_jmvd_scale_mode(xd, w, mbmi); |
| int max_drl_bits = cm->features.max_drl_bits; |
| if (mbmi->mode == AMVDNEWMV) max_drl_bits = AOMMIN(max_drl_bits, 1); |
| |
| if (have_drl_index(mode)) |
| write_drl_idx(max_drl_bits, mbmi_ext_frame->mode_context, ec_ctx, mbmi, |
| mbmi_ext_frame, w); |
| else |
| #if CONFIG_SEP_COMP_DRL |
| { |
| assert(get_ref_mv_idx(mbmi, 0) == 0); |
| assert(get_ref_mv_idx(mbmi, 1) == 0); |
| } |
| #else |
| assert(mbmi->ref_mv_idx == 0); |
| #endif // CONFIG_SEP_COMP_DRL |
| if (is_pb_mv_precision_active(cm, mbmi, bsize)) { |
| write_pb_mv_precision(cm, xd, w); |
| } |
| } |
| #if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING |
| MV mv_diff[2] = { kZeroMv, kZeroMv }; |
| const int is_adaptive_mvd = enable_adaptive_mvd_resolution(cm, mbmi); |
| #if CONFIG_DERIVED_MVD_SIGN |
| int num_signaled_mvd = 0; |
| int start_signaled_mvd_idx = 0; |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| #endif // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING |
| |
| if (mbmi->mode == WARPMV && mbmi->warpmv_with_mvd_flag) { |
| nmv_context *nmvc = &ec_ctx->nmvc; |
| WarpedMotionParams ref_warp_model = |
| x->mbmi_ext_frame->warp_param_stack[mbmi->warp_ref_idx].wm_params; |
| int_mv ref_mv = |
| get_mv_from_wrl(xd, &ref_warp_model, mbmi->pb_mv_precision, bsize, |
| xd->mi_col, xd->mi_row); |
| #if CONFIG_DERIVED_MVD_SIGN |
| num_signaled_mvd = 1; |
| start_signaled_mvd_idx = 0; |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| #if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING |
| get_mvd_from_ref_mv(mbmi->mv[0].as_mv, ref_mv.as_mv, is_adaptive_mvd, |
| pb_mv_precision, &mv_diff[0]); |
| #endif // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING |
| #if CONFIG_VQ_MVD_CODING |
| av1_encode_mv(cpi, mbmi->mv[0].as_mv, w, nmvc, mv_diff[0], |
| pb_mv_precision, is_adaptive_mvd); |
| #else |
| av1_encode_mv(cpi, w, mbmi->mv[0].as_mv, |
| #if CONFIG_DERIVED_MVD_SIGN |
| mv_diff[0], |
| #else |
| ref_mv.as_mv, |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| nmvc, pb_mv_precision); |
| #endif // CONFIG_VQ_MVD_CODING |
| |
| } else { |
| if (have_newmv_in_each_reference(mode)) { |
| #if CONFIG_DERIVED_MVD_SIGN |
| num_signaled_mvd = 1 + is_compound; |
| start_signaled_mvd_idx = 0; |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| nmv_context *nmvc = &ec_ctx->nmvc; |
| int_mv ref_mv = get_ref_mv(x, ref); |
| #if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING |
| get_mvd_from_ref_mv(mbmi->mv[ref].as_mv, ref_mv.as_mv, |
| is_adaptive_mvd, pb_mv_precision, &mv_diff[ref]); |
| #endif // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING |
| #if CONFIG_VQ_MVD_CODING |
| av1_encode_mv(cpi, mbmi->mv[ref].as_mv, w, nmvc, mv_diff[ref], |
| pb_mv_precision, is_adaptive_mvd); |
| #else |
| av1_encode_mv(cpi, w, mbmi->mv[ref].as_mv, |
| #if CONFIG_DERIVED_MVD_SIGN |
| mv_diff[ref], |
| #else |
| ref_mv.as_mv, |
| #endif |
| nmvc, pb_mv_precision); |
| #endif // CONFIG_VQ_MVD_CODING |
| } |
| } else if (mode == NEAR_NEWMV || mode == NEAR_NEWMV_OPTFLOW || |
| (is_joint_mvd_coding_mode(mode) && jmvd_base_ref_list == 1)) { |
| nmv_context *nmvc = &ec_ctx->nmvc; |
| int_mv ref_mv = get_ref_mv(x, 1); |
| |
| #if CONFIG_DERIVED_MVD_SIGN |
| num_signaled_mvd = 1; |
| start_signaled_mvd_idx = 1; |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| #if CONFIG_VQ_MVD_CODING || CONFIG_DERIVED_MVD_SIGN |
| get_mvd_from_ref_mv(mbmi->mv[1].as_mv, ref_mv.as_mv, is_adaptive_mvd, |
| pb_mv_precision, &mv_diff[1]); |
| #endif // CONFIG_VQ_MVD_CODING || CONFIG_DERIVED_MVD_SIGN |
| |
| #if CONFIG_VQ_MVD_CODING |
| av1_encode_mv(cpi, mbmi->mv[1].as_mv, w, nmvc, mv_diff[1], |
| pb_mv_precision, is_adaptive_mvd); |
| #else |
| av1_encode_mv(cpi, w, mbmi->mv[1].as_mv, |
| #if CONFIG_DERIVED_MVD_SIGN |
| mv_diff[1], |
| #else |
| ref_mv.as_mv, |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| nmvc, pb_mv_precision); |
| #endif // CONFIG_VQ_MVD_CODING |
| |
| } else if (mode == NEW_NEARMV || mode == NEW_NEARMV_OPTFLOW || |
| (is_joint_mvd_coding_mode(mode) && jmvd_base_ref_list == 0)) { |
| nmv_context *nmvc = &ec_ctx->nmvc; |
| int_mv ref_mv = get_ref_mv(x, 0); |
| #if CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING |
| #if CONFIG_DERIVED_MVD_SIGN |
| num_signaled_mvd = 1; |
| start_signaled_mvd_idx = 0; |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| get_mvd_from_ref_mv(mbmi->mv[0].as_mv, ref_mv.as_mv, is_adaptive_mvd, |
| pb_mv_precision, &mv_diff[0]); |
| #endif // CONFIG_DERIVED_MVD_SIGN || CONFIG_VQ_MVD_CODING |
| #if CONFIG_VQ_MVD_CODING |
| av1_encode_mv(cpi, mbmi->mv[0].as_mv, w, nmvc, mv_diff[0], |
| pb_mv_precision, is_adaptive_mvd); |
| #else |
| av1_encode_mv(cpi, w, mbmi->mv[0].as_mv, |
| #if CONFIG_DERIVED_MVD_SIGN |
| mv_diff[0], |
| #else |
| ref_mv.as_mv, |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| nmvc, pb_mv_precision); |
| #endif // CONFIG_VQ_MVD_CODING |
| } |
| } |
| #if CONFIG_DERIVED_MVD_SIGN |
| // Code sign in the second pass |
| if (num_signaled_mvd > 0) { |
| int last_ref = -1; |
| int last_comp = -1; |
| uint16_t sum_mvd = 0; |
| int precision_shift = MV_PRECISION_ONE_EIGHTH_PEL - pb_mv_precision; |
| int th_for_num_nonzero = get_derive_sign_nzero_th(mbmi); |
| uint8_t num_nonzero_mvd_comp = 0; |
| uint8_t enable_sign_derive = 0; |
| if (is_mvd_sign_derive_allowed(cm, xd, mbmi)) { |
| for (ref = start_signaled_mvd_idx; |
| ref < start_signaled_mvd_idx + num_signaled_mvd; ++ref) { |
| assert(ref == 0 || ref == 1); |
| for (int comp = 0; comp < 2; comp++) { |
| int this_mvd_comp = comp == 0 ? mv_diff[ref].row : mv_diff[ref].col; |
| if (this_mvd_comp) { |
| last_ref = ref; |
| last_comp = comp; |
| sum_mvd = sum_mvd + (abs(this_mvd_comp) >> precision_shift); |
| num_nonzero_mvd_comp++; |
| } |
| } |
| } |
| if (num_nonzero_mvd_comp >= th_for_num_nonzero) enable_sign_derive = 1; |
| } |
| |
| for (ref = start_signaled_mvd_idx; |
| ref < start_signaled_mvd_idx + num_signaled_mvd; ++ref) { |
| assert(ref == 0 || ref == 1); |
| for (int comp = 0; comp < 2; comp++) { |
| int this_mvd_comp = comp == 0 ? mv_diff[ref].row : mv_diff[ref].col; |
| if (enable_sign_derive && (ref == last_ref && comp == last_comp)) { |
| assert((this_mvd_comp < 0) == (sum_mvd & 0x1)); |
| continue; |
| } |
| if (this_mvd_comp) { |
| const int sign = this_mvd_comp < 0; |
| aom_write_symbol(w, sign, ec_ctx->nmvc.comps[comp].sign_cdf, 2); |
| } |
| } |
| } |
| } |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| |
| if (mbmi->motion_mode == WARP_DELTA) { |
| write_warp_delta(cm, xd, mbmi, mbmi_ext_frame, w); |
| } |
| #if CONFIG_REFINEMV |
| if (!mbmi->skip_mode) { |
| write_refinemv_flag(cm, xd, w, bsize); |
| } |
| #endif // CONFIG_REFINEMV |
| |
| // First write idx to indicate current compound inter prediction mode |
| // group Group A (0): dist_wtd_comp, compound_average Group B (1): |
| // interintra, compound_diffwtd, wedge |
| |
| if (has_second_ref(mbmi) && mbmi->mode < NEAR_NEARMV_OPTFLOW |
| #if CONFIG_REFINEMV |
| && (!mbmi->refinemv_flag || !switchable_refinemv_flag(cm, mbmi)) |
| #endif // CONFIG_REFINEMV |
| && !is_joint_amvd_coding_mode(mbmi->mode)) { |
| |
| const int masked_compound_used = is_any_masked_compound_used(bsize) && |
| cm->seq_params.enable_masked_compound; |
| |
| if (masked_compound_used) { |
| const int ctx_comp_group_idx = get_comp_group_idx_context(cm, xd); |
| aom_write_symbol(w, mbmi->comp_group_idx, |
| ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2); |
| } else { |
| assert(mbmi->comp_group_idx == 0); |
| } |
| |
| if (mbmi->comp_group_idx == 0) { |
| assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE); |
| } else { |
| #if CONFIG_COMPOUND_WARP_CAUSAL |
| assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| (mbmi->motion_mode == SIMPLE_TRANSLATION || |
| is_compound_warp_causal_allowed( |
| #if CONFIG_COMPOUND_4XN |
| xd, |
| #endif // CONFIG_COMPOUND_4XN |
| mbmi))); |
| #else |
| assert(cpi->common.current_frame.reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| mbmi->motion_mode == SIMPLE_TRANSLATION); |
| #endif // CONFIG_COMPOUND_WARP_CAUSAL |
| assert(masked_compound_used); |
| // compound_diffwtd, wedge |
| assert(mbmi->interinter_comp.type == COMPOUND_WEDGE || |
| mbmi->interinter_comp.type == COMPOUND_DIFFWTD); |
| |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| aom_write_symbol(w, mbmi->interinter_comp.type - COMPOUND_WEDGE, |
| #if CONFIG_D149_CTX_MODELING_OPT |
| ec_ctx->compound_type_cdf, |
| #else |
| ec_ctx->compound_type_cdf[bsize], |
| #endif // CONFIG_D149_CTX_MODELING_OPT |
| MASKED_COMPOUND_TYPES); |
| } |
| |
| if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { |
| assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); |
| #if CONFIG_WEDGE_MOD_EXT |
| write_wedge_mode(w, ec_ctx, bsize, mbmi->interinter_comp.wedge_index); |
| #else |
| aom_write_symbol(w, mbmi->interinter_comp.wedge_index, |
| ec_ctx->wedge_idx_cdf[bsize], MAX_WEDGE_TYPES); |
| #endif // CONFIG_WEDGE_MOD_EXT |
| aom_write_bit(w, mbmi->interinter_comp.wedge_sign); |
| } else { |
| assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD); |
| aom_write_literal(w, mbmi->interinter_comp.mask_type, |
| MAX_DIFFWTD_MASK_BITS); |
| } |
| } |
| } |
| if (cm->features.enable_cwp && is_cwp_allowed(mbmi) && !mbmi->skip_mode) |
| write_cwp_idx(xd, w, cm, mbmi); |
| write_mb_interp_filter(cm, xd, w); |
| } |
| } |
| |
| #if CONFIG_IBC_BV_IMPROVEMENT |
| static void write_intrabc_drl_idx(int max_ref_bv_num, FRAME_CONTEXT *ec_ctx, |
| const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, |
| aom_writer *w) { |
| assert(!mbmi->skip_mode); |
| #if CONFIG_SEP_COMP_DRL |
| assert(mbmi->intrabc_drl_idx < mbmi_ext_frame->ref_mv_count[0]); |
| #else |
| assert(mbmi->intrabc_drl_idx < mbmi_ext_frame->ref_mv_count); |
| #endif |
| assert(mbmi->intrabc_drl_idx < max_ref_bv_num); |
| (void)mbmi_ext_frame; |
| |
| int bit_cnt = 0; |
| for (int idx = 0; idx < max_ref_bv_num - 1; ++idx) { |
| aom_write_symbol(w, mbmi->intrabc_drl_idx != idx, |
| ec_ctx->intrabc_drl_idx_cdf[bit_cnt], 2); |
| if (mbmi->intrabc_drl_idx == idx) break; |
| ++bit_cnt; |
| } |
| } |
| #endif // CONFIG_IBC_BV_IMPROVEMENT |
| |
| static AOM_INLINE void write_intrabc_info( |
| #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| int max_bvp_drl_bits, |
| #endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| #if CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED |
| const AV1_COMMON *const cm, |
| #endif // CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED |
| MACROBLOCKD *xd, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| int use_intrabc = is_intrabc_block(mbmi, xd->tree_type); |
| if (xd->tree_type == CHROMA_PART) assert(use_intrabc == 0); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| #if !CONFIG_SKIP_TXFM_OPT |
| #if CONFIG_NEW_CONTEXT_MODELING |
| const int intrabc_ctx = get_intrabc_ctx(xd); |
| aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf[intrabc_ctx], 2); |
| #else |
| aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); |
| #endif // CONFIG_NEW_CONTEXT_MODELING |
| #endif // !CONFIG_SKIP_TXFM_OPT |
| |
| if (use_intrabc) { |
| assert(mbmi->mode == DC_PRED); |
| assert(mbmi->motion_mode == SIMPLE_TRANSLATION); |
| |
| assert(mbmi->pb_mv_precision == MV_PRECISION_ONE_PEL); |
| |
| #if CONFIG_SEP_COMP_DRL |
| int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0][0].this_mv; |
| #else |
| int_mv dv_ref = mbmi_ext_frame->ref_mv_stack[0].this_mv; |
| #endif |
| |
| #if CONFIG_IBC_BV_IMPROVEMENT |
| aom_write_symbol(w, mbmi->intrabc_mode, ec_ctx->intrabc_mode_cdf, 2); |
| write_intrabc_drl_idx( |
| #if CONFIG_IBC_MAX_DRL |
| max_bvp_drl_bits + 1, |
| #else |
| MAX_REF_BV_STACK_SIZE, |
| #endif // CONFIG_IBC_MAX_DRL |
| ec_ctx, mbmi, mbmi_ext_frame, w); |
| |
| if (!mbmi->intrabc_mode) |
| av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); |
| |
| #if CONFIG_DERIVED_MVD_SIGN |
| if (!mbmi->intrabc_mode) { |
| const MV diff = { mbmi->mv[0].as_mv.row - dv_ref.as_mv.row, |
| mbmi->mv[0].as_mv.col - dv_ref.as_mv.col }; |
| if (diff.row) { |
| aom_write_symbol(w, diff.row < 0, ec_ctx->ndvc.comps[0].sign_cdf, 2); |
| } |
| if (diff.col) { |
| aom_write_symbol(w, diff.col < 0, ec_ctx->ndvc.comps[1].sign_cdf, 2); |
| } |
| } |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| #else |
| av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); |
| #if CONFIG_DERIVED_MVD_SIGN |
| const MV diff = { mbmi->mv[0].as_mv.row - dv_ref.as_mv.row, |
| mbmi->mv[0].as_mv.col - dv_ref.as_mv.col }; |
| if (diff.row) { |
| aom_write_symbol(w, diff.row < 0, ec_ctx->ndvc.comps[0].sign_cdf, 2); |
| } |
| if (diff.col) { |
| aom_write_symbol(w, diff.col < 0, ec_ctx->ndvc.comps[1].sign_cdf, 2); |
| } |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| #endif // CONFIG_IBC_BV_IMPROVEMENT |
| |
| #if CONFIG_MORPH_PRED |
| #if CONFIG_IMPROVED_MORPH_PRED |
| if (av1_allow_intrabc_morph_pred(cm)) { |
| #endif // CONFIG_IMPROVED_MORPH_PRED |
| const int morph_pred_ctx = get_morph_pred_ctx(xd); |
| aom_write_symbol(w, mbmi->morph_pred, |
| ec_ctx->morph_pred_cdf[morph_pred_ctx], 2); |
| #if CONFIG_IMPROVED_MORPH_PRED |
| } else { |
| assert(mbmi->morph_pred == 0); |
| } |
| #endif // CONFIG_IMPROVED_MORPH_PRED |
| #endif // CONFIG_MORPH_PRED |
| } |
| } |
| |
| static AOM_INLINE void write_mb_modes_kf( |
| AV1_COMP *cpi, MACROBLOCKD *xd, |
| const MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame, aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const struct segmentation *const seg = &cm->seg; |
| struct segmentation_probs *const segp = &ec_ctx->seg; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| if (seg->segid_preskip && seg->update_map |
| #if CONFIG_EXTENDED_SDP |
| && !(!frame_is_intra_only(cm) && xd->tree_type == CHROMA_PART) |
| #endif // CONFIG_EXTENDED_SDP |
| ) |
| write_segment_id(cpi, mbmi, w, seg, segp, 0); |
| |
| #if CONFIG_SKIP_TXFM_OPT |
| if (av1_allow_intrabc(cm, xd |
| #if CONFIG_ENABLE_IBC_NAT |
| , |
| mbmi->sb_type[xd->tree_type == CHROMA_PART] |
| #endif // CONFIG_ENABLE_IBC_NAT |
| ) && |
| xd->tree_type != CHROMA_PART) { |
| const int use_intrabc = is_intrabc_block(mbmi, xd->tree_type); |
| if (xd->tree_type == CHROMA_PART) assert(use_intrabc == 0); |
| #if CONFIG_NEW_CONTEXT_MODELING |
| const int intrabc_ctx = get_intrabc_ctx(xd); |
| aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf[intrabc_ctx], 2); |
| #else |
| aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); |
| #endif // CONFIG_NEW_CONTEXT_MODELING |
| } |
| |
| int skip = 0; |
| if (is_intrabc_block(mbmi, xd->tree_type)) { |
| skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w); |
| } |
| #else |
| const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w); |
| #endif // CONFIG_SKIP_TXFM_OPT |
| if (!seg->segid_preskip && seg->update_map |
| #if CONFIG_EXTENDED_SDP |
| && !(!frame_is_intra_only(cm) && xd->tree_type == CHROMA_PART) |
| #endif // CONFIG_EXTENDED_SDP |
| ) |
| write_segment_id(cpi, mbmi, w, seg, segp, skip); |
| |
| if (xd->tree_type != CHROMA_PART) write_cdef(cm, xd, w, skip); |
| |
| if (cm->seq_params.enable_ccso && xd->tree_type != CHROMA_PART) |
| write_ccso(cm, xd, w); |
| |
| write_delta_q_params(cpi, skip, w); |
| if (av1_allow_intrabc(cm, xd |
| #if CONFIG_ENABLE_IBC_NAT |
| , |
| mbmi->sb_type[xd->tree_type == CHROMA_PART] |
| #endif // CONFIG_ENABLE_IBC_NAT |
| ) && |
| xd->tree_type != CHROMA_PART) { |
| write_intrabc_info( |
| #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| cm->features.max_bvp_drl_bits, |
| #endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| #if CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED |
| cm, |
| #endif // CONFIG_MORPH_PRED && CONFIG_IMPROVED_MORPH_PRED |
| xd, mbmi_ext_frame, w); |
| if (is_intrabc_block(mbmi, xd->tree_type)) return; |
| } |
| |
| write_intra_prediction_modes(cpi, 1, w); |
| } |
| |
| #if CONFIG_RD_DEBUG |
| static AOM_INLINE void dump_mode_info(MB_MODE_INFO *mi) { |
| printf("\nmi->mi_row == %d\n", mi->mi_row); |
| printf("&& mi->mi_col == %d\n", mi->mi_col); |
| printf("&& mi->sb_type[0] == %d\n", mi->sb_type[0]); |
| printf("&& mi->sb_type[1] == %d\n", mi->sb_type[1]); |
| printf("&& mi->tx_size == %d\n", mi->tx_size); |
| printf("&& mi->mode == %d\n", mi->mode); |
| } |
| |
| static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats, |
| int plane) { |
| if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) { |
| int r, c; |
| printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n", |
| plane, rd_stats->txb_coeff_cost[plane], token_stats->cost); |
| printf("rd txb_coeff_cost_map\n"); |
| for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { |
| for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { |
| printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]); |
| } |
| printf("\n"); |
| } |
| |
| printf("pack txb_coeff_cost_map\n"); |
| for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { |
| for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { |
| printf("%d ", token_stats->txb_coeff_cost_map[r][c]); |
| } |
| printf("\n"); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| #if ENC_MISMATCH_DEBUG |
| static AOM_INLINE void enc_dump_logs( |
| const AV1_COMMON *const cm, |
| const MBMIExtFrameBufferInfo *const mbmi_ext_info, int mi_row, int mi_col) { |
| const MB_MODE_INFO *const mbmi = *( |
| cm->mi_params.mi_grid_base + (mi_row * cm->mi_params.mi_stride + mi_col)); |
| const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_frame = |
| mbmi_ext_info->frame_base + get_mi_ext_idx(mi_row, mi_col, |
| cm->mi_params.mi_alloc_bsize, |
| mbmi_ext_info->stride); |
| if (is_inter_block(mbmi, SHARED_PART)) { |
| #define FRAME_TO_CHECK 11 |
| if (cm->current_frame.frame_number == FRAME_TO_CHECK && |
| cm->show_frame == 1) { |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| |
| int_mv mv[2] = { 0 }; |
| const int is_comp_ref = has_second_ref(mbmi); |
| |
| for (int ref = 0; ref < 1 + is_comp_ref; ++ref) |
| mv[ref].as_mv = mbmi->mv[ref].as_mv; |
| |
| if (!is_comp_ref) { |
| mv[1].as_int = 0; |
| } |
| |
| const int16_t mode_ctx = |
| is_comp_ref ? 0 |
| : mode_context_analyzer(mbmi_ext_frame->mode_context, |
| mbmi->ref_frame); |
| |
| const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; |
| int16_t zeromv_ctx = -1; |
| int16_t refmv_ctx = -1; |
| |
| if (mbmi->mode != NEWMV) { |
| zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| if (mbmi->mode != GLOBALMV) |
| refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| } |
| |
| printf( |
| "=== ENCODER ===: " |
| "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " |
| "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " |
| "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " |
| "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", |
| cm->current_frame.frame_number, mi_row, mi_col, mbmi->skip_mode, |
| mbmi->mode, bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, |
| mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], |
| mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, |
| zeromv_ctx, refmv_ctx, mbmi->tx_size); |
| } |
| } |
| } |
| #endif // ENC_MISMATCH_DEBUG |
| |
| static AOM_INLINE void write_mbmi_b(AV1_COMP *cpi, aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| MB_MODE_INFO *m = xd->mi[0]; |
| |
| if (frame_is_intra_only(cm) |
| #if CONFIG_EXTENDED_SDP |
| || m->region_type == INTRA_REGION |
| #endif // CONFIG_EXTENDED_SDP |
| ) { |
| write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext_frame, w); |
| } else { |
| // has_subpel_mv_component needs the ref frame buffers set up to look |
| // up if they are scaled. has_subpel_mv_component is in turn needed by |
| // write_switchable_interp_filter, which is called by pack_inter_mode_mvs. |
| set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]); |
| |
| #if ENC_MISMATCH_DEBUG |
| enc_dump_logs(cm, &cpi->mbmi_ext_info, xd->mi_row, xd->mi_col); |
| #endif // ENC_MISMATCH_DEBUG |
| |
| pack_inter_mode_mvs(cpi, w); |
| } |
| } |
| |
| static AOM_INLINE void write_inter_txb_coeff( |
| AV1_COMMON *const cm, MACROBLOCK *const x, MB_MODE_INFO *const mbmi, |
| aom_writer *w, const TokenExtra **tok, const TokenExtra *const tok_end, |
| TOKEN_STATS *token_stats, const int row, const int col, int *block, |
| const int plane) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int ss_x = pd->subsampling_x; |
| const int ss_y = pd->subsampling_y; |
| const BLOCK_SIZE plane_bsize = |
| get_mb_plane_block_size(xd, mbmi, plane, ss_x, ss_y); |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| assert(plane_bsize == |
| get_plane_block_size(mbmi->sb_type[PLANE_TYPE_Y], ss_x, ss_y)); |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); |
| const int step = |
| tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| const int bkw = tx_size_wide_unit[max_tx_size]; |
| const int bkh = tx_size_high_unit[max_tx_size]; |
| const BLOCK_SIZE max_unit_bsize = |
| get_plane_block_size(BLOCK_64X64, ss_x, ss_y); |
| const int num_4x4_w = mi_size_wide[plane_bsize]; |
| const int num_4x4_h = mi_size_high[plane_bsize]; |
| const int mu_blocks_wide = mi_size_wide[max_unit_bsize]; |
| const int mu_blocks_high = mi_size_high[max_unit_bsize]; |
| const int unit_height = AOMMIN(mu_blocks_high + (row >> ss_y), num_4x4_h); |
| const int unit_width = AOMMIN(mu_blocks_wide + (col >> ss_x), num_4x4_w); |
| |
| for (int blk_row = row >> ss_y; blk_row < unit_height; blk_row += bkh) { |
| for (int blk_col = col >> ss_x; blk_col < unit_width; blk_col += bkw) { |
| if (plane == AOM_PLANE_V && is_cctx_allowed(cm, xd)) { |
| pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, AOM_PLANE_U, |
| plane_bsize, cm->seq_params.bit_depth, |
| block[AOM_PLANE_U], blk_row, blk_col, max_tx_size, |
| token_stats); |
| block[AOM_PLANE_U] += step; |
| } |
| pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize, |
| cm->seq_params.bit_depth, block[plane], blk_row, blk_col, |
| max_tx_size, token_stats); |
| block[plane] += step; |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_tokens_b(AV1_COMP *cpi, aom_writer *w, |
| const TokenExtra **tok, |
| const TokenExtra *const tok_end) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const BLOCK_SIZE bsize = get_bsize_base(xd, mbmi, AOM_PLANE_Y); |
| #else |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| assert(!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]); |
| const int is_inter = is_inter_block(mbmi, xd->tree_type); |
| |
| if (!is_inter) { |
| av1_write_intra_coeffs_mb(cm, x, w, bsize); |
| } else { |
| int block[MAX_MB_PLANE] = { 0 }; |
| assert(bsize == get_plane_block_size(bsize, xd->plane[0].subsampling_x, |
| xd->plane[0].subsampling_y)); |
| const int num_4x4_w = mi_size_wide[bsize]; |
| const int num_4x4_h = mi_size_high[bsize]; |
| TOKEN_STATS token_stats; |
| init_token_stats(&token_stats); |
| |
| const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; |
| assert(max_unit_bsize == get_plane_block_size(BLOCK_64X64, |
| xd->plane[0].subsampling_x, |
| xd->plane[0].subsampling_y)); |
| int mu_blocks_wide = mi_size_wide[max_unit_bsize]; |
| int mu_blocks_high = mi_size_high[max_unit_bsize]; |
| mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high); |
| |
| for (int row = 0; row < num_4x4_h; row += mu_blocks_high) { |
| for (int col = 0; col < num_4x4_w; col += mu_blocks_wide) { |
| const int plane_start = get_partition_plane_start(xd->tree_type); |
| const int plane_end = |
| get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| if (plane && !xd->is_chroma_ref) break; |
| if (plane == AOM_PLANE_U && is_cctx_allowed(cm, xd)) continue; |
| write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, row, |
| col, block, plane); |
| } |
| } |
| } |
| #if CONFIG_RD_DEBUG |
| for (int plane = 0; plane < num_planes; ++plane) { |
| if (mbmi->sb_type[xd->tree_type == CHROMA_PART] >= BLOCK_8X8 && |
| rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) { |
| dump_mode_info(mbmi); |
| assert(0); |
| } |
| } |
| #endif // CONFIG_RD_DEBUG |
| } |
| } |
| |
| static AOM_INLINE void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile, |
| aom_writer *w, const TokenExtra **tok, |
| const TokenExtra *const tok_end, |
| int mi_row, int mi_col) { |
| const AV1_COMMON *cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| MACROBLOCKD *xd = &cpi->td.mb.e_mbd; |
| const int grid_idx = mi_row * mi_params->mi_stride + mi_col; |
| xd->mi = mi_params->mi_grid_base + grid_idx; |
| cpi->td.mb.mbmi_ext_frame = |
| cpi->mbmi_ext_info.frame_base + |
| get_mi_ext_idx(mi_row, mi_col, cm->mi_params.mi_alloc_bsize, |
| cpi->mbmi_ext_info.stride); |
| xd->tx_type_map = mi_params->tx_type_map + grid_idx; |
| xd->tx_type_map_stride = mi_params->mi_stride; |
| xd->cctx_type_map = mi_params->cctx_type_map + grid_idx; |
| xd->cctx_type_map_stride = mi_params->mi_stride; |
| |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type[xd->tree_type == CHROMA_PART]; |
| assert(IMPLIES(xd->tree_type == SHARED_PART && av1_num_planes(cm) > 1, |
| mbmi->sb_type[PLANE_TYPE_Y] == mbmi->sb_type[PLANE_TYPE_UV])); |
| assert(bsize <= cm->sb_size || |
| (bsize > BLOCK_LARGEST && bsize < BLOCK_SIZES_ALL)); |
| |
| const int bh = mi_size_high[bsize]; |
| const int bw = mi_size_wide[bsize]; |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, mi_params->mi_rows, |
| mi_params->mi_cols, &mbmi->chroma_ref_info); |
| |
| // For skip blocks, reset the corresponding area in cctx_type_map to |
| // CCTX_NONE, which will be used as contexts for later blocks. No need to use |
| // av1_get_adjusted_tx_size because uv_txsize is intended to cover the entire |
| // prediction block area |
| if (is_cctx_enabled(cm, xd) && |
| mbmi->skip_txfm[xd->tree_type == CHROMA_PART] && |
| xd->tree_type != LUMA_PART && xd->is_chroma_ref) { |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; |
| const BLOCK_SIZE uv_bsize = get_mb_plane_block_size( |
| xd, mbmi, AOM_PLANE_U, pd->subsampling_x, pd->subsampling_y); |
| const TX_SIZE uv_txsize = max_txsize_rect_lookup[uv_bsize]; |
| int row_offset, col_offset; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| get_chroma_mi_offsets(xd, &row_offset, &col_offset); |
| #else |
| get_chroma_mi_offsets(xd, uv_txsize, &row_offset, &col_offset); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| update_cctx_array(xd, 0, 0, row_offset, col_offset, uv_txsize, CCTX_NONE); |
| } |
| |
| #if !CONFIG_TX_PARTITION_CTX |
| xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| #endif // !CONFIG_TX_PARTITION_CTX |
| |
| write_mbmi_b(cpi, w); |
| |
| const int plane_start = get_partition_plane_start(xd->tree_type); |
| const int plane_end = |
| get_partition_plane_end(xd->tree_type, AOMMIN(2, av1_num_planes(cm))); |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| const uint8_t palette_size_plane = |
| mbmi->palette_mode_info.palette_size[plane]; |
| assert(!mbmi->skip_mode || !palette_size_plane); |
| if (palette_size_plane > 0) { |
| assert(mbmi->use_intrabc[plane] == 0); |
| assert(av1_allow_palette(cm->features.allow_screen_content_tools, |
| mbmi->sb_type[plane])); |
| assert(!plane || xd->is_chroma_ref); |
| int rows, cols; |
| av1_get_block_dimensions(mbmi->sb_type[plane], plane, xd, NULL, NULL, |
| &rows, &cols); |
| assert(*tok < tok_end); |
| #if CONFIG_PALETTE_IMPROVEMENTS |
| #if CONFIG_PALETTE_LINE_COPY |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0)); |
| assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0)); |
| const int block_height = block_size_high[bsize]; |
| const int block_width = block_size_wide[bsize]; |
| const int plane_block_width = block_width >> pd->subsampling_x; |
| const int plane_block_height = block_height >> pd->subsampling_y; |
| const bool direction_allowed = |
| plane_block_width < 64 && plane_block_height < 64; |
| #endif // CONFIG_PALETTE_LINE_COPY |
| pack_map_tokens(xd, w, tok, palette_size_plane, cols, rows, plane |
| #if CONFIG_PALETTE_LINE_COPY |
| , |
| direction_allowed |
| #endif // CONFIG_PALETTE_LINE_COPY |
| ); |
| #else |
| pack_map_tokens(xd, w, tok, palette_size_plane, rows * cols, plane); |
| #endif // CONFIG_PALETTE_IMPROVEMENTS |
| } |
| } |
| |
| const int is_inter_tx = is_inter_block(mbmi, xd->tree_type); |
| const int skip_txfm = mbmi->skip_txfm[xd->tree_type == CHROMA_PART]; |
| const int segment_id = mbmi->segment_id; |
| if (xd->tree_type != CHROMA_PART) { |
| if (cm->features.tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && |
| !(is_inter_tx && skip_txfm) && !xd->lossless[segment_id]) { |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); |
| if (is_inter_tx) { // This implies skip flag is 0. |
| const int txbh = tx_size_high_unit[max_tx_size]; |
| const int txbw = tx_size_wide_unit[max_tx_size]; |
| const int width = mi_size_wide[bsize]; |
| const int height = mi_size_high[bsize]; |
| for (int idy = 0; idy < height; idy += txbh) { |
| for (int idx = 0; idx < width; idx += txbw) { |
| #if CONFIG_NEW_TX_PARTITION |
| write_tx_partition(xd, mbmi, max_tx_size, idy, idx, w); |
| #else |
| write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w); |
| #endif // CONFIG_NEW_TX_PARTITION |
| } |
| } |
| } else { |
| #if CONFIG_NEW_TX_PARTITION |
| write_tx_partition(xd, mbmi, max_tx_size, 0, 0, w); |
| #else |
| write_selected_tx_size(xd, w); |
| #endif |
| #if !CONFIG_TX_PARTITION_CTX |
| set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, 0, xd); |
| #endif // !CONFIG_TX_PARTITION_CTX |
| } |
| } |
| #if !CONFIG_TX_PARTITION_CTX |
| else { |
| set_txfm_ctxs(mbmi->tx_size, xd->width, xd->height, |
| skip_txfm && is_inter_tx, xd); |
| } |
| #endif // !CONFIG_TX_PARTITION_CTX |
| } |
| |
| if (!mbmi->skip_txfm[xd->tree_type == CHROMA_PART]) { |
| write_tokens_b(cpi, w, tok, tok_end); |
| } else if (!is_global_intrabc_allowed(cm) && !cm->features.coded_lossless) { |
| // Assert only when LR is enabled. |
| assert(1 == av1_get_txk_skip(cm, xd->mi_row, xd->mi_col, 0, 0, 0)); |
| } |
| |
| av1_mark_block_as_coded(xd, bsize, cm->sb_size); |
| } |
| |
| static AOM_INLINE void write_partition(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, int mi_row, |
| int mi_col, PARTITION_TYPE p, |
| BLOCK_SIZE bsize, |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const PARTITION_TREE *ptree, |
| const PARTITION_TREE *ptree_luma, |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| aom_writer *w) { |
| const int plane = xd->tree_type == CHROMA_PART; |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| if (!is_partition_point(bsize)) return; |
| if (bsize == BLOCK_8X8 && plane > 0) return; |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const int ssx = cm->seq_params.subsampling_x; |
| const int ssy = cm->seq_params.subsampling_y; |
| const PARTITION_TYPE derived_partition = |
| av1_get_normative_forced_partition_type( |
| &cm->mi_params, xd->tree_type, ssx, ssy, mi_row, mi_col, bsize, |
| ptree_luma, &ptree->chroma_ref_info); |
| if (derived_partition != PARTITION_INVALID) { |
| assert(p == derived_partition); |
| return; |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| #if CONFIG_PARTITION_CONTEXT_REDUCE |
| const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize, 1); |
| const int rect_type_ctx = |
| partition_plane_context(xd, mi_row, mi_col, bsize, 0); |
| #else |
| const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| const int rect_type_ctx = ctx; |
| #endif |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const bool do_split = p != PARTITION_NONE; |
| aom_write_symbol(w, do_split, ec_ctx->do_split_cdf[plane][ctx], 2); |
| if (!do_split) { |
| return; |
| } |
| const bool do_square_split = p == PARTITION_SPLIT; |
| if (is_square_split_eligible(bsize, cm->sb_size)) { |
| const int square_split_ctx = |
| square_split_context(xd, mi_row, mi_col, bsize); |
| aom_write_symbol(w, do_square_split, |
| ec_ctx->do_square_split_cdf[plane][square_split_ctx], 2); |
| } |
| if (do_square_split) { |
| assert(p == PARTITION_SPLIT); |
| return; |
| } |
| RECT_PART_TYPE rect_type = get_rect_part_type(p); |
| if (rect_type_implied_by_bsize(bsize, xd->tree_type) == RECT_INVALID) { |
| aom_write_symbol(w, rect_type, ec_ctx->rect_type_cdf[plane][rect_type_ctx], |
| NUM_RECT_PARTS); |
| } |
| const bool ext_partition_allowed = |
| cm->seq_params.enable_ext_partitions && |
| is_ext_partition_allowed(bsize, rect_type, xd->tree_type); |
| if (ext_partition_allowed) { |
| const bool do_ext_partition = (p >= PARTITION_HORZ_3); |
| aom_write_symbol(w, do_ext_partition, |
| ec_ctx->do_ext_partition_cdf[plane][rect_type][ctx], 2); |
| if (do_ext_partition) { |
| const bool uneven_4way_partition_allowed = |
| is_uneven_4way_partition_allowed(bsize, rect_type, xd->tree_type); |
| if (uneven_4way_partition_allowed) { |
| const bool do_uneven_4way_partition = (p >= PARTITION_HORZ_4A); |
| aom_write_symbol( |
| w, do_uneven_4way_partition, |
| ec_ctx->do_uneven_4way_partition_cdf[plane][rect_type][ctx], 2); |
| if (do_uneven_4way_partition) { |
| const UNEVEN_4WAY_PART_TYPE uneven_4way_type = |
| (p == PARTITION_HORZ_4A || p == PARTITION_VERT_4A) ? UNEVEN_4A |
| : UNEVEN_4B; |
| aom_write_symbol( |
| w, uneven_4way_type, |
| ec_ctx->uneven_4way_partition_type_cdf[plane][rect_type][ctx], |
| NUM_UNEVEN_4WAY_PARTS); |
| } |
| } |
| } |
| } |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| const int hbs_w = mi_size_wide[bsize] / 2; |
| const int hbs_h = mi_size_high[bsize] / 2; |
| const int has_rows = (mi_row + hbs_h) < cm->mi_params.mi_rows; |
| const int has_cols = (mi_col + hbs_w) < cm->mi_params.mi_cols; |
| if (!has_rows && !has_cols) { |
| assert(p == PARTITION_SPLIT); |
| return; |
| } |
| |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| const int parent_block_width = block_size_wide[bsize]; |
| if (xd->tree_type == CHROMA_PART && parent_block_width >= SHARED_PART_SIZE) { |
| int luma_split_flag = get_luma_split_flag(bsize, mi_params, mi_row, mi_col); |
| // if luma blocks uses smaller blocks, then chroma will also split |
| if (luma_split_flag > 3) { |
| assert(p == PARTITION_SPLIT); |
| return; |
| } |
| } |
| |
| if (has_rows && has_cols) { |
| aom_write_symbol(w, p, ec_ctx->partition_cdf[plane][ctx], |
| partition_cdf_length(bsize)); |
| } else if (!has_rows && has_cols) { |
| assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); |
| assert(bsize > BLOCK_8X8); |
| aom_cdf_prob cdf[2]; |
| partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[plane][ctx], bsize); |
| aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); |
| } else { |
| assert(has_rows && !has_cols); |
| assert(p == PARTITION_SPLIT || p == PARTITION_VERT); |
| assert(bsize > BLOCK_8X8); |
| aom_cdf_prob cdf[2]; |
| partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[plane][ctx], bsize); |
| aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| |
| static AOM_INLINE void write_modes_sb( |
| AV1_COMP *const cpi, const TileInfo *const tile, aom_writer *const w, |
| const TokenExtra **tok, const TokenExtra *const tok_end, |
| PARTITION_TREE *ptree, |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const PARTITION_TREE *ptree_luma, |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| int mi_row, int mi_col, BLOCK_SIZE bsize) { |
| AV1_COMMON *cm = &cpi->common; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int hbs_w = mi_size_wide[bsize] / 2; |
| const int hbs_h = mi_size_high[bsize] / 2; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| const int ebs_w = mi_size_wide[bsize] / 8; |
| const int ebs_h = mi_size_high[bsize] / 8; |
| #else |
| const int qbs_w = mi_size_wide[bsize] / 4; |
| const int qbs_h = mi_size_high[bsize] / 4; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| assert(ptree); |
| const PARTITION_TYPE partition = ptree->partition; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| if (subsize == BLOCK_INVALID) return; |
| |
| if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; |
| |
| const int plane_start = get_partition_plane_start(xd->tree_type); |
| const int plane_end = |
| get_partition_plane_end(xd->tree_type, av1_num_planes(cm)); |
| for (int plane = plane_start; plane < plane_end; ++plane) { |
| int rcol0, rcol1, rrow0, rrow1; |
| if (cm->rst_info[plane].frame_restoration_type != RESTORE_NONE && |
| av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, |
| &rcol0, &rcol1, &rrow0, &rrow1)) { |
| #if CONFIG_COMBINE_PC_NS_WIENER |
| int16_t *frame_filter_dictionary = NULL; |
| int dict_stride = 0; |
| if (plane == AOM_PLANE_Y && |
| to_readwrite_framefilters(&cm->rst_info[plane], mi_row, mi_col)) { |
| frame_filter_dictionary = cm->frame_filter_dictionary; |
| dict_stride = cm->frame_filter_dictionary_stride; |
| assert(frame_filter_dictionary != NULL); |
| assert(dict_stride > 0); |
| write_wienerns_framefilters(cm, xd, plane, w, frame_filter_dictionary, |
| dict_stride); |
| } |
| #endif // CONFIG_COMBINE_PC_NS_WIENER |
| const int rstride = cm->rst_info[plane].horz_units_per_tile; |
| for (int rrow = rrow0; rrow < rrow1; ++rrow) { |
| for (int rcol = rcol0; rcol < rcol1; ++rcol) { |
| const int runit_idx = rcol + rrow * rstride; |
| const RestorationUnitInfo *rui = |
| &cm->rst_info[plane].unit_info[runit_idx]; |
| loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, |
| cpi->td.counts); |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| write_partition(cm, xd, mi_row, mi_col, partition, bsize, ptree, ptree_luma, |
| w); |
| const int track_ptree_luma = |
| is_luma_chroma_share_same_partition(xd->tree_type, ptree_luma, bsize); |
| if (!track_ptree_luma) { |
| ptree_luma = NULL; |
| } |
| assert(IMPLIES(track_ptree_luma, ptree_luma)); |
| #else |
| write_partition(cm, xd, mi_row, mi_col, partition, bsize, w); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| #if CONFIG_EXTENDED_SDP |
| const int is_sb_root = bsize == cm->sb_size; |
| PARTITION_TREE *parent = ptree->parent; |
| if (!is_sb_root && !frame_is_intra_only(cm) && parent && partition && |
| parent->region_type != INTRA_REGION && cm->seq_params.enable_sdp && |
| ptree->extended_sdp_allowed_flag && |
| is_extended_sdp_allowed(parent->bsize, parent->partition) && |
| is_bsize_allowed_for_extended_sdp(bsize, ptree->partition)) { |
| const int ctx = get_intra_region_context(bsize); |
| assert(xd->tree_type != CHROMA_PART); |
| aom_write_symbol(w, ptree->region_type, xd->tile_ctx->region_type_cdf[ctx], |
| REGION_TYPES); |
| if (ptree->region_type == INTRA_REGION) { |
| xd->tree_type = LUMA_PART; |
| } |
| } |
| #endif // CONFIG_EXTENDED_SDP |
| switch (partition) { |
| case PARTITION_NONE: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| break; |
| case PARTITION_HORZ: |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], |
| get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, |
| subsize); |
| if (mi_row + hbs_h < mi_params->mi_rows) { |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], |
| get_partition_subtree_const(ptree_luma, 1), |
| mi_row + hbs_h, mi_col, subsize); |
| } |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| if (mi_row + hbs_h < mi_params->mi_rows) |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| break; |
| case PARTITION_VERT: |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], |
| get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, |
| subsize); |
| if (mi_col + hbs_w < mi_params->mi_cols) { |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], |
| get_partition_subtree_const(ptree_luma, 1), mi_row, |
| mi_col + hbs_w, subsize); |
| } |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| if (mi_col + hbs_w < mi_params->mi_cols) |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w); |
| #endif |
| break; |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_HORZ_4A: { |
| const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); |
| const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big]; |
| assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]); |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], |
| get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, |
| subsize); |
| if (mi_row + ebs_h >= mi_params->mi_rows) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], |
| get_partition_subtree_const(ptree_luma, 1), mi_row + ebs_h, |
| mi_col, bsize_med); |
| if (mi_row + 3 * ebs_h >= mi_params->mi_rows) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], |
| get_partition_subtree_const(ptree_luma, 2), |
| mi_row + 3 * ebs_h, mi_col, bsize_big); |
| if (mi_row + 7 * ebs_h >= mi_params->mi_rows) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], |
| get_partition_subtree_const(ptree_luma, 3), |
| mi_row + 7 * ebs_h, mi_col, subsize); |
| break; |
| } |
| case PARTITION_HORZ_4B: { |
| const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_HORZ); |
| const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_HORZ][bsize_big]; |
| assert(subsize == subsize_lookup[PARTITION_HORZ][bsize_med]); |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], |
| get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, |
| subsize); |
| if (mi_row + ebs_h >= mi_params->mi_rows) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], |
| get_partition_subtree_const(ptree_luma, 1), mi_row + ebs_h, |
| mi_col, bsize_big); |
| if (mi_row + 5 * ebs_h >= mi_params->mi_rows) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], |
| get_partition_subtree_const(ptree_luma, 2), |
| mi_row + 5 * ebs_h, mi_col, bsize_med); |
| if (mi_row + 7 * ebs_h >= mi_params->mi_rows) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], |
| get_partition_subtree_const(ptree_luma, 3), |
| mi_row + 7 * ebs_h, mi_col, subsize); |
| break; |
| } |
| case PARTITION_VERT_4A: { |
| const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); |
| const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big]; |
| assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]); |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], |
| get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, |
| subsize); |
| if (mi_col + ebs_w >= mi_params->mi_cols) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], |
| get_partition_subtree_const(ptree_luma, 1), mi_row, |
| mi_col + ebs_w, bsize_med); |
| if (mi_col + 3 * ebs_w >= mi_params->mi_cols) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], |
| get_partition_subtree_const(ptree_luma, 2), mi_row, |
| mi_col + 3 * ebs_w, bsize_big); |
| if (mi_col + 7 * ebs_w >= mi_params->mi_cols) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], |
| get_partition_subtree_const(ptree_luma, 3), mi_row, |
| mi_col + 7 * ebs_w, subsize); |
| break; |
| } |
| case PARTITION_VERT_4B: { |
| const BLOCK_SIZE bsize_big = get_partition_subsize(bsize, PARTITION_VERT); |
| const BLOCK_SIZE bsize_med = subsize_lookup[PARTITION_VERT][bsize_big]; |
| assert(subsize == subsize_lookup[PARTITION_VERT][bsize_med]); |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], |
| get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, |
| subsize); |
| if (mi_col + ebs_w >= mi_params->mi_cols) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], |
| get_partition_subtree_const(ptree_luma, 1), mi_row, |
| mi_col + ebs_w, bsize_big); |
| if (mi_col + 5 * ebs_w >= mi_params->mi_cols) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], |
| get_partition_subtree_const(ptree_luma, 2), mi_row, |
| mi_col + 5 * ebs_w, bsize_med); |
| if (mi_col + 7 * ebs_w >= mi_params->mi_cols) break; |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], |
| get_partition_subtree_const(ptree_luma, 3), mi_row, |
| mi_col + 7 * ebs_w, subsize); |
| break; |
| } |
| case PARTITION_HORZ_3: |
| case PARTITION_VERT_3: |
| for (int i = 0; i < 4; ++i) { |
| BLOCK_SIZE this_bsize = get_h_partition_subsize(bsize, i, partition); |
| const int offset_r = get_h_partition_offset_mi_row(bsize, i, partition); |
| const int offset_c = get_h_partition_offset_mi_col(bsize, i, partition); |
| |
| assert(this_bsize != BLOCK_INVALID); |
| assert(offset_r >= 0 && offset_c >= 0); |
| |
| const int this_mi_row = mi_row + offset_r; |
| const int this_mi_col = mi_col + offset_c; |
| if (partition == PARTITION_HORZ_3) { |
| if (this_mi_row >= cm->mi_params.mi_rows) break; |
| } else { |
| if (this_mi_col >= cm->mi_params.mi_cols) break; |
| } |
| |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[i], |
| get_partition_subtree_const(ptree_luma, i), this_mi_row, |
| this_mi_col, this_bsize); |
| } |
| break; |
| case PARTITION_SPLIT: |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], |
| get_partition_subtree_const(ptree_luma, 0), mi_row, mi_col, |
| subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], |
| get_partition_subtree_const(ptree_luma, 1), mi_row, |
| mi_col + hbs_w, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], |
| get_partition_subtree_const(ptree_luma, 2), mi_row + hbs_h, |
| mi_col, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], |
| get_partition_subtree_const(ptree_luma, 3), mi_row + hbs_h, |
| mi_col + hbs_w, subsize); |
| break; |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| case PARTITION_SPLIT: |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[0], mi_row, |
| mi_col, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[1], mi_row, |
| mi_col + hbs_w, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[2], |
| mi_row + hbs_h, mi_col, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, ptree->sub_tree[3], |
| mi_row + hbs_h, mi_col + hbs_w, subsize); |
| break; |
| case PARTITION_HORZ_A: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col); |
| break; |
| case PARTITION_HORZ_B: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col + hbs_w); |
| break; |
| case PARTITION_VERT_A: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w); |
| break; |
| case PARTITION_VERT_B: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs_w); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs_h, mi_col + hbs_w); |
| break; |
| case PARTITION_HORZ_4: |
| for (int i = 0; i < 4; ++i) { |
| int this_mi_row = mi_row + i * qbs_h; |
| if (i > 0 && this_mi_row >= mi_params->mi_rows) break; |
| write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (int i = 0; i < 4; ++i) { |
| int this_mi_col = mi_col + i * qbs_w; |
| if (i > 0 && this_mi_col >= mi_params->mi_cols) break; |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col); |
| } |
| break; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| default: assert(0); break; |
| } |
| #if CONFIG_EXTENDED_SDP |
| if (!is_sb_root && !frame_is_intra_only(cm) && !cm->seq_params.monochrome && |
| parent && partition && parent->region_type != INTRA_REGION && |
| ptree->region_type == INTRA_REGION) { |
| // run chroma part in luma region |
| xd->tree_type = CHROMA_PART; |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| // reset back to shared part |
| xd->tree_type = SHARED_PART; |
| } |
| #endif // CONFIG_EXTENDED_SDP |
| |
| // update partition context |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| } |
| |
| static AOM_INLINE void write_modes(AV1_COMP *const cpi, |
| const TileInfo *const tile, |
| aom_writer *const w, int tile_row, |
| int tile_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| const int mi_row_start = tile->mi_row_start; |
| const int mi_row_end = tile->mi_row_end; |
| const int mi_col_start = tile->mi_col_start; |
| const int mi_col_end = tile->mi_col_end; |
| const int num_planes = av1_num_planes(cm); |
| |
| av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row); |
| av1_init_above_context(&cm->above_contexts, num_planes, tile->tile_row, xd); |
| |
| if (cpi->common.delta_q_info.delta_q_present_flag) { |
| xd->current_base_qindex = cpi->common.quant_params.base_qindex; |
| if (cpi->common.delta_q_info.delta_lf_present_flag) { |
| av1_reset_loop_filter_delta(xd, num_planes); |
| } |
| } |
| |
| for (int mi_row = mi_row_start; mi_row < mi_row_end; mi_row += cm->mib_size) { |
| const int sb_row_in_tile = |
| (mi_row - tile->mi_row_start) >> cm->mib_size_log2; |
| const TokenExtra *tok = |
| cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].start; |
| const TokenExtra *tok_end = |
| tok + cpi->token_info.tplist[tile_row][tile_col][sb_row_in_tile].count; |
| |
| av1_zero_left_context(xd); |
| |
| for (int mi_col = mi_col_start; mi_col < mi_col_end; |
| mi_col += cm->mib_size) { |
| av1_reset_is_mi_coded_map(xd, cm->mib_size); |
| xd->sbi = av1_get_sb_info(cm, mi_row, mi_col); |
| cpi->td.mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col); |
| const int total_loop_num = |
| (frame_is_intra_only(cm) && !cm->seq_params.monochrome && |
| cm->seq_params.enable_sdp) |
| ? 2 |
| : 1; |
| xd->tree_type = (total_loop_num == 1 ? SHARED_PART : LUMA_PART); |
| write_modes_sb(cpi, tile, w, &tok, tok_end, |
| xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)], |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| NULL, |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| mi_row, mi_col, cm->sb_size); |
| if (total_loop_num == 2) { |
| xd->tree_type = CHROMA_PART; |
| write_modes_sb(cpi, tile, w, &tok, tok_end, |
| xd->sbi->ptree_root[av1_get_sdp_idx(xd->tree_type)], |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| xd->sbi->ptree_root[0], |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| mi_row, mi_col, cm->sb_size); |
| xd->tree_type = SHARED_PART; |
| } |
| } |
| assert(tok == tok_end); |
| } |
| } |
| |
| // Same function as write_uniform but writing to uncompresses header wb |
| static AOM_INLINE void wb_write_uniform(struct aom_write_bit_buffer *wb, int n, |
| int v) { |
| const int l = get_unsigned_bits(n); |
| const int m = (1 << l) - n; |
| if (l == 0) return; |
| if (v < m) { |
| aom_wb_write_literal(wb, v, l - 1); |
| } else { |
| aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1); |
| aom_wb_write_literal(wb, (v - m) & 1, 1); |
| } |
| } |
| |
| // Converts frame restoration type to a coded index depending on lr tools |
| // that are enabled for the frame for a given plane. |
| static int frame_restoration_type_to_index( |
| const AV1_COMMON *const cm, int plane, |
| RestorationType frame_restoration_type) { |
| int ndx = 0; |
| for (RestorationType r = RESTORE_NONE; r < frame_restoration_type; ++r) { |
| if (((cm->features.lr_tools_disable_mask[plane] >> r) & 1) == 0) ndx++; |
| } |
| return ndx; |
| } |
| |
| static AOM_INLINE void encode_restoration_mode( |
| AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { |
| assert(!cm->features.all_lossless); |
| if (!cm->seq_params.enable_restoration) return; |
| if (is_global_intrabc_allowed(cm)) return; |
| const int num_planes = av1_num_planes(cm); |
| int luma_none = 1, chroma_none = 1; |
| for (int p = 0; p < num_planes; ++p) { |
| RestorationInfo *rsi = &cm->rst_info[p]; |
| #if CONFIG_COMBINE_PC_NS_WIENER |
| cm->cur_frame->rst_info[p].frame_filters_on = 0; |
| rsi->frame_filters_initialized = 0; |
| #if CONFIG_TEMP_LR |
| assert(IMPLIES(!rsi->frame_filters_on, !rsi->temporal_pred_flag)); |
| #endif // CONFIG_TEMP_LR |
| #endif // CONFIG_COMBINE_PC_NS_WIENER |
| if (rsi->frame_restoration_type != RESTORE_NONE) { |
| luma_none &= p > 0; |
| chroma_none &= p == 0; |
| } |
| assert(IMPLIES(cm->features.lr_tools_count[p] < 2, |
| rsi->frame_restoration_type != RESTORE_SWITCHABLE)); |
| const int ndx = |
| frame_restoration_type_to_index(cm, p, rsi->frame_restoration_type); |
| wb_write_uniform(wb, cm->features.lr_frame_tools_count[p], ndx); |
| uint8_t plane_lr_tools_disable_mask = cm->features.lr_tools_disable_mask[p]; |
| uint8_t sw_lr_tools_disable_mask = rsi->sw_lr_tools_disable_mask; |
| if (rsi->frame_restoration_type == RESTORE_SWITCHABLE && |
| cm->features.lr_tools_count[p] > 2) { |
| if ((sw_lr_tools_disable_mask | plane_lr_tools_disable_mask) == |
| plane_lr_tools_disable_mask) { |
| aom_wb_write_bit(wb, 0); |
| } else { |
| aom_wb_write_bit(wb, 1); |
| int tools_count = cm->features.lr_tools_count[p]; |
| for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { |
| if (!(plane_lr_tools_disable_mask & (1 << i))) { |
| const int disable_tool = (sw_lr_tools_disable_mask >> i) & 1; |
| aom_wb_write_bit(wb, disable_tool); |
| plane_lr_tools_disable_mask |= |
| (sw_lr_tools_disable_mask & (1 << i)); |
| tools_count -= disable_tool; |
| // if tools_count becomes 2 break from the loop since we |
| // do not allow any other tool to be disabled. |
| if (tools_count == 2) break; |
| } |
| } |
| av1_set_lr_tools(plane_lr_tools_disable_mask, p, &cm->features); |
| } |
| } |
| |
| const int is_wiener_nonsep_possible = |
| rsi->frame_restoration_type == RESTORE_WIENER_NONSEP || |
| rsi->frame_restoration_type == RESTORE_SWITCHABLE; |
| if (is_wiener_nonsep_possible) { |
| #if CONFIG_COMBINE_PC_NS_WIENER |
| rsi->frame_filters_initialized = 0; |
| if (p == AOM_PLANE_Y) { |
| int write_num_classes = 1; |
| write_num_classes = |
| write_num_classes && NUM_WIENERNS_CLASS_INIT_LUMA > 1; |
| if (write_num_classes) { |
| aom_wb_write_literal(wb, rsi->frame_filters_on, 1); |
| // printf("Frame %d: frame_filters_on %d temporal_pred_flag %d\n", |
| // cm->current_frame.order_hint, rsi->frame_filters_on, |
| // rsi->temporal_pred_flag); |
| #if CONFIG_TEMP_LR |
| if (rsi->frame_filters_on) { |
| const int num_ref_frames = |
| (frame_is_intra_only(cm) || cm->features.error_resilient_mode) |
| ? 0 |
| : cm->ref_frames_info.num_total_refs; |
| if (num_ref_frames > 0) |
| aom_wb_write_bit(wb, rsi->temporal_pred_flag); |
| if (rsi->temporal_pred_flag && num_ref_frames > 1) |
| aom_wb_write_literal( |
| wb, rsi->rst_ref_pic_idx, |
| av1_ceil_log2(num_ref_frames)); // write_lr_reference_idx |
| } |
| if (!rsi->temporal_pred_flag) { |
| #endif // CONFIG_TEMP_LR |
| if (rsi->frame_filters_on) |
| aom_wb_write_literal( |
| wb, encode_num_filter_classes(rsi->num_filter_classes), |
| NUM_FILTER_CLASSES_BITS); |
| #if CONFIG_TEMP_LR |
| } |
| if (rsi->frame_filters_on) |
| av1_copy_rst_frame_filters(&cm->cur_frame->rst_info[p], rsi); |
| if (rsi->temporal_pred_flag) { |
| rsi->frame_filters_initialized = 1; |
| assert(get_ref_frame_buf(cm, rsi->rst_ref_pic_idx) |
| ->rst_info[p] |
| .frame_filters_on); |
| } |
| #endif // CONFIG_TEMP_LR |
| if (cm->frame_filter_dictionary == NULL) { |
| allocate_frame_filter_dictionary(cm); |
| translate_pcwiener_filters_to_wienerns(cm); |
| } |
| if (rsi->frame_filters_on) { |
| set_frame_filter_dictionary(cm, rsi->num_filter_classes, |
| cm->frame_filter_dictionary, |
| cm->frame_filter_dictionary_stride); |
| } |
| } |
| } else { |
| assert(rsi->frame_filters_on == 0); |
| assert(rsi->num_filter_classes == NUM_WIENERNS_CLASS_INIT_CHROMA); |
| } |
| #else |
| assert(rsi->num_filter_classes == (p == AOM_PLANE_Y |
| ? NUM_WIENERNS_CLASS_INIT_LUMA |
| : NUM_WIENERNS_CLASS_INIT_CHROMA)); |
| assert(rsi->frame_filters_on == 0); |
| #endif // CONFIG_COMBINE_PC_NS_WIENER |
| } else { |
| #if CONFIG_COMBINE_PC_NS_WIENER && CONFIG_TEMP_LR |
| rsi->temporal_pred_flag = 0; |
| #endif // CONFIG_COMBINE_PC_NS_WIENER && CONFIG_TEMP_LR |
| } |
| } |
| int size = cm->rst_info[0].max_restoration_unit_size; |
| if (!luma_none) { |
| aom_wb_write_bit(wb, cm->rst_info[0].restoration_unit_size == size >> 1); |
| if (cm->rst_info[0].restoration_unit_size != size >> 1) |
| aom_wb_write_bit(wb, cm->rst_info[0].restoration_unit_size == size); |
| } |
| if (!chroma_none) { |
| size = cm->rst_info[1].max_restoration_unit_size; |
| aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size == size >> 1); |
| if (cm->rst_info[1].restoration_unit_size != size >> 1) |
| aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size == size); |
| assert(cm->rst_info[2].restoration_unit_size == |
| cm->rst_info[1].restoration_unit_size); |
| } |
| } |
| |
| static AOM_INLINE void write_wiener_filter(MACROBLOCKD *xd, int wiener_win, |
| const WienerInfo *wiener_info, |
| WienerInfoBank *bank, |
| aom_writer *wb) { |
| const int equal_ref = check_wiener_bank_eq(bank, wiener_info); |
| const int exact_match = (equal_ref >= 0); |
| aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2); |
| const int ref = wiener_info->bank_ref; |
| assert(IMPLIES(exact_match, ref == equal_ref)); |
| assert(ref < AOMMAX(1, bank->bank_size)); |
| int match = 0; |
| for (int k = 0; k < AOMMAX(0, bank->bank_size - 1); ++k) { |
| match = (k == ref); |
| aom_write_literal(wb, match, 1); |
| if (match) break; |
| } |
| assert(IMPLIES(!match, ref == AOMMAX(0, bank->bank_size - 1))); |
| if (exact_match) { |
| if (bank->bank_size == 0) av1_add_to_wiener_bank(bank, wiener_info); |
| return; |
| } |
| const WienerInfo *ref_wiener_info = av1_ref_from_wiener_bank(bank, ref); |
| if (wiener_win == WIENER_WIN) |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, |
| wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); |
| else |
| assert(wiener_info->vfilter[0] == 0 && |
| wiener_info->vfilter[WIENER_WIN - 1] == 0); |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, |
| wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, |
| wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); |
| if (wiener_win == WIENER_WIN) |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, |
| wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); |
| else |
| assert(wiener_info->hfilter[0] == 0 && |
| wiener_info->hfilter[WIENER_WIN - 1] == 0); |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, |
| wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, |
| wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); |
| av1_add_to_wiener_bank(bank, wiener_info); |
| return; |
| } |
| |
| static AOM_INLINE void write_sgrproj_filter(MACROBLOCKD *xd, |
| const SgrprojInfo *sgrproj_info, |
| SgrprojInfoBank *bank, |
| aom_writer *wb) { |
| const int equal_ref = check_sgrproj_bank_eq(bank, sgrproj_info); |
| const int exact_match = (equal_ref >= 0); |
| aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2); |
| const int ref = sgrproj_info->bank_ref; |
| assert(IMPLIES(exact_match, ref == equal_ref)); |
| assert(ref < AOMMAX(1, bank->bank_size)); |
| int match = 0; |
| for (int k = 0; k < AOMMAX(0, bank->bank_size - 1); ++k) { |
| match = (k == ref); |
| aom_write_literal(wb, match, 1); |
| if (match) break; |
| } |
| assert(IMPLIES(!match, ref == AOMMAX(0, bank->bank_size - 1))); |
| if (exact_match) { |
| if (bank->bank_size == 0) av1_add_to_sgrproj_bank(bank, sgrproj_info); |
| return; |
| } |
| const SgrprojInfo *ref_sgrproj_info = av1_ref_from_sgrproj_bank(bank, ref); |
| |
| aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS); |
| const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; |
| |
| if (params->r[0] == 0) { |
| assert(sgrproj_info->xqd[0] == 0); |
| aom_write_primitive_refsubexpfin( |
| wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, |
| sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); |
| } else if (params->r[1] == 0) { |
| aom_write_primitive_refsubexpfin( |
| wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, |
| sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); |
| } else { |
| aom_write_primitive_refsubexpfin( |
| wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, |
| sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); |
| aom_write_primitive_refsubexpfin( |
| wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, |
| sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); |
| } |
| av1_add_to_sgrproj_bank(bank, sgrproj_info); |
| return; |
| } |
| |
| static int check_and_write_merge_info( |
| const WienerNonsepInfo *wienerns_info, const WienerNonsepInfoBank *bank, |
| const WienernsFilterParameters *nsfilter_params, int wiener_class_id, |
| int *ref_for_class, MACROBLOCKD *xd, aom_writer *wb) { |
| const int is_equal = |
| check_wienerns_bank_eq(bank, wienerns_info, nsfilter_params->ncoeffs, |
| wiener_class_id, ref_for_class); |
| const int exact_match = (is_equal >= 0); |
| aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2); |
| |
| if (!exact_match) { |
| ref_for_class[wiener_class_id] = |
| wienerns_info->bank_ref_for_class[wiener_class_id]; |
| } |
| const int ref = ref_for_class[wiener_class_id]; |
| |
| assert(ref < AOMMAX(1, bank->bank_size_for_class[wiener_class_id])); |
| int match = 0; |
| for (int k = 0; k < bank->bank_size_for_class[wiener_class_id] - 1; ++k) { |
| match = (k == ref); |
| aom_write_literal(wb, match, 1); |
| if (match) break; |
| } |
| assert(IMPLIES( |
| !match, |
| ref == AOMMAX(0, bank->bank_size_for_class[wiener_class_id] - 1))); |
| return exact_match; |
| } |
| |
| static int check_and_write_exact_match( |
| const WienerNonsepInfo *wienerns_info, |
| const WienerNonsepInfo *ref_wienerns_info, |
| const WienernsFilterParameters *nsfilter_params, int wiener_class_id, |
| MACROBLOCKD *xd, aom_writer *wb) { |
| const int exact_match = |
| check_wienerns_eq(wienerns_info, ref_wienerns_info, |
| nsfilter_params->ncoeffs, wiener_class_id); |
| aom_write_symbol(wb, exact_match, xd->tile_ctx->merged_param_cdf, 2); |
| return exact_match; |
| } |
| |
| #if CONFIG_COMBINE_PC_NS_WIENER |
| static inline void write_match_indices(const WienerNonsepInfo *wienerns_info, |
| aom_writer *wb) { |
| int total_bits = 0; |
| for (int c_id = 0; c_id < wienerns_info->num_classes; ++c_id) { |
| int num_bits = 0; |
| int encoded_match = |
| encode_first_match(wienerns_info->match_indices[c_id], &num_bits, |
| wienerns_info->num_classes); |
| aom_write_literal(wb, encoded_match, num_bits); |
| total_bits += num_bits; |
| } |
| int count_bits = count_match_indices_bits(wienerns_info->num_classes); |
| (void)count_bits; |
| (void)total_bits; |
| assert(total_bits == count_bits); |
| } |
| |
| static AOM_INLINE void write_wienerns_framefilters( |
| AV1_COMMON *cm, MACROBLOCKD *xd, int plane, aom_writer *wb, |
| int16_t *frame_filter_dictionary, int dict_stride) { |
| const int base_qindex = cm->quant_params.base_qindex; |
| RestorationInfo *rsi = &cm->rst_info[plane]; |
| const int is_uv = plane > 0; |
| const int num_classes = rsi->num_filter_classes; |
| assert(rsi->frame_filters_on && !rsi->frame_filters_initialized); |
| assert(!is_uv); |
| const WienernsFilterParameters *nsfilter_params = |
| get_wienerns_parameters(base_qindex, plane != AOM_PLANE_Y); |
| int skip_filter_write_for_class[WIENERNS_MAX_CLASSES] = { 0 }; |
| #if CONFIG_TEMP_LR |
| assert(!rsi->temporal_pred_flag); |
| #endif // CONFIG_TEMP_LR |
| write_match_indices(&rsi->frame_filters, wb); |
| WienerNonsepInfoBank bank = { 0 }; |
| // needed to handle asserts in copy_nsfilter_taps_for_class |
| bank.filter[0].num_classes = num_classes; |
| |
| fill_first_slot_of_bank_with_filter_match( |
| &bank, &rsi->frame_filters, rsi->frame_filters.match_indices, base_qindex, |
| ALL_WIENERNS_CLASSES, frame_filter_dictionary, dict_stride); |
| for (int c_id = 0; c_id < num_classes; ++c_id) { |
| skip_filter_write_for_class[c_id] = check_and_write_exact_match( |
| &rsi->frame_filters, av1_constref_from_wienerns_bank(&bank, 0, c_id), |
| nsfilter_params, c_id, xd, wb); |
| } |
| assert(num_classes <= WIENERNS_MAX_CLASSES); |
| const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs; |
| |
| for (int c_id = 0; c_id < num_classes; ++c_id) { |
| if (skip_filter_write_for_class[c_id]) continue; |
| const WienerNonsepInfo *ref_wienerns_info = |
| av1_constref_from_wienerns_bank(&bank, 0, c_id); |
| const int16_t *wienerns_info_nsfilter = |
| const_nsfilter_taps(&rsi->frame_filters, c_id); |
| const int16_t *ref_wienerns_info_nsfilter = |
| const_nsfilter_taps(ref_wienerns_info, c_id); |
| |
| const int beg_feat = 0; |
| int end_feat = nsfilter_params->ncoeffs; |
| if (end_feat > 6) { |
| // Decide whether to signal a short (0) or long (1) filter |
| int filter_length_bit = 0; |
| for (int i = 6; i < end_feat; i++) { |
| if (wienerns_info_nsfilter[i] != 0) { |
| filter_length_bit = 1; |
| break; |
| } |
| } |
| aom_write_symbol(wb, filter_length_bit, |
| xd->tile_ctx->wienerns_length_cdf[is_uv], 2); |
| end_feat = filter_length_bit ? nsfilter_params->ncoeffs : 6; |
| } |
| assert((end_feat & 1) == 0); |
| |
| int uv_sym = 0; |
| if (is_uv && end_feat > 6) { |
| uv_sym = 1; |
| for (int i = 6; i < end_feat; i += 2) { |
| if (wienerns_info_nsfilter[i + 1] != wienerns_info_nsfilter[i]) |
| uv_sym = 0; |
| } |
| aom_write_symbol(wb, uv_sym, xd->tile_ctx->wienerns_uv_sym_cdf, 2); |
| } |
| |
| for (int i = beg_feat; i < end_feat; ++i) { |
| aom_write_4part_wref( |
| wb, |
| ref_wienerns_info_nsfilter[i] - |
| wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], |
| wienerns_info_nsfilter[i] - |
| wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], |
| xd->tile_ctx->wienerns_4part_cdf[wienerns_coeffs[i - beg_feat] |
| [WIENERNS_PAR_ID]], |
| wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]); |
| if (uv_sym && i >= 6) { |
| // Don't code symmetrical taps |
| assert(wienerns_info_nsfilter[i + 1] == wienerns_info_nsfilter[i]); |
| i += 1; |
| } |
| } |
| } |
| rsi->frame_filters_initialized = 1; |
| #if CONFIG_TEMP_LR |
| av1_copy_rst_frame_filters(&cm->cur_frame->rst_info[plane], rsi); |
| #endif // CONFIG_TEMP_LR |
| return; |
| } |
| #endif // CONFIG_COMBINE_PC_NS_WIENER |
| |
| static AOM_INLINE void write_wienerns_filter( |
| MACROBLOCKD *xd, int plane, const RestorationInfo *rsi, |
| const WienerNonsepInfo *wienerns_info, WienerNonsepInfoBank *bank, |
| aom_writer *wb) { |
| const int is_uv = plane > 0; |
| const WienernsFilterParameters *nsfilter_params = |
| get_wienerns_parameters(xd->current_base_qindex, plane != AOM_PLANE_Y); |
| int skip_filter_write_for_class[WIENERNS_MAX_CLASSES] = { 0 }; |
| int ref_for_class[WIENERNS_MAX_CLASSES] = { 0 }; |
| #if CONFIG_COMBINE_PC_NS_WIENER |
| if (rsi->frame_filters_on) return; |
| #endif // CONFIG_COMBINE_PC_NS_WIENER |
| |
| for (int c_id = 0; c_id < wienerns_info->num_classes; ++c_id) { |
| skip_filter_write_for_class[c_id] = check_and_write_merge_info( |
| wienerns_info, bank, nsfilter_params, c_id, ref_for_class, xd, wb); |
| } |
| const int num_classes = wienerns_info->num_classes; |
| assert(num_classes <= WIENERNS_MAX_CLASSES); |
| const int(*wienerns_coeffs)[WIENERNS_COEFCFG_LEN] = nsfilter_params->coeffs; |
| |
| for (int c_id = 0; c_id < num_classes; ++c_id) { |
| if (skip_filter_write_for_class[c_id]) continue; |
| const int ref = ref_for_class[c_id]; |
| const WienerNonsepInfo *ref_wienerns_info = |
| av1_constref_from_wienerns_bank(bank, ref, c_id); |
| const int16_t *wienerns_info_nsfilter = |
| const_nsfilter_taps(wienerns_info, c_id); |
| const int16_t *ref_wienerns_info_nsfilter = |
| const_nsfilter_taps(ref_wienerns_info, c_id); |
| |
| const int beg_feat = 0; |
| int end_feat = nsfilter_params->ncoeffs; |
| if (end_feat > 6) { |
| // Decide whether to signal a short (0) or long (1) filter |
| int filter_length_bit = 0; |
| for (int i = 6; i < end_feat; i++) { |
| if (wienerns_info_nsfilter[i] != 0) { |
| filter_length_bit = 1; |
| break; |
| } |
| } |
| aom_write_symbol(wb, filter_length_bit, |
| xd->tile_ctx->wienerns_length_cdf[is_uv], 2); |
| end_feat = filter_length_bit ? nsfilter_params->ncoeffs : 6; |
| } |
| assert((end_feat & 1) == 0); |
| |
| int uv_sym = 0; |
| if (is_uv && end_feat > 6) { |
| uv_sym = 1; |
| for (int i = 6; i < end_feat; i += 2) { |
| if (wienerns_info_nsfilter[i + 1] != wienerns_info_nsfilter[i]) |
| uv_sym = 0; |
| } |
| aom_write_symbol(wb, uv_sym, xd->tile_ctx->wienerns_uv_sym_cdf, 2); |
| } |
| |
| for (int i = beg_feat; i < end_feat; ++i) { |
| aom_write_4part_wref( |
| wb, |
| ref_wienerns_info_nsfilter[i] - |
| wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], |
| wienerns_info_nsfilter[i] - |
| wienerns_coeffs[i - beg_feat][WIENERNS_MIN_ID], |
| xd->tile_ctx->wienerns_4part_cdf[wienerns_coeffs[i - beg_feat] |
| [WIENERNS_PAR_ID]], |
| wienerns_coeffs[i - beg_feat][WIENERNS_BIT_ID]); |
| if (uv_sym && i >= 6) { |
| // Don't code symmetrical taps |
| assert(wienerns_info_nsfilter[i + 1] == wienerns_info_nsfilter[i]); |
| i += 1; |
| } |
| } |
| av1_add_to_wienerns_bank(bank, wienerns_info, c_id); |
| } |
| return; |
| } |
| |
| static AOM_INLINE void loop_restoration_write_sb_coeffs( |
| AV1_COMMON *cm, MACROBLOCKD *xd, const RestorationUnitInfo *rui, |
| aom_writer *const w, int plane, FRAME_COUNTS *counts) { |
| RestorationInfo *rsi = cm->rst_info + plane; |
| RestorationType frame_rtype = rsi->frame_restoration_type; |
| assert(frame_rtype != RESTORE_NONE); |
| |
| (void)counts; |
| assert(!cm->features.all_lossless); |
| |
| const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; |
| |
| RestorationType unit_rtype = rui->restoration_type; |
| assert(((cm->features.lr_tools_disable_mask[plane] >> rui->restoration_type) & |
| 1) == 0); |
| if (frame_rtype == RESTORE_SWITCHABLE) { |
| int found = 0; |
| for (int re = 0; re <= cm->features.lr_last_switchable_ndx[plane]; re++) { |
| if (cm->features.lr_tools_disable_mask[plane] & (1 << re)) continue; |
| found = (re == (int)unit_rtype); |
| aom_write_symbol(w, found, |
| xd->tile_ctx->switchable_flex_restore_cdf[re][plane], 2); |
| if (found) break; |
| } |
| assert(IMPLIES( |
| !found, |
| (int)unit_rtype == cm->features.lr_last_switchable_ndx_0_type[plane])); |
| switch (unit_rtype) { |
| case RESTORE_WIENER: |
| write_wiener_filter(xd, wiener_win, &rui->wiener_info, |
| &xd->wiener_info[plane], w); |
| break; |
| case RESTORE_SGRPROJ: |
| write_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane], |
| w); |
| break; |
| case RESTORE_WIENER_NONSEP: |
| write_wienerns_filter(xd, plane, rsi, &rui->wienerns_info, |
| &xd->wienerns_info[plane], w); |
| break; |
| case RESTORE_PC_WIENER: |
| // No side-information for now. |
| break; |
| default: assert(unit_rtype == RESTORE_NONE); break; |
| } |
| } else if (frame_rtype == RESTORE_WIENER) { |
| aom_write_symbol(w, unit_rtype != RESTORE_NONE, |
| xd->tile_ctx->wiener_restore_cdf, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->wiener_restore[unit_rtype != RESTORE_NONE]; |
| #endif |
| if (unit_rtype != RESTORE_NONE) { |
| write_wiener_filter(xd, wiener_win, &rui->wiener_info, |
| &xd->wiener_info[plane], w); |
| } |
| } else if (frame_rtype == RESTORE_SGRPROJ) { |
| aom_write_symbol(w, unit_rtype != RESTORE_NONE, |
| xd->tile_ctx->sgrproj_restore_cdf, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE]; |
| #endif |
| if (unit_rtype != RESTORE_NONE) { |
| write_sgrproj_filter(xd, &rui->sgrproj_info, &xd->sgrproj_info[plane], w); |
| } |
| } else if (frame_rtype == RESTORE_WIENER_NONSEP) { |
| aom_write_symbol(w, unit_rtype != RESTORE_NONE, |
| xd->tile_ctx->wienerns_restore_cdf, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->wienerns_restore[unit_rtype != RESTORE_NONE]; |
| #endif // CONFIG_ENTROPY_STATS |
| if (unit_rtype != RESTORE_NONE) { |
| write_wienerns_filter(xd, plane, rsi, &rui->wienerns_info, |
| &xd->wienerns_info[plane], w); |
| } |
| } else if (frame_rtype == RESTORE_PC_WIENER) { |
| aom_write_symbol(w, unit_rtype != RESTORE_NONE, |
| xd->tile_ctx->pc_wiener_restore_cdf, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->pc_wiener_restore[unit_rtype != RESTORE_NONE]; |
| #endif // CONFIG_ENTROPY_STATS |
| if (unit_rtype != RESTORE_NONE) { |
| // No side-information for now. |
| } |
| } |
| } |
| |
| static AOM_INLINE void encode_loopfilter(AV1_COMMON *cm, |
| struct aom_write_bit_buffer *wb) { |
| assert(!cm->features.coded_lossless); |
| if (is_global_intrabc_allowed(cm)) return; |
| const int num_planes = av1_num_planes(cm); |
| struct loopfilter *lf = &cm->lf; |
| |
| // Encode the loop filter level and type |
| aom_wb_write_bit(wb, lf->filter_level[0]); |
| #if DF_DUAL |
| aom_wb_write_bit(wb, lf->filter_level[1]); |
| #endif |
| if (num_planes > 1) { |
| if (lf->filter_level[0] || lf->filter_level[1]) { |
| aom_wb_write_bit(wb, lf->filter_level_u); |
| aom_wb_write_bit(wb, lf->filter_level_v); |
| } |
| } |
| #if DF_DUAL |
| if (lf->filter_level[0]) { |
| int luma_delta_q_flag = lf->delta_q_luma[0] != 0; |
| |
| aom_wb_write_bit(wb, luma_delta_q_flag); |
| if (luma_delta_q_flag) { |
| aom_wb_write_literal(wb, lf->delta_q_luma[0] + DF_PAR_OFFSET, |
| DF_PAR_BITS); |
| } |
| #if DF_TWO_PARAM |
| int luma_delta_side_flag = lf->delta_side_luma[0] != 0; |
| aom_wb_write_bit(wb, luma_delta_side_flag); |
| if (luma_delta_side_flag) { |
| aom_wb_write_literal(wb, lf->delta_side_luma[0] + DF_PAR_OFFSET, |
| DF_PAR_BITS); |
| } |
| #else |
| assert(lf->delta_q_luma[0] == lf->delta_side_luma[0]); |
| #endif // DF_TWO_PARAM |
| } |
| |
| if (lf->filter_level[1]) { |
| int luma_delta_q_flag = lf->delta_q_luma[1] != lf->delta_q_luma[0]; |
| |
| aom_wb_write_bit(wb, luma_delta_q_flag); |
| if (luma_delta_q_flag) { |
| aom_wb_write_literal(wb, lf->delta_q_luma[1] + DF_PAR_OFFSET, |
| DF_PAR_BITS); |
| } |
| #if DF_TWO_PARAM |
| int luma_delta_side_flag = lf->delta_side_luma[1] != lf->delta_side_luma[0]; |
| aom_wb_write_bit(wb, luma_delta_side_flag); |
| if (luma_delta_side_flag) { |
| aom_wb_write_literal(wb, lf->delta_side_luma[1] + DF_PAR_OFFSET, |
| DF_PAR_BITS); |
| } |
| #else |
| assert(lf->delta_q_luma[1] == lf->delta_side_luma[1]); |
| #endif // DF_TWO_PARAM |
| } |
| #else |
| if (lf->filter_level[0] || lf->filter_level[1]) { |
| int luma_delta_q_flag = lf->delta_q_luma != 0; |
| |
| aom_wb_write_bit(wb, luma_delta_q_flag); |
| if (luma_delta_q_flag) { |
| aom_wb_write_literal(wb, lf->delta_q_luma + DF_PAR_OFFSET, DF_PAR_BITS); |
| } |
| #if DF_TWO_PARAM |
| int luma_delta_side_flag = lf->delta_side_luma != 0; |
| aom_wb_write_bit(wb, luma_delta_side_flag); |
| if (luma_delta_side_flag) { |
| aom_wb_write_literal(wb, lf->delta_side_luma + DF_PAR_OFFSET, |
| DF_PAR_BITS); |
| } |
| #else |
| assert(lf->delta_q_luma == lf->delta_side_luma); |
| #endif // DF_TWO_PARAM |
| } |
| #endif // DF_DUAL |
| if (lf->filter_level_u) { |
| int u_delta_q_flag = lf->delta_q_u != 0; |
| |
| aom_wb_write_bit(wb, u_delta_q_flag); |
| if (u_delta_q_flag) { |
| aom_wb_write_literal(wb, lf->delta_q_u + DF_PAR_OFFSET, DF_PAR_BITS); |
| } |
| #if DF_TWO_PARAM |
| int u_delta_side_flag = lf->delta_side_u != 0; |
| aom_wb_write_bit(wb, u_delta_side_flag); |
| if (u_delta_side_flag) { |
| aom_wb_write_literal(wb, lf->delta_side_u + DF_PAR_OFFSET, DF_PAR_BITS); |
| } |
| #else |
| assert(lf->delta_q_u == lf->delta_side_u); |
| #endif // DF_TWO_PARAM |
| } |
| |
| if (lf->filter_level_v) { |
| int v_delta_q_flag = lf->delta_q_v != 0; |
| |
| aom_wb_write_bit(wb, v_delta_q_flag); |
| if (v_delta_q_flag) { |
| aom_wb_write_literal(wb, lf->delta_q_v + DF_PAR_OFFSET, DF_PAR_BITS); |
| } |
| #if DF_TWO_PARAM |
| int v_delta_side_flag = lf->delta_side_v != 0; |
| aom_wb_write_bit(wb, v_delta_side_flag); |
| if (v_delta_side_flag) { |
| aom_wb_write_literal(wb, lf->delta_side_v + DF_PAR_OFFSET, DF_PAR_BITS); |
| } |
| #else |
| assert(lf->delta_q_v == lf->delta_side_v); |
| #endif // DF_TWO_PARAM |
| } |
| } |
| |
| static AOM_INLINE void encode_cdef(const AV1_COMMON *cm, |
| struct aom_write_bit_buffer *wb) { |
| assert(!cm->features.coded_lossless); |
| if (!cm->seq_params.enable_cdef) return; |
| if (is_global_intrabc_allowed(cm)) return; |
| #if CONFIG_FIX_CDEF_SYNTAX |
| aom_wb_write_bit(wb, cm->cdef_info.cdef_frame_enable); |
| if (!cm->cdef_info.cdef_frame_enable) return; |
| #endif // CONFIG_FIX_CDEF_SYNTAX |
| const int num_planes = av1_num_planes(cm); |
| int i; |
| aom_wb_write_literal(wb, cm->cdef_info.cdef_damping - 3, 2); |
| aom_wb_write_literal(wb, cm->cdef_info.cdef_bits, 2); |
| for (i = 0; i < cm->cdef_info.nb_cdef_strengths; i++) { |
| aom_wb_write_literal(wb, cm->cdef_info.cdef_strengths[i], |
| CDEF_STRENGTH_BITS); |
| if (num_planes > 1) |
| aom_wb_write_literal(wb, cm->cdef_info.cdef_uv_strengths[i], |
| CDEF_STRENGTH_BITS); |
| } |
| } |
| |
| // write CCSO offset idx using truncated unary coding |
| static AOM_INLINE void write_ccso_offset_idx(struct aom_write_bit_buffer *wb, |
| int offset_idx) { |
| for (int idx = 0; idx < 7; ++idx) { |
| aom_wb_write_bit(wb, offset_idx != idx); |
| if (offset_idx == idx) break; |
| } |
| } |
| static AOM_INLINE void encode_ccso(const AV1_COMMON *cm, |
| struct aom_write_bit_buffer *wb) { |
| if (is_global_intrabc_allowed(cm)) return; |
| const int ccso_offset[8] = { 0, 1, -1, 3, -3, 7, -7, -10 }; |
| #if CONFIG_D143_CCSO_FM_FLAG |
| aom_wb_write_literal(wb, cm->ccso_info.ccso_frame_flag, 1); |
| if (cm->ccso_info.ccso_frame_flag) { |
| #endif // CONFIG_D143_CCSO_FM_FLAG |
| for (int plane = 0; plane < av1_num_planes(cm); plane++) { |
| aom_wb_write_literal(wb, cm->ccso_info.ccso_enable[plane], 1); |
| if (cm->ccso_info.ccso_enable[plane]) { |
| aom_wb_write_literal(wb, cm->ccso_info.ccso_bo_only[plane], 1); |
| #if !CONFIG_CCSO_SIGFIX |
| aom_wb_write_literal(wb, cm->ccso_info.quant_idx[plane], 2); |
| aom_wb_write_literal(wb, cm->ccso_info.ext_filter_support[plane], 3); |
| #endif // !CONFIG_CCSO_SIGFIX |
| if (cm->ccso_info.ccso_bo_only[plane]) { |
| aom_wb_write_literal(wb, cm->ccso_info.max_band_log2[plane], 3); |
| } else { |
| #if CONFIG_CCSO_SIGFIX |
| aom_wb_write_literal(wb, cm->ccso_info.quant_idx[plane], 2); |
| aom_wb_write_literal(wb, cm->ccso_info.ext_filter_support[plane], 3); |
| aom_wb_write_bit(wb, cm->ccso_info.edge_clf[plane]); |
| #endif // CONFIG_CCSO_SIGFIX |
| aom_wb_write_literal(wb, cm->ccso_info.max_band_log2[plane], 2); |
| } |
| const int max_band = 1 << cm->ccso_info.max_band_log2[plane]; |
| const int edge_clf = cm->ccso_info.edge_clf[plane]; |
| #if !CONFIG_CCSO_SIGFIX |
| aom_wb_write_bit(wb, edge_clf); |
| #endif // !CONFIG_CCSO_SIGFIX |
| const int max_edge_interval = edge_clf_to_edge_interval[edge_clf]; |
| const int num_edge_offset_intervals = |
| cm->ccso_info.ccso_bo_only[plane] ? 1 : max_edge_interval; |
| for (int d0 = 0; d0 < num_edge_offset_intervals; d0++) { |
| for (int d1 = 0; d1 < num_edge_offset_intervals; d1++) { |
| for (int band_num = 0; band_num < max_band; band_num++) { |
| const int lut_idx_ext = (band_num << 4) + (d0 << 2) + d1; |
| for (int offset_idx = 0; offset_idx < 8; offset_idx++) { |
| if (cm->ccso_info.filter_offset[plane][lut_idx_ext] == |
| ccso_offset[offset_idx]) { |
| write_ccso_offset_idx(wb, offset_idx); |
| break; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| #if CONFIG_D143_CCSO_FM_FLAG |
| } |
| #endif // CONFIG_D143_CCSO_FM_FLAG |
| } |
| |
| static AOM_INLINE void write_delta_q(struct aom_write_bit_buffer *wb, |
| int delta_q) { |
| if (delta_q != 0) { |
| aom_wb_write_bit(wb, 1); |
| aom_wb_write_inv_signed_literal(wb, delta_q, 6); |
| } else { |
| aom_wb_write_bit(wb, 0); |
| } |
| } |
| |
| static AOM_INLINE void encode_quantization( |
| const CommonQuantParams *const quant_params, int num_planes, |
| aom_bit_depth_t bit_depth, bool separate_uv_delta_q, |
| struct aom_write_bit_buffer *wb) { |
| aom_wb_write_literal( |
| wb, quant_params->base_qindex, |
| bit_depth == AOM_BITS_8 ? QINDEX_BITS_UNEXT : QINDEX_BITS); |
| |
| write_delta_q(wb, quant_params->y_dc_delta_q); |
| if (num_planes > 1) { |
| int diff_uv_delta = |
| (quant_params->u_dc_delta_q != quant_params->v_dc_delta_q) || |
| (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q); |
| if (separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta); |
| write_delta_q(wb, quant_params->u_dc_delta_q); |
| write_delta_q(wb, quant_params->u_ac_delta_q); |
| if (diff_uv_delta) { |
| write_delta_q(wb, quant_params->v_dc_delta_q); |
| write_delta_q(wb, quant_params->v_ac_delta_q); |
| } |
| } |
| aom_wb_write_bit(wb, quant_params->using_qmatrix); |
| if (quant_params->using_qmatrix) { |
| aom_wb_write_literal(wb, quant_params->qmatrix_level_y, QM_LEVEL_BITS); |
| aom_wb_write_literal(wb, quant_params->qmatrix_level_u, QM_LEVEL_BITS); |
| if (!separate_uv_delta_q) |
| assert(quant_params->qmatrix_level_u == quant_params->qmatrix_level_v); |
| else |
| aom_wb_write_literal(wb, quant_params->qmatrix_level_v, QM_LEVEL_BITS); |
| } |
| } |
| |
| static AOM_INLINE void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd, |
| struct aom_write_bit_buffer *wb) { |
| int i, j; |
| struct segmentation *seg = &cm->seg; |
| |
| aom_wb_write_bit(wb, seg->enabled); |
| if (!seg->enabled) { |
| return; |
| } |
| |
| // Write update flags |
| #if CONFIG_PRIMARY_REF_FRAME_OPT |
| if (cm->features.derived_primary_ref_frame == PRIMARY_REF_NONE) { |
| #else |
| if (cm->features.primary_ref_frame == PRIMARY_REF_NONE) { |
| #endif // CONFIG_PRIMARY_REF_FRAME_OPT |
| assert(seg->update_map == 1); |
| seg->temporal_update = 0; |
| assert(seg->update_data == 1); |
| } else { |
| aom_wb_write_bit(wb, seg->update_map); |
| if (seg->update_map) { |
| // Select the coding strategy (temporal or spatial) |
| av1_choose_segmap_coding_method(cm, xd); |
| aom_wb_write_bit(wb, seg->temporal_update); |
| } |
| aom_wb_write_bit(wb, seg->update_data); |
| } |
| |
| // Segmentation data |
| if (seg->update_data) { |
| for (i = 0; i < MAX_SEGMENTS; i++) { |
| for (j = 0; j < SEG_LVL_MAX; j++) { |
| const int active = segfeature_active(seg, i, j); |
| aom_wb_write_bit(wb, active); |
| if (active) { |
| const int data_max = av1_seg_feature_data_max(j); |
| const int data_min = -data_max; |
| const int ubits = get_unsigned_bits(data_max); |
| const int data = clamp(get_segdata(seg, i, j), data_min, data_max); |
| |
| if (av1_is_segfeature_signed(j)) { |
| aom_wb_write_inv_signed_literal(wb, data, ubits); |
| } else { |
| aom_wb_write_literal(wb, data, ubits); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_frame_interp_filter( |
| InterpFilter filter, struct aom_write_bit_buffer *wb) { |
| aom_wb_write_bit(wb, filter == SWITCHABLE); |
| if (filter != SWITCHABLE) |
| aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS); |
| } |
| |
| static AOM_INLINE void write_tile_info_max_tile( |
| const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) { |
| int width_mi = ALIGN_POWER_OF_TWO(cm->mi_params.mi_cols, cm->mib_size_log2); |
| int height_mi = ALIGN_POWER_OF_TWO(cm->mi_params.mi_rows, cm->mib_size_log2); |
| int width_sb = width_mi >> cm->mib_size_log2; |
| int height_sb = height_mi >> cm->mib_size_log2; |
| int size_sb, i; |
| const CommonTileParams *const tiles = &cm->tiles; |
| |
| aom_wb_write_bit(wb, tiles->uniform_spacing); |
| |
| if (tiles->uniform_spacing) { |
| int ones = tiles->log2_cols - tiles->min_log2_cols; |
| while (ones--) { |
| aom_wb_write_bit(wb, 1); |
| } |
| if (tiles->log2_cols < tiles->max_log2_cols) { |
| aom_wb_write_bit(wb, 0); |
| } |
| |
| // rows |
| ones = tiles->log2_rows - tiles->min_log2_rows; |
| while (ones--) { |
| aom_wb_write_bit(wb, 1); |
| } |
| if (tiles->log2_rows < tiles->max_log2_rows) { |
| aom_wb_write_bit(wb, 0); |
| } |
| } else { |
| // Explicit tiles with configurable tile widths and heights |
| // columns |
| for (i = 0; i < tiles->cols; i++) { |
| size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i]; |
| wb_write_uniform(wb, AOMMIN(width_sb, tiles->max_width_sb), size_sb - 1); |
| width_sb -= size_sb; |
| } |
| assert(width_sb == 0); |
| |
| // rows |
| for (i = 0; i < tiles->rows; i++) { |
| size_sb = tiles->row_start_sb[i + 1] - tiles->row_start_sb[i]; |
| wb_write_uniform(wb, AOMMIN(height_sb, tiles->max_height_sb), |
| size_sb - 1); |
| height_sb -= size_sb; |
| } |
| assert(height_sb == 0); |
| } |
| } |
| |
| static AOM_INLINE void write_tile_info(const AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *saved_wb, |
| struct aom_write_bit_buffer *wb) { |
| write_tile_info_max_tile(cm, wb); |
| |
| *saved_wb = *wb; |
| if (cm->tiles.rows * cm->tiles.cols > 1) { |
| // tile id used for cdf update |
| aom_wb_write_literal(wb, 0, cm->tiles.log2_cols + cm->tiles.log2_rows); |
| // Number of bytes in tile size - 1 |
| aom_wb_write_literal(wb, 3, 2); |
| } |
| } |
| |
| static AOM_INLINE void write_ext_tile_info( |
| const AV1_COMMON *const cm, struct aom_write_bit_buffer *saved_wb, |
| struct aom_write_bit_buffer *wb) { |
| // This information is stored as a separate byte. |
| int mod = wb->bit_offset % CHAR_BIT; |
| if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod); |
| assert(aom_wb_is_byte_aligned(wb)); |
| |
| *saved_wb = *wb; |
| if (cm->tiles.rows * cm->tiles.cols > 1) { |
| // Note that the last item in the uncompressed header is the data |
| // describing tile configuration. |
| // Number of bytes in tile column size - 1 |
| aom_wb_write_literal(wb, 0, 2); |
| // Number of bytes in tile size - 1 |
| aom_wb_write_literal(wb, 0, 2); |
| } |
| } |
| |
| // Stores the location and size of a tile's data in the bitstream. Used for |
| // later identifying identical tiles |
| typedef struct TileBufferEnc { |
| uint8_t *data; |
| size_t size; |
| } TileBufferEnc; |
| |
| static INLINE int find_identical_tile( |
| const int tile_row, const int tile_col, |
| TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) { |
| const MV32 candidate_offset[1] = { { 1, 0 } }; |
| const uint8_t *const cur_tile_data = |
| tile_buffers[tile_row][tile_col].data + 4; |
| const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size; |
| |
| int i; |
| |
| if (tile_row == 0) return 0; |
| |
| // (TODO: yunqingwang) For now, only above tile is checked and used. |
| // More candidates such as left tile can be added later. |
| for (i = 0; i < 1; i++) { |
| int row_offset = candidate_offset[0].row; |
| int col_offset = candidate_offset[0].col; |
| int row = tile_row - row_offset; |
| int col = tile_col - col_offset; |
| const uint8_t *tile_data; |
| TileBufferEnc *candidate; |
| |
| if (row < 0 || col < 0) continue; |
| |
| const uint32_t tile_hdr = mem_get_le32(tile_buffers[row][col].data); |
| |
| // Read out tile-copy-mode bit: |
| if ((tile_hdr >> 31) == 1) { |
| // The candidate is a copy tile itself: the offset is stored in bits |
| // 30 through 24 inclusive. |
| row_offset += (tile_hdr >> 24) & 0x7f; |
| row = tile_row - row_offset; |
| } |
| |
| candidate = &tile_buffers[row][col]; |
| |
| if (row_offset >= 128 || candidate->size != cur_tile_size) continue; |
| |
| tile_data = candidate->data + 4; |
| |
| if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue; |
| |
| // Identical tile found |
| assert(row_offset > 0); |
| return row_offset; |
| } |
| |
| // No identical tile found |
| return 0; |
| } |
| |
| static AOM_INLINE void write_render_size(const AV1_COMMON *cm, |
| struct aom_write_bit_buffer *wb) { |
| const int scaling_active = av1_resize_scaled(cm); |
| aom_wb_write_bit(wb, scaling_active); |
| if (scaling_active) { |
| aom_wb_write_literal(wb, cm->render_width - 1, 16); |
| aom_wb_write_literal(wb, cm->render_height - 1, 16); |
| } |
| } |
| |
| static AOM_INLINE void write_superres_scale(const AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *wb) { |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| if (!seq_params->enable_superres) { |
| assert(cm->superres_scale_denominator == SCALE_NUMERATOR); |
| return; |
| } |
| |
| // First bit is whether to to scale or not |
| if (cm->superres_scale_denominator == SCALE_NUMERATOR) { |
| aom_wb_write_bit(wb, 0); // no scaling |
| } else { |
| aom_wb_write_bit(wb, 1); // scaling, write scale factor |
| assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN); |
| assert(cm->superres_scale_denominator < |
| SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS)); |
| aom_wb_write_literal( |
| wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN, |
| SUPERRES_SCALE_BITS); |
| } |
| } |
| |
| static AOM_INLINE void write_frame_size(const AV1_COMMON *cm, |
| int frame_size_override, |
| struct aom_write_bit_buffer *wb) { |
| const int coded_width = cm->superres_upscaled_width - 1; |
| const int coded_height = cm->superres_upscaled_height - 1; |
| |
| if (frame_size_override) { |
| const SequenceHeader *seq_params = &cm->seq_params; |
| int num_bits_width = seq_params->num_bits_width; |
| int num_bits_height = seq_params->num_bits_height; |
| aom_wb_write_literal(wb, coded_width, num_bits_width); |
| aom_wb_write_literal(wb, coded_height, num_bits_height); |
| } |
| |
| write_superres_scale(cm, wb); |
| write_render_size(cm, wb); |
| } |
| |
| static AOM_INLINE void write_frame_size_with_refs( |
| const AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) { |
| int found = 0; |
| |
| MV_REFERENCE_FRAME ref_frame; |
| for (ref_frame = 0; ref_frame < INTER_REFS_PER_FRAME; ++ref_frame) { |
| const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame); |
| |
| if (cfg != NULL) { |
| found = cm->superres_upscaled_width == cfg->y_crop_width && |
| cm->superres_upscaled_height == cfg->y_crop_height; |
| found &= cm->render_width == cfg->render_width && |
| cm->render_height == cfg->render_height; |
| } |
| aom_wb_write_bit(wb, found); |
| if (found) { |
| write_superres_scale(cm, wb); |
| break; |
| } |
| } |
| |
| if (!found) { |
| int frame_size_override = 1; // Always equal to 1 in this function |
| write_frame_size(cm, frame_size_override, wb); |
| } |
| } |
| |
| static AOM_INLINE void write_profile(BITSTREAM_PROFILE profile, |
| struct aom_write_bit_buffer *wb) { |
| assert(profile >= PROFILE_0 && profile < MAX_PROFILES); |
| aom_wb_write_literal(wb, profile, PROFILE_BITS); |
| } |
| |
| static AOM_INLINE void write_bitdepth(const SequenceHeader *const seq_params, |
| struct aom_write_bit_buffer *wb) { |
| // Profile 0/1: [0] for 8 bit, [1] 10-bit |
| // Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit |
| aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1); |
| if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) { |
| aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1); |
| } |
| } |
| |
| static AOM_INLINE void write_color_config( |
| const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) { |
| write_bitdepth(seq_params, wb); |
| const int is_monochrome = seq_params->monochrome; |
| // monochrome bit |
| if (seq_params->profile != PROFILE_1) |
| aom_wb_write_bit(wb, is_monochrome); |
| else |
| assert(!is_monochrome); |
| if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED && |
| seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED && |
| seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) { |
| aom_wb_write_bit(wb, 0); // No color description present |
| } else { |
| aom_wb_write_bit(wb, 1); // Color description present |
| aom_wb_write_literal(wb, seq_params->color_primaries, 8); |
| aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8); |
| aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8); |
| } |
| if (is_monochrome) { |
| // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] |
| aom_wb_write_bit(wb, seq_params->color_range); |
| } else { |
| if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && |
| seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && |
| seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { |
| assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); |
| assert(seq_params->profile == PROFILE_1 || |
| (seq_params->profile == PROFILE_2 && |
| seq_params->bit_depth == AOM_BITS_12)); |
| } else { |
| // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] |
| aom_wb_write_bit(wb, seq_params->color_range); |
| if (seq_params->profile == PROFILE_0) { |
| // 420 only |
| assert(seq_params->subsampling_x == 1 && |
| seq_params->subsampling_y == 1); |
| } else if (seq_params->profile == PROFILE_1) { |
| // 444 only |
| assert(seq_params->subsampling_x == 0 && |
| seq_params->subsampling_y == 0); |
| } else if (seq_params->profile == PROFILE_2) { |
| if (seq_params->bit_depth == AOM_BITS_12) { |
| // 420, 444 or 422 |
| aom_wb_write_bit(wb, seq_params->subsampling_x); |
| if (seq_params->subsampling_x == 0) { |
| assert(seq_params->subsampling_y == 0 && |
| "4:4:0 subsampling not allowed in AV1"); |
| } else { |
| aom_wb_write_bit(wb, seq_params->subsampling_y); |
| } |
| } else { |
| // 422 only |
| assert(seq_params->subsampling_x == 1 && |
| seq_params->subsampling_y == 0); |
| } |
| } |
| if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { |
| assert(seq_params->subsampling_x == 0 && |
| seq_params->subsampling_y == 0); |
| } |
| if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) { |
| aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2); |
| } |
| } |
| aom_wb_write_bit(wb, seq_params->separate_uv_delta_q); |
| } |
| |
| assert(seq_params->base_y_dc_delta_q <= DELTA_DCQUANT_MAX); |
| aom_wb_write_unsigned_literal( |
| wb, seq_params->base_y_dc_delta_q - DELTA_DCQUANT_MIN, |
| DELTA_DCQUANT_BITS); |
| if (!is_monochrome) { |
| assert(seq_params->base_uv_dc_delta_q >= DELTA_DCQUANT_MIN); |
| aom_wb_write_unsigned_literal( |
| wb, seq_params->base_uv_dc_delta_q - DELTA_DCQUANT_MIN, |
| DELTA_DCQUANT_BITS); |
| } |
| } |
| |
| static AOM_INLINE void write_timing_info_header( |
| const aom_timing_info_t *const timing_info, |
| struct aom_write_bit_buffer *wb) { |
| aom_wb_write_unsigned_literal(wb, timing_info->num_units_in_display_tick, 32); |
| aom_wb_write_unsigned_literal(wb, timing_info->time_scale, 32); |
| aom_wb_write_bit(wb, timing_info->equal_picture_interval); |
| if (timing_info->equal_picture_interval) { |
| aom_wb_write_uvlc(wb, timing_info->num_ticks_per_picture - 1); |
| } |
| } |
| |
| static AOM_INLINE void write_decoder_model_info( |
| const aom_dec_model_info_t *const decoder_model_info, |
| struct aom_write_bit_buffer *wb) { |
| aom_wb_write_literal( |
| wb, decoder_model_info->encoder_decoder_buffer_delay_length - 1, 5); |
| aom_wb_write_unsigned_literal( |
| wb, decoder_model_info->num_units_in_decoding_tick, 32); |
| aom_wb_write_literal(wb, decoder_model_info->buffer_removal_time_length - 1, |
| 5); |
| aom_wb_write_literal( |
| wb, decoder_model_info->frame_presentation_time_length - 1, 5); |
| } |
| |
| static AOM_INLINE void write_dec_model_op_parameters( |
| const aom_dec_model_op_parameters_t *op_params, int buffer_delay_length, |
| struct aom_write_bit_buffer *wb) { |
| aom_wb_write_unsigned_literal(wb, op_params->decoder_buffer_delay, |
| buffer_delay_length); |
| aom_wb_write_unsigned_literal(wb, op_params->encoder_buffer_delay, |
| buffer_delay_length); |
| aom_wb_write_bit(wb, op_params->low_delay_mode_flag); |
| } |
| |
| static AOM_INLINE void write_tu_pts_info(AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *wb) { |
| aom_wb_write_unsigned_literal( |
| wb, cm->frame_presentation_time, |
| cm->seq_params.decoder_model_info.frame_presentation_time_length); |
| } |
| |
| static AOM_INLINE void write_film_grain_params( |
| const AV1_COMP *const cpi, struct aom_write_bit_buffer *wb) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const aom_film_grain_t *const pars = &cm->cur_frame->film_grain_params; |
| |
| aom_wb_write_bit(wb, pars->apply_grain); |
| if (!pars->apply_grain) return; |
| |
| aom_wb_write_literal(wb, pars->random_seed, 16); |
| |
| if (cm->current_frame.frame_type == INTER_FRAME) |
| aom_wb_write_bit(wb, pars->update_parameters); |
| |
| if (!pars->update_parameters) { |
| int ref_frame, ref_idx; |
| for (ref_frame = 0; ref_frame < INTER_REFS_PER_FRAME; ref_frame++) { |
| ref_idx = get_ref_frame_map_idx(cm, ref_frame); |
| assert(ref_idx != INVALID_IDX); |
| const RefCntBuffer *const buf = cm->ref_frame_map[ref_idx]; |
| if (buf->film_grain_params_present && |
| av1_check_grain_params_equiv(pars, &buf->film_grain_params)) { |
| break; |
| } |
| } |
| assert(ref_frame < REF_FRAMES); |
| aom_wb_write_literal(wb, ref_idx, 3); |
| return; |
| } |
| |
| // Scaling functions parameters |
| aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14 |
| for (int i = 0; i < pars->num_y_points; i++) { |
| aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8); |
| aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8); |
| } |
| |
| if (!cm->seq_params.monochrome) { |
| aom_wb_write_bit(wb, pars->chroma_scaling_from_luma); |
| } else { |
| assert(!pars->chroma_scaling_from_luma); |
| } |
| |
| if (cm->seq_params.monochrome || pars->chroma_scaling_from_luma || |
| ((cm->seq_params.subsampling_x == 1) && |
| (cm->seq_params.subsampling_y == 1) && (pars->num_y_points == 0))) { |
| assert(pars->num_cb_points == 0 && pars->num_cr_points == 0); |
| } else { |
| aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10 |
| for (int i = 0; i < pars->num_cb_points; i++) { |
| aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8); |
| aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8); |
| } |
| |
| aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10 |
| for (int i = 0; i < pars->num_cr_points; i++) { |
| aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8); |
| aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8); |
| } |
| } |
| |
| aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value |
| |
| // AR coefficients |
| // Only sent if the corresponsing scaling function has |
| // more than 0 points |
| |
| aom_wb_write_literal(wb, pars->ar_coeff_lag, 2); |
| |
| int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); |
| int num_pos_chroma = num_pos_luma; |
| if (pars->num_y_points > 0) ++num_pos_chroma; |
| |
| if (pars->num_y_points) |
| for (int i = 0; i < num_pos_luma; i++) |
| aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8); |
| |
| if (pars->num_cb_points || pars->chroma_scaling_from_luma) |
| for (int i = 0; i < num_pos_chroma; i++) |
| aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8); |
| |
| if (pars->num_cr_points || pars->chroma_scaling_from_luma) |
| for (int i = 0; i < num_pos_chroma; i++) |
| aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8); |
| |
| aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value |
| |
| aom_wb_write_literal(wb, pars->grain_scale_shift, 2); |
| |
| if (pars->num_cb_points) { |
| aom_wb_write_literal(wb, pars->cb_mult, 8); |
| aom_wb_write_literal(wb, pars->cb_luma_mult, 8); |
| aom_wb_write_literal(wb, pars->cb_offset, 9); |
| } |
| |
| if (pars->num_cr_points) { |
| aom_wb_write_literal(wb, pars->cr_mult, 8); |
| aom_wb_write_literal(wb, pars->cr_luma_mult, 8); |
| aom_wb_write_literal(wb, pars->cr_offset, 9); |
| } |
| |
| aom_wb_write_bit(wb, pars->overlap_flag); |
| |
| aom_wb_write_bit(wb, pars->clip_to_restricted_range); |
| } |
| |
| static AOM_INLINE void write_sb_size(const SequenceHeader *const seq_params, |
| struct aom_write_bit_buffer *wb) { |
| (void)seq_params; |
| (void)wb; |
| assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]); |
| assert(seq_params->mib_size == 1 << seq_params->mib_size_log2); |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| assert(seq_params->sb_size == BLOCK_256X256 || |
| seq_params->sb_size == BLOCK_128X128 || |
| seq_params->sb_size == BLOCK_64X64); |
| const bool is_256 = seq_params->sb_size == BLOCK_256X256; |
| aom_wb_write_bit(wb, is_256); |
| if (is_256) { |
| return; |
| } |
| #else |
| assert(seq_params->sb_size == BLOCK_128X128 || |
| seq_params->sb_size == BLOCK_64X64); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128); |
| } |
| |
| static AOM_INLINE void write_sequence_header( |
| const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) { |
| aom_wb_write_literal(wb, seq_params->num_bits_width - 1, 4); |
| aom_wb_write_literal(wb, seq_params->num_bits_height - 1, 4); |
| aom_wb_write_literal(wb, seq_params->max_frame_width - 1, |
| seq_params->num_bits_width); |
| aom_wb_write_literal(wb, seq_params->max_frame_height - 1, |
| seq_params->num_bits_height); |
| |
| if (!seq_params->reduced_still_picture_hdr) { |
| aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag); |
| if (seq_params->frame_id_numbers_present_flag) { |
| // We must always have delta_frame_id_length < frame_id_length, |
| // in order for a frame to be referenced with a unique delta. |
| // Avoid wasting bits by using a coding that enforces this restriction. |
| aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4); |
| aom_wb_write_literal( |
| wb, |
| seq_params->frame_id_length - seq_params->delta_frame_id_length - 1, |
| 3); |
| } |
| } |
| |
| write_sb_size(seq_params, wb); |
| aom_wb_write_bit(wb, seq_params->enable_filter_intra); |
| aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter); |
| if (!seq_params->reduced_still_picture_hdr) { |
| // Encode allowed motion modes |
| // Skip SIMPLE_TRANSLATION, as that is always enabled |
| int seq_enabled_motion_modes = seq_params->seq_enabled_motion_modes; |
| assert((seq_enabled_motion_modes & (1 << SIMPLE_TRANSLATION)) != 0); |
| for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES; |
| motion_mode++) { |
| int enabled = |
| (seq_enabled_motion_modes & (1 << motion_mode)) != 0 ? 1 : 0; |
| aom_wb_write_bit(wb, enabled); |
| } |
| aom_wb_write_bit(wb, seq_params->enable_masked_compound); |
| aom_wb_write_bit(wb, seq_params->order_hint_info.enable_order_hint); |
| |
| if (seq_params->order_hint_info.enable_order_hint) { |
| aom_wb_write_bit(wb, seq_params->order_hint_info.enable_ref_frame_mvs); |
| } |
| if (seq_params->force_screen_content_tools == 2) { |
| aom_wb_write_bit(wb, 1); |
| } else { |
| aom_wb_write_bit(wb, 0); |
| aom_wb_write_bit(wb, seq_params->force_screen_content_tools); |
| } |
| if (seq_params->force_screen_content_tools > 0) { |
| if (seq_params->force_integer_mv == 2) { |
| aom_wb_write_bit(wb, 1); |
| } else { |
| aom_wb_write_bit(wb, 0); |
| aom_wb_write_bit(wb, seq_params->force_integer_mv); |
| } |
| } else { |
| assert(seq_params->force_integer_mv == 2); |
| } |
| if (seq_params->order_hint_info.enable_order_hint) |
| aom_wb_write_literal( |
| wb, seq_params->order_hint_info.order_hint_bits_minus_1, 3); |
| } |
| |
| aom_wb_write_bit(wb, seq_params->enable_superres); |
| aom_wb_write_bit(wb, seq_params->enable_cdef); |
| aom_wb_write_bit(wb, seq_params->enable_restoration); |
| if (seq_params->enable_restoration) { |
| for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { |
| aom_wb_write_bit(wb, (seq_params->lr_tools_disable_mask[0] >> i) & 1); |
| } |
| const int uv_neq_y = |
| (seq_params->lr_tools_disable_mask[1] != |
| (seq_params->lr_tools_disable_mask[0] | DEF_UV_LR_TOOLS_DISABLE_MASK)); |
| aom_wb_write_bit(wb, uv_neq_y); |
| if (uv_neq_y) { |
| for (int i = 1; i < RESTORE_SWITCHABLE_TYPES; ++i) { |
| if (DEF_UV_LR_TOOLS_DISABLE_MASK & (1 << i)) continue; |
| aom_wb_write_bit(wb, (seq_params->lr_tools_disable_mask[1] >> i) & 1); |
| } |
| } |
| } |
| } |
| |
| static AOM_INLINE void write_sequence_header_beyond_av1( |
| const SequenceHeader *const seq_params, struct aom_write_bit_buffer *wb) { |
| aom_wb_write_bit(wb, seq_params->enable_refmvbank); |
| aom_wb_write_bit(wb, seq_params->explicit_ref_frame_map); |
| // 0 : show_existing_frame, 1: implicit derviation |
| aom_wb_write_bit(wb, seq_params->enable_frame_output_order); |
| // A bit is sent here to indicate if the max number of references is 7. If |
| // this bit is 0, then two more bits are sent to indicate the exact number |
| // of references allowed (range: 3 to 6). |
| aom_wb_write_bit(wb, seq_params->max_reference_frames < 7); |
| if (seq_params->max_reference_frames < 7) |
| aom_wb_write_literal(wb, seq_params->max_reference_frames - 3, 2); |
| #if CONFIG_SAME_REF_COMPOUND |
| aom_wb_write_literal(wb, seq_params->num_same_ref_compound, 2); |
| #endif // CONFIG_SAME_REF_COMPOUND |
| aom_wb_write_bit(wb, seq_params->enable_sdp); |
| aom_wb_write_bit(wb, seq_params->enable_ist); |
| aom_wb_write_bit(wb, seq_params->enable_inter_ist); |
| #if CONFIG_INTER_DDT |
| aom_wb_write_bit(wb, seq_params->enable_inter_ddt); |
| #endif // CONFIG_INTER_DDT |
| if (!seq_params->monochrome) aom_wb_write_bit(wb, seq_params->enable_cctx); |
| aom_wb_write_bit(wb, seq_params->enable_mrls); |
| aom_wb_write_literal(wb, seq_params->enable_tip, 2); |
| if (seq_params->enable_tip) { |
| aom_wb_write_bit(wb, seq_params->enable_tip_hole_fill); |
| } |
| #if CONFIG_BAWP |
| aom_wb_write_bit(wb, seq_params->enable_bawp); |
| #endif // CONFIG_BAWP |
| aom_wb_write_bit(wb, seq_params->enable_cwp); |
| #if CONFIG_D071_IMP_MSK_BLD |
| aom_wb_write_bit(wb, seq_params->enable_imp_msk_bld); |
| #endif // CONFIG_D071_IMP_MSK_BLD |
| aom_wb_write_bit(wb, seq_params->enable_fsc); |
| aom_wb_write_bit(wb, seq_params->enable_ccso); |
| #if CONFIG_LF_SUB_PU |
| aom_wb_write_bit(wb, seq_params->enable_lf_sub_pu); |
| #endif // CONFIG_LF_SUB_PU |
| #if CONFIG_TIP_IMPLICIT_QUANT |
| if (seq_params->enable_tip == 1 && |
| #if CONFIG_LF_SUB_PU |
| seq_params->enable_lf_sub_pu |
| #endif // CONFIG_LF_SUB_PU |
| ) { |
| aom_wb_write_bit(wb, seq_params->enable_tip_explicit_qp); |
| } |
| #endif // CONFIG_TIP_IMPLICIT_QUANT |
| aom_wb_write_bit(wb, seq_params->enable_orip); |
| #if CONFIG_IDIF |
| aom_wb_write_bit(wb, seq_params->enable_idif); |
| #endif // CONFIG_IDIF |
| if (seq_params->order_hint_info.enable_order_hint) { |
| aom_wb_write_literal(wb, seq_params->enable_opfl_refine, 2); |
| #if CONFIG_AFFINE_REFINEMENT |
| if (seq_params->enable_opfl_refine) |
| aom_wb_write_bit(wb, seq_params->enable_affine_refine); |
| #endif // CONFIG_AFFINE_REFINEMENT |
| } |
| aom_wb_write_bit(wb, seq_params->enable_ibp); |
| aom_wb_write_bit(wb, seq_params->enable_adaptive_mvd); |
| |
| #if CONFIG_REFINEMV |
| aom_wb_write_bit(wb, seq_params->enable_refinemv); |
| #endif // CONFIG_REFINEMV |
| |
| #if CONFIG_DERIVED_MVD_SIGN |
| aom_wb_write_bit(wb, seq_params->enable_mvd_sign_derive); |
| #endif // CONFIG_DERIVED_MVD_SIGN |
| |
| aom_wb_write_bit(wb, seq_params->enable_flex_mvres); |
| |
| aom_wb_write_literal(wb, seq_params->enable_cfl_ds_filter, 2); |
| |
| aom_wb_write_bit(wb, seq_params->enable_parity_hiding); |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| aom_wb_write_bit(wb, seq_params->enable_ext_partitions); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| if (seq_params->reduced_still_picture_hdr) { |
| assert(seq_params->enable_global_motion == 0); |
| } else { |
| aom_wb_write_bit(wb, seq_params->enable_global_motion); |
| } |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| #if CONFIG_REFRESH_FLAG |
| aom_wb_write_bit(wb, seq_params->enable_short_refresh_frame_flags); |
| #endif // CONFIG_REFRESH_FLAG |
| } |
| |
| static AOM_INLINE void write_global_motion_params( |
| const WarpedMotionParams *params, const WarpedMotionParams *ref_params, |
| struct aom_write_bit_buffer *wb, MvSubpelPrecision precision) { |
| const int precision_loss = get_gm_precision_loss(precision); |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| (void)precision_loss; |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| |
| const TransformationType type = params->wmtype; |
| |
| aom_wb_write_bit(wb, type != IDENTITY); |
| if (type != IDENTITY) { |
| aom_wb_write_bit(wb, type == ROTZOOM); |
| if (type != ROTZOOM) { |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| assert(type == AFFINE); |
| #else |
| aom_wb_write_bit(wb, type == TRANSLATION); |
| #endif // !CONFIG_IMPROVED_GLOBAL_MOTION |
| } |
| } |
| |
| if (type >= ROTZOOM) { |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS), |
| (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF), |
| (params->wmmat[3] >> GM_ALPHA_PREC_DIFF)); |
| } |
| |
| if (type >= AFFINE) { |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF), |
| (params->wmmat[4] >> GM_ALPHA_PREC_DIFF)); |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS), |
| (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| } |
| |
| if (type >= TRANSLATION) { |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| const int trans_prec_diff = GM_TRANS_PREC_DIFF; |
| const int trans_max = GM_TRANS_MAX; |
| #else |
| const int trans_bits = (type == TRANSLATION) |
| ? GM_ABS_TRANS_ONLY_BITS - precision_loss |
| : GM_ABS_TRANS_BITS; |
| const int trans_prec_diff = (type == TRANSLATION) |
| ? GM_TRANS_ONLY_PREC_DIFF + precision_loss |
| : GM_TRANS_PREC_DIFF; |
| const int trans_max = (1 << trans_bits); |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, trans_max + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[0] >> trans_prec_diff), |
| (params->wmmat[0] >> trans_prec_diff)); |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, trans_max + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[1] >> trans_prec_diff), |
| (params->wmmat[1] >> trans_prec_diff)); |
| } |
| } |
| |
| static AOM_INLINE void write_global_motion(AV1_COMP *cpi, |
| struct aom_write_bit_buffer *wb) { |
| AV1_COMMON *const cm = &cpi->common; |
| int num_total_refs = cm->ref_frames_info.num_total_refs; |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| assert(cm->cur_frame->num_ref_frames == num_total_refs); |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| int frame; |
| |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| if (!seq_params->enable_global_motion) { |
| return; |
| } |
| |
| bool use_global_motion = false; |
| for (frame = 0; frame < num_total_refs; ++frame) { |
| if (cm->global_motion[frame].wmtype != IDENTITY) { |
| use_global_motion = true; |
| break; |
| } |
| } |
| |
| aom_wb_write_bit(wb, use_global_motion); |
| if (!use_global_motion) { |
| return; |
| } |
| |
| int our_ref = cpi->gm_info.base_model_our_ref; |
| int their_ref = cpi->gm_info.base_model_their_ref; |
| aom_wb_write_primitive_quniform(wb, num_total_refs + 1, our_ref); |
| if (our_ref >= num_total_refs) { |
| // Special case: Use IDENTITY model |
| // Nothing more to code |
| assert(their_ref == -1); |
| } else { |
| RefCntBuffer *buf = get_ref_frame_buf(cm, our_ref); |
| assert(buf); |
| int their_num_refs = buf->num_ref_frames; |
| if (their_num_refs == 0) { |
| // Special case: if an intra/key frame is used as a ref, use an |
| // IDENTITY model |
| // Nothing more to code |
| assert(their_ref == -1); |
| } else { |
| aom_wb_write_primitive_quniform(wb, their_num_refs, their_ref); |
| } |
| } |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| |
| for (frame = 0; frame < num_total_refs; ++frame) { |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| int temporal_distance; |
| if (seq_params->order_hint_info.enable_order_hint) { |
| const RefCntBuffer *const ref_buf = get_ref_frame_buf(cm, frame); |
| #if CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| const int ref_order_hint = ref_buf->display_order_hint; |
| const int cur_order_hint = cm->cur_frame->display_order_hint; |
| #else |
| const int ref_order_hint = ref_buf->order_hint; |
| const int cur_order_hint = cm->cur_frame->order_hint; |
| #endif // CONFIG_EXPLICIT_TEMPORAL_DIST_CALC |
| temporal_distance = get_relative_dist(&seq_params->order_hint_info, |
| cur_order_hint, ref_order_hint); |
| } else { |
| temporal_distance = 1; |
| } |
| |
| if (temporal_distance == 0) { |
| // Don't code global motion for frames at the same temporal instant |
| assert(cm->global_motion[frame].wmtype == IDENTITY); |
| continue; |
| } |
| |
| WarpedMotionParams ref_params_; |
| av1_scale_warp_model(&cm->base_global_motion_model, |
| cm->base_global_motion_distance, &ref_params_, |
| temporal_distance); |
| WarpedMotionParams *ref_params = &ref_params_; |
| #else |
| const WarpedMotionParams *ref_params = |
| cm->prev_frame ? &cm->prev_frame->global_motion[frame] |
| : &default_warp_params; |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| |
| write_global_motion_params(&cm->global_motion[frame], ref_params, wb, |
| cm->features.fr_mv_precision); |
| // TODO(sarahparker, debargha): The logic in the commented out code below |
| // does not work currently and causes mismatches when resize is on. |
| // Fix it before turning the optimization back on. |
| /* |
| YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_yv12_buf(cpi, frame); |
| if (cpi->source->y_crop_width == ref_buf->y_crop_width && |
| cpi->source->y_crop_height == ref_buf->y_crop_height) { |
| write_global_motion_params(&cm->global_motion[frame], |
| &cm->prev_frame->global_motion[frame], wb, |
| cm->features.allow_high_precision_mv); |
| } else { |
| assert(cm->global_motion[frame].wmtype == IDENTITY && |
| "Invalid warp type for frames of different resolutions"); |
| } |
| */ |
| /* |
| printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n", |
| cm->current_frame.frame_number, cm->show_frame, frame, |
| cm->global_motion[frame].wmmat[0], |
| cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2], |
| cm->global_motion[frame].wmmat[3]); |
| */ |
| } |
| } |
| |
| // New function based on HLS R18 |
| static AOM_INLINE void write_uncompressed_header_obu( |
| AV1_COMP *cpi, struct aom_write_bit_buffer *saved_wb, |
| struct aom_write_bit_buffer *wb) { |
| AV1_COMMON *const cm = &cpi->common; |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| const CommonQuantParams *quant_params = &cm->quant_params; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| FeatureFlags *const features = &cm->features; |
| |
| if (seq_params->still_picture) { |
| assert(cm->show_existing_frame == 0); |
| assert(cm->show_frame == 1); |
| assert(current_frame->frame_type == KEY_FRAME); |
| } |
| if (!seq_params->reduced_still_picture_hdr) { |
| if (encode_show_existing_frame(cm)) { |
| aom_wb_write_bit(wb, 1); // show_existing_frame |
| aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3); |
| |
| if (seq_params->decoder_model_info_present_flag && |
| seq_params->timing_info.equal_picture_interval == 0) { |
| write_tu_pts_info(cm, wb); |
| } |
| if (seq_params->frame_id_numbers_present_flag) { |
| int frame_id_len = seq_params->frame_id_length; |
| int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; |
| aom_wb_write_literal(wb, display_frame_id, frame_id_len); |
| } |
| return; |
| } else { |
| aom_wb_write_bit(wb, 0); // show_existing_frame |
| } |
| |
| aom_wb_write_literal(wb, current_frame->frame_type, 2); |
| |
| aom_wb_write_bit(wb, cm->show_frame); |
| if (cm->show_frame) { |
| if (seq_params->decoder_model_info_present_flag && |
| seq_params->timing_info.equal_picture_interval == 0) |
| write_tu_pts_info(cm, wb); |
| } else { |
| aom_wb_write_bit(wb, cm->showable_frame); |
| } |
| if (frame_is_sframe(cm)) { |
| assert(features->error_resilient_mode); |
| } else if (!(current_frame->frame_type == KEY_FRAME && cm->show_frame)) { |
| aom_wb_write_bit(wb, features->error_resilient_mode); |
| } |
| } |
| aom_wb_write_bit(wb, features->disable_cdf_update); |
| |
| if (seq_params->force_screen_content_tools == 2) { |
| aom_wb_write_bit(wb, features->allow_screen_content_tools); |
| } else { |
| assert(features->allow_screen_content_tools == |
| seq_params->force_screen_content_tools); |
| } |
| |
| if (features->allow_screen_content_tools) { |
| if (seq_params->force_integer_mv == 2) { |
| aom_wb_write_bit(wb, features->cur_frame_force_integer_mv); |
| } else { |
| assert(features->cur_frame_force_integer_mv == |
| seq_params->force_integer_mv); |
| } |
| } else { |
| assert(features->cur_frame_force_integer_mv == 0); |
| } |
| |
| int frame_size_override_flag = 0; |
| |
| if (seq_params->reduced_still_picture_hdr) { |
| assert(cm->superres_upscaled_width == seq_params->max_frame_width && |
| cm->superres_upscaled_height == seq_params->max_frame_height); |
| } else { |
| if (seq_params->frame_id_numbers_present_flag) { |
| int frame_id_len = seq_params->frame_id_length; |
| aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len); |
| } |
| |
| if (cm->superres_upscaled_width > seq_params->max_frame_width || |
| cm->superres_upscaled_height > seq_params->max_frame_height) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Frame dimensions are larger than the maximum values"); |
| } |
| |
| frame_size_override_flag = |
| frame_is_sframe(cm) |
| ? 1 |
| : (cm->superres_upscaled_width != seq_params->max_frame_width || |
| cm->superres_upscaled_height != seq_params->max_frame_height); |
| if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag); |
| |
| if (seq_params->order_hint_info.enable_order_hint) |
| aom_wb_write_literal( |
| wb, current_frame->order_hint, |
| seq_params->order_hint_info.order_hint_bits_minus_1 + 1); |
| |
| if (!features->error_resilient_mode && !frame_is_intra_only(cm)) { |
| #if CONFIG_PRIMARY_REF_FRAME_OPT |
| aom_wb_write_literal(wb, cpi->signal_primary_ref_frame, 1); |
| if (cpi->signal_primary_ref_frame) |
| aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS); |
| #else |
| aom_wb_write_literal(wb, features->primary_ref_frame, PRIMARY_REF_BITS); |
| #endif // CONFIG_PRIMARY_REF_FRAME_OPT |
| if (features->primary_ref_frame >= cm->ref_frames_info.num_total_refs && |
| features->primary_ref_frame != PRIMARY_REF_NONE) |
| aom_internal_error(&cm->error, AOM_CODEC_ERROR, |
| "Invalid primary_ref_frame"); |
| } |
| } |
| |
| if (seq_params->decoder_model_info_present_flag) { |
| aom_wb_write_bit(wb, cm->buffer_removal_time_present); |
| if (cm->buffer_removal_time_present) { |
| for (int op_num = 0; |
| op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { |
| if (seq_params->op_params[op_num].decoder_model_param_present_flag) { |
| if (((seq_params->operating_point_idc[op_num] >> |
| cm->temporal_layer_id) & |
| 0x1 && |
| (seq_params->operating_point_idc[op_num] >> |
| (cm->spatial_layer_id + 8)) & |
| 0x1) || |
| seq_params->operating_point_idc[op_num] == 0) { |
| aom_wb_write_unsigned_literal( |
| wb, cm->buffer_removal_times[op_num], |
| seq_params->decoder_model_info.buffer_removal_time_length); |
| cm->buffer_removal_times[op_num]++; |
| if (cm->buffer_removal_times[op_num] == 0) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "buffer_removal_time overflowed"); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Shown keyframes and switch-frames automatically refreshes all reference |
| // frames. For all other frame types, we need to write refresh_frame_flags. |
| if ((current_frame->frame_type == KEY_FRAME && !cm->show_frame) || |
| current_frame->frame_type == INTER_FRAME || |
| current_frame->frame_type == INTRA_ONLY_FRAME) { |
| #if CONFIG_REFRESH_FLAG |
| if (cm->seq_params.enable_short_refresh_frame_flags && |
| !cm->features.error_resilient_mode) { |
| const bool has_refresh_frame_flags = |
| current_frame->refresh_frame_flags != 0; |
| if (has_refresh_frame_flags) { |
| int refresh_idx = 0; |
| for (int i = 0; i < REF_FRAMES; ++i) { |
| if ((current_frame->refresh_frame_flags >> i) & 1) { |
| refresh_idx = i; |
| break; |
| } |
| } |
| aom_wb_write_literal(wb, refresh_idx, 3); |
| if (refresh_idx == 0) { |
| aom_wb_write_literal(wb, 1, 1); |
| } |
| } else { |
| aom_wb_write_literal(wb, 0, 3); |
| aom_wb_write_literal(wb, 0, 1); |
| } |
| } else { |
| aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES); |
| } |
| #else |
| aom_wb_write_literal(wb, current_frame->refresh_frame_flags, REF_FRAMES); |
| #endif // CONFIG_REFRESH_FLAG |
| } |
| |
| if (!frame_is_intra_only(cm) || |
| current_frame->refresh_frame_flags != REFRESH_FRAME_ALL) { |
| // Write all ref frame order hints if error_resilient_mode == 1 |
| if (features->error_resilient_mode && |
| seq_params->order_hint_info.enable_order_hint) { |
| for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { |
| aom_wb_write_literal( |
| wb, cm->ref_frame_map[ref_idx]->order_hint, |
| seq_params->order_hint_info.order_hint_bits_minus_1 + 1); |
| } |
| } |
| // Write all ref frame base_qindex if error_resilient_mode == 1. This is |
| // required by reference mapping. |
| if (features->error_resilient_mode) { |
| for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { |
| aom_wb_write_literal(wb, cm->ref_frame_map[ref_idx]->base_qindex, |
| cm->seq_params.bit_depth == AOM_BITS_8 |
| ? QINDEX_BITS_UNEXT |
| : QINDEX_BITS); |
| } |
| } |
| } |
| |
| if (current_frame->frame_type == KEY_FRAME) { |
| write_frame_size(cm, frame_size_override_flag, wb); |
| assert(!av1_superres_scaled(cm) || !features->allow_intrabc); |
| if ( |
| #if !CONFIG_ENABLE_IBC_NAT |
| features->allow_screen_content_tools && |
| #endif //! CONFIG_ENABLE_IBC_NAT |
| !av1_superres_scaled(cm)) |
| aom_wb_write_bit(wb, features->allow_intrabc); |
| #if CONFIG_IBC_SR_EXT |
| if (features->allow_intrabc) { |
| aom_wb_write_bit(wb, features->allow_global_intrabc); |
| if (features->allow_global_intrabc) { |
| aom_wb_write_bit(wb, features->allow_local_intrabc); |
| } |
| #if CONFIG_IBC_BV_IMPROVEMENT |
| #if CONFIG_IBC_MAX_DRL |
| assert(features->max_bvp_drl_bits >= MIN_MAX_IBC_DRL_BITS && |
| features->max_bvp_drl_bits <= MAX_MAX_IBC_DRL_BITS); |
| aom_wb_write_primitive_quniform( |
| wb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1, |
| features->max_bvp_drl_bits - MIN_MAX_IBC_DRL_BITS); |
| #else |
| aom_wb_write_primitive_quniform( |
| wb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1, |
| features->max_drl_bits - MIN_MAX_DRL_BITS); |
| #endif // CONFIG_IBC_MAX_DRL |
| #endif // CONFIG_IBC_BV_IMPROVEMENT |
| } |
| #endif // CONFIG_IBC_SR_EXT |
| } else { |
| if (current_frame->frame_type == INTRA_ONLY_FRAME) { |
| write_frame_size(cm, frame_size_override_flag, wb); |
| assert(!av1_superres_scaled(cm) || !features->allow_intrabc); |
| if ( |
| #if !CONFIG_ENABLE_IBC_NAT |
| features->allow_screen_content_tools && |
| #endif //! CONFIG_ENABLE_IBC_NAT |
| !av1_superres_scaled(cm)) |
| aom_wb_write_bit(wb, features->allow_intrabc); |
| #if CONFIG_IBC_SR_EXT |
| if (features->allow_intrabc) { |
| aom_wb_write_bit(wb, features->allow_global_intrabc); |
| if (features->allow_global_intrabc) { |
| aom_wb_write_bit(wb, features->allow_local_intrabc); |
| } |
| #if CONFIG_IBC_BV_IMPROVEMENT |
| #if CONFIG_IBC_MAX_DRL |
| assert(features->max_bvp_drl_bits >= MIN_MAX_IBC_DRL_BITS && |
| features->max_bvp_drl_bits <= MAX_MAX_IBC_DRL_BITS); |
| aom_wb_write_primitive_quniform( |
| wb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1, |
| features->max_bvp_drl_bits - MIN_MAX_IBC_DRL_BITS); |
| #else |
| aom_wb_write_primitive_quniform( |
| wb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1, |
| features->max_drl_bits - MIN_MAX_DRL_BITS); |
| #endif // CONFIG_IBC_MAX_DRL |
| #endif // CONFIG_IBC_BV_IMPROVEMENT |
| } |
| #endif // CONFIG_IBC_SR_EXT |
| } else if (current_frame->frame_type == INTER_FRAME || |
| frame_is_sframe(cm)) { |
| MV_REFERENCE_FRAME ref_frame; |
| |
| // NOTE: Error resilient mode turns off frame_refs_short_signaling |
| // automatically. |
| #define FRAME_REFS_SHORT_SIGNALING 0 |
| #if FRAME_REFS_SHORT_SIGNALING |
| current_frame->frame_refs_short_signaling = |
| seq_params->order_hint_info.enable_order_hint; |
| #endif // FRAME_REFS_SHORT_SIGNALING |
| |
| // By default, no need to signal ref mapping indices in NRS because |
| // decoder can derive them unless order_hint is not available. Explicit |
| // signaling happens only when enabled by the command line flag or in |
| // error resilient mode |
| const int explicit_ref_frame_map = |
| cm->features.error_resilient_mode || frame_is_sframe(cm) || |
| seq_params->explicit_ref_frame_map || |
| !seq_params->order_hint_info.enable_order_hint; |
| if (explicit_ref_frame_map) { |
| if (cm->ref_frames_info.num_total_refs <= 0 || |
| cm->ref_frames_info.num_total_refs > |
| seq_params->max_reference_frames) |
| aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR, |
| "Invalid num_total_refs"); |
| aom_wb_write_literal(wb, cm->ref_frames_info.num_total_refs, |
| REF_FRAMES_LOG2); |
| } |
| for (ref_frame = 0; ref_frame < cm->ref_frames_info.num_total_refs; |
| ++ref_frame) { |
| assert(get_ref_frame_map_idx(cm, ref_frame) != INVALID_IDX); |
| if (explicit_ref_frame_map) |
| aom_wb_write_literal(wb, get_ref_frame_map_idx(cm, ref_frame), |
| REF_FRAMES_LOG2); |
| if (seq_params->frame_id_numbers_present_flag) { |
| int i = get_ref_frame_map_idx(cm, ref_frame); |
| int frame_id_len = seq_params->frame_id_length; |
| int diff_len = seq_params->delta_frame_id_length; |
| int delta_frame_id_minus_1 = |
| ((cm->current_frame_id - cm->ref_frame_id[i] + |
| (1 << frame_id_len)) % |
| (1 << frame_id_len)) - |
| 1; |
| if (delta_frame_id_minus_1 < 0 || |
| delta_frame_id_minus_1 >= (1 << diff_len)) { |
| aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR, |
| "Invalid delta_frame_id_minus_1"); |
| } |
| aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len); |
| } |
| } |
| |
| if (!features->error_resilient_mode && frame_size_override_flag) { |
| write_frame_size_with_refs(cm, wb); |
| } else { |
| write_frame_size(cm, frame_size_override_flag, wb); |
| } |
| |
| if (frame_might_allow_ref_frame_mvs(cm)) { |
| aom_wb_write_bit(wb, features->allow_ref_frame_mvs); |
| } else { |
| assert(features->allow_ref_frame_mvs == 0); |
| } |
| #if CONFIG_LF_SUB_PU |
| if (cm->seq_params.enable_lf_sub_pu) { |
| aom_wb_write_bit(wb, features->allow_lf_sub_pu); |
| } |
| #endif // CONFIG_LF_SUB_PU |
| if (cm->seq_params.enable_tip) { |
| assert(IMPLIES(av1_superres_scaled(cm), |
| features->tip_frame_mode != TIP_FRAME_AS_OUTPUT)); |
| aom_wb_write_literal(wb, features->tip_frame_mode, 2); |
| if (features->tip_frame_mode && cm->seq_params.enable_tip_hole_fill) { |
| aom_wb_write_bit(wb, features->allow_tip_hole_fill); |
| } |
| #if CONFIG_LF_SUB_PU |
| if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT && |
| cm->seq_params.enable_lf_sub_pu && features->allow_lf_sub_pu) { |
| aom_wb_write_bit(wb, cm->lf.tip_filter_level); |
| if (cm->lf.tip_filter_level) |
| aom_wb_write_literal(wb, cm->lf.tip_delta_idx, 2); |
| } |
| #endif // CONFIG_LF_SUB_PU |
| |
| #if CONFIG_TIP_DIRECT_FRAME_MV |
| if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) { |
| aom_wb_write_bit(wb, cm->tip_global_motion.as_int == 0); |
| if (cm->tip_global_motion.as_int != 0) { |
| aom_wb_write_literal(wb, abs(cm->tip_global_motion.as_mv.row), 4); |
| aom_wb_write_literal(wb, abs(cm->tip_global_motion.as_mv.col), 4); |
| if (cm->tip_global_motion.as_mv.row != 0) |
| aom_wb_write_bit(wb, cm->tip_global_motion.as_mv.row < 0); |
| if (cm->tip_global_motion.as_mv.col != 0) |
| aom_wb_write_bit(wb, cm->tip_global_motion.as_mv.col < 0); |
| } |
| aom_wb_write_bit(wb, cm->tip_interp_filter == MULTITAP_SHARP); |
| } |
| #endif // CONFIG_TIP_DIRECT_FRAME_MV |
| } |
| |
| if (!cm->seq_params.enable_tip || |
| features->tip_frame_mode != TIP_FRAME_AS_OUTPUT) { |
| #if CONFIG_IBC_SR_EXT |
| if ( |
| #if !CONFIG_ENABLE_IBC_NAT |
| features->allow_screen_content_tools && |
| #endif //! CONFIG_ENABLE_IBC_NAT |
| !av1_superres_scaled(cm)) |
| aom_wb_write_bit(wb, features->allow_intrabc); |
| #endif // CONFIG_IBC_SR_EXT |
| |
| aom_wb_write_primitive_quniform( |
| wb, MAX_MAX_DRL_BITS - MIN_MAX_DRL_BITS + 1, |
| features->max_drl_bits - MIN_MAX_DRL_BITS); |
| #if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| if (features->allow_intrabc) { |
| assert(features->max_bvp_drl_bits >= MIN_MAX_IBC_DRL_BITS && |
| features->max_bvp_drl_bits <= MAX_MAX_IBC_DRL_BITS); |
| aom_wb_write_primitive_quniform( |
| wb, MAX_MAX_IBC_DRL_BITS - MIN_MAX_IBC_DRL_BITS + 1, |
| features->max_bvp_drl_bits - MIN_MAX_IBC_DRL_BITS); |
| } |
| #endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL |
| if (!features->cur_frame_force_integer_mv) { |
| aom_wb_write_bit(wb, |
| features->fr_mv_precision > MV_PRECISION_QTR_PEL); |
| assert(features->fr_mv_precision == |
| features->most_probable_fr_mv_precision); |
| } |
| #if CONFIG_DEBUG |
| else { |
| assert(features->fr_mv_precision == MV_PRECISION_ONE_PEL); |
| } |
| assert(IMPLIES(features->cur_frame_force_integer_mv, |
| features->fr_mv_precision == MV_PRECISION_ONE_PEL)); |
| #endif |
| |
| write_frame_interp_filter(features->interp_filter, wb); |
| int seq_enabled_motion_modes = seq_params->seq_enabled_motion_modes; |
| int frame_enabled_motion_modes = features->enabled_motion_modes; |
| assert((frame_enabled_motion_modes & (1 << SIMPLE_TRANSLATION)) != 0); |
| for (int motion_mode = INTERINTRA; motion_mode < MOTION_MODES; |
| motion_mode++) { |
| if (seq_enabled_motion_modes & (1 << motion_mode)) { |
| int enabled = |
| (frame_enabled_motion_modes & (1 << motion_mode)) != 0 ? 1 : 0; |
| aom_wb_write_bit(wb, enabled); |
| } else { |
| assert((frame_enabled_motion_modes & (1 << motion_mode)) == 0); |
| } |
| } |
| if (cm->seq_params.enable_opfl_refine == AOM_OPFL_REFINE_AUTO) { |
| aom_wb_write_literal(wb, features->opfl_refine_type, 2); |
| } |
| } |
| } |
| } |
| |
| if (features->tip_frame_mode == TIP_FRAME_AS_OUTPUT) { |
| #if CONFIG_TIP_IMPLICIT_QUANT |
| if (cm->seq_params.enable_tip_explicit_qp) { |
| aom_wb_write_literal(wb, quant_params->base_qindex, |
| cm->seq_params.bit_depth == AOM_BITS_8 |
| ? QINDEX_BITS_UNEXT |
| : QINDEX_BITS); |
| if (av1_num_planes(cm) > 1) { |
| const int diff_uv_delta = |
| (quant_params->u_ac_delta_q != quant_params->v_ac_delta_q); |
| if (cm->seq_params.separate_uv_delta_q) { |
| aom_wb_write_bit(wb, diff_uv_delta); |
| } |
| write_delta_q(wb, quant_params->u_ac_delta_q); |
| if (diff_uv_delta) { |
| write_delta_q(wb, quant_params->v_ac_delta_q); |
| } |
| } |
| } |
| #else |
| aom_wb_write_literal(wb, quant_params->base_qindex, |
| cm->seq_params.bit_depth == AOM_BITS_8 |
| ? QINDEX_BITS_UNEXT |
| : QINDEX_BITS); |
| #endif // CONFIG_TIP_IMPLICIT_QUANT |
| #if !CONFIG_TIP_DIRECT_MODE_SIGNALING |
| write_tile_info(cm, saved_wb, wb); |
| #endif // !CONFIG_TIP_DIRECT_MODE_SIGNALING |
| if (seq_params->film_grain_params_present && |
| (cm->show_frame || cm->showable_frame)) |
| write_film_grain_params(cpi, wb); |
| return; |
| } |
| |
| const int might_bwd_adapt = !(seq_params->reduced_still_picture_hdr) && |
| !(features->disable_cdf_update); |
| if (cm->tiles.large_scale) |
| assert(features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED); |
| |
| if (might_bwd_adapt) { |
| aom_wb_write_bit( |
| wb, features->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED); |
| } |
| |
| write_tile_info(cm, saved_wb, wb); |
| encode_quantization(quant_params, av1_num_planes(cm), |
| cm->seq_params.bit_depth, |
| cm->seq_params.separate_uv_delta_q, wb); |
| encode_segmentation(cm, xd, wb); |
| |
| const DeltaQInfo *const delta_q_info = &cm->delta_q_info; |
| if (delta_q_info->delta_q_present_flag) assert(quant_params->base_qindex > 0); |
| if (quant_params->base_qindex > 0) { |
| aom_wb_write_bit(wb, delta_q_info->delta_q_present_flag); |
| if (delta_q_info->delta_q_present_flag) { |
| aom_wb_write_literal(wb, get_msb(delta_q_info->delta_q_res), 2); |
| xd->current_base_qindex = quant_params->base_qindex; |
| if (is_global_intrabc_allowed(cm)) |
| assert(delta_q_info->delta_lf_present_flag == 0); |
| else |
| aom_wb_write_bit(wb, delta_q_info->delta_lf_present_flag); |
| if (delta_q_info->delta_lf_present_flag) { |
| aom_wb_write_literal(wb, get_msb(delta_q_info->delta_lf_res), 2); |
| aom_wb_write_bit(wb, delta_q_info->delta_lf_multi); |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| } |
| } |
| } |
| |
| if (features->all_lossless) { |
| assert(!av1_superres_scaled(cm)); |
| } else { |
| if (!features->coded_lossless) { |
| encode_loopfilter(cm, wb); |
| encode_cdef(cm, wb); |
| } |
| encode_restoration_mode(cm, wb); |
| if (!features->coded_lossless && cm->seq_params.enable_ccso) { |
| encode_ccso(cm, wb); |
| } |
| } |
| |
| if (features->coded_lossless || !cm->seq_params.enable_parity_hiding) { |
| assert(features->allow_parity_hiding == false); |
| } else { |
| aom_wb_write_bit(wb, features->allow_parity_hiding); |
| } |
| |
| // Write TX mode |
| if (features->coded_lossless) |
| assert(features->tx_mode == ONLY_4X4); |
| else |
| aom_wb_write_bit(wb, features->tx_mode == TX_MODE_SELECT); |
| |
| if (!frame_is_intra_only(cm)) { |
| const int use_hybrid_pred = |
| current_frame->reference_mode == REFERENCE_MODE_SELECT; |
| |
| aom_wb_write_bit(wb, use_hybrid_pred); |
| } |
| |
| if (current_frame->skip_mode_info.skip_mode_allowed) |
| aom_wb_write_bit(wb, current_frame->skip_mode_info.skip_mode_flag); |
| |
| #if CONFIG_BAWP |
| if (!frame_is_intra_only(cm) && seq_params->enable_bawp) |
| aom_wb_write_bit(wb, features->enable_bawp); |
| #endif // CONFIG_BAWP |
| |
| if (!frame_is_intra_only(cm) && |
| (features->enabled_motion_modes & (1 << WARP_DELTA)) != 0) { |
| aom_wb_write_bit(wb, features->allow_warpmv_mode); |
| } else { |
| assert(IMPLIES(!frame_is_intra_only(cm), !features->allow_warpmv_mode)); |
| } |
| |
| aom_wb_write_bit(wb, features->reduced_tx_set_used); |
| |
| if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb); |
| |
| if (seq_params->film_grain_params_present && |
| (cm->show_frame || cm->showable_frame)) |
| write_film_grain_params(cpi, wb); |
| |
| if (cm->tiles.large_scale) write_ext_tile_info(cm, saved_wb, wb); |
| } |
| |
| static int choose_size_bytes(uint32_t size, int spare_msbs) { |
| // Choose the number of bytes required to represent size, without |
| // using the 'spare_msbs' number of most significant bits. |
| |
| // Make sure we will fit in 4 bytes to start with.. |
| if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1; |
| |
| // Normalise to 32 bits |
| size <<= spare_msbs; |
| |
| if (size >> 24 != 0) |
| return 4; |
| else if (size >> 16 != 0) |
| return 3; |
| else if (size >> 8 != 0) |
| return 2; |
| else |
| return 1; |
| } |
| |
| static AOM_INLINE void mem_put_varsize(uint8_t *const dst, const int sz, |
| const int val) { |
| switch (sz) { |
| case 1: dst[0] = (uint8_t)(val & 0xff); break; |
| case 2: mem_put_le16(dst, val); break; |
| case 3: mem_put_le24(dst, val); break; |
| case 4: mem_put_le32(dst, val); break; |
| default: assert(0 && "Invalid size"); break; |
| } |
| } |
| |
| static int remux_tiles(const CommonTileParams *const tiles, uint8_t *dst, |
| const uint32_t data_size, const uint32_t max_tile_size, |
| const uint32_t max_tile_col_size, |
| int *const tile_size_bytes, |
| int *const tile_col_size_bytes) { |
| // Choose the tile size bytes (tsb) and tile column size bytes (tcsb) |
| int tsb; |
| int tcsb; |
| |
| if (tiles->large_scale) { |
| // The top bit in the tile size field indicates tile copy mode, so we |
| // have 1 less bit to code the tile size |
| tsb = choose_size_bytes(max_tile_size, 1); |
| tcsb = choose_size_bytes(max_tile_col_size, 0); |
| } else { |
| tsb = choose_size_bytes(max_tile_size, 0); |
| tcsb = 4; // This is ignored |
| (void)max_tile_col_size; |
| } |
| |
| assert(tsb > 0); |
| assert(tcsb > 0); |
| |
| *tile_size_bytes = tsb; |
| *tile_col_size_bytes = tcsb; |
| if (tsb == 4 && tcsb == 4) return data_size; |
| |
| uint32_t wpos = 0; |
| uint32_t rpos = 0; |
| |
| if (tiles->large_scale) { |
| int tile_row; |
| int tile_col; |
| |
| for (tile_col = 0; tile_col < tiles->cols; tile_col++) { |
| // All but the last column has a column header |
| if (tile_col < tiles->cols - 1) { |
| uint32_t tile_col_size = mem_get_le32(dst + rpos); |
| rpos += 4; |
| |
| // Adjust the tile column size by the number of bytes removed |
| // from the tile size fields. |
| tile_col_size -= (4 - tsb) * tiles->rows; |
| |
| mem_put_varsize(dst + wpos, tcsb, tile_col_size); |
| wpos += tcsb; |
| } |
| |
| for (tile_row = 0; tile_row < tiles->rows; tile_row++) { |
| // All, including the last row has a header |
| uint32_t tile_header = mem_get_le32(dst + rpos); |
| rpos += 4; |
| |
| // If this is a copy tile, we need to shift the MSB to the |
| // top bit of the new width, and there is no data to copy. |
| if (tile_header >> 31 != 0) { |
| if (tsb < 4) tile_header >>= 32 - 8 * tsb; |
| mem_put_varsize(dst + wpos, tsb, tile_header); |
| wpos += tsb; |
| } else { |
| mem_put_varsize(dst + wpos, tsb, tile_header); |
| wpos += tsb; |
| |
| tile_header += AV1_MIN_TILE_SIZE_BYTES; |
| memmove(dst + wpos, dst + rpos, tile_header); |
| rpos += tile_header; |
| wpos += tile_header; |
| } |
| } |
| } |
| |
| assert(rpos > wpos); |
| assert(rpos == data_size); |
| |
| return wpos; |
| } |
| const int n_tiles = tiles->cols * tiles->rows; |
| int n; |
| |
| for (n = 0; n < n_tiles; n++) { |
| int tile_size; |
| |
| if (n == n_tiles - 1) { |
| tile_size = data_size - rpos; |
| } else { |
| tile_size = mem_get_le32(dst + rpos); |
| rpos += 4; |
| mem_put_varsize(dst + wpos, tsb, tile_size); |
| tile_size += AV1_MIN_TILE_SIZE_BYTES; |
| wpos += tsb; |
| } |
| |
| memmove(dst + wpos, dst + rpos, tile_size); |
| |
| rpos += tile_size; |
| wpos += tile_size; |
| } |
| |
| assert(rpos > wpos); |
| assert(rpos == data_size); |
| |
| return wpos; |
| } |
| |
| uint32_t av1_write_obu_header(AV1LevelParams *const level_params, |
| OBU_TYPE obu_type, int obu_extension, |
| uint8_t *const dst) { |
| if (level_params->keep_level_stats && |
| (obu_type == OBU_FRAME || obu_type == OBU_FRAME_HEADER)) |
| ++level_params->frame_header_count; |
| |
| struct aom_write_bit_buffer wb = { dst, 0 }; |
| uint32_t size = 0; |
| |
| aom_wb_write_literal(&wb, 0, 1); // forbidden bit. |
| aom_wb_write_literal(&wb, (int)obu_type, 4); |
| aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1); |
| aom_wb_write_literal(&wb, 1, 1); // obu_has_payload_length_field |
| aom_wb_write_literal(&wb, 0, 1); // reserved |
| |
| if (obu_extension) { |
| aom_wb_write_literal(&wb, obu_extension & 0xFF, 8); |
| } |
| |
| size = aom_wb_bytes_written(&wb); |
| return size; |
| } |
| |
| int av1_write_uleb_obu_size(size_t obu_header_size, size_t obu_payload_size, |
| uint8_t *dest) { |
| const size_t offset = obu_header_size; |
| size_t coded_obu_size = 0; |
| const uint32_t obu_size = (uint32_t)obu_payload_size; |
| assert(obu_size == obu_payload_size); |
| |
| if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset, |
| &coded_obu_size) != 0) { |
| return AOM_CODEC_ERROR; |
| } |
| |
| return AOM_CODEC_OK; |
| } |
| |
| static size_t obu_memmove(size_t obu_header_size, size_t obu_payload_size, |
| uint8_t *data) { |
| const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size); |
| const size_t move_dst_offset = length_field_size + obu_header_size; |
| const size_t move_src_offset = obu_header_size; |
| const size_t move_size = obu_payload_size; |
| memmove(data + move_dst_offset, data + move_src_offset, move_size); |
| return length_field_size; |
| } |
| |
| static AOM_INLINE void add_trailing_bits(struct aom_write_bit_buffer *wb) { |
| if (aom_wb_is_byte_aligned(wb)) { |
| aom_wb_write_literal(wb, 0x80, 8); |
| } else { |
| // assumes that the other bits are already 0s |
| aom_wb_write_bit(wb, 1); |
| } |
| } |
| |
| static AOM_INLINE void write_bitstream_level(AV1_LEVEL seq_level_idx, |
| struct aom_write_bit_buffer *wb) { |
| assert(is_valid_seq_level_idx(seq_level_idx)); |
| aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS); |
| } |
| |
| uint32_t av1_write_sequence_header_obu(const SequenceHeader *seq_params, |
| uint8_t *const dst) { |
| struct aom_write_bit_buffer wb = { dst, 0 }; |
| uint32_t size = 0; |
| |
| write_profile(seq_params->profile, &wb); |
| |
| // Still picture or not |
| aom_wb_write_bit(&wb, seq_params->still_picture); |
| assert(IMPLIES(!seq_params->still_picture, |
| !seq_params->reduced_still_picture_hdr)); |
| // whether to use reduced still picture header |
| aom_wb_write_bit(&wb, seq_params->reduced_still_picture_hdr); |
| |
| if (seq_params->reduced_still_picture_hdr) { |
| assert(seq_params->timing_info_present == 0); |
| assert(seq_params->decoder_model_info_present_flag == 0); |
| assert(seq_params->display_model_info_present_flag == 0); |
| write_bitstream_level(seq_params->seq_level_idx[0], &wb); |
| } else { |
| aom_wb_write_bit( |
| &wb, seq_params->timing_info_present); // timing info present flag |
| |
| if (seq_params->timing_info_present) { |
| // timing_info |
| write_timing_info_header(&seq_params->timing_info, &wb); |
| aom_wb_write_bit(&wb, seq_params->decoder_model_info_present_flag); |
| if (seq_params->decoder_model_info_present_flag) { |
| write_decoder_model_info(&seq_params->decoder_model_info, &wb); |
| } |
| } |
| aom_wb_write_bit(&wb, seq_params->display_model_info_present_flag); |
| aom_wb_write_literal(&wb, seq_params->operating_points_cnt_minus_1, |
| OP_POINTS_CNT_MINUS_1_BITS); |
| int i; |
| for (i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) { |
| aom_wb_write_literal(&wb, seq_params->operating_point_idc[i], |
| OP_POINTS_IDC_BITS); |
| write_bitstream_level(seq_params->seq_level_idx[i], &wb); |
| if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_4_0) |
| aom_wb_write_bit(&wb, seq_params->tier[i]); |
| if (seq_params->decoder_model_info_present_flag) { |
| aom_wb_write_bit( |
| &wb, seq_params->op_params[i].decoder_model_param_present_flag); |
| if (seq_params->op_params[i].decoder_model_param_present_flag) { |
| write_dec_model_op_parameters( |
| &seq_params->op_params[i], |
| seq_params->decoder_model_info |
| .encoder_decoder_buffer_delay_length, |
| &wb); |
| } |
| } |
| if (seq_params->display_model_info_present_flag) { |
| aom_wb_write_bit( |
| &wb, seq_params->op_params[i].display_model_param_present_flag); |
| if (seq_params->op_params[i].display_model_param_present_flag) { |
| assert(seq_params->op_params[i].initial_display_delay <= 10); |
| aom_wb_write_literal( |
| &wb, seq_params->op_params[i].initial_display_delay - 1, 4); |
| } |
| } |
| } |
| } |
| write_sequence_header(seq_params, &wb); |
| |
| write_color_config(seq_params, &wb); |
| |
| aom_wb_write_bit(&wb, seq_params->film_grain_params_present); |
| |
| // Sequence header for coding tools beyond AV1 |
| write_sequence_header_beyond_av1(seq_params, &wb); |
| |
| add_trailing_bits(&wb); |
| |
| size = aom_wb_bytes_written(&wb); |
| return size; |
| } |
| |
| static uint32_t write_frame_header_obu(AV1_COMP *cpi, |
| struct aom_write_bit_buffer *saved_wb, |
| uint8_t *const dst, |
| int append_trailing_bits) { |
| struct aom_write_bit_buffer wb = { dst, 0 }; |
| write_uncompressed_header_obu(cpi, saved_wb, &wb); |
| if (append_trailing_bits) add_trailing_bits(&wb); |
| return aom_wb_bytes_written(&wb); |
| } |
| |
| static uint32_t write_tile_group_header(uint8_t *const dst, int start_tile, |
| int end_tile, int tiles_log2, |
| int tile_start_and_end_present_flag) { |
| struct aom_write_bit_buffer wb = { dst, 0 }; |
| uint32_t size = 0; |
| |
| if (!tiles_log2) return size; |
| |
| aom_wb_write_bit(&wb, tile_start_and_end_present_flag); |
| |
| if (tile_start_and_end_present_flag) { |
| aom_wb_write_literal(&wb, start_tile, tiles_log2); |
| aom_wb_write_literal(&wb, end_tile, tiles_log2); |
| } |
| |
| size = aom_wb_bytes_written(&wb); |
| return size; |
| } |
| |
| typedef struct { |
| uint8_t *frame_header; |
| size_t obu_header_byte_offset; |
| size_t total_length; |
| } FrameHeaderInfo; |
| |
| extern void av1_print_uncompressed_frame_header(const uint8_t *data, int size, |
| const char *filename); |
| |
| static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst, |
| struct aom_write_bit_buffer *saved_wb, |
| uint8_t obu_extension_header, |
| const FrameHeaderInfo *fh_info, |
| int *const largest_tile_id) { |
| AV1_COMMON *const cm = &cpi->common; |
| const CommonTileParams *const tiles = &cm->tiles; |
| AV1LevelParams *const level_params = &cpi->level_params; |
| aom_writer mode_bc; |
| int tile_row, tile_col; |
| // Store the location and size of each tile's data in the bitstream: |
| TileBufferEnc tile_buffers[MAX_TILE_ROWS][MAX_TILE_COLS]; |
| uint32_t total_size = 0; |
| const int tile_cols = tiles->cols; |
| const int tile_rows = tiles->rows; |
| unsigned int tile_size = 0; |
| unsigned int max_tile_size = 0; |
| unsigned int max_tile_col_size = 0; |
| const int n_log2_tiles = tiles->log2_rows + tiles->log2_cols; |
| // Fixed size tile groups for the moment |
| const int num_tg_hdrs = cpi->num_tg; |
| const int tg_size = |
| (tiles->large_scale) |
| ? 1 |
| : (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs; |
| int tile_count = 0; |
| int curr_tg_data_size = 0; |
| uint8_t *data = dst; |
| int new_tg = 1; |
| const int have_tiles = tile_cols * tile_rows > 1; |
| int first_tg = 1; |
| |
| *largest_tile_id = 0; |
| |
| if (tiles->large_scale) { |
| // For large_scale_tile case, we always have only one tile group, so it can |
| // be written as an OBU_FRAME. |
| const OBU_TYPE obu_type = OBU_FRAME; |
| const uint32_t tg_hdr_size = |
| av1_write_obu_header(level_params, obu_type, 0, data); |
| data += tg_hdr_size; |
| |
| const uint32_t frame_header_size = |
| write_frame_header_obu(cpi, saved_wb, data, 0); |
| data += frame_header_size; |
| total_size += frame_header_size; |
| |
| // (yunqing) This test ensures the correctness of large scale tile coding. |
| if (cpi->oxcf.tile_cfg.enable_ext_tile_debug) { |
| char fn[20] = "./fh"; |
| fn[4] = cm->current_frame.frame_number / 100 + '0'; |
| fn[5] = (cm->current_frame.frame_number % 100) / 10 + '0'; |
| fn[6] = (cm->current_frame.frame_number % 10) + '0'; |
| fn[7] = '\0'; |
| av1_print_uncompressed_frame_header(data - frame_header_size, |
| frame_header_size, fn); |
| } |
| |
| int tile_size_bytes = 0; |
| int tile_col_size_bytes = 0; |
| |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| TileInfo tile_info; |
| const int is_last_col = (tile_col == tile_cols - 1); |
| const uint32_t col_offset = total_size; |
| |
| av1_tile_set_col(&tile_info, cm, tile_col); |
| |
| // The last column does not have a column header |
| if (!is_last_col) total_size += 4; |
| |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; |
| const int data_offset = have_tiles ? 4 : 0; |
| const int tile_idx = tile_row * tile_cols + tile_col; |
| TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; |
| av1_tile_set_row(&tile_info, cm, tile_row); |
| |
| buf->data = dst + total_size + tg_hdr_size; |
| |
| // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, |
| // even for the last one, unless no tiling is used at all. |
| total_size += data_offset; |
| cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; |
| mode_bc.allow_update_cdf = !tiles->large_scale; |
| mode_bc.allow_update_cdf = |
| mode_bc.allow_update_cdf && !cm->features.disable_cdf_update; |
| aom_start_encode(&mode_bc, buf->data + data_offset); |
| write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col); |
| aom_stop_encode(&mode_bc); |
| tile_size = mode_bc.pos; |
| buf->size = tile_size; |
| |
| // Record the maximum tile size we see, so we can compact headers later. |
| if (tile_size > max_tile_size) { |
| max_tile_size = tile_size; |
| *largest_tile_id = tile_cols * tile_row + tile_col; |
| } |
| |
| if (have_tiles) { |
| // tile header: size of this tile, or copy offset |
| uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES; |
| const int tile_copy_mode = |
| ((AOMMAX(tiles->width, tiles->height) << MI_SIZE_LOG2) <= 256) |
| ? 1 |
| : 0; |
| |
| // If tile_copy_mode = 1, check if this tile is a copy tile. |
| // Very low chances to have copy tiles on the key frames, so don't |
| // search on key frames to reduce unnecessary search. |
| if (cm->current_frame.frame_type != KEY_FRAME && tile_copy_mode) { |
| const int identical_tile_offset = |
| find_identical_tile(tile_row, tile_col, tile_buffers); |
| |
| // Indicate a copy-tile by setting the most significant bit. |
| // The row-offset to copy from is stored in the highest byte. |
| // remux_tiles will move these around later |
| if (identical_tile_offset > 0) { |
| tile_size = 0; |
| tile_header = identical_tile_offset | 0x80; |
| tile_header <<= 24; |
| } |
| } |
| |
| mem_put_le32(buf->data, tile_header); |
| } |
| |
| total_size += tile_size; |
| } |
| |
| if (!is_last_col) { |
| uint32_t col_size = total_size - col_offset - 4; |
| mem_put_le32(dst + col_offset + tg_hdr_size, col_size); |
| |
| // Record the maximum tile column size we see. |
| max_tile_col_size = AOMMAX(max_tile_col_size, col_size); |
| } |
| } |
| |
| if (have_tiles) { |
| total_size = remux_tiles(tiles, data, total_size - frame_header_size, |
| max_tile_size, max_tile_col_size, |
| &tile_size_bytes, &tile_col_size_bytes); |
| total_size += frame_header_size; |
| } |
| |
| // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write |
| // current tile group size before tile data(include tile column header). |
| // Tile group size doesn't include the bytes storing tg size. |
| total_size += tg_hdr_size; |
| const uint32_t obu_payload_size = total_size - tg_hdr_size; |
| const size_t length_field_size = |
| obu_memmove(tg_hdr_size, obu_payload_size, dst); |
| if (av1_write_uleb_obu_size(tg_hdr_size, obu_payload_size, dst) != |
| AOM_CODEC_OK) { |
| assert(0); |
| } |
| total_size += (uint32_t)length_field_size; |
| saved_wb->bit_buffer += length_field_size; |
| |
| // Now fill in the gaps in the uncompressed header. |
| if (have_tiles) { |
| assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); |
| aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2); |
| |
| assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); |
| aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); |
| } |
| return total_size; |
| } |
| |
| uint32_t obu_header_size = 0; |
| uint8_t *tile_data_start = dst + total_size; |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| TileInfo tile_info; |
| av1_tile_set_row(&tile_info, cm, tile_row); |
| |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| const int tile_idx = tile_row * tile_cols + tile_col; |
| TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; |
| TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; |
| int is_last_tile_in_tg = 0; |
| |
| if (new_tg) { |
| data = dst + total_size; |
| |
| // A new tile group begins at this tile. Write the obu header and |
| // tile group header |
| const OBU_TYPE obu_type = |
| (num_tg_hdrs == 1) ? OBU_FRAME : OBU_TILE_GROUP; |
| curr_tg_data_size = av1_write_obu_header(level_params, obu_type, |
| obu_extension_header, data); |
| obu_header_size = curr_tg_data_size; |
| |
| if (num_tg_hdrs == 1) { |
| curr_tg_data_size += write_frame_header_obu( |
| cpi, saved_wb, data + curr_tg_data_size, 0); |
| } |
| curr_tg_data_size += write_tile_group_header( |
| data + curr_tg_data_size, tile_idx, |
| AOMMIN(tile_idx + tg_size - 1, tile_cols * tile_rows - 1), |
| n_log2_tiles, cpi->num_tg > 1); |
| total_size += curr_tg_data_size; |
| tile_data_start += curr_tg_data_size; |
| new_tg = 0; |
| tile_count = 0; |
| } |
| tile_count++; |
| av1_tile_set_col(&tile_info, cm, tile_col); |
| |
| if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) { |
| is_last_tile_in_tg = 1; |
| new_tg = 1; |
| } else { |
| is_last_tile_in_tg = 0; |
| } |
| |
| buf->data = dst + total_size; |
| |
| // The last tile of the tile group does not have a header. |
| if (!is_last_tile_in_tg) total_size += 4; |
| |
| cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; |
| mode_bc.allow_update_cdf = 1; |
| mode_bc.allow_update_cdf = |
| mode_bc.allow_update_cdf && !cm->features.disable_cdf_update; |
| const int num_planes = av1_num_planes(cm); |
| int num_filter_classes[MAX_MB_PLANE]; |
| for (int p = 0; p < num_planes; ++p) |
| num_filter_classes[p] = cm->rst_info[p].num_filter_classes; |
| av1_reset_loop_restoration(&cpi->td.mb.e_mbd, 0, num_planes, |
| num_filter_classes); |
| |
| aom_start_encode(&mode_bc, dst + total_size); |
| write_modes(cpi, &tile_info, &mode_bc, tile_row, tile_col); |
| aom_stop_encode(&mode_bc); |
| tile_size = mode_bc.pos; |
| assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES); |
| |
| curr_tg_data_size += (tile_size + (is_last_tile_in_tg ? 0 : 4)); |
| buf->size = tile_size; |
| if (tile_size > max_tile_size) { |
| *largest_tile_id = tile_cols * tile_row + tile_col; |
| max_tile_size = tile_size; |
| } |
| |
| if (!is_last_tile_in_tg) { |
| // size of this tile |
| mem_put_le32(buf->data, tile_size - AV1_MIN_TILE_SIZE_BYTES); |
| } else { |
| // write current tile group size |
| const uint32_t obu_payload_size = curr_tg_data_size - obu_header_size; |
| const size_t length_field_size = |
| obu_memmove(obu_header_size, obu_payload_size, data); |
| if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) != |
| AOM_CODEC_OK) { |
| assert(0); |
| } |
| curr_tg_data_size += (int)length_field_size; |
| total_size += (uint32_t)length_field_size; |
| tile_data_start += length_field_size; |
| if (num_tg_hdrs == 1) { |
| // if this tg is combined with the frame header then update saved |
| // frame header base offset accroding to length field size |
| saved_wb->bit_buffer += length_field_size; |
| } |
| |
| if (!first_tg && cm->features.error_resilient_mode) { |
| // Make room for a duplicate Frame Header OBU. |
| memmove(data + fh_info->total_length, data, curr_tg_data_size); |
| |
| // Insert a copy of the Frame Header OBU. |
| memcpy(data, fh_info->frame_header, fh_info->total_length); |
| |
| // Force context update tile to be the first tile in error |
| // resiliant mode as the duplicate frame headers will have |
| // context_update_tile_id set to 0 |
| *largest_tile_id = 0; |
| |
| // Rewrite the OBU header to change the OBU type to Redundant Frame |
| // Header. |
| av1_write_obu_header(level_params, OBU_REDUNDANT_FRAME_HEADER, |
| obu_extension_header, |
| &data[fh_info->obu_header_byte_offset]); |
| |
| data += fh_info->total_length; |
| |
| curr_tg_data_size += (int)(fh_info->total_length); |
| total_size += (uint32_t)(fh_info->total_length); |
| } |
| first_tg = 0; |
| } |
| |
| total_size += tile_size; |
| } |
| } |
| |
| if (have_tiles) { |
| // Fill in context_update_tile_id indicating the tile to use for the |
| // cdf update. The encoder currently sets it to the largest tile |
| // (but is up to the encoder) |
| aom_wb_overwrite_literal(saved_wb, *largest_tile_id, |
| tiles->log2_cols + tiles->log2_rows); |
| // If more than one tile group. tile_size_bytes takes the default value 4 |
| // and does not need to be set. For a single tile group it is set in the |
| // section below. |
| if (num_tg_hdrs == 1) { |
| int tile_size_bytes = 4, unused; |
| const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst); |
| const uint32_t tile_data_size = total_size - tile_data_offset; |
| |
| total_size = |
| remux_tiles(tiles, tile_data_start, tile_data_size, max_tile_size, |
| max_tile_col_size, &tile_size_bytes, &unused); |
| total_size += tile_data_offset; |
| assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); |
| |
| aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); |
| |
| // Update the OBU length if remux_tiles() reduced the size. |
| uint64_t payload_size; |
| size_t length_field_size; |
| int res = |
| aom_uleb_decode(dst + obu_header_size, total_size - obu_header_size, |
| &payload_size, &length_field_size); |
| assert(res == 0); |
| (void)res; |
| |
| const uint64_t new_payload_size = |
| total_size - obu_header_size - length_field_size; |
| if (new_payload_size != payload_size) { |
| size_t new_length_field_size; |
| res = aom_uleb_encode(new_payload_size, length_field_size, |
| dst + obu_header_size, &new_length_field_size); |
| assert(res == 0); |
| if (new_length_field_size < length_field_size) { |
| const size_t src_offset = obu_header_size + length_field_size; |
| const size_t dst_offset = obu_header_size + new_length_field_size; |
| memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size); |
| total_size -= (int)(length_field_size - new_length_field_size); |
| } |
| } |
| } |
| } |
| return total_size; |
| } |
| |
| static size_t av1_write_metadata_obu(const aom_metadata_t *metadata, |
| uint8_t *const dst) { |
| size_t coded_metadata_size = 0; |
| const uint64_t metadata_type = (uint64_t)metadata->type; |
| if (aom_uleb_encode(metadata_type, sizeof(metadata_type), dst, |
| &coded_metadata_size) != 0) { |
| return 0; |
| } |
| memcpy(dst + coded_metadata_size, metadata->payload, metadata->sz); |
| // Add trailing bits. |
| dst[coded_metadata_size + metadata->sz] = 0x80; |
| return (uint32_t)(coded_metadata_size + metadata->sz + 1); |
| } |
| |
| static size_t av1_write_metadata_array(AV1_COMP *const cpi, uint8_t *dst) { |
| if (!cpi->source) return 0; |
| AV1_COMMON *const cm = &cpi->common; |
| aom_metadata_array_t *arr = cpi->source->metadata; |
| if (!arr) return 0; |
| size_t obu_header_size = 0; |
| size_t obu_payload_size = 0; |
| size_t total_bytes_written = 0; |
| size_t length_field_size = 0; |
| for (size_t i = 0; i < arr->sz; i++) { |
| aom_metadata_t *current_metadata = arr->metadata_array[i]; |
| if (current_metadata && current_metadata->payload) { |
| if ((cm->current_frame.frame_type == KEY_FRAME && |
| current_metadata->insert_flag == AOM_MIF_KEY_FRAME) || |
| (cm->current_frame.frame_type != KEY_FRAME && |
| current_metadata->insert_flag == AOM_MIF_NON_KEY_FRAME) || |
| current_metadata->insert_flag == AOM_MIF_ANY_FRAME) { |
| obu_header_size = |
| av1_write_obu_header(&cpi->level_params, OBU_METADATA, 0, dst); |
| obu_payload_size = |
| av1_write_metadata_obu(current_metadata, dst + obu_header_size); |
| length_field_size = obu_memmove(obu_header_size, obu_payload_size, dst); |
| if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) == |
| AOM_CODEC_OK) { |
| const size_t obu_size = obu_header_size + obu_payload_size; |
| dst += obu_size + length_field_size; |
| total_bytes_written += obu_size + length_field_size; |
| } else { |
| aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR, |
| "Error writing metadata OBU size"); |
| } |
| } |
| } |
| } |
| return total_bytes_written; |
| } |
| |
| static void write_frame_hash(AV1_COMP *const cpi, |
| struct aom_write_bit_buffer *wb, |
| aom_image_t *img) { |
| MD5Context md5_ctx; |
| unsigned char md5_digest[16]; |
| const int yuv[3] = { AOM_PLANE_Y, AOM_PLANE_U, AOM_PLANE_V }; |
| const int planes = img->monochrome ? 1 : 3; |
| if (cpi->oxcf.tool_cfg.frame_hash_per_plane) { |
| for (int i = 0; i < planes; i++) { |
| MD5Init(&md5_ctx); |
| raw_update_image_md5(img, &yuv[i], 1, &md5_ctx); |
| MD5Final(md5_digest, &md5_ctx); |
| for (size_t j = 0; j < sizeof(md5_digest); j++) |
| aom_wb_write_literal(wb, md5_digest[j], 8); |
| } |
| } else { |
| MD5Init(&md5_ctx); |
| raw_update_image_md5(img, yuv, planes, &md5_ctx); |
| MD5Final(md5_digest, &md5_ctx); |
| for (size_t i = 0; i < sizeof(md5_digest); i++) |
| aom_wb_write_literal(wb, md5_digest[i], 8); |
| } |
| } |
| |
| static size_t av1_write_frame_hash_metadata( |
| AV1_COMP *const cpi, uint8_t *dst, |
| const aom_film_grain_t *const grain_params) { |
| if (!cpi->source) return 0; |
| AV1_COMMON *const cm = &cpi->common; |
| aom_image_t img; |
| unsigned char |
| payload[49]; // max three hash values per plane (48 bytes) + 1 bytes |
| struct aom_write_bit_buffer wb = { payload, 0 }; |
| |
| yuvconfig2image(&img, &cm->cur_frame->buf, NULL); |
| |
| aom_wb_write_literal(&wb, 0, 4); // hash_type, 0 = md5 |
| aom_wb_write_literal(&wb, cpi->oxcf.tool_cfg.frame_hash_per_plane, 1); |
| aom_wb_write_literal(&wb, !!grain_params, 1); |
| aom_wb_write_literal(&wb, 0, 2); |
| if (grain_params) { |
| const int w_even = ALIGN_POWER_OF_TWO(img.d_w, 1); |
| const int h_even = ALIGN_POWER_OF_TWO(img.d_h, 1); |
| aom_image_t *grain_img = aom_img_alloc(NULL, img.fmt, w_even, h_even, 32); |
| if (!grain_img) { |
| aom_internal_error(&cpi->common.error, AOM_CODEC_MEM_ERROR, |
| "Error allocating film grain image"); |
| } |
| if (av1_add_film_grain(grain_params, &img, grain_img)) { |
| aom_internal_error(&cpi->common.error, AOM_CODEC_MEM_ERROR, |
| "Grain systhesis failed"); |
| } |
| write_frame_hash(cpi, &wb, grain_img); |
| aom_img_free(grain_img); |
| } else { |
| write_frame_hash(cpi, &wb, &img); |
| } |
| |
| aom_metadata_t *metadata = |
| aom_img_metadata_alloc(OBU_METADATA_TYPE_DECODED_FRAME_HASH, payload, |
| aom_wb_bytes_written(&wb), AOM_MIF_ANY_FRAME); |
| if (!metadata) { |
| aom_internal_error(&cpi->common.error, AOM_CODEC_MEM_ERROR, |
| "Error allocating metadata"); |
| } |
| |
| size_t total_bytes_written = 0; |
| size_t obu_header_size = |
| av1_write_obu_header(&cpi->level_params, OBU_METADATA, 0, dst); |
| size_t obu_payload_size = |
| av1_write_metadata_obu(metadata, dst + obu_header_size); |
| size_t length_field_size = |
| obu_memmove(obu_header_size, obu_payload_size, dst); |
| if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, dst) == |
| AOM_CODEC_OK) { |
| const size_t obu_size = obu_header_size + obu_payload_size; |
| total_bytes_written += obu_size + length_field_size; |
| } else { |
| aom_internal_error(&cpi->common.error, AOM_CODEC_ERROR, |
| "Error writing metadata OBU size"); |
| } |
| aom_img_metadata_free(metadata); |
| |
| return total_bytes_written; |
| } |
| |
| int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size, |
| int *const largest_tile_id) { |
| uint8_t *data = dst; |
| uint32_t data_size; |
| AV1_COMMON *const cm = &cpi->common; |
| AV1LevelParams *const level_params = &cpi->level_params; |
| uint32_t obu_header_size = 0; |
| uint32_t obu_payload_size = 0; |
| FrameHeaderInfo fh_info = { NULL, 0, 0 }; |
| const uint8_t obu_extension_header = |
| cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0; |
| |
| // If no non-zero delta_q has been used, reset delta_q_present_flag |
| if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) { |
| cm->delta_q_info.delta_q_present_flag = 0; |
| } |
| |
| #if CONFIG_BITSTREAM_DEBUG |
| bitstream_queue_reset_write(); |
| #endif |
| |
| level_params->frame_header_count = 0; |
| |
| // The TD is now written outside the frame encode loop |
| |
| // write sequence header obu if KEY_FRAME, preceded by 4-byte size |
| if (cm->current_frame.frame_type == KEY_FRAME && !cpi->no_show_fwd_kf) { |
| obu_header_size = |
| av1_write_obu_header(level_params, OBU_SEQUENCE_HEADER, 0, data); |
| |
| obu_payload_size = |
| av1_write_sequence_header_obu(&cm->seq_params, data + obu_header_size); |
| const size_t length_field_size = |
| obu_memmove(obu_header_size, obu_payload_size, data); |
| if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) != |
| AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| |
| data += obu_header_size + obu_payload_size + length_field_size; |
| } |
| |
| // write metadata obus before the frame obu that has the show_frame flag set |
| if (cm->show_frame) data += av1_write_metadata_array(cpi, data); |
| |
| if (cpi->oxcf.tool_cfg.frame_hash_metadata) { |
| const aom_film_grain_t *grain_params = &cm->cur_frame->film_grain_params; |
| const int apply_grain = |
| cm->seq_params.film_grain_params_present && grain_params->apply_grain; |
| // write frame hash metadata obu for raw frames before the frame obu that |
| // has the tile groups |
| const int write_raw_frame_hash = |
| ((cpi->oxcf.tool_cfg.frame_hash_metadata & 1) || |
| ((cpi->oxcf.tool_cfg.frame_hash_metadata & 2) && !apply_grain)) && |
| (cm->show_frame || cm->showable_frame) && |
| !encode_show_existing_frame(cm); |
| if (write_raw_frame_hash) |
| data += av1_write_frame_hash_metadata(cpi, data, NULL); |
| // write frame hash metadata obu for frames with film grain params applied |
| // before the frame obu that outputs the frame |
| const int write_grain_frame_hash = |
| (cpi->oxcf.tool_cfg.frame_hash_metadata & 2) && cm->show_frame && |
| apply_grain; |
| if (write_grain_frame_hash) |
| data += av1_write_frame_hash_metadata(cpi, data, grain_params); |
| } |
| |
| const int write_frame_header = |
| (cpi->num_tg > 1 || |
| (encode_show_existing_frame(cm) && |
| (!cm->seq_params.order_hint_info.enable_order_hint || |
| !cm->seq_params.enable_frame_output_order)) || |
| (encode_show_existing_frame(cm) && |
| cm->cur_frame->frame_type == KEY_FRAME) || |
| (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT)); |
| struct aom_write_bit_buffer saved_wb = { NULL, 0 }; |
| size_t length_field = 0; |
| if (write_frame_header) { |
| // Write Frame Header OBU. |
| fh_info.frame_header = data; |
| obu_header_size = av1_write_obu_header(level_params, OBU_FRAME_HEADER, |
| obu_extension_header, data); |
| obu_payload_size = |
| write_frame_header_obu(cpi, &saved_wb, data + obu_header_size, 1); |
| |
| length_field = obu_memmove(obu_header_size, obu_payload_size, data); |
| if (av1_write_uleb_obu_size(obu_header_size, obu_payload_size, data) != |
| AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| |
| fh_info.obu_header_byte_offset = 0; |
| fh_info.total_length = obu_header_size + obu_payload_size + length_field; |
| data += fh_info.total_length; |
| } |
| |
| // When enable_frame_output_order == 1, the OBU packet of show_existing_frame |
| // is not signaled for non-error-resilient mode. |
| // For error-resilienet mode, still an OBU is signaled. |
| if ((cm->seq_params.order_hint_info.enable_order_hint && |
| cm->seq_params.enable_frame_output_order && cm->show_existing_frame && |
| !cm->features.error_resilient_mode) || |
| ((!cm->seq_params.order_hint_info.enable_order_hint || |
| !cm->seq_params.enable_frame_output_order) && |
| encode_show_existing_frame(cm)) || |
| (cm->features.tip_frame_mode == TIP_FRAME_AS_OUTPUT)) { |
| data_size = 0; |
| } else { |
| // Since length_field is determined adaptively after frame header |
| // encoding, saved_wb must be adjusted accordingly. |
| if (saved_wb.bit_buffer) saved_wb.bit_buffer += length_field; |
| |
| // Each tile group obu will be preceded by 4-byte size of the tile group |
| // obu |
| data_size = write_tiles_in_tg_obus( |
| cpi, data, &saved_wb, obu_extension_header, &fh_info, largest_tile_id); |
| } |
| data += data_size; |
| *size = data - dst; |
| return AOM_CODEC_OK; |
| } |