blob: 54eb9e74a8aa98fd77d26d97228baeecbfebf022 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
/*!\file
* \brief Declares top-level encoder structures and functions.
*/
#ifndef AOM_AV1_ENCODER_ENCODER_H_
#define AOM_AV1_ENCODER_ENCODER_H_
#include <stdbool.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "aom/aomcx.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/entropymode.h"
#include "av1/common/enums.h"
#include "av1/common/pred_common.h"
#include "av1/common/resize.h"
#include "av1/common/thread_common.h"
#include "av1/common/timing.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/block.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/global_motion.h"
#include "av1/encoder/level.h"
#include "av1/encoder/lookahead.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/speed_features.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/av1_noise_estimate.h"
#if CONFIG_INTERNAL_STATS
#include "aom_dsp/ssim.h"
#endif
#include "aom_dsp/variance.h"
#if CONFIG_DENOISE
#include "aom_dsp/noise_model.h"
#endif
#if CONFIG_TUNE_VMAF
#include "av1/encoder/tune_vmaf.h"
#endif
#include "aom/internal/aom_codec_internal.h"
#include "aom_util/aom_thread.h"
#ifdef __cplusplus
extern "C" {
#endif
// TODO(yunqing, any): Added suppression tag to quiet Doxygen warnings. Need to
// adjust it while we work on documentation.
/*!\cond */
// Number of frames required to test for scene cut detection
#define SCENE_CUT_KEY_TEST_INTERVAL 16
// Rational number with an int64 numerator
// This structure holds a fractional value
typedef struct aom_rational64 {
int64_t num; // fraction numerator
int den; // fraction denominator
} aom_rational64_t; // alias for struct aom_rational
enum {
NORMAL = 0,
FOURFIVE = 1,
THREEFIVE = 2,
THREEFOUR = 3,
ONEFOUR = 4,
ONEEIGHT = 5,
ONETWO = 6
} UENUM1BYTE(AOM_SCALING);
enum {
// Good Quality Fast Encoding. The encoder balances quality with the amount of
// time it takes to encode the output. Speed setting controls how fast.
GOOD
} UENUM1BYTE(MODE);
enum {
FRAMEFLAGS_KEY = 1 << 0,
FRAMEFLAGS_INTRAONLY = 1 << 4,
FRAMEFLAGS_SWITCH = 1 << 5,
FRAMEFLAGS_ERROR_RESILIENT = 1 << 6,
FRAMEFLAGS_HAS_FILM_GRAIN_PARAMS = 1 << 7,
} UENUM1BYTE(FRAMETYPE_FLAGS);
static INLINE int get_true_pyr_level(int frame_level, int frame_order,
int max_layer_depth) {
if (frame_order == 0) {
// Keyframe case
return 1;
} else if (frame_level == MAX_ARF_LAYERS) {
// Leaves
return max_layer_depth;
} else if (frame_level == (MAX_ARF_LAYERS + 1)) {
// Altrefs
return 1;
}
return frame_level;
}
enum {
NO_AQ = 0,
VARIANCE_AQ = 1,
COMPLEXITY_AQ = 2,
CYCLIC_REFRESH_AQ = 3,
AQ_MODE_COUNT // This should always be the last member of the enum
} UENUM1BYTE(AQ_MODE);
enum {
NO_DELTA_Q = 0,
DELTA_Q_OBJECTIVE = 1, // Modulation to improve objective quality
DELTA_Q_PERCEPTUAL = 2, // Modulation to improve perceptual quality
DELTA_Q_MODE_COUNT // This should always be the last member of the enum
} UENUM1BYTE(DELTAQ_MODE);
enum {
RESIZE_NONE = 0, // No frame resizing allowed.
RESIZE_FIXED = 1, // All frames are coded at the specified scale.
RESIZE_RANDOM = 2, // All frames are coded at a random scale.
RESIZE_DYNAMIC = 3, // Frames coded at lower scale based on rate control.
RESIZE_MODES
} UENUM1BYTE(RESIZE_MODE);
typedef enum {
kInvalid = 0,
kLowSad = 1,
kHighSad = 2,
kLowVarHighSumdiff = 3,
} CONTENT_STATE_SB;
enum {
SS_CFG_SRC = 0,
SS_CFG_LOOKAHEAD = 1,
SS_CFG_FPF = 2,
SS_CFG_TOTAL = 3
} UENUM1BYTE(SS_CFG_OFFSET);
enum {
DISABLE_SCENECUT, // For LAP, lag_in_frames < 19
ENABLE_SCENECUT_MODE_1, // For LAP, lag_in_frames >=19 and < 33
ENABLE_SCENECUT_MODE_2 // For twopass and LAP - lag_in_frames >=33
} UENUM1BYTE(SCENECUT_MODE);
#define MAX_VBR_CORPUS_COMPLEXITY 10000
typedef enum {
COST_UPD_SB,
COST_UPD_SBROW,
COST_UPD_TILE,
COST_UPD_OFF,
} COST_UPDATE_TYPE;
/*!\endcond */
/*!
* \brief Encoder config related to resize.
*/
typedef struct {
/*!
* Indicates the frame resize mode to be used by the encoder.
*/
RESIZE_MODE resize_mode;
/*!
* Indicates the denominator for resize of inter frames, assuming 8 as the
* numerator. Its value ranges between 8-16.
*/
uint8_t resize_scale_denominator;
/*!
* Indicates the denominator for resize of key frames, assuming 8 as the
* numerator. Its value ranges between 8-16.
*/
uint8_t resize_kf_scale_denominator;
} ResizeCfg;
/*!
* \brief Encoder config for coding block partitioning.
*/
typedef struct {
/*!
* Flag to indicate if ml-based speed-up for partition search should be
* disabled.
*/
bool disable_ml_partition_speed_features;
#if CONFIG_EXT_RECUR_PARTITIONS
/*!
* Flag to indicate aggressiveness of erp pruning
* */
unsigned int erp_pruning_level;
/*!
* Flag to indicate the use of ml model for erp pruning.
* */
int use_ml_erp_pruning;
/*!
* Flag to indicate if extended partitions are enabled.
* */
unsigned int enable_ext_partitions;
#endif // CONFIG_EXT_RECUR_PARTITIONS
/*!
* Flag to indicate if rectanguar partitions should be enabled.
*/
bool enable_rect_partitions;
/*!
* Flag to indicate if AB partitions should be enabled.
*/
bool enable_ab_partitions;
/*!
* Flag to indicate if 1:4 / 4:1 partitions should be enabled.
*/
bool enable_1to4_partitions;
/*!
* Flag to indicate if semi-decoupled partitioning should be enabled.
*/
bool enable_sdp;
/*!
* Indicates the minimum partition size that should be allowed. Both width and
* height of a partition cannot be smaller than the min_partition_size.
*/
unsigned int min_partition_size;
/*!
* Indicates the maximum partition size that should be allowed. Both width and
* height of a partition cannot be larger than the max_partition_size.
*/
unsigned int max_partition_size;
} PartitionCfg;
/*!
* \brief Encoder flags for intra prediction.
*/
typedef struct {
/*!
* Flag to indicate if intra edge filtering process should be enabled.
*/
bool enable_intra_edge_filter;
/*!
* Flag to indicate if recursive filtering based intra prediction should be
* enabled.
*/
bool enable_filter_intra;
/*!
* Flag to indicate if smooth intra prediction modes should be enabled.
*/
bool enable_smooth_intra;
/*!
* Flag to indicate if PAETH intra prediction mode should be enabled.
*/
bool enable_paeth_intra;
/*!
* Flag to indicate if CFL uv intra mode should be enabled.
*/
bool enable_cfl_intra;
/*!
* Flag to indicate if delta angles for directional intra prediction should be
* enabled.
*/
bool enable_angle_delta;
/*!
* Flag to indicate if multiple reference line selection for intra prediction
* should be enabled.
*/
bool enable_mrls;
/*!
* Flag to indicate if forward skip coding is enabled
*/
bool enable_fsc;
/*!
* Flag to indicate if ORIP should be enabled
*/
bool enable_orip;
#if CONFIG_IDIF
/*!
* Flag to indicate if IDIF should be enabled
*/
bool enable_idif;
#endif
/*!
* Flag to indicate if IBP should be enabled
*/
bool enable_ibp;
} IntraModeCfg;
/*!
* \brief Encoder flags for transform sizes and types.
*/
typedef struct {
/*!
* Flag to disable ml based transform speed features.
*/
bool disable_ml_transform_speed_features;
/*!
* Flag to indicate if 64-pt transform should be enabled.
*/
bool enable_tx64;
/*!
* Flag to indicate if flip and identity transform types should be enabled.
*/
bool enable_flip_idtx;
/*!
* Flag to indicate whether or not to use a default reduced set for ext-tx
* rather than the potential full set of 16 transforms.
*/
bool reduced_tx_type_set;
/*!
* Flag to indicate if transform type for intra blocks should be limited to
* DCT_DCT.
*/
bool use_intra_dct_only;
/*!
* Flag to indicate if transform type for inter blocks should be limited to
* DCT_DCT.
*/
bool use_inter_dct_only;
/*!
* Flag to indicate if intra blocks should use default transform type
* (mode-dependent) only.
*/
bool use_intra_default_tx_only;
/*!
* Flag to indicate if intra secondary transform should be enabled.
*/
bool enable_ist;
/*!
* Flag to indicate if inter secondary transform should be enabled.
*/
bool enable_inter_ist;
#if CONFIG_INTER_DDT
/*!
* Flag to indicate if inter data-driven transform should be enabled.
*/
bool enable_inter_ddt;
#endif // CONFIG_INTER_DDT
/*!
* Flag to indicate if cross chroma component transform is enabled.
*/
bool enable_cctx;
} TxfmSizeTypeCfg;
/*!
* \brief Encoder flags for compound prediction modes.
*/
typedef struct {
/*!
* Flag to indicate if masked (wedge/diff-wtd) compound type should be
* enabled.
*/
bool enable_masked_comp;
/*!
* Flag to indicate if smooth interintra mode should be enabled.
*/
bool enable_smooth_interintra;
/*!
* Flag to indicate if difference-weighted compound type should be enabled.
*/
bool enable_diff_wtd_comp;
/*!
* Flag to indicate if inter-inter wedge compound type should be enabled.
*/
bool enable_interinter_wedge;
/*!
* Flag to indicate if inter-intra wedge compound type should be enabled.
*/
bool enable_interintra_wedge;
} CompoundTypeCfg;
/*!
* \brief Encoder config related to frame super-resolution.
*/
typedef struct {
/*!
* Indicates the qindex based threshold to be used when AOM_SUPERRES_QTHRESH
* mode is used for inter frames.
*/
int superres_qthresh;
/*!
* Indicates the qindex based threshold to be used when AOM_SUPERRES_QTHRESH
* mode is used for key frames.
*/
int superres_kf_qthresh;
/*!
* Indicates the denominator of the fraction that specifies the ratio between
* the superblock width before and after upscaling for inter frames. The
* numerator of this fraction is equal to the constant SCALE_NUMERATOR.
*/
uint8_t superres_scale_denominator;
/*!
* Indicates the denominator of the fraction that specifies the ratio between
* the superblock width before and after upscaling for key frames. The
* numerator of this fraction is equal to the constant SCALE_NUMERATOR.
*/
uint8_t superres_kf_scale_denominator;
/*!
* Indicates the Super-resolution mode to be used by the encoder.
*/
aom_superres_mode superres_mode;
/*!
* Flag to indicate if super-resolution should be enabled for the sequence.
*/
bool enable_superres;
} SuperResCfg;
/*!
* \brief Encoder config related to the coding of key frames.
*/
typedef struct {
/*!
* Indicates the minimum distance to a key frame.
*/
int key_freq_min;
/*!
* Indicates the maximum distance to a key frame.
*/
int key_freq_max;
/*!
* Indicates if temporal filtering should be applied on keyframe.
*/
int enable_keyframe_filtering;
/*!
* Indicates the number of frames after which a frame may be coded as an
* S-Frame.
*/
int sframe_dist;
/*!
* Indicates how an S-Frame should be inserted.
* 1: the considered frame will be made into an S-Frame only if it is an
* altref frame. 2: the next altref frame will be made into an S-Frame.
*/
int sframe_mode;
/*!
* Indicates if encoder should autodetect cut scenes and set the keyframes.
*/
bool auto_key;
/*!
* Indicates if forward keyframe reference should be enabled.
*/
bool fwd_kf_enabled;
/*!
* Indicates if S-Frames should be enabled for the sequence.
*/
bool enable_sframe;
/*!
* Indicates if intra block copy prediction mode should be enabled or not.
*/
bool enable_intrabc;
#if CONFIG_IBC_SR_EXT
/*!
* Indicates if search range extension for intra block copy prediction mode
* should be enabled or not. 0: disable. 1: extend the search range to the
* local area (default). 2: only use the local search range.
*/
int enable_intrabc_ext;
#endif // CONFIG_IBC_SR_EXT
} KeyFrameCfg;
/*!
* \brief Encoder rate control configuration parameters
*/
typedef struct {
/*!\cond */
// BUFFERING PARAMETERS
/*!\endcond */
/*!
* Indicates the amount of data that will be buffered by the decoding
* application prior to beginning playback, and is expressed in units of
* time(milliseconds).
*/
int64_t starting_buffer_level_ms;
/*!
* Indicates the amount of data that the encoder should try to maintain in the
* decoder's buffer, and is expressed in units of time(milliseconds).
*/
int64_t optimal_buffer_level_ms;
/*!
* Indicates the maximum amount of data that may be buffered by the decoding
* application, and is expressed in units of time(milliseconds).
*/
int64_t maximum_buffer_size_ms;
/*!
* Indicates the bandwidth to be used in bits per second.
*/
int64_t target_bandwidth;
/*!
* Indicates average complexity of the corpus in single pass vbr based on
* LAP. 0 indicates that corpus complexity vbr mode is disabled.
*/
unsigned int vbr_corpus_complexity_lap;
/*!
* Indicates the maximum allowed bitrate for any intra frame as % of bitrate
* target.
*/
unsigned int max_intra_bitrate_pct;
/*!
* Indicates the maximum allowed bitrate for any inter frame as % of bitrate
* target.
*/
unsigned int max_inter_bitrate_pct;
/*!
* Indicates the percentage of rate boost for golden frame in CBR mode.
*/
unsigned int gf_cbr_boost_pct;
/*!
* min_cr / 100 indicates the target minimum compression ratio for each
* frame.
*/
unsigned int min_cr;
/*!
* Indicates the frame drop threshold.
*/
int drop_frames_water_mark;
/*!
* under_shoot_pct indicates the tolerance of the VBR algorithm to
* undershoot and is used as a trigger threshold for more agressive
* adaptation of Q. It's value can range from 0-100.
*/
int under_shoot_pct;
/*!
* over_shoot_pct indicates the tolerance of the VBR algorithm to overshoot
* and is used as a trigger threshold for more agressive adaptation of Q.
* It's value can range from 0-1000.
*/
int over_shoot_pct;
/*!
* Indicates the maximum qindex that can be used by the quantizer i.e. the
* worst quality qindex.
*/
int worst_allowed_q;
/*!
* Indicates the minimum qindex that can be used by the quantizer i.e. the
* best quality qindex.
*/
int best_allowed_q;
/*!
* Indicates the Constant/Constrained Quality level in [0, 255] range.
*/
int qp;
/*!
* Indicates if the encoding mode is vbr, cbr, constrained quality or
* constant quality.
*/
enum aom_rc_mode mode;
/*!
* Indicates the minimum bitrate to be used for a single frame as a percentage
* of the target bitrate.
*/
int vbrmin_section;
/*!
* Indicates the maximum bitrate to be used for a single frame as a percentage
* of the target bitrate.
*/
int vbrmax_section;
} RateControlCfg;
/*!\cond */
typedef struct {
// Indicates the number of frames lag before encoding is started.
int lag_in_frames;
// Indicates the minimum gf/arf interval to be used.
int min_gf_interval;
// Indicates the maximum gf/arf interval to be used.
int max_gf_interval;
// Indicates the minimum height for GF group pyramid structure to be used.
int gf_min_pyr_height;
// Indicates the maximum height for GF group pyramid structure to be used.
int gf_max_pyr_height;
// Indicates if automatic set and use of altref frames should be enabled.
bool enable_auto_arf;
// Indicates if automatic set and use of (b)ackward (r)ef (f)rames should be
// enabled.
bool enable_auto_brf;
} GFConfig;
typedef struct {
// Indicates the number of tile groups.
unsigned int num_tile_groups;
// Indicates the MTU size for a tile group. If mtu is non-zero,
// num_tile_groups is set to DEFAULT_MAX_NUM_TG.
unsigned int mtu;
// Indicates the number of tile columns in log2.
int tile_columns;
// Indicates the number of tile rows in log2.
int tile_rows;
// Indicates the number of widths in the tile_widths[] array.
int tile_width_count;
// Indicates the number of heights in the tile_heights[] array.
int tile_height_count;
// Indicates the tile widths, and may be empty.
int tile_widths[MAX_TILE_COLS];
// Indicates the tile heights, and may be empty.
int tile_heights[MAX_TILE_ROWS];
// Indicates if large scale tile coding should be used.
bool enable_large_scale_tile;
// Indicates if single tile decoding mode should be enabled.
bool enable_single_tile_decoding;
// Indicates if EXT_TILE_DEBUG should be enabled.
bool enable_ext_tile_debug;
} TileConfig;
typedef struct {
// Indicates the width of the input frame.
int width;
// Indicates the height of the input frame.
int height;
// If forced_max_frame_width is non-zero then it is used to force the maximum
// frame width written in write_sequence_header().
int forced_max_frame_width;
// If forced_max_frame_width is non-zero then it is used to force the maximum
// frame height written in write_sequence_header().
int forced_max_frame_height;
// Indicates the frame width after applying both super-resolution and resize
// to the coded frame.
int render_width;
// Indicates the frame height after applying both super-resolution and resize
// to the coded frame.
int render_height;
} FrameDimensionCfg;
typedef struct {
// Bitmask of which motion modes are enabled at the sequence level
int seq_enabled_motion_modes;
} MotionModeCfg;
typedef struct {
// Timing info for each frame.
aom_timing_info_t timing_info;
// Indicates the number of time units of a decoding clock.
uint32_t num_units_in_decoding_tick;
// Indicates if decoder model information is present in the coded sequence
// header.
bool decoder_model_info_present_flag;
// Indicates if display model information is present in the coded sequence
// header.
bool display_model_info_present_flag;
// Indicates if timing info for each frame is present.
bool timing_info_present;
} DecoderModelCfg;
typedef struct {
// Indicates the update frequency for coeff costs.
COST_UPDATE_TYPE coeff;
// Indicates the update frequency for mode costs.
COST_UPDATE_TYPE mode;
// Indicates the update frequency for mv costs.
COST_UPDATE_TYPE mv;
} CostUpdateFreq;
typedef struct {
// Indicates the maximum number of reference frames allowed per frame.
unsigned int max_reference_frames;
// Indicates if the reduced set of references should be enabled.
bool enable_reduced_reference_set;
// Indicates if one-sided compound should be enabled.
bool enable_onesided_comp;
bool explicit_ref_frame_map;
// Indicates if the implicit frame order derivation is enabled.
bool enable_frame_output_order;
} RefFrameCfg;
typedef struct {
// Indicates the color space that should be used.
aom_color_primaries_t color_primaries;
// Indicates the characteristics of transfer function to be used.
aom_transfer_characteristics_t transfer_characteristics;
// Indicates the matrix coefficients to be used for the transfer function.
aom_matrix_coefficients_t matrix_coefficients;
// Indicates the chroma 4:2:0 sample position info.
aom_chroma_sample_position_t chroma_sample_position;
// Indicates if a limited color range or full color range should be used.
aom_color_range_t color_range;
} ColorCfg;
typedef struct {
// Indicates if extreme motion vector unit test should be enabled or not.
unsigned int motion_vector_unit_test;
// Indicates if superblock multipass unit test should be enabled or not.
unsigned int sb_multipass_unit_test;
// Indicates if subgop unit test is enabled or not.
unsigned int enable_subgop_stats;
} UnitTestCfg;
typedef struct {
// Indicates the file path to the VMAF model.
const char *vmaf_model_path;
// Indicates the path to the film grain parameters.
const char *film_grain_table_filename;
// Indicates the visual tuning metric.
aom_tune_metric tuning;
// Indicates if the current content is screen or default type.
aom_tune_content content;
// Indicates the film grain parameters.
int film_grain_test_vector;
} TuneCfg;
typedef struct {
// Indicates the framerate of the input video.
double init_framerate;
// Indicates the bit-depth of the input video.
unsigned int input_bit_depth;
// Indicates the maximum number of frames to be encoded.
unsigned int limit;
// Indicates the chrome subsampling x value.
unsigned int chroma_subsampling_x;
// Indicates the chrome subsampling y value.
unsigned int chroma_subsampling_y;
} InputCfg;
typedef struct {
// List of QP offsets for: keyframe, ALTREF, and 3 levels of internal ARFs.
// If any of these values are negative, fixed offsets are disabled.
double fixed_qp_offsets[FIXED_QP_OFFSET_COUNT];
// If the value is 0 (default), encoder may not use fixed QP offsets.
// If the value is 1, encoder will use fixed QP offsets, that are
// either:
// - Given by the user, and stored in 'fixed_qp_offsets' array, OR
// - Picked automatically from qp using a fixed factor.
// If the value is 2, encoder will use fixed QP offsets that are :
// - Derived from qp and has variable factors across Temporal levels as a fn.
// of q-step.
// TODO(krapaka): extend the derivation of factors also based on operating
// configuration such as random access and low-delay.
int use_fixed_qp_offsets;
// It true, the offset factor depends on the QP value
// else fixed value is used.
int q_based_qp_offsets;
// Indicates the minimum flatness of the quantization matrix.
int qm_minlevel;
// Indicates the maximum flatness of the quantization matrix.
int qm_maxlevel;
// Indicates if adaptive quantize_b should be enabled.
int quant_b_adapt;
// Indicates the Adaptive Quantization mode to be used.
AQ_MODE aq_mode;
// Indicates the delta q mode to be used.
DELTAQ_MODE deltaq_mode;
// Indicates if delta quantization should be enabled in chroma planes.
bool enable_chroma_deltaq;
// Indicates if encoding with quantization matrices should be enabled.
bool using_qm;
} QuantizationCfg;
/*!\endcond */
/*!
* \brief Algorithm configuration parameters.
*/
typedef struct {
/*!
* Indicates the loop filter sharpness.
*/
int sharpness;
/*!
* Indicates the trellis optimization mode of quantized coefficients.
* 0: disabled
* 1: enabled for all stages
* 2: enabled only for the last encoding pass
* 3: disable trellis for estimate_yrd_for_sb
*/
int enable_trellis_quant;
/*!
* The maximum number of frames used to create an arf.
*/
int arnr_max_frames;
/*!
* The temporal filter strength for arf used when creating ARFs.
*/
int arnr_strength;
/*!
* Indicates the CDF update mode
* 0: no update
* 1: update on every frame(default)
* 2: selectively update
*/
uint8_t cdf_update_mode;
/*!
* Indicates if RDO based on frame temporal dependency should be enabled.
*/
bool enable_tpl_model;
/*!
* Indicates if coding of overlay frames for filtered ALTREF frames is
* enabled.
*/
bool enable_overlay;
} AlgoCfg;
/*!\cond */
typedef struct {
// Indicates the codec bit-depth.
aom_bit_depth_t bit_depth;
// Indicates the superblock size that should be used by the encoder.
aom_superblock_size_t superblock_size;
// Indicates if loopfilter modulation should be enabled.
bool enable_deltalf_mode;
// Indicates if deblocking should be enabled.
bool enable_deblocking;
// Indicates if CDEF should be enabled.
bool enable_cdef;
// Indicates if loop restoration filter should be enabled.
bool enable_restoration;
// Indicates if wiener in loop restoration filter should be enabled.
bool enable_wiener;
// Indicates if sgrproj in loop restoration filter should be enabled.
bool enable_sgrproj;
// Indicates if pc_wiener in loop restoration filter should be enabled.
bool enable_pc_wiener;
// Indicates if nonsep wiener in loop restoration filter should be enabled.
bool enable_wiener_nonsep;
// Indicates if ccso should be enabled.
bool enable_ccso;
#if CONFIG_LF_SUB_PU
bool enable_lf_sub_pu;
// Indicates if deblocking on sub block should be enabled.
#endif // CONFIG_LF_SUB_PU
// Indicates if adaptive MVD resolution should be enabled.
bool enable_adaptive_mvd;
// Indicates if flexible MV resolution should be enabled.
bool enable_flex_mvres;
// Indicates if joint adaptive downsampling filter should be enabled.
int enable_cfl_ds_filter;
// Indicates if joint mvd coding should be enabled.
bool enable_joint_mvd;
#if CONFIG_REFINEMV
// Indicates if refineMV mode should be enabled.
bool enable_refinemv;
#endif // CONFIG_REFINEMV
#if CONFIG_DERIVED_MVD_SIGN
// Indicates if mvd sign derivation should be enabled.
bool enable_mvd_sign_derive;
#endif // CONFIG_DERIVED_MVD_SIGN
// enable temporal interpolated prediction
int enable_tip;
#if CONFIG_BAWP
// enable block adaptive weighted prediction
int enable_bawp;
#endif // CONFIG_BAWP
// enable compound weighted prediction
int enable_cwp;
#if CONFIG_D071_IMP_MSK_BLD
// enable implicit masked blending
bool enable_imp_msk_bld;
#endif // CONFIG_D071_IMP_MSK_BLD
// When enabled, video mode should be used even for single frame input.
bool force_video_mode;
// Indicates if the error resiliency features should be enabled.
bool error_resilient_mode;
// Indicates if frame parallel decoding feature should be enabled.
bool frame_parallel_decoding_mode;
// Indicates if the input should be encoded as monochrome.
bool enable_monochrome;
// When enabled, the encoder will use a full header even for still pictures.
// When disabled, a reduced header is used for still pictures.
bool full_still_picture_hdr;
// Indicates if frame order hint should be enabled or not.
bool enable_order_hint;
// Indicates if ref_frame_mvs should be enabled at the sequence level.
bool ref_frame_mvs_present;
// Indicates if ref_frame_mvs should be enabled at the frame level.
bool enable_ref_frame_mvs;
// Indicates if global motion should be enabled.
bool enable_global_motion;
// Indicates if palette should be enabled.
bool enable_palette;
unsigned int max_drl_refmvs;
#if CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
unsigned int max_drl_refbvs;
#endif // CONFIG_IBC_BV_IMPROVEMENT && CONFIG_IBC_MAX_DRL
// Indicates if ref MV Bank should be enabled.
bool enable_refmvbank;
// Indicates if optical flow refinement should be enabled
aom_opfl_refine_type enable_opfl_refine;
#if CONFIG_AFFINE_REFINEMENT
// Indicates if affine motion refinement should be enabled
aom_opfl_refine_type enable_affine_refine;
#endif // CONFIG_AFFINE_REFINEMENT
// Indicates if parity hiding should be enabled
bool enable_parity_hiding;
#if CONFIG_REFRESH_FLAG
bool enable_short_refresh_frame_flags;
#endif // CONFIG_REFRESH_FLAG
// Indicates what frame hash metadata to write
unsigned int frame_hash_metadata;
// Indicates if the hash values are written for each plane instead of the
// entire frame.
bool frame_hash_per_plane;
#if CONFIG_MRSSE
// If true, uses mean removed SSE instead of SSE to calculate distortion.
bool enable_mrsse;
#endif // CONFIG_MRSSE
} ToolCfg;
#define MAX_SUBGOP_CONFIGS 64
#define MAX_SUBGOP_STEPS 64
#define MAX_SUBGOP_LENGTH 32
typedef enum {
FRAME_TYPE_INO_VISIBLE = 'V',
FRAME_TYPE_INO_REPEAT = 'R',
FRAME_TYPE_INO_SHOWEXISTING = 'S',
FRAME_TYPE_OOO_FILTERED = 'F',
FRAME_TYPE_OOO_UNFILTERED = 'U',
} FRAME_TYPE_CODE;
typedef enum {
SUBGOP_IN_GOP_GENERIC = 0,
SUBGOP_IN_GOP_LAST,
SUBGOP_IN_GOP_FIRST,
SUBGOP_IN_GOP_CODES
} SUBGOP_IN_GOP_CODE;
typedef struct {
int8_t disp_frame_idx;
FRAME_TYPE_CODE type_code;
int8_t pyr_level;
int8_t num_references; // value of -1 indicates unspecified references
int8_t references[INTER_REFS_PER_FRAME];
int8_t refresh; // value of -1 indicates unspecified refresh
// value of 0 indicates force no refresh
// positive value indicates refresh level
} SubGOPStepCfg;
typedef struct {
int8_t num_frames;
SUBGOP_IN_GOP_CODE subgop_in_gop_code;
int8_t num_steps;
SubGOPStepCfg step[MAX_SUBGOP_STEPS];
} SubGOPCfg;
typedef struct {
bool is_user_specified;
int frames_to_key;
int gf_interval;
int size;
int num_steps;
SUBGOP_IN_GOP_CODE pos_code;
SubGOPCfg subgop_cfg;
} SubGOPInfo;
/*!
* \Holds subgop related info.
*/
typedef struct {
unsigned char is_filtered[MAX_SUBGOP_STATS_SIZE];
int pyramid_level[MAX_SUBGOP_STATS_SIZE];
int ref_frame_pyr_level[MAX_SUBGOP_STATS_SIZE][INTER_REFS_PER_FRAME];
int ref_frame_disp_order[MAX_SUBGOP_STATS_SIZE][INTER_REFS_PER_FRAME];
int is_valid_ref_frame[MAX_SUBGOP_STATS_SIZE][INTER_REFS_PER_FRAME];
int num_references[MAX_SUBGOP_STATS_SIZE];
unsigned char stat_count;
} SubGOPStatsEnc;
/*!\endcond */
/*!
* \brief Data relating to the current GF/ARF group and the
* individual frames within the group
*/
typedef struct {
/*!\cond */
unsigned char is_user_specified;
unsigned char has_overlay_for_key_frame;
unsigned char index;
FRAME_UPDATE_TYPE update_type[MAX_STATIC_GF_GROUP_LENGTH];
unsigned char arf_src_offset[MAX_STATIC_GF_GROUP_LENGTH];
// The number of frames displayed so far within the GOP at a given coding
// frame.
unsigned char cur_frame_idx[MAX_STATIC_GF_GROUP_LENGTH];
unsigned char is_filtered[MAX_STATIC_GF_GROUP_LENGTH];
int layer_depth[MAX_STATIC_GF_GROUP_LENGTH];
int arf_boost[MAX_STATIC_GF_GROUP_LENGTH];
int max_layer_depth;
// Maximum layer depth that is allowed.
// Two cases:
// - If positive, out-of-order coding is allowed, and this value impacts both
// the coding order and quality assignment of frames.
// - If zero (special case), all frames are coded in-order, and this value
// does NOT impact quality assignment of frames. Instead, quality
// assignment depends on other values like gf_cfg->gf_max_pyr_height,
// gf_cfg->gf_min_pyr_height, subgop config etc, and the qualities may still
// emulate 'layers'.
int max_layer_depth_allowed;
// Flag to indicate if the frame of type OVERLAY_UPDATE in the current GF
// interval shows existing alt-ref frame
int show_existing_alt_ref;
// This is currently only populated for AOM_Q mode
unsigned char q_val[MAX_STATIC_GF_GROUP_LENGTH];
int bit_allocation[MAX_STATIC_GF_GROUP_LENGTH];
int arf_index; // the index in the gf group of ARF, if no arf, then -1
int size;
// Current subgop cfg being used, NULL if cfg not specified
const SubGOPCfg *subgop_cfg;
/*!\endcond */
} GF_GROUP;
/*!\cond */
typedef struct {
// Track if the last frame in a GOP has higher quality.
int arf_gf_boost_lst;
} GF_STATE;
typedef struct {
int8_t num_configs;
SubGOPCfg config[MAX_SUBGOP_CONFIGS];
} SubGOPSetCfg;
/*!\endcond */
/*!
* \brief Main encoder configuration data structure.
*/
typedef struct AV1EncoderConfig {
/*!\cond */
// Configuration related to the input video.
InputCfg input_cfg;
// Configuration related to frame-dimensions.
FrameDimensionCfg frm_dim_cfg;
/*!\endcond */
/*!
* Encoder algorithm configuration.
*/
AlgoCfg algo_cfg;
/*!
* Configuration related to key-frames.
*/
KeyFrameCfg kf_cfg;
/*!
* Rate control configuration
*/
RateControlCfg rc_cfg;
/*!\cond */
// Configuration related to Quantization.
QuantizationCfg q_cfg;
// Internal frame size scaling.
ResizeCfg resize_cfg;
// Frame Super-Resolution size scaling.
SuperResCfg superres_cfg;
// SubGOP config.
const char *subgop_config_str;
// SubGOP config.
const char *subgop_config_path;
// Configuration related to encoder toolsets.
ToolCfg tool_cfg;
// Configuration related to Group of frames.
GFConfig gf_cfg;
// Tile related configuration parameters.
TileConfig tile_cfg;
// Configuration related to Tune.
TuneCfg tune_cfg;
// Configuration related to color.
ColorCfg color_cfg;
// Configuration related to decoder model.
DecoderModelCfg dec_model_cfg;
// Configuration related to reference frames.
RefFrameCfg ref_frm_cfg;
// Configuration related to unit tests.
UnitTestCfg unit_test_cfg;
// Flags related to motion mode.
MotionModeCfg motion_mode_cfg;
// Flags related to intra mode search.
IntraModeCfg intra_mode_cfg;
// Flags related to transform size/type.
TxfmSizeTypeCfg txfm_cfg;
// Flags related to compound type.
CompoundTypeCfg comp_type_cfg;
// Partition related information.
PartitionCfg part_cfg;
// Configuration related to frequency of cost update.
CostUpdateFreq cost_upd_freq;
#if CONFIG_DENOISE
// Indicates the noise level.
float noise_level;
// Indicates the the denoisers block size.
int noise_block_size;
#endif
// Bit mask to specify which tier each of the 32 possible operating points
// conforms to.
unsigned int tier_mask;
// Indicates the number of pixels off the edge of a reference frame we're
// allowed to go when forming an inter prediction.
int border_in_pixels;
// Indicates the maximum number of threads that may be used by the encoder.
int max_threads;
// Indicates the spped preset to be used.
int speed;
// Indicates the target sequence level index for each operating point(OP).
AV1_LEVEL target_seq_level_idx[MAX_NUM_OPERATING_POINTS];
// Indicates the bitstream profile to be used.
BITSTREAM_PROFILE profile;
/*!\endcond */
/*!
* Indicates the current encoder pass :
* 0 = 1 Pass encode,
* 1 = First pass of two pass,
* 2 = Second pass of two pass.
*
*/
enum aom_enc_pass pass;
/*!\cond */
// Indicates encoding mode. Currently, only GOOD mode is supported.
MODE mode;
// Indicates if row-based multi-threading should be enabled or not.
bool row_mt;
// Indicates the bitstream syntax mode. 0 indicates bitstream is saved as
// Section 5 bitstream, while 1 indicates the bitstream is saved in Annex - B
// format.
bool save_as_annexb;
/*!\endcond */
} AV1EncoderConfig;
/*!\cond */
static INLINE int is_lossless_requested(const RateControlCfg *const rc_cfg) {
return rc_cfg->best_allowed_q == 0 && rc_cfg->worst_allowed_q == 0;
}
/*!\endcond */
/*!
* \brief Encoder-side probabilities for pruning of various AV1 tools
*/
typedef struct {
/*!
* obmc_probs[i][j] is the probability of OBMC being the best motion mode for
* jth block size and ith frame update type, averaged over past frames. If
* obmc_probs[i][j] < thresh, then OBMC search is pruned.
*/
int obmc_probs[FRAME_UPDATE_TYPES][BLOCK_SIZES_ALL];
/*!
* warped_probs[i] is the probability of warped motion being the best motion
* mode for ith frame update type, averaged over past frames. If
* warped_probs[i] < thresh, then warped motion search is pruned.
*/
int warped_probs[FRAME_UPDATE_TYPES];
/*!
* tx_type_probs[i][j][k] is the probability of kth tx_type being the best
* for jth transform size and ith frame update type, averaged over past
* frames. If tx_type_probs[i][j][k] < thresh, then transform search for that
* type is pruned.
*/
int tx_type_probs[FRAME_UPDATE_TYPES][TX_SIZES_ALL][TX_TYPES];
} FrameProbInfo;
#if CONFIG_ENTROPY_STATS
typedef struct {
#if CONFIG_VQ_MVD_CODING
unsigned int amvd_indices_cnts[CDF_SIZE(MAX_AMVD_INDEX)]; // placeholder
#else
unsigned int classes_cnts[NUM_MV_PRECISIONS]
[CDF_SIZE(MV_CLASSES)]; // placeholder
unsigned int amvd_classes_cnts[CDF_SIZE(MV_CLASSES)]; // placeholder
unsigned int class0_fp_cnts[CLASS0_SIZE][3][CDF_SIZE(2)]; // placeholder
unsigned int fp_cnts[3][CDF_SIZE(2)]; // placeholder
unsigned int class0_hp_cnts[CDF_SIZE(2)]; // placeholder
unsigned int hp_cnts[CDF_SIZE(2)]; // placeholder
unsigned int class0_cnts[CDF_SIZE(CLASS0_SIZE)]; // placeholder
unsigned int bits_cnts[MV_OFFSET_BITS][CDF_SIZE(2)]; // placeholder
#endif // CONFIG_VQ_MVD_CODING
unsigned int sign_cnts[CDF_SIZE(2)]; // placeholder
} nmv_component_count;
typedef struct {
#if CONFIG_VQ_MVD_CODING
unsigned int joint_shell_class_cnts[NUM_MV_PRECISIONS][CDF_SIZE(
MAX_NUM_SHELL_CLASS)]; // placeholder
unsigned int shell_offset_low_class_cnts[2][CDF_SIZE(2)]; // placeholder
unsigned int shell_offset_class2_cnts[3][CDF_SIZE(2)]; // // placeholder
unsigned int shell_offset_other_class_cnts[NUM_CTX_CLASS_OFFSETS]
[SHELL_INT_OFFSET_BIT]
[CDF_SIZE(2)]; // placeholder
unsigned int col_mv_greter_flags_cnts[NUM_CTX_COL_MV_GTX]
[CDF_SIZE(2)]; // placeholder
unsigned int col_mv_index_cnts[NUM_CTX_COL_MV_INDEX]
[CDF_SIZE(2)]; // placeholder
#else
unsigned int joints_cnts[CDF_SIZE(MV_JOINTS)]; // placeholder
#endif // CONFIG_VQ_MVD_CODING
unsigned int amvd_joints_cnts[CDF_SIZE(MV_JOINTS)]; // placeholder
nmv_component_count mvd_comp_cnts[2];
} nmv_context_count;
#endif // CONFIG_ENTROPY_STATS
/*!\cond */
typedef struct FRAME_COUNTS {
// Note: This structure should only contain 'unsigned int' fields, or
// aggregates built solely from 'unsigned int' fields/elements
#if CONFIG_ENTROPY_STATS
// TODO(urvang, alican): The below are placeholder counters for missing CDF
// entries for memory optimization code. These are not currently incremented
// at the encoder to be able to train CDF entries with
// "aom_entropy_optimizers", these counters will need be incremented properly.
unsigned int delta_q_cnts[CDF_SIZE(DELTA_Q_PROBS + 1)]; // placeholder
unsigned int delta_lf_multi_cnts[FRAME_LF_COUNT][CDF_SIZE(DELTA_LF_PROBS +
1)]; // placeholder
unsigned int delta_lf_cnts[CDF_SIZE(DELTA_LF_PROBS + 1)]; // placeholder
unsigned int stx_cnts[2][TX_SIZES][CDF_SIZE(STX_TYPES)]; // placeholder
#if CONFIG_IST_SET_FLAG
#if CONFIG_INTRA_TX_IST_PARSE
unsigned int stx_set_cnts[CDF_SIZE(IST_DIR_SIZE)]; // placeholder
#else
unsigned int stx_set_cnts[IST_DIR_SIZE]
[CDF_SIZE(IST_DIR_SIZE)]; // placeholder
#endif
#endif // CONFIG_IST_SET_FLAG
unsigned int pb_mv_mpp_flag_cnts[NUM_MV_PREC_MPP_CONTEXT]
[CDF_SIZE(2)]; // placeholder
unsigned int pb_mv_precision_cnts[MV_PREC_DOWN_CONTEXTS]
[NUM_PB_FLEX_QUALIFIED_MAX_PREC][CDF_SIZE(
FLEX_MV_COSTS_SIZE)]; // placeholder
unsigned int cctx_type_cnts[EXT_TX_SIZES][CCTX_CONTEXTS]
[CDF_SIZE(CCTX_TYPES)]; // placeholder
unsigned int seg_tree_cnts[CDF_SIZE(MAX_SEGMENTS)]; // placeholder
unsigned int segment_pred_cnts[SEG_TEMPORAL_PRED_CTXS]
[CDF_SIZE(2)]; // placeholder
unsigned int spatial_pred_seg_tree_cnts[SPATIAL_PREDICTION_PROBS][CDF_SIZE(
MAX_SEGMENTS)]; // placeholder
nmv_context_count nmvc_cnts; // For MVD
nmv_context_count ndvc_cnts; // For block vector of IBC mode
#if CONFIG_AIMC
unsigned int y_mode_set_idx[INTRA_MODE_SETS];
unsigned int y_mode_idx_0[Y_MODE_CONTEXTS][FIRST_MODE_COUNT];
unsigned int y_mode_idx_1[Y_MODE_CONTEXTS][SECOND_MODE_COUNT];
unsigned int uv_mode[UV_MODE_CONTEXTS][UV_INTRA_MODES - 1];
unsigned int cfl_mode[CFL_CONTEXTS][2];
#else
unsigned int kf_y_mode[KF_MODE_CONTEXTS][KF_MODE_CONTEXTS][INTRA_MODES];
unsigned int angle_delta[DIRECTIONAL_MODES][2 * MAX_ANGLE_DELTA + 1];
unsigned int y_mode[BLOCK_SIZE_GROUPS][INTRA_MODES];
unsigned int uv_mode[CFL_ALLOWED_TYPES][INTRA_MODES][UV_INTRA_MODES];
#endif
unsigned int fsc_mode[FSC_MODE_CONTEXTS][FSC_BSIZE_CONTEXTS][FSC_MODES];
#if CONFIG_IMPROVED_INTRA_DIR_PRED
unsigned int mrl_index[MRL_INDEX_CONTEXTS][MRL_LINE_NUMBER];
#else
unsigned int mrl_index[MRL_LINE_NUMBER];
#endif // CONFIG_IMPROVED_INTRA_DIR_PRED
unsigned int cfl_index[CFL_TYPE_COUNT];
#if CONFIG_REFINEMV
unsigned int refinemv_flag_cnts[NUM_REFINEMV_CTX]
[REFINEMV_NUM_MODES]; // placeholder
#endif // CONFIG_REFINEMV
#if CONFIG_SKIP_MODE_ENHANCEMENT
unsigned int skip_drl_cnts[3][2];
#endif // CONFIG_SKIP_MODE_ENHANCEMENT
unsigned int inter_warp_cnts[WARPMV_MODE_CONTEXT][2]; // placeholder
unsigned int cfl_sign[CFL_JOINT_SIGNS];
unsigned int cfl_alpha[CFL_ALPHA_CONTEXTS][CFL_ALPHABET_SIZE];
#if CONFIG_PALETTE_IMPROVEMENTS
unsigned int identity_row_y_cnts[PALETTE_ROW_FLAG_CONTEXTS]
[3]; // placeholder
unsigned int identity_row_uv_cnts[PALETTE_ROW_FLAG_CONTEXTS]
[3]; // placeholder
#if CONFIG_PALETTE_LINE_COPY
unsigned int palette_direction_cnts[2]; // placeholder
#endif // CONFIG_PALETTE_LINE_COPY
#endif // CONFIG_PALETTE_IMPROVEMENTS
unsigned int palette_y_mode[PALATTE_BSIZE_CTXS][PALETTE_Y_MODE_CONTEXTS][2];
unsigned int palette_uv_mode[PALETTE_UV_MODE_CONTEXTS][2];
unsigned int palette_y_size[PALATTE_BSIZE_CTXS][PALETTE_SIZES];
unsigned int palette_uv_size[PALATTE_BSIZE_CTXS][PALETTE_SIZES];
unsigned int palette_y_color_index[PALETTE_SIZES]
[PALETTE_COLOR_INDEX_CONTEXTS]
[PALETTE_COLORS];
unsigned int palette_uv_color_index[PALETTE_SIZES]
[PALETTE_COLOR_INDEX_CONTEXTS]
[PALETTE_COLORS];
#if CONFIG_EXTENDED_SDP
unsigned int region_type[INTER_SDP_BSIZE_GROUP][REGION_TYPES];
#endif // CONFIG_EXTENDED_SDP
#if CONFIG_EXT_RECUR_PARTITIONS
unsigned int do_split[PARTITION_STRUCTURE_NUM][PARTITION_CONTEXTS][2];
unsigned int do_square_split[PARTITION_STRUCTURE_NUM][SQUARE_SPLIT_CONTEXTS]
[2];
unsigned int rect_type[PARTITION_STRUCTURE_NUM][PARTITION_CONTEXTS][2];
unsigned int do_ext_partition[PARTITION_STRUCTURE_NUM][NUM_RECT_PARTS]
[PARTITION_CONTEXTS][2];
unsigned int do_uneven_4way_partition[PARTITION_STRUCTURE_NUM][NUM_RECT_PARTS]
[PARTITION_CONTEXTS][2];
unsigned int uneven_4way_partition_type[PARTITION_STRUCTURE_NUM]
[NUM_RECT_PARTS][PARTITION_CONTEXTS]
[NUM_UNEVEN_4WAY_PARTS];
#else
unsigned int partition[PARTITION_STRUCTURE_NUM][PARTITION_CONTEXTS]
[EXT_PARTITION_TYPES];
#endif // CONFIG_EXT_RECUR_PARTITIONS
unsigned int txb_skip[TOKEN_CDF_Q_CTXS][TX_SIZES][TXB_SKIP_CONTEXTS][2];
#if CONFIG_CONTEXT_DERIVATION
unsigned int v_txb_skip[TOKEN_CDF_Q_CTXS][V_TXB_SKIP_CONTEXTS][2];
#endif
unsigned int eob_extra[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[EOB_COEF_CONTEXTS][2];
#if CONFIG_IMPROVEIDTX_CTXS
unsigned int dc_sign[TOKEN_CDF_Q_CTXS][PLANE_TYPES][DC_SIGN_GROUPS]
[DC_SIGN_CONTEXTS][2];
#else
unsigned int dc_sign[TOKEN_CDF_Q_CTXS][PLANE_TYPES][DC_SIGN_CONTEXTS][2];
#endif // CONFIG_IMPROVEIDTX_CTXS
#if CONFIG_CONTEXT_DERIVATION
unsigned int v_dc_sign[TOKEN_CDF_Q_CTXS][CROSS_COMPONENT_CONTEXTS]
[DC_SIGN_CONTEXTS][2];
unsigned int v_ac_sign[TOKEN_CDF_Q_CTXS][CROSS_COMPONENT_CONTEXTS][2];
#endif // CONFIG_CONTEXT_DERIVATION
#if CONFIG_IMPROVEIDTX_CTXS
unsigned int coeff_base_bob_multi[TOKEN_CDF_Q_CTXS][TX_SIZES]
[SIG_COEF_CONTEXTS_BOB][NUM_BASE_LEVELS + 1];
unsigned int idtx_sign[TOKEN_CDF_Q_CTXS][TX_SIZES][IDTX_SIGN_CONTEXTS][2];
unsigned int coeff_lps_skip[TX_SIZES][BR_CDF_SIZE - 1][IDTX_LEVEL_CONTEXTS]
[2];
unsigned int coeff_lps_multi_skip[TOKEN_CDF_Q_CTXS][TX_SIZES]
[IDTX_LEVEL_CONTEXTS][BR_CDF_SIZE];
unsigned int coeff_base_multi_skip[TOKEN_CDF_Q_CTXS][TX_SIZES]
[IDTX_SIG_COEF_CONTEXTS]
[NUM_BASE_LEVELS + 2];
#else
unsigned int idtx_sign[TOKEN_CDF_Q_CTXS][IDTX_SIGN_CONTEXTS][2];
unsigned int coeff_lps_skip[BR_CDF_SIZE - 1][IDTX_LEVEL_CONTEXTS][2];
unsigned int coeff_lps_multi_skip[TOKEN_CDF_Q_CTXS][IDTX_LEVEL_CONTEXTS]
[BR_CDF_SIZE];
unsigned int coeff_base_multi_skip[TOKEN_CDF_Q_CTXS][IDTX_SIG_COEF_CONTEXTS]
[NUM_BASE_LEVELS + 2];
#endif // CONFIG_IMPROVEIDTX_CTXS
#if !CONFIG_LCCHROMA
unsigned int coeff_lps[TX_SIZES][PLANE_TYPES][BR_CDF_SIZE - 1][LEVEL_CONTEXTS]
[2];
#endif // !CONFIG_LCCHROMA
unsigned int eob_flag[TX_SIZES][PLANE_TYPES][EOB_COEF_CONTEXTS][2];
#if !CONFIG_IMPROVEIDTX_CTXS
unsigned int coeff_base_bob_multi[TOKEN_CDF_Q_CTXS][SIG_COEF_CONTEXTS_BOB]
[NUM_BASE_LEVELS + 1];
#endif // !CONFIG_IMPROVEIDTX_CTXS
#if CONFIG_EOB_POS_LUMA
unsigned int eob_multi16[TOKEN_CDF_Q_CTXS][EOB_PLANE_CTXS][EOB_MAX_SYMS - 6];
unsigned int eob_multi32[TOKEN_CDF_Q_CTXS][EOB_PLANE_CTXS][EOB_MAX_SYMS - 5];
unsigned int eob_multi64[TOKEN_CDF_Q_CTXS][EOB_PLANE_CTXS][EOB_MAX_SYMS - 4];
unsigned int eob_multi128[TOKEN_CDF_Q_CTXS][EOB_PLANE_CTXS][EOB_MAX_SYMS - 3];
unsigned int eob_multi256[TOKEN_CDF_Q_CTXS][EOB_PLANE_CTXS][EOB_MAX_SYMS - 2];
unsigned int eob_multi512[TOKEN_CDF_Q_CTXS][EOB_PLANE_CTXS][EOB_MAX_SYMS - 1];
unsigned int eob_multi1024[TOKEN_CDF_Q_CTXS][EOB_PLANE_CTXS][EOB_MAX_SYMS];
#else
unsigned int eob_multi16[TOKEN_CDF_Q_CTXS][PLANE_TYPES][EOB_MAX_SYMS - 6];
unsigned int eob_multi32[TOKEN_CDF_Q_CTXS][PLANE_TYPES][EOB_MAX_SYMS - 5];
unsigned int eob_multi64[TOKEN_CDF_Q_CTXS][PLANE_TYPES][EOB_MAX_SYMS - 4];
unsigned int eob_multi128[TOKEN_CDF_Q_CTXS][PLANE_TYPES][EOB_MAX_SYMS - 3];
unsigned int eob_multi256[TOKEN_CDF_Q_CTXS][PLANE_TYPES][EOB_MAX_SYMS - 2];
unsigned int eob_multi512[TOKEN_CDF_Q_CTXS][PLANE_TYPES][EOB_MAX_SYMS - 1];
unsigned int eob_multi1024[TOKEN_CDF_Q_CTXS][PLANE_TYPES][EOB_MAX_SYMS];
#endif // CONFIG_EOB_POS_LUMA
#if CONFIG_LCCHROMA
unsigned int coeff_lps_lf[BR_CDF_SIZE - 1][LF_LEVEL_CONTEXTS][2];
unsigned int coeff_base_lf_multi[TOKEN_CDF_Q_CTXS][TX_SIZES]
[LF_SIG_COEF_CONTEXTS][LF_BASE_SYMBOLS];
unsigned int coeff_base_lf_eob_multi[TOKEN_CDF_Q_CTXS][TX_SIZES]
[SIG_COEF_CONTEXTS_EOB]
[LF_BASE_SYMBOLS - 1];
unsigned int coeff_lps_lf_multi[TOKEN_CDF_Q_CTXS][LF_LEVEL_CONTEXTS]
[BR_CDF_SIZE];
unsigned int coeff_lps_multi[TOKEN_CDF_Q_CTXS][LEVEL_CONTEXTS][BR_CDF_SIZE];
#else
unsigned int coeff_lps_lf[PLANE_TYPES][BR_CDF_SIZE - 1][LF_LEVEL_CONTEXTS][2];
unsigned int coeff_base_lf_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[LF_SIG_COEF_CONTEXTS][LF_BASE_SYMBOLS];
unsigned int coeff_base_lf_eob_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[SIG_COEF_CONTEXTS_EOB]
[LF_BASE_SYMBOLS - 1];
unsigned int coeff_lps_lf_multi[TOKEN_CDF_Q_CTXS][PLANE_TYPES]
[LF_LEVEL_CONTEXTS][BR_CDF_SIZE];
unsigned int coeff_lps_multi[TOKEN_CDF_Q_CTXS][PLANE_TYPES][LEVEL_CONTEXTS]
[BR_CDF_SIZE];
#endif // CONFIG_LCCHROMA
unsigned int coeff_base_ph_multi[TOKEN_CDF_Q_CTXS][COEFF_BASE_PH_CONTEXTS]
[NUM_BASE_LEVELS + 2];
unsigned int coeff_lps_ph[BR_CDF_SIZE - 1][COEFF_BR_PH_CONTEXTS][2];
unsigned int coeff_lps_ph_multi[TOKEN_CDF_Q_CTXS][COEFF_BR_PH_CONTEXTS]
[BR_CDF_SIZE];
#if CONFIG_LCCHROMA
// LF Base, BR UV
unsigned int coeff_base_lf_multi_uv[TOKEN_CDF_Q_CTXS][LF_SIG_COEF_CONTEXTS_UV]
[LF_BASE_SYMBOLS];
unsigned int coeff_lps_lf_multi_uv[TOKEN_CDF_Q_CTXS][LF_LEVEL_CONTEXTS_UV]
[BR_CDF_SIZE];
// HF Base, BR UV
unsigned int coeff_base_multi_uv[TOKEN_CDF_Q_CTXS][SIG_COEF_CONTEXTS_UV]
[NUM_BASE_LEVELS + 2];
unsigned int coeff_lps_multi_uv[TOKEN_CDF_Q_CTXS][LEVEL_CONTEXTS_UV]
[BR_CDF_SIZE];
// LF, HF EOB UV
unsigned int coeff_base_lf_eob_multi_uv[TOKEN_CDF_Q_CTXS]
[SIG_COEF_CONTEXTS_EOB]
[LF_BASE_SYMBOLS - 1];
unsigned int coeff_base_eob_multi_uv[TOKEN_CDF_Q_CTXS][SIG_COEF_CONTEXTS_EOB]
[NUM_BASE_LEVELS + 1];
unsigned int coeff_lps[TX_SIZES][BR_CDF_SIZE - 1][LEVEL_CONTEXTS][2];
unsigned int coeff_base_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][SIG_COEF_CONTEXTS]
[NUM_BASE_LEVELS + 2];
unsigned int coeff_base_eob_multi[TOKEN_CDF_Q_CTXS][TX_SIZES]
[SIG_COEF_CONTEXTS_EOB][NUM_BASE_LEVELS + 1];
#else
unsigned int coeff_base_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[SIG_COEF_CONTEXTS][NUM_BASE_LEVELS + 2];
unsigned int coeff_base_eob_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[SIG_COEF_CONTEXTS_EOB][NUM_BASE_LEVELS + 1];
#endif // CONFIG_LCCHROMA
unsigned int inter_single_mode[INTER_SINGLE_MODE_CONTEXTS]
[INTER_SINGLE_MODES];
unsigned int warp_ref_cnts[3][WARP_REF_CONTEXTS][2]; // placeholder
unsigned int drl_mode[3][DRL_MODE_CONTEXTS][2];
#if CONFIG_SKIP_MODE_ENHANCEMENT || CONFIG_OPTIMIZE_CTX_TIP_WARP
unsigned int skip_drl_mode[3][2];
#endif // CONFIG_SKIP_MODE_ENHANCEMENT || CONFIG_OPTIMIZE_CTX_TIP_WARP
unsigned int
jmvd_scale_mode_cnts[JOINT_NEWMV_SCALE_FACTOR_CNT]; // placeholder
unsigned int
jmvd_amvd_scale_mode_cnts[JOINT_AMVD_SCALE_FACTOR_CNT]; // placeholder
unsigned int cwp_idx_cnts[MAX_CWP_CONTEXTS][MAX_CWP_NUM - 1]
[2]; // placeholder
unsigned int use_optflow[INTER_COMPOUND_MODE_CONTEXTS][2];
unsigned int inter_compound_mode[INTER_COMPOUND_MODE_CONTEXTS]
[INTER_COMPOUND_REF_TYPES];
#if CONFIG_WEDGE_MOD_EXT
#if CONFIG_D149_CTX_MODELING_OPT
unsigned int wedge_angle_dir_cnt[2];
unsigned int wedge_angle_0_cnt[H_WEDGE_ANGLES];
unsigned int wedge_angle_1_cnt[H_WEDGE_ANGLES];
unsigned int wedge_dist_cnt[NUM_WEDGE_DIST];
unsigned int wedge_dist2_cnt[NUM_WEDGE_DIST - 1];
#else
unsigned int wedge_angle_dir_cnt[BLOCK_SIZES_ALL][2];
unsigned int wedge_angle_0_cnt[BLOCK_SIZES_ALL][H_WEDGE_ANGLES];
unsigned int wedge_angle_1_cnt[BLOCK_SIZES_ALL][H_WEDGE_ANGLES];
unsigned int wedge_dist_cnt[BLOCK_SIZES_ALL][NUM_WEDGE_DIST];
unsigned int wedge_dist2_cnt[BLOCK_SIZES_ALL][NUM_WEDGE_DIST - 1];
#endif // CONFIG_D149_CTX_MODELING_OPT
#else
unsigned int wedge_idx[BLOCK_SIZES_ALL][16];
#endif // CONFIG_WEDGE_MOD_EXT
unsigned int interintra[BLOCK_SIZE_GROUPS][2];
unsigned int interintra_mode[BLOCK_SIZE_GROUPS][INTERINTRA_MODES];
#if CONFIG_D149_CTX_MODELING_OPT
unsigned int wedge_interintra[2];
#else
unsigned int wedge_interintra[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_D149_CTX_MODELING_OPT
unsigned int compound_type[MASKED_COMPOUND_TYPES];
#else
unsigned int compound_type[BLOCK_SIZES_ALL][MASKED_COMPOUND_TYPES];
#endif // CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_D149_CTX_MODELING_OPT
unsigned int obmc[2];
#else
unsigned int obmc[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_D149_CTX_MODELING_OPT && !NO_D149_FOR_WARPED_CAUSAL
unsigned int warped_causal[2];
#else
unsigned int warped_causal[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT && !NO_D149_FOR_WARPED_CAUSAL
#if CONFIG_D149_CTX_MODELING_OPT
unsigned int warped_causal_warpmv[CDF_SIZE(2)];
#else
unsigned int warped_causal_warpmv[BLOCK_SIZES_ALL][CDF_SIZE(2)];
#endif // CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_D149_CTX_MODELING_OPT
unsigned int warpmv_with_mvd_flag[CDF_SIZE(2)];
#else
unsigned int warpmv_with_mvd_flag[BLOCK_SIZES_ALL][CDF_SIZE(2)];
#endif // CONFIG_D149_CTX_MODELING_OPT
#if CONFIG_D149_CTX_MODELING_OPT
unsigned int warp_delta[2];
#else
unsigned int warp_delta[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT
unsigned int warp_delta_param[2][WARP_DELTA_NUM_SYMBOLS];
#if CONFIG_OPTIMIZE_CTX_TIP_WARP
unsigned int warp_extend[WARP_EXTEND_CTX][2];
#else
unsigned int warp_extend[WARP_EXTEND_CTXS1][WARP_EXTEND_CTXS2][2];
#endif // CONFIG_OPTIMIZE_CTX_TIP_WARP
#if CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT
unsigned int intra_inter[INTRA_INTER_SKIP_TXFM_CONTEXTS][INTRA_INTER_CONTEXTS]
[2];
#else
unsigned int intra_inter[INTRA_INTER_CONTEXTS][2];
#endif // CONFIG_CONTEXT_DERIVATION && !CONFIG_SKIP_TXFM_OPT
int8_t cwp_idx[MAX_CWP_NUM - 1][2];
#if CONFIG_BAWP
unsigned int bawp[2];
#endif // CONFIG_BAWP
unsigned int tip_ref[TIP_CONTEXTS][2];
#if CONFIG_OPTIMIZE_CTX_TIP_WARP
unsigned int tip_pred_mode_cnt[TIP_PRED_MODES];
#endif // CONFIG_OPTIMIZE_CTX_TIP_WARP
unsigned int comp_inter[COMP_INTER_CONTEXTS][2];
unsigned int single_ref[REF_CONTEXTS][INTER_REFS_PER_FRAME - 1][2];
#if CONFIG_SAME_REF_COMPOUND
unsigned int comp_ref0[REF_CONTEXTS][INTER_REFS_PER_FRAME - 1][2];
unsigned int comp_ref1[REF_CONTEXTS][COMPREF_BIT_TYPES]
[INTER_REFS_PER_FRAME - 1][2];
#else
unsigned int comp_ref0[REF_CONTEXTS][INTER_REFS_PER_FRAME - 2][2];
unsigned int comp_ref1[REF_CONTEXTS][COMPREF_BIT_TYPES]
[INTER_REFS_PER_FRAME - 2][2];
#endif // CONFIG_SAME_REF_COMPOUND
#if CONFIG_NEW_CONTEXT_MODELING
unsigned int intrabc[INTRABC_CONTEXTS][2];
#else
unsigned int intrabc[2];
#endif // CONFIG_NEW_CONTEXT_MODELING
#if CONFIG_IBC_BV_IMPROVEMENT
unsigned int intrabc_mode[2];
unsigned int intrabc_drl_idx[MAX_REF_BV_STACK_SIZE - 1][2];
#endif
#if CONFIG_MORPH_PRED
unsigned int morph_pred_count[3][2];
#endif // CONFIG_MORPH_PRED
#if CONFIG_NEW_TX_PARTITION
#if CONFIG_TX_PARTITION_CTX
#if CONFIG_IMPROVEIDTX_CTXS
unsigned int txfm_do_partition[FSC_MODES][2][TXFM_SPLIT_GROUP][2];
unsigned int txfm_4way_partition_type[FSC_MODES][2][TXFM_PARTITION_GROUP - 1]
[TX_PARTITION_TYPE_NUM];
#else
unsigned int txfm_do_partition[2][TXFM_SPLIT_GROUP][2];
unsigned int txfm_4way_partition_type[2][TXFM_PARTITION_GROUP - 1]
[TX_PARTITION_TYPE_NUM];
#endif // CONFIG_IMPROVEIDTX_CTXS
#else
unsigned int intra_4way_txfm_partition[2][TX_SIZE_CONTEXTS][4];
unsigned int intra_2way_txfm_partition[2];
unsigned int inter_4way_txfm_partition[2][TXFM_PARTITION_INTER_CONTEXTS][4];
unsigned int inter_2way_txfm_partition[2];
#endif // CONFIG_TX_PARTITION_CTX
#else
unsigned int txfm_partition[TXFM_PARTITION_CONTEXTS][2];
unsigned int intra_tx_size[MAX_TX_CATS][TX_SIZE_CONTEXTS][MAX_TX_DEPTH + 1];
#endif // CONFIG_NEW_TX_PARTITION
unsigned int skip_mode[SKIP_MODE_CONTEXTS][2];
unsigned int skip_txfm[SKIP_CONTEXTS][2];
unsigned int comp_group_idx[COMP_GROUP_IDX_CONTEXTS][2];
unsigned int delta_q[DELTA_Q_PROBS][2];
unsigned int delta_lf_multi[FRAME_LF_COUNT][DELTA_LF_PROBS][2];
unsigned int delta_lf[DELTA_LF_PROBS][2];
unsigned int switchable_flex_restore_cnts[MAX_LR_FLEX_SWITCHABLE_BITS]
[MAX_MB_PLANE][2]; // placeholder
unsigned int default_ccso_cnts[3][2];
unsigned int inter_ext_tx[EXT_TX_SETS_INTER][EOB_TX_CTXS][EXT_TX_SIZES]
[TX_TYPES];
#if CONFIG_INTRA_TX_IST_PARSE
unsigned int intra_ext_tx[EXT_TX_SETS_INTRA][EXT_TX_SIZES][TX_TYPES];
#else
unsigned int intra_ext_tx[EXT_TX_SETS_INTRA][EXT_TX_SIZES][INTRA_MODES]
[TX_TYPES];
#endif // CONFIG_INTRA_TX_IST_PARSE
#if CONFIG_TX_TYPE_FLEX_IMPROVE
unsigned int tx_ext_32[2][2];
unsigned int intra_ext_tx_short_side[EXT_TX_SIZES][4];
unsigned int inter_ext_tx_short_side[EOB_TX_CTXS][EXT_TX_SIZES][4];
#endif // CONFIG_TX_TYPE_FLEX_IMPROVE
unsigned int cctx_type[EXT_TX_SIZES][CCTX_CONTEXTS][CCTX_TYPES];
unsigned int filter_intra_mode[FILTER_INTRA_MODES];
#if CONFIG_D149_CTX_MODELING_OPT
unsigned int filter_intra[2];
#else
unsigned int filter_intra[BLOCK_SIZES_ALL][2];
#endif // CONFIG_D149_CTX_MODELING_OPT
unsigned int switchable_restore[RESTORE_SWITCHABLE_TYPES];
unsigned int wiener_restore[2];
unsigned int sgrproj_restore[2];
unsigned int wienerns_4part_cnts[WIENERNS_4PART_CTX_MAX]
[CDF_SIZE(4)]; // placeholder
unsigned int wienerns_length[2]; // placeholder
unsigned int merged_param_cnts[2]; // placeholder
unsigned int pc_wiener_restore[2];
unsigned int wienerns_restore[2];
#endif // CONFIG_ENTROPY_STATS
unsigned int switchable_interp[SWITCHABLE_FILTER_CONTEXTS]
[SWITCHABLE_FILTERS];
} FRAME_COUNTS;
#define INTER_MODE_RD_DATA_OVERALL_SIZE 6400
typedef struct {
int ready;
double a;
double b;
double dist_mean;
double ld_mean;
double sse_mean;
double sse_sse_mean;
double sse_ld_mean;
int num;
double dist_sum;
double ld_sum;
double sse_sum;
double sse_sse_sum;
double sse_ld_sum;
} InterModeRdModel;
typedef struct {
int idx;
int64_t rd;
} RdIdxPair;
// TODO(angiebird): This is an estimated size. We still need to figure what is
// the maximum number of modes.
#define MAX_INTER_MODES 1536 * 6
// TODO(any): rename this struct to something else. There is already another
// struct called inter_mode_info, which makes this terribly confusing.
/*!\endcond */
/*!
* \brief Struct used to hold inter mode data for fast tx search.
*
* This struct is used to perform a full transform search only on winning
* candidates searched with an estimate for transform coding RD.
*/
typedef struct inter_modes_info {
/*!
* The number of inter modes for which data was stored in each of the
* following arrays.
*/
int num;
/*!
* Mode info struct for each of the candidate modes.
*/
MB_MODE_INFO mbmi_arr[MAX_INTER_MODES];
/*!
* The rate for each of the candidate modes.
*/
int mode_rate_arr[MAX_INTER_MODES];
/*!
* The sse of the predictor for each of the candidate modes.
*/
int64_t sse_arr[MAX_INTER_MODES];
/*!
* The estimated rd of the predictor for each of the candidate modes.
*/
int64_t est_rd_arr[MAX_INTER_MODES];
/*!
* The rate and mode index for each of the candidate modes.
*/
RdIdxPair rd_idx_pair_arr[MAX_INTER_MODES];
/*!
* The full rd stats for each of the candidate modes.
*/
RD_STATS rd_cost_arr[MAX_INTER_MODES];
/*!
* The full rd stats of luma only for each of the candidate modes.
*/
RD_STATS rd_cost_y_arr[MAX_INTER_MODES];
/*!
* The full rd stats of chroma only for each of the candidate modes.
*/
RD_STATS rd_cost_uv_arr[MAX_INTER_MODES];
} InterModesInfo;
/*!\cond */
typedef struct {
// TODO(kyslov): consider changing to 64bit
// This struct is used for computing variance in choose_partitioning(), where
// the max number of samples within a superblock is 32x32 (with 4x4 avg).
// With 8bit bitdepth, uint32_t is enough for sum_square_error (2^8 * 2^8 * 32
// * 32 = 2^26). For high bitdepth we need to consider changing this to 64 bit
uint32_t sum_square_error;
int32_t sum_error;
int log2_count;
int variance;
} VPartVar;
typedef struct {
VPartVar none;
VPartVar horz[2];
VPartVar vert[2];
} VPVariance;
typedef struct {
VPVariance part_variances;
VPartVar split[4];
} VP4x4;
typedef struct {
VPVariance part_variances;
VP4x4 split[4];
} VP8x8;
typedef struct {
VPVariance part_variances;
VP8x8 split[4];
} VP16x16;
typedef struct {
VPVariance part_variances;
VP16x16 split[4];
} VP32x32;
typedef struct {
VPVariance part_variances;
VP32x32 split[4];
} VP64x64;
typedef struct {
VPVariance part_variances;
VP64x64 *split;
} VP128x128;
/*!\endcond */
/*!
* \brief Thresholds for variance based partitioning.
*/
typedef struct {
/*!
* If block variance > threshold, then that block is forced to split.
* thresholds[0] - threshold for 128x128;
* thresholds[1] - threshold for 64x64;
* thresholds[2] - threshold for 32x32;
* thresholds[3] - threshold for 16x16;
* thresholds[4] - threshold for 8x8;
*/
int64_t thresholds[5];
/*!
* MinMax variance threshold for 8x8 sub blocks of a 16x16 block. If actual
* minmax > threshold_minmax, the 16x16 is forced to split.
*/
int64_t threshold_minmax;
} VarBasedPartitionInfo;
/*!
* \brief Encoder parameters for synchronization of row based multi-threading
*/
typedef struct {
#if CONFIG_MULTITHREAD
/**
* \name Synchronization objects for top-right dependency.
*/
/**@{*/
pthread_mutex_t *mutex_; /*!< Mutex lock object */
pthread_cond_t *cond_; /*!< Condition variable */
/**@}*/
#endif // CONFIG_MULTITHREAD
/*!
* Buffer to store the superblock whose encoding is complete.
* cur_col[i] stores the number of superblocks which finished encoding in the
* ith superblock row.
*/
int *num_finished_cols;
/*!
* Number of extra superblocks of the top row to be complete for encoding
* of the current superblock to start. A value of 1 indicates top-right
* dependency.
*/
int sync_range;
/*!
* Number of superblock rows.
*/
int rows;
/*!
* The superblock row (in units of MI blocks) to be processed next.
*/
int next_mi_row;
/*!
* Number of threads processing the current tile.
*/
int num_threads_working;
} AV1EncRowMultiThreadSync;
/*!\cond */
// TODO(jingning) All spatially adaptive variables should go to TileDataEnc.
typedef struct TileDataEnc {
TileInfo tile_info;
DECLARE_ALIGNED(16, FRAME_CONTEXT, tctx);
FRAME_CONTEXT *row_ctx;
uint8_t allow_update_cdf;
InterModeRdModel inter_mode_rd_models[BLOCK_SIZES_ALL];
AV1EncRowMultiThreadSync row_mt_sync;
MV firstpass_top_mv;
} TileDataEnc;
typedef struct RD_COUNTS {
int64_t comp_pred_diff[REFERENCE_MODES];
int compound_ref_used_flag;
int skip_mode_used_flag;
int tx_type_used[TX_SIZES_ALL][TX_TYPES];
int obmc_used[BLOCK_SIZES_ALL][2];
int warped_used[2];
} RD_COUNTS;
typedef struct ThreadData {
MACROBLOCK mb;
RD_COUNTS rd_counts;
FRAME_COUNTS *counts;
PC_TREE_SHARED_BUFFERS shared_coeff_buf;
SIMPLE_MOTION_DATA_TREE *sms_tree;
SIMPLE_MOTION_DATA_TREE *sms_root;
#if CONFIG_EXT_RECUR_PARTITIONS
struct SimpleMotionDataBufs *sms_bufs;
BLOCK_SIZE sb_size;
#endif // CONFIG_EXT_RECUR_PARTITIONS
uint32_t *hash_value_buffer[2][2];
OBMCBuffer obmc_buffer;
PALETTE_BUFFER *palette_buffer;
CompoundTypeRdBuffers comp_rd_buffer;
CONV_BUF_TYPE *tmp_conv_dst;
// Temporary buffers used to store the OPFL MV offsets.
int *opfl_vxy_bufs;
// Temporary buffers used to store the OPFL gradient information.
int16_t *opfl_gxy_bufs;
// Temporary buffers used to store intermediate prediction data calculated
// during the OPFL/DMVR.
uint16_t *opfl_dst_bufs;
uint16_t *tmp_pred_bufs[2];
// Buffer used for upsampled prediction.
uint16_t *upsample_pred;
int intrabc_used;
int deltaq_used;
FRAME_CONTEXT *tctx;
MB_MODE_INFO_EXT *mbmi_ext;
VP64x64 *vt64x64;
int32_t num_64x64_blocks;
// Buffer used to store quantized and dequantized transform coefficients.
coeff_info *coef_info;
PICK_MODE_CONTEXT *firstpass_ctx;
#if CONFIG_ML_PART_SPLIT
void *partition_model;
#endif // CONFIG_ML_PART_SPLIT
} ThreadData;
struct EncWorkerData;
/*!\endcond */
/*!
* \brief Encoder data related to row-based multi-threading
*/
typedef struct {
/*!
* Number of tile rows for which row synchronization memory is allocated.
*/
int allocated_tile_rows;
/*!
* Number of tile cols for which row synchronization memory is allocated.
*/
int allocated_tile_cols;
/*!
* Number of rows for which row synchronization memory is allocated
* per tile. During first-pass/look-ahead stage this equals the
* maximum number of macroblock rows in a tile. During encode stage,
* this equals the maximum number of superblock rows in a tile.
*/
int allocated_rows;
/*!
* Number of columns for which entropy context memory is allocated
* per tile. During encode stage, this equals the maximum number of
* superblock columns in a tile minus 1. The entropy context memory
* is not allocated during first-pass/look-ahead stage.
*/
int allocated_cols;
/*!
* thread_id_to_tile_id[i] indicates the tile id assigned to the ith thread.
*/
int thread_id_to_tile_id[MAX_NUM_THREADS];
#if CONFIG_MULTITHREAD
/*!
* Mutex lock used while dispatching jobs.
*/
pthread_mutex_t *mutex_;
#endif
/**
* \name Row synchronization related function pointers.
*/
/**@{*/
/*!
* Reader.
*/
void (*sync_read_ptr)(AV1EncRowMultiThreadSync *const, int, int);
/*!
* Writer.
*/
void (*sync_write_ptr)(AV1EncRowMultiThreadSync *const, int, int, int);
/**@}*/
} AV1EncRowMultiThreadInfo;
/*!
* \brief Encoder parameters related to multi-threading.
*/
typedef struct {
/*!
* Number of workers created for multi-threading.
*/
int num_workers;
/*!
* Number of workers created for tpl and tile/row multi-threading of encoder.
*/
int num_enc_workers;
/*!
* Number of workers created for first-pass multi-threading.
*/
int num_fp_workers;
/*!
* Synchronization object used to launch job in the worker thread.
*/
AVxWorker *workers;
/*!
* Data specific to each worker in encoder multi-threading.
* tile_thr_data[i] stores the worker data of the ith thread.
*/
struct EncWorkerData *tile_thr_data;
/*!
* When set, indicates that row based multi-threading of the encoder is
* enabled.
*/
bool row_mt_enabled;
/*!
* Encoder row multi-threading data.
*/
AV1EncRowMultiThreadInfo enc_row_mt;
/*!
* Tpl row multi-threading data.
*/
AV1TplRowMultiThreadInfo tpl_row_mt;
/*!
* Loop Filter multi-threading object.
*/
AV1LfSync lf_row_sync;
/*!
* Loop Restoration multi-threading object.
*/
AV1LrSync lr_row_sync;
/*!
* Global Motion multi-threading object.
*/
AV1GlobalMotionSync gm_sync;
} MultiThreadInfo;
/*!\cond */
typedef struct ActiveMap {
int enabled;
int update;
unsigned char *map;
} ActiveMap;
/*!\endcond */
/*!
* \brief Encoder info used for decision on forcing integer motion vectors.
*/
typedef struct {
/*!
* cs_rate_array[i] is the fraction of blocks in a frame which either match
* with the collocated block or are smooth, where i is the rate_index.
*/
double cs_rate_array[32];
/*!
* rate_index is used to index cs_rate_array.
*/
int rate_index;
/*!
* rate_size is the total number of entries populated in cs_rate_array.
*/
int rate_size;
} ForceIntegerMVInfo;
/*!\cond */
#if CONFIG_INTERNAL_STATS
// types of stats
enum {
STAT_Y,
STAT_U,
STAT_V,
STAT_ALL,
NUM_STAT_TYPES // This should always be the last member of the enum
} UENUM1BYTE(StatType);
typedef struct IMAGE_STAT {
double stat[NUM_STAT_TYPES];
double worst;
} ImageStat;
#endif // CONFIG_INTERNAL_STATS
typedef struct {
int ref_count;
YV12_BUFFER_CONFIG buf;
} EncRefCntBuffer;
/*!\endcond */
/*!
* \brief Buffer to store mode information at mi_alloc_bsize (4x4 or 8x8) level
*
* This is used for bitstream preparation.
*/
typedef struct {
/*!
* frame_base[mi_row * stride + mi_col] stores the mode information of
* block (mi_row,mi_col).
*/
MB_MODE_INFO_EXT_FRAME *frame_base;
/*!
* Size of frame_base buffer.
*/
int alloc_size;
/*!
* Stride of frame_base buffer.
*/
int stride;
} MBMIExtFrameBufferInfo;
/*!\cond */
#if CONFIG_COLLECT_PARTITION_STATS == 2
typedef struct PartitionStats {
int partition_decisions[6][EXT_PARTITION_TYPES];
int partition_attempts[6][EXT_PARTITION_TYPES];
int64_t partition_times[6][EXT_PARTITION_TYPES];
int partition_redo;
} PartitionStats;
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
#include "aom_ports/aom_timer.h"
// Adjust the following to add new components.
enum {
encode_frame_to_data_rate_time,
encode_with_recode_loop_time,
loop_filter_time,
cdef_time,
loop_restoration_time,
av1_pack_bitstream_final_time,
av1_encode_frame_time,
av1_compute_global_motion_time,
av1_setup_motion_field_time,
av1_enc_setup_tip_frame_time,
encode_sb_time,
rd_pick_partition_time,
rd_pick_sb_modes_time,
av1_rd_pick_intra_mode_sb_time,
av1_rd_pick_inter_mode_sb_time,
handle_intra_mode_time,
do_tx_search_time,
handle_newmv_time,
compound_type_rd_time,
interpolation_filter_search_time,
motion_mode_rd_time,
kTimingComponents,
} UENUM1BYTE(TIMING_COMPONENT);
static INLINE char const *get_component_name(int index) {
switch (index) {
case encode_frame_to_data_rate_time:
return "encode_frame_to_data_rate_time";
case encode_with_recode_loop_time: return "encode_with_recode_loop_time";
case loop_filter_time: return "loop_filter_time";
case cdef_time: return "cdef_time";
case loop_restoration_time: return "loop_restoration_time";
case av1_pack_bitstream_final_time: return "av1_pack_bitstream_final_time";
case av1_encode_frame_time: return "av1_encode_frame_time";
case av1_compute_global_motion_time:
return "av1_compute_global_motion_time";
case av1_setup_motion_field_time: return "av1_setup_motion_field_time";
case av1_enc_setup_tip_frame_time: return "av1_enc_setup_tip_frame_time";
case encode_sb_time: return "encode_sb_time";
case rd_pick_partition_time: return "rd_pick_partition_time";
case rd_pick_sb_modes_time: return "rd_pick_sb_modes_time";
case av1_rd_pick_intra_mode_sb_time:
return "av1_rd_pick_intra_mode_sb_time";
case av1_rd_pick_inter_mode_sb_time:
return "av1_rd_pick_inter_mode_sb_time";
case handle_intra_mode_time: return "handle_intra_mode_time";
case do_tx_search_time: return "do_tx_search_time";
case handle_newmv_time: return "handle_newmv_time";
case compound_type_rd_time: return "compound_type_rd_time";
case interpolation_filter_search_time:
return "interpolation_filter_search_time";
case motion_mode_rd_time: return "motion_mode_rd_time";
default: assert(0);
}
return "error";
}
#endif
// The maximum number of internal ARFs except ALTREF_FRAME
#define MAX_INTERNAL_ARFS (REF_FRAMES - BWDREF_FRAME - 1)
/*!\endcond */
/*!
* \brief Parameters related to global motion search
*/
typedef struct {
/*!
* Flag to indicate if global motion search needs to be rerun.
*/
bool search_done;
/*!
* Array of pointers to the frame buffers holding the reference frames.
* ref_buf[i] stores the pointer to the reference frame of the ith
* reference frame type.
*/
YV12_BUFFER_CONFIG *ref_buf[INTER_REFS_PER_FRAME];
/*!
* Holds the number of valid reference frames in past and future directions
* w.r.t. the current frame. num_ref_frames[i] stores the total number of
* valid reference frames in 'i' direction.
*/
int num_ref_frames[MAX_DIRECTIONS];
/*!
* Array of structure which stores the valid reference frames in past and
* future directions and their corresponding distance from the source frame.
* reference_frames[i][j] holds the jth valid reference frame type in the
* direction 'i' and its temporal distance from the source frame .
*/
FrameDistPair reference_frames[MAX_DIRECTIONS][INTER_REFS_PER_FRAME];
/**
* \name Dimensions for which segment map is allocated.
*/
/**@{*/
int segment_map_w; /*!< segment map width */
int segment_map_h; /*!< segment map height */
/**@}*/
#if CONFIG_IMPROVED_GLOBAL_MOTION
/*!
* \brief Error ratio for each selected global motion model
*
* This is used to help decide which models will actually be used,
* because that decision has to be deferred until we actually select a
* base model to use
*/
double erroradvantage[INTER_REFS_PER_FRAME];
/**
* \name Reference path for selected base model
*/
/**@{*/
int base_model_our_ref; /*!< which of our ref frames to copy from */
int base_model_their_ref; /*!< which model to copy from that frame */
/**@}*/
#endif // CONFIG_IMPROVED_GLOBAL_MOTION
} GlobalMotionInfo;
/*!
* \brief Initial frame dimensions
*
* Tracks the frame dimensions using which:
* - Frame buffers (like altref and util frame buffers) were allocated
* - Motion estimation related initializations were done
* This structure is helpful to reallocate / reinitialize the above when there
* is a change in frame dimensions.
*/
typedef struct {
int width; /*!< initial width */
int height; /*!< initial height */
} InitialDimensions;
/*!
* \brief Flags related to interpolation filter search
*/
typedef struct {
/*!
* Stores the default value of skip flag depending on chroma format
* Set as 1 for monochrome and 3 for other color formats
*/
int default_interp_skip_flags;
/*!
* Filter mask to allow certain interp_filter type.
*/
uint16_t interp_filter_search_mask;
} InterpSearchFlags;
/*!
* \brief Parameters for motion vector search process
*/
typedef struct {
/*!
* Largest MV component used in a frame.
* The value from the previous frame is used to set the full pixel search
* range for the current frame.
*/
int max_mv_magnitude;
/*!
* Parameter indicating initial search window to be used in full-pixel search.
* Range [0, MAX_MVSEARCH_STEPS-2]. Lower value indicates larger window.
*/
int mv_step_param;
/*!
* Pointer to sub-pixel search function.
* In encoder: av1_find_best_sub_pixel_tree
* av1_find_best_sub_pixel_tree_pruned
* av1_find_best_sub_pixel_tree_pruned_more
* av1_find_best_sub_pixel_tree_pruned_evenmore
* In MV unit test: av1_return_max_sub_pixel_mv
* av1_return_min_sub_pixel_mv
*/
fractional_mv_step_fp *find_fractional_mv_step;
/*!
* Search site configuration for full-pel MV search.
* search_site_cfg[SS_CFG_SRC]: Used in tpl, rd/non-rd inter mode loop, simple
* motion search. search_site_cfg[SS_CFG_LOOKAHEAD]: Used in intraBC, temporal
* filter search_site_cfg[SS_CFG_FPF]: Used during first pass and lookahead
*/
search_site_config search_site_cfg[SS_CFG_TOTAL][NUM_DISTINCT_SEARCH_METHODS];
} MotionVectorSearchParams;
/*!
* \brief Desired dimensions for an externally triggered resize.
*
* When resize is triggered externally, the desired dimensions are stored in
* this struct until used in the next frame to be coded. These values are
* effective only for one frame and are reset after they are used.
*/
typedef struct {
int width; /*!< Desired resized width */
int height; /*!< Desired resized height */
} ResizePendingParams;
/*!
* \brief Refrence frame distance related variables.
*/
typedef struct {
/*!
* True relative distance of reference frames w.r.t. the current frame.
*/
int ref_relative_dist[INTER_REFS_PER_FRAME];
/*!
* The nearest reference w.r.t. current frame in the past.
*/
int8_t nearest_past_ref;
/*!
* The nearest reference w.r.t. current frame in the future.
*/
int8_t nearest_future_ref;
} RefFrameDistanceInfo;
/*!
* \brief Parameters used for winner mode processing.
*
* This is a basic two pass approach: in the first pass, we reduce the number of
* transform searches based on some thresholds during the rdopt process to find
* the "winner mode". In the second pass, we perform a more through tx search
* on the winner mode.
* There are some arrays in the struct, and their indices are used in the
* following manner:
* Index 0: Default mode evaluation, Winner mode processing is not applicable
* (Eg : IntraBc).
* Index 1: Mode evaluation.
* Index 2: Winner mode evaluation
* Index 1 and 2 are only used when the respective speed feature is on.
*/
typedef struct {
/*!
* Threshold to determine the best number of transform coefficients to keep
* using trellis optimization.
* Corresponds to enable_winner_mode_for_coeff_opt speed feature.
*/
unsigned int coeff_opt_dist_threshold[MODE_EVAL_TYPES];
/*!
* Threshold to determine if trellis optimization is to be enabled
* based on SATD.
* Corresponds to enable_winner_mode_for_coeff_opt speed feature.
*/
unsigned int coeff_opt_satd_threshold[MODE_EVAL_TYPES];
/*!
* Determines the tx size search method during rdopt.
* Corresponds to enable_winner_mode_for_tx_size_srch speed feature.
*/
TX_SIZE_SEARCH_METHOD tx_size_search_methods[MODE_EVAL_TYPES];
/*!
* Controls how often we should approximate prediction error with tx
* coefficients. If it's 0, then never. If 1, then it's during the tx_type
* search only. If 2, then always.
* Corresponds to tx_domain_dist_level speed feature.
*/
unsigned int use_transform_domain_distortion[MODE_EVAL_TYPES];
/*!
* Threshold to approximate pixel domain distortion with transform domain
* distortion. This is only used if use_txform_domain_distortion is on.
* Corresponds to enable_winner_mode_for_use_tx_domain_dist speed feature.
*/
unsigned int tx_domain_dist_threshold[MODE_EVAL_TYPES];
/*!
* Controls how often we should try to skip the transform process based on
* result from dct.
* Corresponds to use_skip_flag_prediction speed feature.
*/
unsigned int skip_txfm_level[MODE_EVAL_TYPES];
/*!
* Predict DC only txfm blocks for default, mode and winner mode evaluation.
* Index 0: Default mode evaluation, Winner mode processing is not applicable.
* Index 1: Mode evaluation, Index 2: Winner mode evaluation
*/
unsigned int predict_dc_level[MODE_EVAL_TYPES];
} WinnerModeParams;
/*!
* \brief Frame refresh flags set by the external interface.
*
* Flags set by external interface to determine which reference buffers are
* refreshed by this frame. When set, the encoder will update the particular
* reference frame buffer with the contents of the current frame.
*/
typedef struct {
bool all_ref_frames; /*!< Refresh all refs */
/*!
* Flag indicating if the update of refresh frame flags is pending.
*/
bool update_pending;
} ExtRefreshFrameFlagsInfo;
/*!
* \brief Flags signalled by the external interface at frame level.
*/
typedef struct {
/*!
* Bit mask to disable certain reference frame types.
*/
int ref_frame_flags;
/*!
* Frame refresh flags set by the external interface.
*/
ExtRefreshFrameFlagsInfo refresh_frame;
/*!
* Flag to enable the update of frame contexts at the end of a frame decode.
*/
bool refresh_frame_context;
/*!
* Flag to indicate that update of refresh_frame_context from external
* interface is pending.
*/
bool refresh_frame_context_pending;
/*!
* Flag to enable temporal MV prediction.
*/
bool use_ref_frame_mvs;
/*!
* Indicates whether the current frame is to be coded as error resilient.
*/
bool use_error_resilient;
/*!
* Indicates whether the current frame is to be coded as s-frame.
*/
bool use_s_frame;
/*!
* Indicates whether the current frame's primary_ref_frame is set to
* PRIMARY_REF_NONE.
*/
bool use_primary_ref_none;
} ExternalFlags;
/*!\cond */
typedef struct {
// Some misc info
int high_prec;
int q;
int order;
// MV counters
int inter_count;
int intra_count;
int default_mvs;
int mv_joint_count[4];
int last_bit_zero;
int last_bit_nonzero;
// Keep track of the rates
int total_mv_rate;
int hp_total_mv_rate;
int lp_total_mv_rate;
// Texture info
int horz_text;
int vert_text;
int diag_text;
// precision
int precision_count[NUM_MV_PRECISIONS];
// Whether the current struct contains valid data
int valid;
} MV_STATS;
typedef struct {
struct loopfilter lf;
CdefInfo cdef_info;
YV12_BUFFER_CONFIG copy_buffer;
RATE_CONTROL rc;
MV_STATS mv_stats;
FeatureFlags features;
} CODING_CONTEXT;
typedef struct {
int frame_width;
int frame_height;
int mi_rows;
int mi_cols;
int mb_rows;
int mb_cols;
int num_mbs;
aom_bit_depth_t bit_depth;
int subsampling_x;
int subsampling_y;
} FRAME_INFO;
/*!\endcond */
/*!
* \brief Segmentation related information for the current frame.
*/
typedef struct {
/*!
* 3-bit number containing the segment affiliation for each 4x4 block in the
* frame. map[y * stride + x] contains the segment id of the 4x4 block at
* (x,y) position.
*/
uint8_t *map;
/*!
* Flag to indicate if current frame has lossless segments or not.
* 1: frame has at least one lossless segment.
* 0: frame has no lossless segments.
*/
bool has_lossless_segment;
} EncSegmentationInfo;
/*!
* \brief Frame time stamps.
*/
typedef struct {
/*!
* Start time stamp of the previous frame
*/
int64_t prev_start_seen;
/*!
* End time stamp of the previous frame
*/
int64_t prev_end_seen;
/*!
* Start time stamp of the first frame
*/
int64_t first_ever;
} TimeStamps;
/*!
* \brief Top level encoder structure.
*/
typedef struct AV1_COMP {
/*!
* Quantization and dequantization parameters for internal quantizer setup
* in the encoder.
*/
EncQuantDequantParams enc_quant_dequant_params;
/*!
* Structure holding thread specific variables.
*/
ThreadData td;
/*!
* Statistics collected at frame level.
*/
FRAME_COUNTS counts;
/*!
* Holds buffer storing mode information at 4x4/8x8 level.
*/
MBMIExtFrameBufferInfo mbmi_ext_info;
/*!
* Buffer holding the transform block related information.
* coeff_buffer_base[i] stores the transform block related information of the
* ith superblock in raster scan order.
*/
CB_COEFF_BUFFER *coeff_buffer_base;
/*!
* Structure holding variables common to encoder and decoder.
*/
AV1_COMMON common;
/*!
* Encoder configuration related parameters.
*/
AV1EncoderConfig oxcf;
/*!
* Look-ahead context.
*/
struct lookahead_ctx *lookahead;
/*!
* When set, this flag indicates that the current frame is a forward keyframe.
*/
int no_show_fwd_kf;
/*!
* Stores the trellis optimization type at segment level.
* optimize_seg_arr[i] stores the trellis opt type for ith segment.
*/
TRELLIS_OPT_TYPE optimize_seg_arr[MAX_SEGMENTS];
/*!
* Pointer to the frame buffer holding the source frame to be used during the
* current stage of encoding. It can be the raw input, temporally filtered
* input or scaled input.
*/
YV12_BUFFER_CONFIG *source;
/*!
* Pointer to the frame buffer holding the last raw source frame.
* NULL for first frame and alt_ref frames.
*/
YV12_BUFFER_CONFIG *last_source;
/*!
* Pointer to the frame buffer holding the unscaled source frame.
* It can be either the raw input or temporally filtered input.
*/
YV12_BUFFER_CONFIG *unscaled_source;
/*!
* Frame buffer holding the resized source frame (cropping / superres).
*/
YV12_BUFFER_CONFIG scaled_source;
/*!
* Pointer to the frame buffer holding the unscaled last source frame.
*/
YV12_BUFFER_CONFIG *unscaled_last_source;
/*!
* Frame buffer holding the resized last source frame.
*/
YV12_BUFFER_CONFIG scaled_last_source;
/*!
* Pointer to the original source frame. This is used to determine if the
* content is screen.
*/
YV12_BUFFER_CONFIG *unfiltered_source;
/*!
* Parameters related to tpl.
*/
TplParams tpl_data;
/*!
* For a still frame, this flag is set to 1 to skip partition search.
*/
int partition_search_skippable_frame;
/*!
* Variables related to forcing integer mv decisions for the current frame.
*/
ForceIntegerMVInfo force_intpel_info;
/*!
* Pointer to the buffer holding the scaled reference frames.
* scaled_ref_buf[i] holds the scaled reference frame of type i.
*/
RefCntBuffer *scaled_ref_buf[INTER_REFS_PER_FRAME];
/*!
* Pointer to the buffer holding the last show frame.
*/
RefCntBuffer *last_show_frame_buf;
/*!
* For each type of reference frame, this contains the index of a reference
* frame buffer for a reference frame of the same type. We use this to
* choose our primary reference frame (which is the most recent reference
* frame of the same type as the current frame).
*/
int fb_of_context_type[REF_FRAMES];
/*!
* Flags signalled by the external interface at frame level.
*/
ExternalFlags ext_flags;
/*!
* Temporary frame buffer used to store the non-loop filtered reconstructed
* frame during the search of loop filter level.
*/
YV12_BUFFER_CONFIG last_frame_uf;
/*!
* Temporary frame buffer used to store the loop restored frame during loop
* restoration search.
*/
YV12_BUFFER_CONFIG trial_frame_rst;
/*!
* Ambient reconstruction err target for force key frames.
*/
int64_t ambient_err;
/*!
* Parameters related to rate distortion optimization.
*/
RD_OPT rd;
/*!
* Temporary coding context used to save and restore when encoding with and
* without super-resolution.
*/
CODING_CONTEXT coding_context;
/*!
* Parameters related to global motion search.
*/
GlobalMotionInfo gm_info;
/*!
* Parameters related to winner mode processing.
*/
WinnerModeParams winner_mode_params;
/*!
* Frame time stamps.
*/
TimeStamps time_stamps;
/*!
* Rate control related parameters.
*/
RATE_CONTROL rc;
/*!
* Frame rate of the video.
*/
double framerate;
/*!
* Pointer to internal utility functions that manipulate aom_codec_* data
* structures.
*/
struct aom_codec_pkt_list *output_pkt_list;
/*!
* speed is passed as a per-frame parameter into the encoder.
*/
int speed;
/*!
* sf contains fine-grained config set internally based on speed.
*/
SPEED_FEATURES sf;
/*!
* Parameters for motion vector search process.
*/
MotionVectorSearchParams mv_search_params;
/*!
* When set, indicates that all reference frames are forward references,
* i.e., all the reference frames are output before the current frame.
*/
int all_one_sided_refs;
/*!
* Segmentation related information for current frame.
*/
EncSegmentationInfo enc_seg;
/*!
* Parameters related to cyclic refresh aq-mode.
*/
CYCLIC_REFRESH *cyclic_refresh;
/*!
* Parameters related to active map. Active maps indicate
* if there is any activity on a 4x4 block basis.
*/
ActiveMap active_map;
/*!
* Function pointers to variants of sse/sad/variance computation functions.
* fn_ptr[i] indicates the list of function pointers corresponding to block
* size i.
*/
aom_variance_fn_ptr_t fn_ptr[BLOCK_SIZES_ALL];
/*!
* Information related to two pass encoding.
*/
TWO_PASS twopass;
/*!
* SubGOP configuration string
*/
char *subgop_config_str;
/*!
* SubGOP configuration file path
*/
char *subgop_config_path;
/*!
* Information related to subGOP configuration if specified.
*/
SubGOPSetCfg subgop_config_set;
/*!
* Information related to a gf group.
*/
GF_GROUP gf_group;
/*!
* Track prior gf group state.
*/
GF_STATE gf_state;
/*!
* Information related to a subgop.
*/
SubGOPStatsEnc subgop_stats;
/*!
* Frame buffer holding the temporally filtered source frame. It can be
* KEY frame or ARF frame.
*/
YV12_BUFFER_CONFIG alt_ref_buffer;
#if CONFIG_INTERNAL_STATS
/*!\cond */
uint64_t time_receive_data;
uint64_t time_compress_data;
int count[2];
uint64_t total_sq_error[2];
uint64_t total_samples[2];
ImageStat psnr[2];
double total_blockiness;
double worst_blockiness;
int bytes;
double summed_quality;
double summed_weights;
unsigned int tot_recode_hits;
double worst_ssim;
ImageStat fastssim;
ImageStat psnrhvs;
int b_calculate_blockiness;
int b_calculate_consistency;
double total_inconsistency;
double worst_consistency;
Ssimv *ssim_vars;
Metrics metrics;
/*!\endcond */
#endif
/*!
* Calculates PSNR on each frame when set to 1 or 2.
* Uses stream PSNR when set to 2.
*/
int b_calculate_psnr;
/*!
* Prints stats for each frame when set to 1.
*/
int print_per_frame_stats;
#if CONFIG_SPEED_STATS
/*!
* For debugging: number of transform searches we have performed.
*/
unsigned int tx_search_count;
#endif // CONFIG_SPEED_STATS
/*!
* When set, indicates that the frame is droppable, i.e., this frame
* does not update any reference buffers.
*/
int droppable;
/*!
* Stores the frame parameters during encoder initialization.
*/
FRAME_INFO frame_info;
/*!
* Structure to store the dimensions of current frame.
*/
InitialDimensions initial_dimensions;
/*!
* Number of MBs in the full-size frame; to be used to
* normalize the firstpass stats. This will differ from the
* number of MBs in the current frame when the frame is
* scaled.
*/
int initial_mbs;
/*!
* Resize related parameters.
*/
ResizePendingParams resize_pending_params;
/*!
* Pointer to struct holding adaptive data/contexts/models for the tile during
* encoding.
*/
TileDataEnc *tile_data;
/*!
* Number of tiles for which memory has been allocated for tile_data.
*/
int allocated_tiles;
/*!
* Structure to store the palette token related information.
*/
TokenInfo token_info;
/*!
* Sequence parameters have been transmitted already and locked
* or not. Once locked av1_change_config cannot change the seq
* parameters.
*/
int seq_params_locked;
/*!
* VARIANCE_AQ segment map refresh.
*/
int vaq_refresh;
/*!
* Thresholds for variance based partitioning.
*/
VarBasedPartitionInfo vbp_info;
/*!
* Probabilities for pruning of various AV1 tools.
*/
FrameProbInfo frame_probs;
/*!
* Multi-threading parameters.
*/
MultiThreadInfo mt_info;
/*!
* Specifies the frame to be output. It is valid only if show_existing_frame
* is 1. When show_existing_frame is 0, existing_fb_idx_to_show is set to
* INVALID_IDX.
*/
int existing_fb_idx_to_show;
/*!
* When set, indicates that internal ARFs are enabled.
*/
int internal_altref_allowed;
/*!
* A flag to indicate if intrabc is ever used in current frame.
*/
int intrabc_used;
/*!
* Mark which ref frames can be skipped for encoding current frame during RDO.
*/
#if CONFIG_SAME_REF_COMPOUND
uint64_t prune_ref_frame_mask;
#else
int prune_ref_frame_mask;
#endif // CONFIG_SAME_REF_COMPOUND
/*!
* Loop Restoration context.
*/
AV1LrStruct lr_ctxt;
/*!
* Pointer to list of tables with film grain parameters.
*/
aom_film_grain_table_t *film_grain_table;
#if CONFIG_DENOISE
/*!
* Pointer to structure holding the denoised image buffers and the helper
* noise models.
*/
struct aom_denoise_and_model_t *denoise_and_model;
#endif
/*!
* Flags related to interpolation filter search.
*/
InterpSearchFlags interp_search_flags;
/*!
* Set for screen contents or when screen content tools are enabled.
*/
int is_screen_content_type;
#if CONFIG_COLLECT_PARTITION_STATS == 2
PartitionStats partition_stats;
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
/*!
* component_time[] are initialized to zero while encoder starts.
*/
uint64_t component_time[kTimingComponents];
struct aom_usec_timer component_timer[kTimingComponents];
/*!
* frame_component_time[] are initialized to zero at beginning of each frame.
*/
uint64_t frame_component_time[kTimingComponents];
#endif
/*!
* Parameters for AV1 bitstream levels.
*/
AV1LevelParams level_params;
/*!
* Whether any no-zero delta_q was actually used.
*/
int deltaq_used;
/*!
* Refrence frame distance related variables.
*/
RefFrameDistanceInfo ref_frame_dist_info;
/*!
* Scaling factors used in the RD multiplier modulation.
* TODO(sdeng): consider merge the following arrays.
* tpl_rdmult_scaling_factors is a temporary buffer used to store the
* intermediate scaling factors which are used in the calculation of
* tpl_sb_rdmult_scaling_factors. tpl_rdmult_scaling_factors[i] stores the
* intermediate scaling factor of the ith 16 x 16 block in raster scan order.
*/
double *tpl_rdmult_scaling_factors;
/*!
* tpl_sb_rdmult_scaling_factors[i] stores the RD multiplier scaling factor of
* the ith 16 x 16 block in raster scan order.
*/
double *tpl_sb_rdmult_scaling_factors;
/*!
* ssim_rdmult_scaling_factors[i] stores the RD multiplier scaling factor of
* the ith 16 x 16 block in raster scan order. This scaling factor is used for
* RD multiplier modulation when SSIM tuning is enabled.
*/
double *ssim_rdmult_scaling_factors;
#if CONFIG_TUNE_VMAF
/*!
* Parameters for VMAF tuning.
*/
TuneVMAFInfo vmaf_info;
#endif
/*!
* Flag indicating whether look ahead processing (LAP) is enabled.
*/
int lap_enabled;
/*!
* Indicates whether current processing stage is encode stage or LAP stage.
*/
COMPRESSOR_STAGE compressor_stage;
/*!
* Some motion vector stats from the last encoded frame to help us decide what
* precision to use to encode the current frame.
*/
MV_STATS mv_stats;
/*!
* Frame type of the last frame. May be used in some heuristics for speeding
* up the encoding.
*/
FRAME_TYPE last_frame_type;
/*!
* Number of tile-groups.
*/
int num_tg;
/*!
* Super-resolution mode currently being used by the encoder.
* This may / may not be same as user-supplied mode in oxcf->superres_mode
* (when we are recoding to try multiple options for example).
*/
aom_superres_mode superres_mode;
/*!
* First pass related data.
*/
FirstPassData firstpass_data;
/*!
* Temporal Noise Estimate
*/
NOISE_ESTIMATE noise_estimate;
/*!
* Count on how many consecutive times a block uses small/zeromv for encoding
* in a scale of 8x8 block.
*/
uint8_t *consec_zero_mv;
/*!
* Number of frames left to be encoded, is 0 if limit is not set.
*/
int frames_left;
/*!
* Indicates if a valid global motion model has been found in the different
* frame update types of a GF group.
* valid_gm_model_found[i] indicates if valid global motion model has been
* found in the frame update type with enum value equal to i
*/
int valid_gm_model_found[FRAME_UPDATE_TYPES];
/*!
* Should we allocate a downsampling pyramid for each frame buffer?
* This is currently only used for global motion
*/
bool alloc_pyramid;
#if CONFIG_SCC_DETERMINATION
/*!
* Number of pixels that choose palette mode for luma in the
* fast encoding pass in av1_determine_sc_tools_with_encoding().
*/
int palette_pixel_num;
#endif // CONFIG_SCC_DETERMINATION
#if CONFIG_PRIMARY_REF_FRAME_OPT
/*!
* Indicate if the primary reference frame is signaled.
*/
int signal_primary_ref_frame;
/*!
* Record if error_resilience mode is turned on in the encoding. This is used
* in the primary reference frame decision.
*/
int error_resilient_frame_seen;
/*!
* Record last encoded frame's display order hint.
*/
int last_encoded_frame_order_hint;
#endif // CONFIG_PRIMARY_REF_FRAME_OPT
/*!
* allocation width
*/
int alloc_width;
/*!
* allocation height
*/
int alloc_height;
/*!
* allocation sb_size
*/
int alloc_sb_size;
} AV1_COMP;
/*!
* \brief Input frames and last input frame
*/
typedef struct EncodeFrameInput {
/*!\cond */
YV12_BUFFER_CONFIG *source;
YV12_BUFFER_CONFIG *last_source;
int64_t ts_duration;
/*!\endcond */
} EncodeFrameInput;
/*!
* \brief contains per-frame encoding parameters decided upon by
* av1_encode_strategy() and passed down to av1_encode().
*/
typedef struct EncodeFrameParams {
/*!
* Is error resilient mode enabled
*/
int error_resilient_mode;
/*!
* Frame type (eg KF vs inter frame etc)
*/
FRAME_TYPE frame_type;
/*!\cond */
int primary_ref_frame;
int order_offset;
/*!\endcond */
/*!
* Should the current frame be displayed after being decoded
*/
int show_frame;
/*!\cond */
int refresh_frame_flags;
int show_existing_frame;
int existing_fb_idx_to_show;
/*!\endcond */
/*!
* Bitmask of which reference buffers may be referenced by this frame.
*/
int ref_frame_flags;
/*!
* Reference buffer assignment for this frame.
*/
int remapped_ref_idx[REF_FRAMES];
/*!
* Speed level to use for this frame: Bigger number means faster.
*/
int speed;
} EncodeFrameParams;
/*!\cond */
// EncodeFrameResults contains information about the result of encoding a
// single frame
typedef struct {
size_t size; // Size of resulting bitstream
} EncodeFrameResults;
// Must not be called more than once.
void av1_initialize_enc(void);
struct AV1_COMP *av1_create_compressor(AV1EncoderConfig *oxcf,
BufferPool *const pool,
FIRSTPASS_STATS *frame_stats_buf,
COMPRESSOR_STAGE stage,
int num_lap_buffers,
int lap_lag_in_frames,
STATS_BUFFER_CTX *stats_buf_context);
void av1_remove_compressor(AV1_COMP *cpi);
void av1_change_config(AV1_COMP *cpi, const AV1EncoderConfig *oxcf);
void av1_check_initial_width(AV1_COMP *cpi, int subsampling_x,
int subsampling_y);
void av1_init_seq_coding_tools(SequenceHeader *seq, AV1_COMMON *cm,
const AV1EncoderConfig *oxcf);
/*!\endcond */
/*!\brief Obtain the raw frame data
*
* \ingroup high_level_algo
* This function receives the raw frame data from input.
*
* \param[in] cpi Top-level encoder structure
* \param[in] frame_flags Flags to decide how to encoding the frame
* \param[in] sd Contain raw frame data
* \param[in] time_stamp Time stamp of the frame
* \param[in] end_time_stamp End time stamp
*
* \return Returns a value to indicate if the frame data is received
* successfully.
* \note The caller can assume that a copy of this frame is made and not just a
* copy of the pointer.
*/
int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time_stamp);
/*!\brief Encode a frame
*
* \ingroup high_level_algo
* \callgraph
* \callergraph
* This function encodes the raw frame data, and outputs the frame bit stream
* to the designated buffer. The caller should use the output parameters
* *time_stamp and *time_end only when this function returns AOM_CODEC_OK.
*
* \param[in] cpi Top-level encoder structure
* \param[in] frame_flags Flags to decide how to encoding the frame
* \param[in] size Bitstream size
* \param[in] dest Bitstream output
* \param[out] time_stamp Time stamp of the frame
* \param[out] time_end Time end
* \param[in] flush Decide to encode one frame or the rest of frames
* \param[in] timebase Time base used
*
* \return Returns a value to indicate if the encoding is done successfully.
* \retval #AOM_CODEC_OK
* \retval -1
* No frame encoded; more input is required.
* \retval #AOM_CODEC_ERROR
*/
int av1_get_compressed_data(AV1_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest, int64_t *time_stamp,
int64_t *time_end, int flush,
const aom_rational64_t *timebase);
/*!\brief Run 1-pass/2-pass encoding
*
* \ingroup high_level_algo
* \callgraph
* \callergraph
*/
int av1_encode(AV1_COMP *const cpi, uint8_t *const dest,
const EncodeFrameInput *const frame_input,
const EncodeFrameParams *const frame_params,
EncodeFrameResults *const frame_results);
/*!\cond */
int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest);
int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame);
aom_codec_err_t av1_copy_new_frame_enc(AV1_COMMON *cm,
YV12_BUFFER_CONFIG *new_frame,
YV12_BUFFER_CONFIG *sd);
int av1_use_as_reference(int *ext_ref_frame_flags, int ref_frame_flags);
int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd);
int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd);
int av1_set_size_literal(AV1_COMP *cpi, int width, int height);
void av1_set_frame_size(AV1_COMP *cpi, int width, int height);
int av1_set_active_map(AV1_COMP *cpi, unsigned char *map, int rows, int cols);
int av1_get_active_map(AV1_COMP *cpi, unsigned char *map, int rows, int cols);
int av1_set_internal_size(AV1EncoderConfig *const oxcf,
ResizePendingParams *resize_pending_params,
AOM_SCALING horiz_mode, AOM_SCALING vert_mode);
int av1_get_quantizer(struct AV1_COMP *cpi);
int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t *input_size);
void av1_set_downsample_filter_options(AV1_COMP *cpi);
// Set screen content options.
// This function estimates whether to use screen content tools, by counting
// the portion of blocks that have few luma colors.
// Modifies:
// cpi->commom.allow_screen_content_tools
// cpi->common.allow_intrabc
// However, the estimation is not accurate and may misclassify videos.
// A slower but more accurate approach that determines whether to use screen
// content tools is employed later. See av1_determine_sc_tools_with_encoding().
void av1_set_screen_content_options(struct AV1_COMP *cpi,
FeatureFlags *features);
// av1 uses 10,000,000 ticks/second as time stamp
#define TICKS_PER_SEC 10000000LL
static INLINE int64_t
timebase_units_to_ticks(const aom_rational64_t *timestamp_ratio, int64_t n) {
return n * timestamp_ratio->num / timestamp_ratio->den;
}
static INLINE int64_t
ticks_to_timebase_units(const aom_rational64_t *timestamp_ratio, int64_t n) {
int64_t round = timestamp_ratio->num / 2;
if (round > 0) --round;
return (n * timestamp_ratio->den + round) / timestamp_ratio->num;
}
static INLINE int frame_is_kf_gf_arf(const AV1_COMP *cpi) {
const GF_GROUP *const gf_group = &cpi->gf_group;
const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_group->index];
return frame_is_intra_only(&cpi->common) || update_type == ARF_UPDATE ||
update_type == KFFLT_UPDATE || update_type == GF_UPDATE;
}
// TODO(huisu@google.com, youzhou@microsoft.com): enable hash-me for HBD.
static INLINE int av1_use_hash_me(const AV1_COMP *const cpi) {
#if CONFIG_ENABLE_IBC_NAT
if (!cpi->common.features.is_scc_content_by_detector) return 0;
#endif // CONFIG_ENABLE_IBC_NAT
#if CONFIG_IBC_SR_EXT
return (
#if !CONFIG_ENABLE_IBC_NAT
cpi->common.features.allow_screen_content_tools &&
#endif //! CONFIG_ENABLE_IBC_NAT
cpi->common.features.allow_intrabc) &&
(frame_is_intra_only(&cpi->common) ||
cpi->common.features.allow_local_intrabc);
#else
return (
#if !CONFIG_ENABLE_IBC_NAT
cpi->common.features.allow_screen_content_tools &&
#endif // !CONFIG_ENABLE_IBC_NAT
cpi->common.features.allow_intrabc && frame_is_intra_only(&cpi->common));
#endif // CONFIG_IBC_SR_EXT
}
static INLINE const YV12_BUFFER_CONFIG *get_ref_frame_yv12_buf(
const AV1_COMMON *const cm, MV_REFERENCE_FRAME ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
return buf != NULL ? &buf->buf : NULL;
}
static INLINE int enc_is_ref_frame_buf(const AV1_COMMON *const cm,
const RefCntBuffer *const frame_buf) {
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = 0; ref_frame < INTER_REFS_PER_FRAME; ++ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
if (buf == NULL) continue;
if (frame_buf == buf) break;
}
return (ref_frame < INTER_REFS_PER_FRAME);
}
static INLINE void alloc_frame_mvs(AV1_COMMON *const cm, RefCntBuffer *buf) {
assert(buf != NULL);
ensure_mv_buffer(buf, cm);
buf->width = cm->width;
buf->height = cm->height;
}
// Get the allocated token size for a tile. It does the same calculation as in
// the frame token allocation.
static INLINE unsigned int allocated_tokens(TileInfo tile, int sb_size_log2,
int num_planes) {
int tile_mb_rows = (tile.mi_row_end - tile.mi_row_start + 2) >> 2;
int tile_mb_cols = (tile.mi_col_end - tile.mi_col_start + 2) >> 2;
return get_token_alloc(tile_mb_rows, tile_mb_cols, sb_size_log2, num_planes);
}
static INLINE void get_start_tok(AV1_COMP *cpi, int tile_row, int tile_col,
int mi_row, TokenExtra **tok, int sb_size_log2,
int num_planes) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
const int tile_mb_cols =
(tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2;
const int tile_mb_row = (mi_row - tile_info->mi_row_start + 2) >> 2;
*tok = cpi->token_info.tile_tok[tile_row][tile_col] +
get_token_alloc(tile_mb_row, tile_mb_cols, sb_size_log2, num_planes);
}
void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags);
#define ALT_MIN_LAG 3
static INLINE int is_altref_enabled(int lag_in_frames, bool enable_auto_arf) {
return lag_in_frames >= ALT_MIN_LAG && enable_auto_arf;
}
// Check if statistics generation stage
static INLINE int is_stat_generation_stage(const AV1_COMP *const cpi) {
assert(IMPLIES(cpi->compressor_stage == LAP_STAGE,
cpi->oxcf.pass == 0 && cpi->lap_enabled));
return (cpi->compressor_stage == LAP_STAGE);
}
// Check if statistics consumption stage
static INLINE int is_stat_consumption_stage(const AV1_COMP *const cpi) {
return (cpi->compressor_stage == ENCODE_STAGE && cpi->lap_enabled);
}
/*!\endcond */
/*!\brief Check if the current stage has statistics
*
*\ingroup two_pass_algo
*
* \param[in] cpi Top - level encoder instance structure
*
* \return 0 if no stats for current stage else 1
*/
static INLINE int has_no_stats_stage(const AV1_COMP *const cpi) {
assert(IMPLIES(!cpi->lap_enabled, cpi->compressor_stage == ENCODE_STAGE));
return (!cpi->lap_enabled);
}
/*!\cond */
// Function return size of frame stats buffer
static INLINE int get_stats_buf_size(int num_lap_buffer, int num_lag_buffer) {
/* if lookahead is enabled return num_lap_buffers else num_lag_buffers */
return (num_lap_buffer > 0 ? num_lap_buffer + 1 : num_lag_buffer);
}
// TODO(zoeliu): To set up cpi->oxcf.gf_cfg.enable_auto_brf
static INLINE void set_ref_ptrs(const AV1_COMMON *cm, MACROBLOCKD *xd,
MV_REFERENCE_FRAME ref0,
MV_REFERENCE_FRAME ref1) {
xd->block_ref_scale_factors[0] = get_ref_scale_factors_const(
cm, ref0 < INTER_REFS_PER_FRAME || is_tip_ref_frame(ref0) ? ref0 : 0);
xd->block_ref_scale_factors[1] = get_ref_scale_factors_const(
cm, ref1 < INTER_REFS_PER_FRAME || is_tip_ref_frame(ref1) ? ref1 : 0);
}
static INLINE int get_chessboard_index(int frame_index) {
return frame_index & 0x1;
}
static INLINE const int *cond_cost_list_const(const struct AV1_COMP *cpi,
const int *cost_list) {
const int use_cost_list = cpi->sf.mv_sf.subpel_search_method != SUBPEL_TREE &&
cpi->sf.mv_sf.use_fullpel_costlist;
return use_cost_list ? cost_list : NULL;
}
static INLINE int *cond_cost_list(const struct AV1_COMP *cpi, int *cost_list) {
const int use_cost_list = cpi->sf.mv_sf.subpel_search_method != SUBPEL_TREE &&
cpi->sf.mv_sf.use_fullpel_costlist;
return use_cost_list ? cost_list : NULL;
}
// Compression ratio of current frame.
double av1_get_compression_ratio(const AV1_COMMON *const cm,
size_t encoded_frame_size);
void av1_new_framerate(AV1_COMP *cpi, double framerate);
void av1_setup_frame_size(AV1_COMP *cpi);
#define LAYER_IDS_TO_IDX(sl, tl, num_tl) ((sl) * (num_tl) + (tl))
// Returns 1 if a frame is scaled and 0 otherwise.
static INLINE int av1_resize_scaled(const AV1_COMMON *cm) {
return !(cm->superres_upscaled_width == cm->render_width &&
cm->superres_upscaled_height == cm->render_height);
}
static INLINE int av1_frame_scaled(const AV1_COMMON *cm) {
return !av1_superres_scaled(cm) && av1_resize_scaled(cm);
}
// Don't allow a show_existing_frame to coincide with an error resilient
// frame. An exception can be made for a forward keyframe since it has no
// previous dependencies.
static INLINE int encode_show_existing_frame(const AV1_COMMON *cm) {
if (!cm->show_existing_frame) return 0;
// When enable_frame_output_order == 1, show_existing_frame can be equal to 1
// only for a forward key frame
if (cm->seq_params.enable_frame_output_order)
return (!cm->features.error_resilient_mode &&
cm->current_frame.frame_type == KEY_FRAME);
else
return (!cm->features.error_resilient_mode ||
cm->current_frame.frame_type == KEY_FRAME);
}
// Get index into the 'cpi->mbmi_ext_info.frame_base' array for the given
// 'mi_row' and 'mi_col'.
static INLINE int get_mi_ext_idx(const int mi_row, const int mi_col,
const BLOCK_SIZE mi_alloc_bsize,
const int mbmi_ext_stride) {
const int mi_ext_size_1d = mi_size_wide[mi_alloc_bsize];
const int mi_ext_row = mi_row / mi_ext_size_1d;
const int mi_ext_col = mi_col / mi_ext_size_1d;
return mi_ext_row * mbmi_ext_stride + mi_ext_col;
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static INLINE void set_mode_info_offsets(
const CommonModeInfoParams *const mi_params,
const MBMIExtFrameBufferInfo *const mbmi_ext_info, MACROBLOCK *const x,
MACROBLOCKD *const xd, int mi_row, int mi_col
#if CONFIG_C071_SUBBLK_WARPMV
,
const int mi_width, const int mi_height
#endif // CONFIG_C071_SUBBLK_WARPMV
) {
#if CONFIG_C071_SUBBLK_WARPMV
const int x_inside_boundary = AOMMIN(mi_width, mi_params->mi_cols - mi_col);
const int y_inside_boundary = AOMMIN(mi_height, mi_params->mi_rows - mi_row);
#endif // CONFIG_C071_SUBBLK_WARPMV
set_mi_offsets(mi_params, xd, mi_row, mi_col
#if CONFIG_C071_SUBBLK_WARPMV
,
x_inside_boundary, y_inside_boundary
#endif // CONFIG_C071_SUBBLK_WARPMV
);
const int ext_idx = get_mi_ext_idx(mi_row, mi_col, mi_params->mi_alloc_bsize,
mbmi_ext_info->stride);
x->mbmi_ext_frame = mbmi_ext_info->frame_base + ext_idx;
}
// Check to see if the given partition size is allowed for a specified number
// of mi block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static INLINE BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
int cols_left, int *bh, int *bw) {
int int_size = (int)bsize;
if (rows_left <= 0 || cols_left <= 0) {
return AOMMIN(bsize, BLOCK_8X8);
} else {
for (; int_size > 0; int_size -= 3) {
*bh = mi_size_high[int_size];
*bw = mi_size_wide[int_size];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return (BLOCK_SIZE)int_size;
}
static INLINE int get_max_allowed_ref_frames(
int selective_ref_frame, unsigned int max_reference_frames) {
const unsigned int max_allowed_refs_for_given_speed =
(selective_ref_frame >= 3) ? INTER_REFS_PER_FRAME - 1
: INTER_REFS_PER_FRAME;
return AOMMIN(max_allowed_refs_for_given_speed, max_reference_frames);
}
#if CONFIG_SEP_COMP_DRL
/*!\brief Return whether the current coding block has two separate DRLs,
* the mdoe info is used as inputs */
static INLINE int has_second_drl_by_mode(const PREDICTION_MODE mode,
const MV_REFERENCE_FRAME *ref_frame) {
return (mode == NEAR_NEARMV || mode == NEAR_NEWMV) &&
!is_tip_ref_frame(ref_frame[0]);
}
#endif // CONFIG_SEP_COMP_DRL
// Enforce the number of references for each arbitrary frame based on user
// options and speed.
static AOM_INLINE void enforce_max_ref_frames(AV1_COMP *cpi,
int *ref_frame_flags) {
MV_REFERENCE_FRAME ref_frame;
int total_valid_refs = 0;
for (ref_frame = 0; ref_frame < INTER_REFS_PER_FRAME; ++ref_frame) {
if (*ref_frame_flags & (1 << ref_frame)) {
total_valid_refs++;
}
}
const int max_allowed_refs =
get_max_allowed_ref_frames(cpi->sf.inter_sf.selective_ref_frame,
cpi->oxcf.ref_frm_cfg.max_reference_frames);
for (int i = 0; i < 4 && total_valid_refs > max_allowed_refs; ++i) {
const MV_REFERENCE_FRAME ref_frame_to_disable =
INTER_REFS_PER_FRAME - i - 1;
if (!(*ref_frame_flags & (1 << ref_frame_to_disable))) {
continue;
}
*ref_frame_flags &= ~(1 << ref_frame_to_disable);
--total_valid_refs;
}
}
// Returns a Sequence Header OBU stored in an aom_fixed_buf_t, or NULL upon
// failure. When a non-NULL aom_fixed_buf_t pointer is returned by this
// function, the memory must be freed by the caller. Both the buf member of the
// aom_fixed_buf_t, and the aom_fixed_buf_t pointer itself must be freed. Memory
// returned must be freed via call to free().
//
// Note: The OBU returned is in Low Overhead Bitstream Format. Specifically,
// the obu_has_size_field bit is set, and the buffer contains the obu_size
// field.
aom_fixed_buf_t *av1_get_global_headers(AV1_COMP *cpi);
#define MAX_GFUBOOST_FACTOR 10.0
#define MIN_GFUBOOST_FACTOR 4.0
static INLINE int is_frame_tpl_eligible(const GF_GROUP *const gf_group,
uint8_t index) {
const FRAME_UPDATE_TYPE update_type = gf_group->update_type[index];
return update_type == ARF_UPDATE || update_type == GF_UPDATE ||
update_type == KFFLT_UPDATE || update_type == KF_UPDATE;
}
static INLINE int is_frame_eligible_for_ref_pruning(const GF_GROUP *gf_group,
int selective_ref_frame,
int prune_ref_frames,
int gf_index) {
return (selective_ref_frame > 0) && (prune_ref_frames > 0) &&
!is_frame_tpl_eligible(gf_group, gf_index);
}
// Get update type of the current frame.
static INLINE FRAME_UPDATE_TYPE
get_frame_update_type(const GF_GROUP *gf_group) {
return gf_group->update_type[gf_group->index];
}
static INLINE int av1_pixels_to_mi(int pixels) {
return ALIGN_POWER_OF_TWO(pixels, 3) >> MI_SIZE_LOG2;
}
static AOM_INLINE int is_psnr_calc_enabled(const AV1_COMP *cpi) {
const AV1_COMMON *const cm = &cpi->common;
return cpi->b_calculate_psnr >= 1 && !is_stat_generation_stage(cpi) &&
cm->show_frame;
}
#if CONFIG_COLLECT_PARTITION_STATS == 2
static INLINE void av1_print_partition_stats(PartitionStats *part_stats) {
FILE *f = fopen("partition_stats.csv", "w");
if (!f) {
return;
}
fprintf(f, "bsize,redo,");
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "decision_%d,", part);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "attempt_%d,", part);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "time_%d,", part);
}
fprintf(f, "\n");
const int bsizes[6] = { 128, 64, 32, 16, 8, 4 };
for (int bsize_idx = 0; bsize_idx < 6; bsize_idx++) {
fprintf(f, "%d,%d,", bsizes[bsize_idx], part_stats->partition_redo);
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "%d,", part_stats->partition_decisions[bsize_idx][part]);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "%d,", part_stats->partition_attempts[bsize_idx][part]);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "%ld,", part_stats->partition_times[bsize_idx][part]);
}
fprintf(f, "\n");
}
fclose(f);
}
static INLINE int av1_get_bsize_idx_for_part_stats(BLOCK_SIZE bsize) {
assert(bsize == BLOCK_128X128 || bsize == BLOCK_64X64 ||
bsize == BLOCK_32X32 || bsize == BLOCK_16X16 || bsize == BLOCK_8X8 ||
bsize == BLOCK_4X4);
switch (bsize) {
case BLOCK_128X128: return 0;
case BLOCK_64X64: return 1;
case BLOCK_32X32: return 2;
case BLOCK_16X16: return 3;
case BLOCK_8X8: return 4;
case BLOCK_4X4: return 5;
default: assert(0 && "Invalid bsize for partition_stats."); return -1;
}
}
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
static INLINE void start_timing(AV1_COMP *cpi, int component) {
aom_usec_timer_start(&cpi->component_timer[component]);
}
static INLINE void end_timing(AV1_COMP *cpi, int component) {
aom_usec_timer_mark(&cpi->component_timer[component]);
cpi->frame_component_time[component] +=
aom_usec_timer_elapsed(&cpi->component_timer[component]);
}
static INLINE char const *get_frame_type_enum(int type) {
switch (type) {
case 0: return "KEY_FRAME";
case 1: return "INTER_FRAME";
case 2: return "INTRA_ONLY_FRAME";
case 3: return "S_FRAME";
default: assert(0);
}
return "error";
}
#endif
/*!\endcond */
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_ENCODER_H_