blob: dab397f96d32705b616f5aaeec30051f267d1254 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "av1/common/av1_common_int.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/intra_mode_search.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/tx_search.h"
#include "av1/common/reconinter.h"
/*!\brief Search for the best filter_intra mode when coding intra frame.
*
* \ingroup intra_mode_search
* \callergraph
* This function loops through all filter_intra modes to find the best one.
*
* \return Returns 1 if a new filter_intra mode is selected; 0 otherwise.
*/
static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int mode_cost,
int64_t *best_rd, int64_t *best_model_rd,
PICK_MODE_CONTEXT *ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
int filter_intra_selected_flag = 0;
FILTER_INTRA_MODE mode;
TX_SIZE best_tx_size = TX_8X8;
#if CONFIG_NEW_TX_PARTITION
TX_PARTITION_TYPE best_tx_partition = TX_PARTITION_NONE;
#endif // CONFIG_NEW_TX_PARTITION
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
TX_TYPE best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
(void)ctx;
av1_zero(filter_intra_mode_info);
mbmi->filter_intra_mode_info.use_filter_intra = 1;
mbmi->mode = DC_PRED;
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->mrl_index = 0;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
mbmi->use_dpcm_y = 0;
mbmi->dpcm_mode_y = 0;
mbmi->use_dpcm_uv = 0;
mbmi->dpcm_mode_uv = 0;
}
#endif // CONFIG_LOSSLESS_DPCM
mbmi->fsc_mode[PLANE_TYPE_Y] = 0;
mbmi->fsc_mode[PLANE_TYPE_UV] = 0;
#if CONFIG_NEW_CONTEXT_MODELING
mbmi->use_intrabc[0] = 0;
mbmi->use_intrabc[1] = 0;
#endif // CONFIG_NEW_CONTEXT_MODELING
#if CONFIG_AIMC
mbmi->joint_y_mode_delta_angle = DC_PRED;
mbmi->y_mode_idx = DC_PRED;
#endif // CONFIG_AIMC
#if CONFIG_MORPH_PRED
mbmi->morph_pred = 0;
#endif // CONFIG_MORPH_PRED
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
int64_t this_rd;
RD_STATS tokenonly_rd_stats;
mbmi->filter_intra_mode_info.filter_intra_mode = mode;
if (model_intra_yrd_and_prune(cpi, x, bsize, mode_cost, best_model_rd)) {
continue;
}
av1_pick_uniform_tx_size_type_yrd(cpi, x, &tokenonly_rd_stats, bsize,
*best_rd);
if (tokenonly_rd_stats.rate == INT_MAX) continue;
const int this_rate =
tokenonly_rd_stats.rate +
intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost);
this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
// Collect mode stats for multiwinner mode processing
const int txfm_search_done = 1;
const MV_REFERENCE_FRAME refs[2] = { -1, -1 };
store_winner_mode_stats(
&cpi->common, x, mbmi, NULL, NULL, NULL, refs, 0, NULL, bsize, this_rd,
cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
if (this_rd < *best_rd) {
*best_rd = this_rd;
best_tx_size = mbmi->tx_size;
#if CONFIG_NEW_TX_PARTITION
best_tx_partition = mbmi->tx_partition_type[0];
#endif // CONFIG_NEW_TX_PARTITION
filter_intra_mode_info = mbmi->filter_intra_mode_info;
av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
memcpy(ctx->blk_skip[AOM_PLANE_Y],
x->txfm_search_info.blk_skip[AOM_PLANE_Y],
sizeof(*x->txfm_search_info.blk_skip[AOM_PLANE_Y]) *
ctx->num_4x4_blk);
*rate = this_rate;
*rate_tokenonly = tokenonly_rd_stats.rate;
*distortion = tokenonly_rd_stats.dist;
*skippable = tokenonly_rd_stats.skip_txfm;
filter_intra_selected_flag = 1;
}
}
if (filter_intra_selected_flag) {
mbmi->mode = DC_PRED;
mbmi->tx_size = best_tx_size;
#if CONFIG_NEW_TX_PARTITION
mbmi->tx_partition_type[0] = best_tx_partition;
#endif // CONFIG_NEW_TX_PARTITION
mbmi->filter_intra_mode_info = filter_intra_mode_info;
av1_copy_array(ctx->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
#if CONFIG_AIMC
mbmi->joint_y_mode_delta_angle = DC_PRED;
mbmi->y_mode_idx = DC_PRED;
#endif // CONFIG_AIMC
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
mbmi->use_dpcm_y = 0;
mbmi->dpcm_mode_y = 0;
mbmi->use_dpcm_uv = 0;
mbmi->dpcm_mode_uv = 0;
}
#endif // CONFIG_LOSSLESS_DPCM
mbmi->fsc_mode[PLANE_TYPE_Y] = 0;
mbmi->fsc_mode[PLANE_TYPE_UV] = 0;
#if CONFIG_NEW_CONTEXT_MODELING
mbmi->use_intrabc[0] = 0;
mbmi->use_intrabc[1] = 0;
#endif // CONFIG_NEW_CONTEXT_MODELING
#if CONFIG_MORPH_PRED
mbmi->morph_pred = 0;
#endif // CONFIG_MORPH_PRED
return 1;
} else {
return 0;
}
}
void av1_count_colors_highbd(const uint16_t *src, int stride, int rows,
int cols, int bit_depth, int *val_count,
int *bin_val_count, int *num_color_bins,
int *num_colors) {
assert(bit_depth <= 12);
const int max_bin_val = 1 << 8;
const int max_pix_val = 1 << bit_depth;
memset(bin_val_count, 0, max_bin_val * sizeof(val_count[0]));
if (val_count != NULL)
memset(val_count, 0, max_pix_val * sizeof(val_count[0]));
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
/*
* Down-convert the pixels to 8-bit domain before counting.
* This provides consistency of behavior for palette search
* between lbd and hbd encodes. This down-converted pixels
* are only used for calculating the threshold (n).
*/
const int this_val = ((src[r * stride + c]) >> (bit_depth - 8));
assert(this_val < max_bin_val);
if (this_val >= max_bin_val) continue;
++bin_val_count[this_val];
if (val_count != NULL) ++val_count[(src[r * stride + c])];
}
}
int n = 0;
// Count the colors based on 8-bit domain used to gate the palette path
for (int i = 0; i < max_bin_val; ++i) {
if (bin_val_count[i]) ++n;
}
*num_color_bins = n;
// Count the actual hbd colors used to create top_colors
n = 0;
if (val_count != NULL) {
for (int i = 0; i < max_pix_val; ++i) {
if (val_count[i]) ++n;
}
*num_colors = n;
}
}
#if !CONFIG_AIMC
/*! \brief set the luma intra mode and delta angles for a given mode index.
* \param[in] mode_idx mode index in intra mode decision
* process.
* \param[in] mbmi Pointer to structure holding
* the mode info for the current macroblock.
*/
void set_y_mode_and_delta_angle(const int mode_idx, MB_MODE_INFO *const mbmi) {
if (mode_idx < INTRA_MODE_END) {
mbmi->mode = intra_rd_search_mode_order[mode_idx];
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
} else {
mbmi->mode = (mode_idx - INTRA_MODE_END) / (MAX_ANGLE_DELTA * 2) + V_PRED;
int angle_delta = (mode_idx - INTRA_MODE_END) % (MAX_ANGLE_DELTA * 2);
mbmi->angle_delta[PLANE_TYPE_Y] =
(angle_delta < 3 ? (angle_delta - 3) : (angle_delta - 2));
}
}
#endif // !CONFIG_AIMC
/*! \brief prune luma intra mode based on the model rd.
* \param[in] this_model_rd model rd for current mode.
* \param[in] best_model_rd Best model RD seen for this block so
* far.
* \param[in] top_intra_model_rd Top intra model RD seen for this
* block so far.
*/
int prune_intra_y_mode(int64_t this_model_rd, int64_t *best_model_rd,
int64_t top_intra_model_rd[]) {
const double thresh_best = 1.50;
const double thresh_top = 1.00;
for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) {
if (this_model_rd < top_intra_model_rd[i]) {
for (int j = TOP_INTRA_MODEL_COUNT - 1; j > i; j--) {
top_intra_model_rd[j] = top_intra_model_rd[j - 1];
}
top_intra_model_rd[i] = this_model_rd;
break;
}
}
if (top_intra_model_rd[TOP_INTRA_MODEL_COUNT - 1] != INT64_MAX &&
this_model_rd >
thresh_top * top_intra_model_rd[TOP_INTRA_MODEL_COUNT - 1])
return 1;
if (this_model_rd != INT64_MAX &&
this_model_rd > thresh_best * (*best_model_rd))
return 1;
if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd;
return 0;
}
#if !CONFIG_AIMC
// Run RD calculation with given chroma intra prediction angle., and return
// the RD cost. Update the best mode info. if the RD cost is the best so far.
static int64_t pick_intra_angle_routine_sbuv(
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats,
int *best_angle_delta, int64_t *best_rd) {
MB_MODE_INFO *mbmi = x->e_mbd.mi[0];
assert(!is_inter_block(mbmi, cpi->td.mb.e_mbd.tree_type));
int this_rate;
int64_t this_rd;
RD_STATS tokenonly_rd_stats;
if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, best_rd_in)) return INT64_MAX;
this_rate = tokenonly_rd_stats.rate +
intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead);
this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
*rate = this_rate;
rd_stats->rate = tokenonly_rd_stats.rate;
rd_stats->dist = tokenonly_rd_stats.dist;
rd_stats->skip_txfm = tokenonly_rd_stats.skip_txfm;
}
return this_rd;
}
/*!\brief Search for the best angle delta for chroma prediction
*
* \ingroup intra_mode_search
* \callergraph
* Given a chroma directional intra prediction mode, this function will try to
* estimate the best delta_angle.
*
* \returns Return if there is a new mode with smaller rdcost than best_rd.
*/
static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int rate_overhead,
int64_t best_rd, int *rate,
RD_STATS *rd_stats) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
assert(!is_inter_block(mbmi, xd->tree_type));
int i, angle_delta, best_angle_delta = 0;
int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)];
rd_stats->rate = INT_MAX;
rd_stats->skip_txfm = 0;
rd_stats->dist = INT64_MAX;
for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX;
for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
for (i = 0; i < 2; ++i) {
best_rd_in = (best_rd == INT64_MAX)
? INT64_MAX
: (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5)));
mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta;
this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead,
best_rd_in, rate, rd_stats,
&best_angle_delta, &best_rd);
rd_cost[2 * angle_delta + i] = this_rd;
if (angle_delta == 0) {
if (this_rd == INT64_MAX) return 0;
rd_cost[1] = this_rd;
break;
}
}
}
assert(best_rd != INT64_MAX);
for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
int64_t rd_thresh;
for (i = 0; i < 2; ++i) {
int skip_search = 0;
rd_thresh = best_rd + (best_rd >> 5);
if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
skip_search = 1;
if (!skip_search) {
mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta;
pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd,
rate, rd_stats, &best_angle_delta,
&best_rd);
}
}
}
mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta;
return rd_stats->rate != INT_MAX;
}
#endif // !CONFIG_AIMC
#define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \
(plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1)
static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi,
TX_SIZE tx_size, int64_t best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const MACROBLOCKD_PLANE *pd = &xd->plane[AOM_PLANE_U];
const ModeCosts *mode_costs = &x->mode_costs;
assert(xd->tree_type != LUMA_PART);
const BLOCK_SIZE plane_bsize = get_mb_plane_block_size(
xd, mbmi, PLANE_TYPE_UV, pd->subsampling_x, pd->subsampling_y);
assert(is_cfl_allowed(xd) && cpi->oxcf.intra_mode_cfg.enable_cfl_intra);
assert(plane_bsize < BLOCK_SIZES_ALL);
if (!xd->lossless[mbmi->segment_id]) {
assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
}
xd->cfl.use_dc_pred_cache = 1;
xd->cfl.dc_pred_is_cached[0] = 0;
xd->cfl.dc_pred_is_cached[1] = 0;
#if CONFIG_AIMC
const int cfl_ctx = get_cfl_ctx(xd);
;
const int64_t mode_rd =
RDCOST(x->rdmult, mode_costs->cfl_mode_cost[cfl_ctx][1], 0);
#else
const int64_t mode_rd = RDCOST(
x->rdmult,
mode_costs->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED], 0);
#endif
int64_t best_rd_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
int best_c[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
#if CONFIG_CONTEXT_DERIVATION
const int skip_trellis = 0;
int8_t best_joint_sign = -1;
// process CFL_PRED_U
RD_STATS rd_stats;
av1_init_rd_stats(&rd_stats);
for (int plane = 0; plane < CFL_PRED_PLANES; plane++) {
for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) {
best_rd_uv[joint_sign][plane] = INT64_MAX;
best_c[joint_sign][plane] = 0;
}
}
// Collect RD stats for an alpha value of zero in CFL_PRED_U.
// Skip i == CFL_SIGN_ZERO as (0, 0) is invalid.
for (int i = CFL_SIGN_NEG; i < CFL_SIGNS; i++) {
const int8_t joint_sign =
PLANE_SIGN_TO_JOINT_SIGN(CFL_PRED_U, CFL_SIGN_ZERO, i);
mbmi->cfl_alpha_idx = 0;
mbmi->cfl_alpha_signs = joint_sign;
av1_txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, 0, 1, plane_bsize, tx_size,
FTXS_NONE, skip_trellis);
if (rd_stats.rate == INT_MAX) break;
const int alpha_rate = mode_costs->cfl_cost[joint_sign][CFL_PRED_U][0];
best_rd_uv[joint_sign][CFL_PRED_U] =
RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
}
// Collect RD stats for alpha values other than zero in CFL_PRED_U.
for (int pn_sign = CFL_SIGN_NEG; pn_sign < CFL_SIGNS; pn_sign++) {
int progress = 0;
for (int c = 0; c < CFL_ALPHABET_SIZE; c++) {
int flag = 0;
if (c > 2 && progress < c) break;
av1_init_rd_stats(&rd_stats);
for (int i = 0; i < CFL_SIGNS; i++) {
const int8_t joint_sign =
PLANE_SIGN_TO_JOINT_SIGN(CFL_PRED_U, pn_sign, i);
mbmi->cfl_alpha_idx = (c << CFL_ALPHABET_SIZE_LOG2) + c;
mbmi->cfl_alpha_signs = joint_sign;
av1_txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, 0, 1, plane_bsize,
tx_size, FTXS_NONE, skip_trellis);
if (rd_stats.rate == INT_MAX) break;
const int alpha_rate = mode_costs->cfl_cost[joint_sign][CFL_PRED_U][c];
int64_t this_rd =
RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
if (this_rd >= best_rd_uv[joint_sign][CFL_PRED_U]) continue;
best_rd_uv[joint_sign][CFL_PRED_U] = this_rd;
best_c[joint_sign][CFL_PRED_U] = c;
flag = 2;
if (best_rd_uv[joint_sign][CFL_PRED_V] == INT64_MAX) continue;
this_rd += mode_rd + best_rd_uv[joint_sign][CFL_PRED_V];
if (this_rd >= best_rd) continue;
best_rd = this_rd;
best_joint_sign = joint_sign;
}
progress += flag;
}
}
// process CFL_PRED_V
// Collect RD stats for all alpha values and joint_signs for CFL_PRED_V
// taking into consideration the best alpha for CFL_PRED_U for that
// joint_sign. This is necessary due to cross component dependency from
// CONFIG_CONTEXT_DERIVATION. The combined (CFL_PRED_U and CFL_PRED_V) RDCOST
// will be used to decide the best_joint_sign.
for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) {
int progress = 0;
for (int c = 0; c < CFL_ALPHABET_SIZE; c++) {
int flag = 0;
if (c > 2 && progress < c) break;
av1_init_rd_stats(&rd_stats);
mbmi->cfl_alpha_idx =
(best_c[joint_sign][CFL_PRED_U] << CFL_ALPHABET_SIZE_LOG2) + c;
mbmi->cfl_alpha_signs = joint_sign;
av1_txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, 0, 1, plane_bsize,
tx_size, FTXS_NONE, skip_trellis);
av1_txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, 0, 2, plane_bsize,
tx_size, FTXS_NONE, skip_trellis);
if (rd_stats.rate == INT_MAX) break;
const int alpha_rate = mode_costs->cfl_cost[joint_sign][CFL_PRED_V][c];
int64_t this_rd =
RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
if (this_rd >= best_rd_uv[joint_sign][CFL_PRED_V]) continue;
best_rd_uv[joint_sign][CFL_PRED_V] = this_rd;
best_c[joint_sign][CFL_PRED_V] = c;
flag = 2;
if (best_rd_uv[joint_sign][CFL_PRED_U] == INT64_MAX) continue;
this_rd += mode_rd + best_rd_uv[joint_sign][CFL_PRED_U];
if (this_rd >= best_rd) continue;
best_rd = this_rd;
best_joint_sign = joint_sign;
progress += flag;
}
}
#else
const int skip_trellis = 0;
for (int plane = 0; plane < CFL_PRED_PLANES; plane++) {
RD_STATS rd_stats;
av1_init_rd_stats(&rd_stats);
for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) {
best_rd_uv[joint_sign][plane] = INT64_MAX;
best_c[joint_sign][plane] = 0;
}
// Collect RD stats for an alpha value of zero in this plane.
// Skip i == CFL_SIGN_ZERO as (0, 0) is invalid.
for (int i = CFL_SIGN_NEG; i < CFL_SIGNS; i++) {
const int8_t joint_sign =
PLANE_SIGN_TO_JOINT_SIGN(plane, CFL_SIGN_ZERO, i);
if (i == CFL_SIGN_NEG) {
mbmi->cfl_alpha_idx = 0;
mbmi->cfl_alpha_signs = joint_sign;
av1_txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, 0, plane + 1,
plane_bsize, tx_size, FTXS_NONE, skip_trellis);
if (rd_stats.rate == INT_MAX) break;
}
const int alpha_rate = mode_costs->cfl_cost[joint_sign][plane][0];
best_rd_uv[joint_sign][plane] =
RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
}
}
int8_t best_joint_sign = -1;
for (int plane = 0; plane < CFL_PRED_PLANES; plane++) {
for (int pn_sign = CFL_SIGN_NEG; pn_sign < CFL_SIGNS; pn_sign++) {
int progress = 0;
for (int c = 0; c < CFL_ALPHABET_SIZE; c++) {
int flag = 0;
RD_STATS rd_stats;
if (c > 2 && progress < c) break;
av1_init_rd_stats(&rd_stats);
for (int i = 0; i < CFL_SIGNS; i++) {
const int8_t joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, pn_sign, i);
if (i == 0) {
mbmi->cfl_alpha_idx = (c << CFL_ALPHABET_SIZE_LOG2) + c;
mbmi->cfl_alpha_signs = joint_sign;
av1_txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, 0, plane + 1,
plane_bsize, tx_size, FTXS_NONE, skip_trellis);
if (rd_stats.rate == INT_MAX) break;
}
const int alpha_rate = mode_costs->cfl_cost[joint_sign][plane][c];
int64_t this_rd =
RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
if (this_rd >= best_rd_uv[joint_sign][plane]) continue;
best_rd_uv[joint_sign][plane] = this_rd;
best_c[joint_sign][plane] = c;
flag = 2;
if (best_rd_uv[joint_sign][!plane] == INT64_MAX) continue;
this_rd += mode_rd + best_rd_uv[joint_sign][!plane];
if (this_rd >= best_rd) continue;
best_rd = this_rd;
best_joint_sign = joint_sign;
}
progress += flag;
}
}
}
#endif
int best_rate_overhead = INT_MAX;
uint8_t ind = 0;
if (best_joint_sign >= 0) {
const int u = best_c[best_joint_sign][CFL_PRED_U];
const int v = best_c[best_joint_sign][CFL_PRED_V];
ind = (u << CFL_ALPHABET_SIZE_LOG2) + v;
best_rate_overhead = mode_costs->cfl_cost[best_joint_sign][CFL_PRED_U][u] +
mode_costs->cfl_cost[best_joint_sign][CFL_PRED_V][v];
} else {
best_joint_sign = 0;
}
mbmi->cfl_alpha_idx = ind;
mbmi->cfl_alpha_signs = best_joint_sign;
xd->cfl.use_dc_pred_cache = 0;
xd->cfl.dc_pred_is_cached[0] = 0;
xd->cfl.dc_pred_is_cached[1] = 0;
return best_rate_overhead;
}
#if CONFIG_AIMC
int get_uv_mode_cost(MB_MODE_INFO *mbmi, const ModeCosts mode_costs,
MACROBLOCKD *xd, CFL_ALLOWED_TYPE cfl_allowed,
int mode_index) {
assert(mode_index < UV_CFL_PRED);
const int uv_context = av1_is_directional_mode(mbmi->mode) ? 1 : 0;
if (cfl_allowed) {
const int cfl_ctx = get_cfl_ctx(xd);
if (mbmi->uv_mode == UV_CFL_PRED) {
return mode_costs.cfl_mode_cost[cfl_ctx][1];
}
int cost = mode_costs.cfl_mode_cost[cfl_ctx][0];
cost += mode_costs.intra_uv_mode_cost[uv_context][mode_index];
return cost;
}
return mode_costs.intra_uv_mode_cost[uv_context][mode_index];
}
#endif // CONFIG_AIMC
#if CONFIG_AIMC
// For a given chroma (UV) mode, compute a specific index and use the same to
// store/fetch rate and distortion information.
// The below specifies the index given for chroma modes:
// 0 : for UV_DC_PRED.
// 1 - 56 : for directional UV modes.
// 57 - 60 : for non-directional UV modes (i.e., UV_SMOOTH_PRED,
// UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED, UV_PAETH_PRED)
static AOM_INLINE int get_chroma_idx_for_reuse_uvrd(MB_MODE_INFO *mbmi) {
const int uv_angle = mbmi->angle_delta[AOM_PLANE_U];
int chroma_idx = 0;
if (av1_is_directional_mode(get_uv_mode(mbmi->uv_mode))) {
chroma_idx = 1;
chroma_idx += (mbmi->uv_mode - 1) * TOTAL_ANGLE_DELTA_COUNT;
chroma_idx += (uv_angle < 0) ? (abs(uv_angle) + MAX_ANGLE_DELTA) : uv_angle;
} else if (mbmi->uv_mode != UV_DC_PRED) {
chroma_idx = LUMA_MODE_COUNT - NON_DIRECTIONAL_MODES_COUNT +
(mbmi->uv_mode - DIRECTIONAL_MODES);
}
assert(chroma_idx >= 0 && chroma_idx < LUMA_MODE_COUNT);
return chroma_idx;
}
// Stores the UV mode RD information during the first evaluation.
static AOM_INLINE void store_uv_mode_rd_info(ModeRDInfoUV *mode_rd_info_uv,
RD_STATS *tokenonly_rd_stats,
const int chroma_idx) {
mode_rd_info_uv->dist_info[chroma_idx] = tokenonly_rd_stats->dist;
mode_rd_info_uv->rate_info[chroma_idx] = tokenonly_rd_stats->rate;
mode_rd_info_uv->mode_evaluated[chroma_idx] = true;
}
// Fetch and reuse the UV mode RD information.
static AOM_INLINE void fetch_uv_mode_rd_info(ModeRDInfoUV *mode_rd_info_uv,
RD_STATS *tokenonly_rd_stats,
const int chroma_idx) {
av1_init_rd_stats(tokenonly_rd_stats);
tokenonly_rd_stats->dist = mode_rd_info_uv->dist_info[chroma_idx];
tokenonly_rd_stats->rate = mode_rd_info_uv->rate_info[chroma_idx];
}
#endif // CONFIG_AIMC
int64_t av1_rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
const PICK_MODE_CONTEXT *ctx,
BLOCK_SIZE bsize, TX_SIZE max_tx_size
#if CONFIG_AIMC
,
ModeRDInfoUV *mode_rd_info_uv
#endif // CONFIG_AIMC
) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
assert(!is_inter_block(mbmi, xd->tree_type));
MB_MODE_INFO best_mbmi = *mbmi;
int64_t best_rd = INT64_MAX, this_rd;
const ModeCosts *mode_costs = &x->mode_costs;
const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg;
// Temporary buffer to hold the best cross-chroma txfm type corresponds
// to best chroma mode of a given partition block.
CctxType tmp_cctx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
init_sbuv_mode(mbmi);
#if CONFIG_WAIP
#if CONFIG_NEW_TX_PARTITION
mbmi->is_wide_angle[1][0] = 0;
mbmi->mapped_intra_mode[1][0] = DC_PRED;
#else
mbmi->is_wide_angle[1] = 0;
#endif // CONFIG_NEW_TX_PARTITION
#endif // CONFIG_WAIP
// Return if the current block does not correspond to a chroma block.
if (!xd->is_chroma_ref) {
*rate = 0;
*rate_tokenonly = 0;
*distortion = 0;
*skippable = 1;
return INT64_MAX;
}
// Only store reconstructed luma when there's chroma RDO. When there's no
// chroma RDO, the reconstructed luma will be stored in encode_superblock().
#if CONFIG_EXTENDED_SDP
if (frame_is_intra_only(cm) || xd->tree_type != CHROMA_PART)
#endif // CONFIG_EXTENDED_SDP
xd->cfl.store_y = store_cfl_required_rdo(cm, x);
if (xd->tree_type == SHARED_PART) {
if (xd->cfl.store_y) {
av1_encode_intra_block_plane(cpi, x, mbmi->sb_type[PLANE_TYPE_Y],
AOM_PLANE_Y, DRY_RUN_NORMAL,
cpi->optimize_seg_arr[mbmi->segment_id]);
xd->cfl.store_y = 0;
}
}
// Search through all non-palette modes.
#if CONFIG_AIMC
// Checks if the best mode chosen needs to be re-evaluated, applicable only
// when the sf 'reuse_uv_mode_rd_info' is enabled.
const int is_reeval_best_mode =
mode_rd_info_uv != NULL && !xd->lossless[mbmi->segment_id];
int best_uv_mode_idx = -1;
get_uv_intra_mode_set(mbmi);
#if CONFIG_ENABLE_MHCCP
int implicit_cfl_mode_num = 1 + MHCCP_MODE_NUM;
#else
int implicit_cfl_mode_num = 1;
#endif // CONFIG_ENABLE_MHCCP
#if CONFIG_LOSSLESS_DPCM
mbmi->use_dpcm_uv = 0;
mbmi->dpcm_mode_uv = 0;
int dpcm_uv_loop_num = 1;
if (xd->lossless[mbmi->segment_id]) {
dpcm_uv_loop_num = 2; // dpcm is only applied for lossless mode
}
for (int dpcm_uv_index = 0; dpcm_uv_index < dpcm_uv_loop_num;
++dpcm_uv_index) {
mbmi->use_dpcm_uv = dpcm_uv_index;
#endif // CONFIG_LOSSLESS_DPCM
const int mode_loop_count = UV_INTRA_MODES + implicit_cfl_mode_num;
for (int mode_idx = 0; mode_idx < mode_loop_count + is_reeval_best_mode;
++mode_idx) {
// If the best mode is chosen based on stored UV modes RD information, use
// the last iteration to re-evaluate the same. This ensures appropriate
// update of 'mbmi' and 'cctx_type_map' which may be required for the
// computation of recon buffer.
const int is_reevaluation = (mode_idx >= mode_loop_count);
if (is_reevaluation) {
if (best_uv_mode_idx == -1) continue;
mode_idx = best_uv_mode_idx;
}
#if CONFIG_LOSSLESS_DPCM
if (!xd->lossless[mbmi->segment_id] && dpcm_uv_index > 0) {
continue;
}
#endif // CONFIG_LOSSLESS_DPCM
mbmi->cfl_idx = 0;
// Reorder modes to search. Let the encoder search CFL first, then the
// rest modes.
if (mode_idx == 0) {
mbmi->cfl_idx = 0;
mbmi->uv_mode = UV_CFL_PRED;
mbmi->uv_mode_idx = 0;
} else if (mode_idx == 1) {
mbmi->cfl_idx = 1;
mbmi->uv_mode = UV_CFL_PRED;
mbmi->uv_mode_idx = 0;
}
#if CONFIG_ENABLE_MHCCP
else if (mode_idx == 2) {
mbmi->cfl_idx = 2;
mbmi->mh_dir = 0;
mbmi->uv_mode = UV_CFL_PRED;
mbmi->uv_mode_idx = 0;
} else if (mode_idx == 3) {
mbmi->cfl_idx = 2;
mbmi->mh_dir = 1;
mbmi->uv_mode = UV_CFL_PRED;
mbmi->uv_mode_idx = 0;
}
#endif // CONFIG_ENABLE_MHCCP
else {
mbmi->cfl_idx = 0;
#if CONFIG_ENABLE_MHCCP
mbmi->uv_mode = mbmi->uv_intra_mode_list[mode_idx - 4];
mbmi->uv_mode_idx = mode_idx - 4;
#else
mbmi->uv_mode = mbmi->uv_intra_mode_list[mode_idx - 2];
mbmi->uv_mode_idx = mode_idx - 2;
#endif // CONFIG_ENABLE_MHCCP
}
if (mbmi->uv_mode == mbmi->mode)
mbmi->angle_delta[PLANE_TYPE_UV] = mbmi->angle_delta[PLANE_TYPE_Y];
else
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
UV_PREDICTION_MODE mode = mbmi->uv_mode;
#if CONFIG_LOSSLESS_DPCM
if (dpcm_uv_index > 0 && ((mode != V_PRED && mode != H_PRED))) {
continue;
}
int mode_cost = 0;
if (xd->lossless[mbmi->segment_id]) {
int dpcm_uv_cost = x->mode_costs.dpcm_uv_cost[dpcm_uv_index];
mode_cost += dpcm_uv_cost;
}
if (mbmi->use_dpcm_uv == 0) {
mode_cost += get_uv_mode_cost(mbmi, x->mode_costs, xd,
is_cfl_allowed(xd), mbmi->uv_mode_idx);
} else {
mbmi->dpcm_mode_uv = mode - 1;
int dpcm_uv_dir_cost =
x->mode_costs.dpcm_uv_vert_horz_cost[mbmi->dpcm_mode_uv];
mode_cost += dpcm_uv_dir_cost;
}
#else // CONFIG_LOSSLESS_DPCM
int mode_cost = get_uv_mode_cost(mbmi, x->mode_costs, is_cfl_allowed(xd),
mbmi->uv_mode_idx);
#endif // CONFIG_LOSSLESS_DPCM
#else
for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) {
UV_PREDICTION_MODE mode = uv_rd_search_mode_order[mode_idx];
mbmi->uv_mode = mode;
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
#endif // CONFIG_AIMC
int this_rate;
RD_STATS tokenonly_rd_stats;
if (!(cpi->sf.intra_sf
.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] &
(1 << mode)))
continue;
if (!intra_mode_cfg->enable_smooth_intra && mode >= UV_SMOOTH_PRED &&
mode <= UV_SMOOTH_H_PRED)
continue;
if (!intra_mode_cfg->enable_paeth_intra && mode == UV_PAETH_PRED)
continue;
// Init variables for cfl and angle delta
int cfl_alpha_rate = 0;
#if CONFIG_ENABLE_MHCCP
int filter_dir_rate = 0;
#endif // CONFIG_ENABLE_MHCCP
int cfl_idx_rate = 0;
if (mode == UV_CFL_PRED) {
if (!is_cfl_allowed(xd) || !intra_mode_cfg->enable_cfl_intra) continue;
const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
if (mbmi->cfl_idx == 0)
cfl_alpha_rate = cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd);
cfl_idx_rate = x->mode_costs.cfl_index_cost[mbmi->cfl_idx];
#if CONFIG_ENABLE_MHCCP
if (mbmi->cfl_idx == CFL_MULTI_PARAM_V) {
const uint8_t mh_size_group = fsc_bsize_groups[bsize];
filter_dir_rate =
x->mode_costs.filter_dir_cost[mh_size_group][mbmi->mh_dir];
}
#endif // CONFIG_ENABLE_MHCCP
if (cfl_alpha_rate == INT_MAX) continue;
}
#if CONFIG_AIMC
#if CONFIG_ENABLE_MHCCP
mode_cost += cfl_alpha_rate + cfl_idx_rate + filter_dir_rate;
#else
mode_cost += cfl_alpha_rate + cfl_idx_rate;
#endif // CONFIG_ENABLE_MHCCP
// Check if the reuse is enabled. If enabled, save the mode information
// (i.e., rate and distortion) when the mode is evaluated for the first
// time, else fetch the mode info saved.
bool is_mode_rd_info_fetched = false;
const int is_reuse_enabled = !xd->lossless[mbmi->segment_id] &&
mode_rd_info_uv != NULL &&
mode != UV_CFL_PRED && !is_reevaluation;
if (!is_reuse_enabled) {
if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, INT64_MAX)) continue;
} else {
const int chroma_idx = get_chroma_idx_for_reuse_uvrd(mbmi);
if (!mode_rd_info_uv->mode_evaluated[chroma_idx]) {
if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, INT64_MAX)) continue;
store_uv_mode_rd_info(mode_rd_info_uv, &tokenonly_rd_stats,
chroma_idx);
} else {
fetch_uv_mode_rd_info(mode_rd_info_uv, &tokenonly_rd_stats,
chroma_idx);
is_mode_rd_info_fetched = true;
}
}
#else
const int is_directional_mode = av1_is_directional_mode(get_uv_mode(mode));
if (is_directional_mode &&
av1_use_angle_delta(mbmi->sb_type[PLANE_TYPE_UV]) &&
intra_mode_cfg->enable_angle_delta) {
// Search through angle delta
const int rate_overhead =
mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode];
if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd,
&this_rate, &tokenonly_rd_stats))
continue;
} else {
// Predict directly if we don't need to search for angle delta.
if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, best_rd)) {
continue;
}
}
const int mode_cost =
mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode] +
cfl_alpha_rate;
#endif // CONFIG_AIMC
this_rate = tokenonly_rd_stats.rate +
intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost);
if (mode == UV_CFL_PRED) {
assert(is_cfl_allowed(xd) && intra_mode_cfg->enable_cfl_intra);
}
this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
if (this_rd < best_rd
#if CONFIG_AIMC
|| is_reevaluation
#endif // CONFIG_AIMC
) {
#if CONFIG_AIMC
// When the RDCost retrieved using the fetched UV mode information, the
// same mode needs to be reevaluated at the end. Hence, capture the best
// mode_idx information here.
best_uv_mode_idx = is_mode_rd_info_fetched ? mode_idx : -1;
#endif // CONFIG_AIMC
best_mbmi = *mbmi;
// The buffer 'tmp_cctx_type_map' holds the best cross-chroma txfm type
// map across the chroma modes.
av1_copy_array(tmp_cctx_type_map, xd->cctx_type_map,
ctx->num_4x4_blk_chroma);
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = tokenonly_rd_stats.rate;
*distortion = tokenonly_rd_stats.dist;
*skippable = tokenonly_rd_stats.skip_txfm;
}
#if CONFIG_AIMC
// Break the loop so that no further modes are evaluated after the best
// mode reevaulation.
if (is_reevaluation) break;
#endif // CONFIG_AIMC
}
#if CONFIG_LOSSLESS_DPCM
}
#endif // CONFIG_LOSSLESS_DPCM
// Search palette mode
const int try_palette =
cpi->oxcf.tool_cfg.enable_palette &&
av1_allow_palette(cpi->common.features.allow_screen_content_tools,
mbmi->sb_type[PLANE_TYPE_UV]);
if (try_palette) {
uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map;
av1_rd_pick_palette_intra_sbuv(
cpi, x,
#if CONFIG_AIMC
// This cost is not used actually in the caller function.
mode_costs->intra_uv_mode_cost[0][0],
#else
mode_costs
->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_DC_PRED],
#endif
best_palette_color_map, &best_mbmi, tmp_cctx_type_map, &best_rd, rate,
rate_tokenonly, distortion, skippable, ctx->num_4x4_blk_chroma);
}
*mbmi = best_mbmi;
// Copy back the best cross-chroma txfm type (tmp_cctx_type_map)
// to xd->cctx_type_map.
av1_copy_array(xd->cctx_type_map, tmp_cctx_type_map, ctx->num_4x4_blk_chroma);
// Make sure we actually chose a mode
assert(best_rd < INT64_MAX);
return best_rd;
}
// Searches palette mode for luma channel in inter frame.
int av1_search_palette_mode(IntraModeSearchState *intra_search_state,
const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, unsigned int ref_frame_cost,
PICK_MODE_CONTEXT *ctx, RD_STATS *this_rd_cost,
int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
MB_MODE_INFO *const mbmi = x->e_mbd.mi[0];
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
int rate2 = 0;
int64_t distortion2 = 0, best_rd_palette = best_rd, this_rd,
best_model_rd_palette = INT64_MAX;
int skippable = 0;
uint8_t *const best_palette_color_map =
x->palette_buffer->best_palette_color_map;
uint8_t *const color_map = xd->plane[0].color_index_map;
MB_MODE_INFO best_mbmi_palette = *mbmi;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
TX_TYPE best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
const ModeCosts *mode_costs = &x->mode_costs;
const int *const intra_mode_cost =
mode_costs->mbmode_cost[size_group_lookup[bsize]];
const int rows = block_size_high[bsize];
const int cols = block_size_wide[bsize];
#if CONFIG_IBC_SR_EXT
mbmi->use_intrabc[xd->tree_type == CHROMA_PART] = 0;
#endif // CONFIG_IBC_SR_EXT
mbmi->mode = DC_PRED;
mbmi->uv_mode = UV_DC_PRED;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
set_mv_precision(mbmi, mbmi->max_mv_precision);
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
mbmi->use_dpcm_y = 0;
mbmi->dpcm_mode_y = 0;
mbmi->use_dpcm_uv = 0;
mbmi->dpcm_mode_uv = 0;
}
#endif // CONFIG_LOSSLESS_DPCM
#if CONFIG_REFINEMV
mbmi->refinemv_flag = 0;
#endif // CONFIG_REFINEMV
#if CONFIG_MORPH_PRED
mbmi->morph_pred = 0;
#endif // CONFIG_MORPH_PRED
#if CONFIG_EXTENDED_WARP_PREDICTION
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->warp_ref_idx = 0;
mbmi->max_num_warp_candidates = 0;
mbmi->warpmv_with_mvd_flag = 0;
#endif // CONFIG_EXTENDED_WARP_PREDICTION
RD_STATS rd_stats_y;
av1_invalid_rd_stats(&rd_stats_y);
av1_rd_pick_palette_intra_sby(
cpi, x, bsize, intra_mode_cost[DC_PRED], &best_mbmi_palette,
best_palette_color_map, &best_rd_palette, &best_model_rd_palette,
&rd_stats_y.rate, NULL, &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL,
ctx, best_blk_skip, best_tx_type_map);
if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) {
this_rd_cost->rdcost = INT64_MAX;
return skippable;
}
memcpy(x->txfm_search_info.blk_skip[AOM_PLANE_Y], best_blk_skip,
sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize));
av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
memcpy(color_map, best_palette_color_map,
rows * cols * sizeof(best_palette_color_map[0]));
skippable = rd_stats_y.skip_txfm;
distortion2 = rd_stats_y.dist;
rate2 = rd_stats_y.rate + ref_frame_cost;
if (num_planes > 1) {
#if !CONFIG_AIMC
if (intra_search_state->rate_uv_intra == INT_MAX)
#endif // !CONFIG_AIMC
{
// We have not found any good uv mode yet, so we need to search for it.
TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd);
av1_rd_pick_intra_sbuv_mode(
cpi, x, &intra_search_state->rate_uv_intra,
&intra_search_state->rate_uv_tokenonly, &intra_search_state->dist_uvs,
&intra_search_state->skip_uvs, ctx, bsize, uv_tx
#if CONFIG_AIMC
,
NULL /*ModeRDInfoUV*/
#endif // CONFIG_AIMC
);
intra_search_state->mode_uv = mbmi->uv_mode;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
intra_search_state->best_dpcm_uv_index = mbmi->use_dpcm_uv;
intra_search_state->best_dpcm_uv_dir = mbmi->dpcm_mode_uv;
}
#endif // CONFIG_LOSSLESS_DPCM
intra_search_state->pmi_uv = *pmi;
intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
}
// We have found at least one good uv mode before, so copy and paste it
// over.
mbmi->uv_mode = intra_search_state->mode_uv;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
mbmi->use_dpcm_uv = intra_search_state->best_dpcm_uv_index;
mbmi->dpcm_mode_uv = intra_search_state->best_dpcm_uv_dir;
}
#endif // CONFIG_LOSSLESS_DPCM
pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1];
if (pmi->palette_size[1] > 0) {
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
}
mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta;
skippable = skippable && intra_search_state->skip_uvs;
distortion2 += intra_search_state->dist_uvs;
rate2 += intra_search_state->rate_uv_intra;
}
if (skippable) {
rate2 -= rd_stats_y.rate;
if (num_planes > 1) rate2 -= intra_search_state->rate_uv_tokenonly;
#if !CONFIG_SKIP_TXFM_OPT
rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1];
#endif // !CONFIG_SKIP_TXFM_OPT
}
#if !CONFIG_SKIP_TXFM_OPT
else {
rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0];
}
#endif // !CONFIG_SKIP_TXFM_OPT
this_rd = RDCOST(x->rdmult, rate2, distortion2);
this_rd_cost->rate = rate2;
this_rd_cost->dist = distortion2;
this_rd_cost->rdcost = this_rd;
return skippable;
}
/*!\brief Get the intra prediction by searching through tx_type and tx_size.
*
* \ingroup intra_mode_search
* \callergraph
* Currently this function is only used in the intra frame code path for
* winner-mode processing.
*
* \return Returns whether the current mode is an improvement over best_rd.
*/
static AOM_INLINE int intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
#if CONFIG_AIMC
const int mode_costs,
#else
const int *bmode_costs,
#endif // CONFIG_AIMC
int64_t *best_rd, int *rate,
int *rate_tokenonly, int64_t *distortion,
int *skippable, MB_MODE_INFO *best_mbmi,
PICK_MODE_CONTEXT *ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
RD_STATS rd_stats;
// In order to improve txfm search avoid rd based breakouts during winner
// mode evaluation. Hence passing ref_best_rd as a maximum value
av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats, bsize, INT64_MAX);
if (rd_stats.rate == INT_MAX) return 0;
int this_rate_tokenonly = rd_stats.rate;
if (!xd->lossless[mbmi->segment_id] &&
block_signals_txsize(mbmi->sb_type[PLANE_TYPE_Y])) {
// av1_pick_uniform_tx_size_type_yrd above includes the cost of the
// tx_size in the tokenonly rate, but for intra blocks, tx_size is always
// coded (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size);
}
const int this_rate =
rd_stats.rate + intra_mode_info_cost_y(cpi, x, mbmi, bsize,
#if CONFIG_AIMC
mode_costs);
#else
bmode_costs[mbmi->mode]);
#endif // CONFIG_AIMC
const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist);
if (this_rd < *best_rd) {
*best_mbmi = *mbmi;
*best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = rd_stats.dist;
*skippable = rd_stats.skip_txfm;
av1_copy_array(ctx->blk_skip[AOM_PLANE_Y],
x->txfm_search_info.blk_skip[AOM_PLANE_Y], ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
return 1;
}
return 0;
}
/*!\brief Search for the best filter_intra mode when coding inter frame.
*
* \ingroup intra_mode_search
* \callergraph
* This function loops through all filter_intra modes to find the best one.
*
* Returns nothing, but updates the mbmi and rd_stats.
*/
static INLINE void handle_filter_intra_mode(const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize,
const PICK_MODE_CONTEXT *ctx,
RD_STATS *rd_stats_y, int mode_cost,
int64_t best_rd,
int64_t best_rd_so_far) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
assert(mbmi->mode == DC_PRED &&
av1_filter_intra_allowed_bsize(&cpi->common, bsize));
set_mv_precision(mbmi, mbmi->max_mv_precision);
#if CONFIG_REFINEMV
mbmi->refinemv_flag = 0;
#endif // CONFIG_REFINEMV
mbmi->motion_mode = SIMPLE_TRANSLATION;
RD_STATS rd_stats_y_fi;
int filter_intra_selected_flag = 0;
TX_SIZE best_tx_size = mbmi->tx_size;
FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
memcpy(best_blk_skip, x->txfm_search_info.blk_skip[AOM_PLANE_Y],
sizeof(best_blk_skip[0]) * ctx->num_4x4_blk);
TX_TYPE best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
#if CONFIG_NEW_TX_PARTITION
TX_SIZE best_tx_partition = mbmi->tx_partition_type[0];
#endif // CONFIG_NEW_TX_PARTITION
av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
mbmi->filter_intra_mode_info.use_filter_intra = 1;
for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED; fi_mode < FILTER_INTRA_MODES;
++fi_mode) {
mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode;
av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y_fi, bsize, best_rd);
if (rd_stats_y_fi.rate == INT_MAX) continue;
const int this_rate_tmp =
rd_stats_y_fi.rate +
intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost);
const int64_t this_rd_tmp =
RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist);
if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > best_rd) {
break;
}
if (this_rd_tmp < best_rd_so_far) {
best_tx_size = mbmi->tx_size;
#if CONFIG_NEW_TX_PARTITION
best_tx_partition = mbmi->tx_partition_type[0];
#endif // CONFIG_NEW_TX_PARTITION
av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
memcpy(best_blk_skip, x->txfm_search_info.blk_skip[AOM_PLANE_Y],
sizeof(best_blk_skip[0]) * ctx->num_4x4_blk);
best_fi_mode = fi_mode;
*rd_stats_y = rd_stats_y_fi;
filter_intra_selected_flag = 1;
best_rd_so_far = this_rd_tmp;
}
}
mbmi->tx_size = best_tx_size;
#if CONFIG_NEW_TX_PARTITION
mbmi->tx_partition_type[0] = best_tx_partition;
#endif // CONFIG_NEW_TX_PARTITION
av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
memcpy(x->txfm_search_info.blk_skip[AOM_PLANE_Y], best_blk_skip,
sizeof(*x->txfm_search_info.blk_skip[AOM_PLANE_Y]) * ctx->num_4x4_blk);
if (filter_intra_selected_flag) {
mbmi->filter_intra_mode_info.use_filter_intra = 1;
mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode;
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
mbmi->use_dpcm_y = 0;
mbmi->dpcm_mode_y = 0;
mbmi->use_dpcm_uv = 0;
mbmi->dpcm_mode_uv = 0;
}
#endif // CONFIG_LOSSLESS_DPCM
} else {
mbmi->filter_intra_mode_info.use_filter_intra = 0;
}
}
int64_t av1_handle_intra_mode(IntraModeSearchState *intra_search_state,
const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, unsigned int ref_frame_cost,
const PICK_MODE_CONTEXT *ctx, RD_STATS *rd_stats,
RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv,
#if CONFIG_AIMC
ModeRDInfoUV *mode_rd_info_uv,
#endif // CONFIG_AIMC
int64_t best_rd, int64_t *best_intra_rd,
int64_t *best_model_rd,
int64_t top_intra_model_rd[]) {
const AV1_COMMON *cm = &cpi->common;
const SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
assert(mbmi->ref_frame[0] == INTRA_FRAME);
const PREDICTION_MODE mode = mbmi->mode;
const ModeCosts *mode_costs = &x->mode_costs;
#if CONFIG_IMPROVED_INTRA_DIR_PRED
int mrl_ctx = get_mrl_index_ctx(xd->neighbors[0], xd->neighbors[1]);
int mrl_idx_cost =
(av1_is_directional_mode(mbmi->mode) &&
cpi->common.seq_params.enable_mrls)
? x->mode_costs.mrl_index_cost[mrl_ctx][mbmi->mrl_index]
: 0;
#else
int mrl_idx_cost = (av1_is_directional_mode(mbmi->mode) &&
cpi->common.seq_params.enable_mrls)
? x->mode_costs.mrl_index_cost[mbmi->mrl_index]
: 0;
#endif // CONFIG_IMPROVED_INTRA_DIR_PRED
#if CONFIG_AIMC
int mode_cost = 0;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
int dpcm_cost = x->mode_costs.dpcm_cost[mbmi->use_dpcm_y];
mode_cost += dpcm_cost;
if (mbmi->use_dpcm_y == 0) {
const int context = get_y_mode_idx_ctx(xd);
int mode_set_index = mbmi->y_mode_idx < FIRST_MODE_COUNT ? 0 : 1;
mode_set_index +=
((mbmi->y_mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT);
mode_cost += x->mode_costs.y_primary_flag_cost[mode_set_index];
if (mbmi->y_mode_idx < FIRST_MODE_COUNT) {
mode_cost +=
x->mode_costs.y_first_mode_costs[context][mbmi->y_mode_idx];
} else {
mode_cost +=
x->mode_costs
.y_second_mode_costs[context]
[mbmi->y_mode_idx - FIRST_MODE_COUNT -
SECOND_MODE_COUNT * (mode_set_index - 1)];
}
mode_cost += ref_frame_cost;
mode_cost += mrl_idx_cost;
} else {
mode_cost += x->mode_costs.dpcm_vert_horz_cost[mbmi->dpcm_mode_y];
}
} else {
const int context = get_y_mode_idx_ctx(xd);
int mode_set_index = mbmi->y_mode_idx < FIRST_MODE_COUNT ? 0 : 1;
mode_set_index +=
((mbmi->y_mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT);
mode_cost += x->mode_costs.y_primary_flag_cost[mode_set_index];
if (mbmi->y_mode_idx < FIRST_MODE_COUNT) {
mode_cost += x->mode_costs.y_first_mode_costs[context][mbmi->y_mode_idx];
} else {
mode_cost +=
x->mode_costs
.y_second_mode_costs[context]
[mbmi->y_mode_idx - FIRST_MODE_COUNT -
SECOND_MODE_COUNT * (mode_set_index - 1)];
}
mode_cost += ref_frame_cost;
mode_cost += mrl_idx_cost;
}
#else // CONFIG_LOSSLESS_DPCM
const int context = get_y_mode_idx_ctx(xd);
int mode_set_index = mbmi->y_mode_idx < FIRST_MODE_COUNT ? 0 : 1;
mode_set_index += ((mbmi->y_mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT);
mode_cost += x->mode_costs.y_primary_flag_cost[mode_set_index];
if (mbmi->y_mode_idx < FIRST_MODE_COUNT) {
mode_cost += x->mode_costs.y_first_mode_costs[context][mbmi->y_mode_idx];
} else {
mode_cost +=
x->mode_costs
.y_second_mode_costs[context]
[mbmi->y_mode_idx - FIRST_MODE_COUNT -
SECOND_MODE_COUNT * (mode_set_index - 1)];
}
#if CONFIG_EXTENDED_SDP
if (mbmi->region_type != INTRA_REGION)
#endif // CONFIG_EXTENDED_SDP
mode_cost += ref_frame_cost;
mode_cost += mrl_idx_cost;
#endif // CONFIG_LOSSLESS_DPCM
#else
const int mode_cost =
mode_costs->mbmode_cost[size_group_lookup[bsize]][mode] + mrl_idx_cost +
ref_frame_cost;
#endif // CONFIG_AIMC
const int intra_cost_penalty = av1_get_intra_cost_penalty(
cm->quant_params.base_qindex, cm->quant_params.y_dc_delta_q,
cm->seq_params.base_y_dc_delta_q, cm->seq_params.bit_depth);
#if !CONFIG_SKIP_TXFM_OPT
const int skip_ctx = av1_get_skip_txfm_context(xd);
#endif // !CONFIG_SKIP_TXFM_OPT
int known_rate = mode_cost;
if (mode != DC_PRED && mode != PAETH_PRED) known_rate += intra_cost_penalty;
#if !CONFIG_SKIP_TXFM_OPT
known_rate += AOMMIN(mode_costs->skip_txfm_cost[skip_ctx][0],
mode_costs->skip_txfm_cost[skip_ctx][1]);
#endif // !CONFIG_SKIP_TXFM_OPT
const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0);
if (known_rd > best_rd) {
intra_search_state->skip_intra_modes = 1;
return INT64_MAX;
}
const int is_directional_mode = av1_is_directional_mode(mode);
if (is_directional_mode &&
#if !CONFIG_AIMC
av1_use_angle_delta(bsize) &&
#endif // !CONFIG_AIMC
cpi->oxcf.intra_mode_cfg.enable_angle_delta) {
if (sf->intra_sf.intra_pruning_with_hog &&
!intra_search_state->dir_mode_skip_mask_ready) {
prune_intra_mode_with_hog(x, bsize,
cpi->sf.intra_sf.intra_pruning_with_hog_thresh,
intra_search_state->directional_mode_skip_mask);
intra_search_state->dir_mode_skip_mask_ready = 1;
}
#if CONFIG_AIMC
if (intra_search_state->directional_mode_skip_mask[mode] &&
mbmi->y_mode_idx >= FIRST_MODE_COUNT)
return INT64_MAX;
#else
if (intra_search_state->directional_mode_skip_mask[mode]) return INT64_MAX;
#endif // CONFIG_AIMC
}
int64_t this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost);
if (prune_intra_y_mode(this_model_rd, best_model_rd, top_intra_model_rd)
#if CONFIG_LOSSLESS_DPCM
&& (!xd->lossless[mbmi->segment_id] || mbmi->use_dpcm_y == 0)
#endif // CONFIG_LOSSLESS_DPCM
)
return INT64_MAX;
av1_init_rd_stats(rd_stats_y);
av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, best_rd);
// Pick filter intra modes.
if (mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
int try_filter_intra = 1;
int64_t best_rd_so_far = INT64_MAX;
if (rd_stats_y->rate != INT_MAX) {
const int tmp_rate = rd_stats_y->rate +
#if CONFIG_D149_CTX_MODELING_OPT
mode_costs->filter_intra_cost[0] +
#else
mode_costs->filter_intra_cost[bsize][0] +
#endif // CONFIG_D149_CTX_MODELING_OPT
mode_cost;
best_rd_so_far = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist);
try_filter_intra = (best_rd_so_far / 2) <= best_rd;
}
#if CONFIG_EXT_RECUR_PARTITIONS
const MB_MODE_INFO *cached_mode = x->inter_mode_cache;
const FILTER_INTRA_MODE_INFO *cached_fi_mode =
cached_mode ? &cached_mode->filter_intra_mode_info : NULL;
if (should_reuse_mode(x, REUSE_INTRA_MODE_IN_INTERFRAME_FLAG) &&
!frame_is_intra_only(cm) && cached_fi_mode &&
!cached_fi_mode->use_filter_intra) {
// assert(cached_mode->mode == DC_PRED);
try_filter_intra = 0;
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
if (try_filter_intra) {
handle_filter_intra_mode(cpi, x, bsize, ctx, rd_stats_y, mode_cost,
best_rd, best_rd_so_far);
}
}
if (rd_stats_y->rate == INT_MAX) return INT64_MAX;
const int mode_cost_y =
intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost);
av1_init_rd_stats(rd_stats);
av1_init_rd_stats(rd_stats_uv);
const int num_planes = av1_num_planes(cm);
if (num_planes > 1) {
// TODO(chiyotsai@google.com): Consolidate the chroma search code here
// with the one in av1_search_palette_mode.
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int try_palette =
cpi->oxcf.tool_cfg.enable_palette &&
av1_allow_palette(cm->features.allow_screen_content_tools,
mbmi->sb_type[PLANE_TYPE_Y]);
#if !CONFIG_AIMC
if (intra_search_state->rate_uv_intra == INT_MAX) {
#endif // !CONFIG_AIMC
// If no good uv-predictor had been found, search for it.
#if CONFIG_SKIP_TXFM_OPT
const int rate_y = rd_stats_y->rate;
#else
const int rate_y = rd_stats_y->skip_txfm
? mode_costs->skip_txfm_cost[skip_ctx][1]
: rd_stats_y->rate;
#endif // CONFIG_SKIP_TXFM_OPT
const int64_t rdy =
RDCOST(x->rdmult, rate_y + mode_cost_y, rd_stats_y->dist);
if (best_rd < (INT64_MAX / 2) && rdy > (best_rd + (best_rd >> 2))) {
intra_search_state->skip_intra_modes = 1;
return INT64_MAX;
}
const TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd);
av1_rd_pick_intra_sbuv_mode(
cpi, x, &intra_search_state->rate_uv_intra,
&intra_search_state->rate_uv_tokenonly, &intra_search_state->dist_uvs,
&intra_search_state->skip_uvs, ctx, bsize, uv_tx
#if CONFIG_AIMC
,
sf->intra_sf.reuse_uv_mode_rd_info ? mode_rd_info_uv : NULL
#endif // CONFIG_AIMC
);
intra_search_state->mode_uv = mbmi->uv_mode;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
intra_search_state->best_dpcm_uv_index = mbmi->use_dpcm_uv;
intra_search_state->best_dpcm_uv_dir = mbmi->dpcm_mode_uv;
}
#endif // CONFIG_LOSSLESS_DPCM
if (try_palette) intra_search_state->pmi_uv = *pmi;
intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
#if CONFIG_AIMC
intra_search_state->uv_mode_idx = mbmi->uv_mode_idx;
#endif // CONFIG_AIMC
const int uv_rate = intra_search_state->rate_uv_tokenonly;
const int64_t uv_dist = intra_search_state->dist_uvs;
const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist);
if (uv_rd > best_rd) {
// If there is no good intra uv-mode available, we can skip all intra
// modes.
intra_search_state->skip_intra_modes = 1;
return INT64_MAX;
}
#if !CONFIG_AIMC
}
#endif // !CONFIG_AIMC
// If we are here, then the encoder has found at least one good intra uv
// predictor, so we can directly copy its statistics over.
// TODO(any): the stats here is probably not right if the current best
// mode is cfl.
rd_stats_uv->rate = intra_search_state->rate_uv_tokenonly;
rd_stats_uv->dist = intra_search_state->dist_uvs;
rd_stats_uv->skip_txfm = intra_search_state->skip_uvs;
rd_stats->skip_txfm = rd_stats_y->skip_txfm && rd_stats_uv->skip_txfm;
mbmi->uv_mode = intra_search_state->mode_uv;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
mbmi->use_dpcm_uv = intra_search_state->best_dpcm_uv_index;
mbmi->dpcm_mode_uv = intra_search_state->best_dpcm_uv_dir;
}
#endif // CONFIG_LOSSLESS_DPCM
#if CONFIG_AIMC
mbmi->uv_mode_idx = intra_search_state->uv_mode_idx;
#endif // CONFIG_AIMC
if (try_palette) {
pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1];
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
}
mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta;
}
rd_stats->rate = rd_stats_y->rate + mode_cost_y;
if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) {
// av1_pick_uniform_tx_size_type_yrd above includes the cost of the
// tx_size in the tokenonly rate, but for intra blocks, tx_size is always
// coded (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
rd_stats_y->rate -= tx_size_cost(x, bsize, mbmi->tx_size);
}
if (num_planes > 1 && xd->is_chroma_ref) {
const int uv_mode_cost =
#if CONFIG_AIMC
get_uv_mode_cost(mbmi, x->mode_costs, xd, is_cfl_allowed(xd),
mbmi->uv_mode_idx);
#else
mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mode][mbmi->uv_mode];
#endif // CONFIG_AIMC
rd_stats->rate +=
rd_stats_uv->rate +
intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost);
}
// Intra block is always coded as non-skip
rd_stats->skip_txfm = 0;
rd_stats->dist = rd_stats_y->dist + rd_stats_uv->dist;
#if !CONFIG_SKIP_TXFM_OPT
// Add in the cost of the no skip flag.
rd_stats->rate += mode_costs->skip_txfm_cost[skip_ctx][0];
#endif // !CONFIG_SKIP_TXFM_OPT
// Calculate the final RD estimate for this mode.
const int64_t this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
// Keep record of best intra rd
if (this_rd < *best_intra_rd) {
*best_intra_rd = this_rd;
intra_search_state->best_intra_mode = mode;
intra_search_state->best_fsc = mbmi->fsc_mode[xd->tree_type == CHROMA_PART];
intra_search_state->best_mrl_index = mbmi->mrl_index;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
intra_search_state->best_dpcm_index = mbmi->use_dpcm_y;
intra_search_state->best_dpcm_dir = mbmi->dpcm_mode_y;
}
#endif
}
if (sf->intra_sf.skip_intra_in_interframe) {
if (best_rd < (INT64_MAX / 2) && this_rd > (best_rd + (best_rd >> 1)))
intra_search_state->skip_intra_modes = 1;
}
for (int i = 0; i < REFERENCE_MODES; ++i) {
intra_search_state->best_pred_rd[i] =
AOMMIN(intra_search_state->best_pred_rd[i], this_rd);
}
return this_rd;
}
void search_fsc_mode(const AV1_COMP *const cpi, MACROBLOCK *x, int *rate,
int *rate_tokenonly, int64_t *distortion, int *skippable,
BLOCK_SIZE bsize,
#if CONFIG_AIMC
int mode_costs,
#else
const int *mode_costs,
#endif // CONFIG_AIMC
uint8_t *dir_skip_mask, int64_t *best_rd,
int64_t *best_model_rd, PICK_MODE_CONTEXT *ctx,
MB_MODE_INFO *best_mbmi) {
(void)ctx;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
#if CONFIG_AIMC
const int context = get_y_mode_idx_ctx(xd);
uint8_t best_y_mode_idx = best_mbmi->y_mode_idx;
uint8_t best_joint_ymode = best_mbmi->joint_y_mode_delta_angle;
#endif // CONFIG_AIMC
uint8_t best_fsc_mode = 0;
PREDICTION_MODE best_intra_mode = best_mbmi->mode;
TX_SIZE best_tx_size = best_mbmi->tx_size;
#if CONFIG_NEW_TX_PARTITION
TX_PARTITION_TYPE best_tx_partition_type[INTER_TX_SIZE_BUF_LEN];
av1_copy(best_tx_partition_type, best_mbmi->tx_partition_type);
#endif // CONFIG_NEW_TX_PARTITION
uint8_t best_filt = mbmi->filter_intra_mode_info.use_filter_intra;
TX_TYPE best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
int8_t best_angle_delta = best_mbmi->angle_delta[PLANE_TYPE_Y];
uint8_t best_mrl = best_mbmi->mrl_index;
uint8_t enable_mrls_flag = cpi->common.seq_params.enable_mrls;
uint8_t mrl_loop = (enable_mrls_flag && best_mrl) ? 2 : 1;
#if CONFIG_LOSSLESS_DPCM
int dpcm_fsc_loop = 1;
uint8_t best_dpcm_fsc = mbmi->use_dpcm_y;
uint8_t best_dpcm_fsc_dir = mbmi->dpcm_mode_y;
// uint8_t best_dpcm_fsc_angle_delta = mbmi->dpcm_angle_delta;
mbmi->use_dpcm_y = 0;
if (xd->lossless[mbmi->segment_id]) {
dpcm_fsc_loop = 2;
}
for (int dpcm_fsc_index = 0; dpcm_fsc_index < dpcm_fsc_loop;
dpcm_fsc_index++) {
mbmi->use_dpcm_y = dpcm_fsc_index;
#endif // CONFIG_LOSSLESS_DPCM
for (int mrl_idx = 0; mrl_idx < mrl_loop; ++mrl_idx) {
mbmi->mrl_index = mrl_idx ? best_mbmi->mrl_index : mrl_idx;
#if CONFIG_AIMC
for (int mode_idx = INTRA_MODE_START; mode_idx < LUMA_MODE_COUNT;
++mode_idx) {
mbmi->y_mode_idx = mode_idx;
mbmi->joint_y_mode_delta_angle = mbmi->y_intra_mode_list[mode_idx];
set_y_mode_and_delta_angle(mbmi->joint_y_mode_delta_angle, mbmi);
if (mbmi->y_mode_idx >= FIRST_MODE_COUNT &&
!(mbmi->angle_delta[PLANE_TYPE_Y] ==
best_mbmi->angle_delta[PLANE_TYPE_Y])) {
continue;
}
mode_costs = 0;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
if (mbmi->use_dpcm_y > 0 &&
(mrl_idx > 0 || (mbmi->mode != V_PRED && mbmi->mode != H_PRED) ||
((mbmi->mode == V_PRED || mbmi->mode == H_PRED) &&
mbmi->angle_delta[0] != 0))) {
continue;
}
int dpcm_cost = x->mode_costs.dpcm_cost[mbmi->use_dpcm_y];
mode_costs += dpcm_cost;
if (mbmi->use_dpcm_y > 0) {
mbmi->dpcm_mode_y = mbmi->mode - 1;
}
}
#endif // CONFIG_LOSSLESS_DPCM
#if CONFIG_LOSSLESS_DPCM
if (mbmi->use_dpcm_y == 0) {
#endif // CONFIG_LOSSLESS_DPCM
int mode_set_index = mbmi->y_mode_idx < FIRST_MODE_COUNT ? 0 : 1;
mode_set_index +=
((mbmi->y_mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT);
mode_costs += x->mode_costs.y_primary_flag_cost[mode_set_index];
if (mode_idx < FIRST_MODE_COUNT) {
mode_costs += x->mode_costs.y_first_mode_costs[context][mode_idx];
} else {
mode_costs +=
x->mode_costs.y_second_mode_costs
[context][mbmi->y_mode_idx - FIRST_MODE_COUNT -
SECOND_MODE_COUNT * (mode_set_index - 1)];
}
#if CONFIG_LOSSLESS_DPCM
} else {
int dpcm_dir_cost =
x->mode_costs.dpcm_vert_horz_cost[mbmi->dpcm_mode_y];
mode_costs += dpcm_dir_cost;
}
#endif // CONFIG_LOSSLESS_DPCM
#else
int total_num_mode = best_angle_delta ? INTRA_MODES + 1 : INTRA_MODES;
for (int mode_idx = INTRA_MODE_START; mode_idx < total_num_mode;
++mode_idx) {
set_y_mode_and_delta_angle(mode_idx, mbmi);
if (mode_idx >= INTRA_MODES) {
mbmi->mode = best_mbmi->mode;
mbmi->angle_delta[PLANE_TYPE_Y] = best_mbmi->angle_delta[PLANE_TYPE_Y];
}
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
if (mbmi->use_dpcm_y > 0 &&
(mrl_idx > 0 || (mbmi->mode != V_PRED && mbmi->mode != H_PRED) ||
((mbmi->mode == V_PRED || mbmi->mode == H_PRED) &&
mbmi->angle_delta[0] != 0))) {
continue;
}
int dpcm_cost = x->mode_costs.dpcm_cost[mbmi->use_dpcm_y];
mode_costs += dpcm_cost;
if (mbmi->use_dpcm_y > 0) {
mbmi->dpcm_mode_y = mbmi->mode - 1;
}
}
#endif // CONFIG_LOSSLESS_DPCM
#endif // CONFIG_AIMC
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
mbmi->fsc_mode[xd->tree_type == CHROMA_PART] = 1;
} else {
mbmi->fsc_mode[PLANE_TYPE_Y] = 1;
}
#else
mbmi->fsc_mode[PLANE_TYPE_Y] = 1;
#endif
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->palette_mode_info.palette_size[0] = 0;
int64_t this_rd;
RD_STATS tokenonly_rd_stats;
if ((!cpi->oxcf.intra_mode_cfg.enable_smooth_intra ||
cpi->sf.intra_sf.disable_smooth_intra) &&
(mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED ||
mbmi->mode == SMOOTH_V_PRED)) {
continue;
}
if (!cpi->oxcf.intra_mode_cfg.enable_paeth_intra &&
mbmi->mode == PAETH_PRED) {
continue;
}
int is_directional_mode = av1_is_directional_mode(mbmi->mode);
#if !CONFIG_AIMC
if (is_directional_mode && av1_use_angle_delta(bsize) == 0 &&
mbmi->angle_delta[PLANE_TYPE_Y] != 0) {
continue;
}
#endif // CONFIG_AIMC
#if CONFIG_AIMC
if (is_directional_mode && dir_skip_mask[mbmi->mode] &&
mode_idx >= FIRST_MODE_COUNT)
#else
if (is_directional_mode && dir_skip_mask[mbmi->mode])
#endif // CONFIG_AIMC
continue;
if (!is_directional_mode && mrl_idx) continue;
#if !CONFIG_IMPROVED_INTRA_DIR_PRED
if (best_mbmi->mrl_index == 0 && mbmi->mrl_index > 1 &&
av1_is_directional_mode(best_mbmi->mode) == 0) {
continue;
}
#endif // !CONFIG_IMPROVED_INTRA_DIR_PRED
#if CONFIG_IMPROVED_INTRA_DIR_PRED
int mrl_ctx = get_mrl_index_ctx(xd->neighbors[0], xd->neighbors[1]);
int mrl_idx_cost =
(is_directional_mode && enable_mrls_flag)
? x->mode_costs.mrl_index_cost[mrl_ctx][mbmi->mrl_index]
: 0;
#else
int mrl_idx_cost = (is_directional_mode && enable_mrls_flag)
? x->mode_costs.mrl_index_cost[mbmi->mrl_index]
: 0;
#endif // CONFIG_IMPROVED_INTRA_DIR_PRED
#if CONFIG_AIMC
mode_costs += mrl_idx_cost;
#endif // CONFIG_AIMC
if (model_intra_yrd_and_prune(cpi, x, bsize,
#if CONFIG_AIMC
mode_costs,
#else
mode_costs[mbmi->mode] + mrl_idx_cost,
#endif
best_model_rd)
#if CONFIG_LOSSLESS_DPCM
&& (!xd->lossless[mbmi->segment_id] || mbmi->use_dpcm_y == 0)
#endif // CONFIG_LOSSLESS_DPCM
) {
continue;
}
av1_pick_uniform_tx_size_type_yrd(cpi, x, &tokenonly_rd_stats, bsize,
*best_rd);
if (tokenonly_rd_stats.rate == INT_MAX) continue;
const int this_rate = tokenonly_rd_stats.rate +
intra_mode_info_cost_y(cpi, x, mbmi, bsize,
#if CONFIG_AIMC
mode_costs);
#else
mode_costs[mbmi->mode] +
mrl_idx_cost);
#endif
this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
// Collect mode stats for multiwinner mode processing
const int txfm_search_done = 1;
const MV_REFERENCE_FRAME refs[2] = { -1, -1 };
store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, refs,
0, NULL, bsize, this_rd,
cpi->sf.winner_mode_sf.multi_winner_mode_type,
txfm_search_done);
if (this_rd < *best_rd) {
*best_rd = this_rd;
best_tx_size = mbmi->tx_size;
#if CONFIG_NEW_TX_PARTITION
av1_copy(best_tx_partition_type, mbmi->tx_partition_type);
#endif // CONFIG_NEW_TX_PARTITION
best_intra_mode = mbmi->mode;
#if CONFIG_AIMC
best_y_mode_idx = mbmi->y_mode_idx;
best_joint_ymode = mbmi->joint_y_mode_delta_angle;
#endif // CONFIG_AIMC
best_mrl = mbmi->mrl_index;
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
best_dpcm_fsc = mbmi->use_dpcm_y;
best_dpcm_fsc_dir = mbmi->dpcm_mode_y;
}
#endif // CONFIG_LOSSLESS_DPCM
best_filt = 0;
best_angle_delta = mbmi->angle_delta[PLANE_TYPE_Y];
av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
memcpy(ctx->blk_skip[AOM_PLANE_Y],
x->txfm_search_info.blk_skip[AOM_PLANE_Y],
sizeof(*x->txfm_search_info.blk_skip[AOM_PLANE_Y]) *
ctx->num_4x4_blk);
*rate = this_rate;
*rate_tokenonly = tokenonly_rd_stats.rate;
*distortion = tokenonly_rd_stats.dist;
*skippable = tokenonly_rd_stats.skip_txfm;
best_fsc_mode = 1;
}
}
}
#if CONFIG_LOSSLESS_DPCM
}
#endif // CONFIG_LOSSLESS_DPCM
if (best_fsc_mode) {
mbmi->fsc_mode[PLANE_TYPE_Y] = 1;
mbmi->mode = best_intra_mode;
#if CONFIG_AIMC
mbmi->y_mode_idx = best_y_mode_idx;
mbmi->joint_y_mode_delta_angle = best_joint_ymode;
#endif // CONFIG_AIMC
#if CONFIG_LOSSLESS_DPCM
if (xd->lossless[mbmi->segment_id]) {
mbmi->use_dpcm_y = best_dpcm_fsc;
mbmi->dpcm_mode_y = best_dpcm_fsc_dir;
}
#endif // CONFIG_LOSSLESS_DPCM
mbmi->tx_size = best_tx_size;
#if CONFIG_NEW_TX_PARTITION
av1_copy(mbmi->tx_partition_type, best_tx_partition_type);
#endif // CONFIG_NEW_TX_PARTITION
mbmi->mrl_index = best_mrl;
mbmi->filter_intra_mode_info.use_filter_intra = best_filt;
mbmi->angle_delta[PLANE_TYPE_Y] = best_angle_delta;
av1_copy_array(ctx->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
*best_mbmi = *mbmi;
} else {
*mbmi = *best_mbmi;
}
}
// Finds the best non-intrabc mode on an intra frame.
int64_t av1_rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int64_t best_rd,
PICK_MODE_CONTEXT *ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
assert(!is_inter_block(mbmi, xd->tree_type));
int64_t best_model_rd = INT64_MAX;
int is_directional_mode;
mbmi->fsc_mode[xd->tree_type == CHROMA_PART] = 0;
uint8_t directional_mode_skip_mask[INTRA_MODES] = { 0 };
// Flag to check rd of any intra mode is better than best_rd passed to this
// function
int beat_best_rd = 0;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int try_palette =
cpi->oxcf.tool_cfg.enable_palette &&
av1_allow_palette(cpi->common.features.allow_screen_content_tools,
mbmi->sb_type[PLANE_TYPE_Y]);
uint8_t *best_palette_color_map =
try_palette ? x->palette_buffer->best_palette_color_map : NULL;
#if CONFIG_AIMC
const int context = get_y_mode_idx_ctx(xd);
int mode_costs = 0;
#else
const int *bmode_costs;
const int neighbor0_ctx = get_y_mode_ctx(xd->neighbors[0]);
const int neighbor1_ctx = get_y_mode_ctx(xd->neighbors[1]);
bmode_costs = x->mode_costs.y_mode_costs[neighbor0_ctx][neighbor1_ctx];
#endif // CONFIG_AIMC
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
if (cpi->sf.intra_sf.intra_pruning_with_hog) {
prune_intra_mode_with_hog(x, bsize,
cpi->sf.intra_sf.intra_pruning_with_hog_thresh,
directional_mode_skip_mask);
}
mbmi->filter_intra_mode_info.use_filter_intra = 0;
pmi->palette_size[0] = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
// Set params for mode evaluation
set_mode_eval_params(cpi, x, MODE_EVAL);
#if CONFIG_AIMC
get_y_intra_mode_set(mbmi, xd);
#endif // CONFIG_AIMC
#if CONFIG_WAIP
#if CONFIG_NEW_TX_PARTITION
mbmi->is_wide_angle[0][mbmi->txb_idx] = 0;
mbmi->mapped_intra_mode[0][mbmi->txb_idx] = DC_PRED;
#else
mbmi->is_wide_angle[0] = 0;
#endif // CONFIG_NEW_TX_PARTITION
#endif // CONFIG_WAIP
MB_MODE_INFO best_mbmi = *mbmi;
av1_zero(x->winner_mode_stats);
x->winner_mode_count = 0;
#if CONFIG_LOSSLESS_DPCM
mbmi->use_dpcm_y = 0;
mbmi->dpcm_mode_y = 0;
#endif // CONFIG_LOSSLESS_DPCM
// mbmi->dpcm_angle_delta = 0;
// Searches the intra-modes except for intrabc, palette, and filter_intra.
int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT];
for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) {
top_intra_model_rd[i] = INT64_MAX;
}
uint8_t enable_mrls_flag = cpi->common.seq_params.enable_mrls;
#if CONFIG_LOSSLESS_DPCM
int dpcm_loop_num = 1;
if (xd->lossless[mbmi->segment_id]) {
dpcm_loop_num = 2;
}
for (int dpcm_index = 0; dpcm_index < dpcm_loop_num; ++dpcm_index) {
#endif // CONFIG_LOSSLESS_DPCM
for (int mrl_idx = 0; mrl_idx < (enable_mrls_flag ? MRL_LINE_NUMBER : 1);
++mrl_idx) {
mbmi->mrl_index = mrl_idx;
for (int mode_idx = INTRA_MODE_START; mode_idx < LUMA_MODE_COUNT;
++mode_idx) {
#if CONFIG_AIMC
mbmi->y_mode_idx = mode_idx;
mbmi->joint_y_mode_delta_angle = mbmi->y_intra_mode_list[mode_idx];
// the below function changes the mbmi->mode based on the mode_idx
set_y_mode_and_delta_angle(mbmi->joint_y_mode_delta_angle, mbmi);
mode_costs = 0;
#if CONFIG_LOSSLESS_DPCM
if (dpcm_index > 0 &&
(mrl_idx > 0 || (mbmi->mode != V_PRED && mbmi->mode != H_PRED) ||
((mbmi->mode == V_PRED || mbmi->mode == H_PRED) &&
mbmi->angle_delta[0] != 0))) {
continue;
}
int dpcm_cost = 0;
if (xd->lossless[mbmi->segment_id]) {
dpcm_cost = x->mode_costs.dpcm_cost[dpcm_index];
mode_costs += dpcm_cost;
}
mbmi->use_dpcm_y = dpcm_index;
if (mbmi->use_dpcm_y > 0) {
mbmi->dpcm_mode_y = mbmi->mode - 1;
} else {
mbmi->dpcm_mode_y = 0;
}
if (mbmi->use_dpcm_y == 0) {
#endif // CONFIG_LOSSLESS_DPCM
int mode_set_index = mbmi->y_mode_idx < FIRST_MODE_COUNT ? 0 : 1;
mode_set_index +=
((mbmi->y_mode_idx - FIRST_MODE_COUNT) / SECOND_MODE_COUNT);
mode_costs += x->mode_costs.y_primary_flag_cost[mode_set_index];
if (mode_idx < FIRST_MODE_COUNT) {
mode_costs += x->mode_costs.y_first_mode_costs[context][mode_idx];
} else {
mode_costs +=
x->mode_costs.y_second_mode_costs
[context][mbmi->y_mode_idx - FIRST_MODE_COUNT -
SECOND_MODE_COUNT * (mode_set_index - 1)];
}
#if CONFIG_LOSSLESS_DPCM
} else {
int dpcm_dir_cost =
x->mode_costs.dpcm_vert_horz_cost[mbmi->dpcm_mode_y];
mode_costs += dpcm_dir_cost;
}
#endif // CONFIG_LOSSLESS_DPCM
#else
set_y_mode_and_delta_angle(mode_idx, mbmi);
#if CONFIG_LOSSLESS_DPCM
if (dpcm_index > 0 &&
(mrl_idx > 0 || (mbmi->mode != V_PRED && mbmi->mode != H_PRED) ||
((mbmi->mode == V_PRED || mbmi->mode == H_PRED) &&
mbmi->angle_delta[0] != 0))) {
continue;
}
int dpcm_cost = 0;
if (xd->lossless[mbmi->segment_id]) {
dpcm_cost = x->mode_costs.dpcm_cost[dpcm_index];
mode_costs += dpcm_cost;
}
mbmi->use_dpcm_y = dpcm_index;
if (mbmi->use_dpcm_y > 0) {
mbmi->dpcm_mode_y = mbmi->mode - 1;
} else {
mbmi->dpcm_mode_y = 0;
}
#endif // CONFIG_LOSSLESS_DPCM
#endif // CONFIG_AIMC
RD_STATS this_rd_stats;
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
if ((!cpi->oxcf.intra_mode_cfg.enable_smooth_intra ||
cpi->sf.intra_sf.disable_smooth_intra) &&
(mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED ||
mbmi->mode == SMOOTH_V_PRED))
continue;
if (!cpi->oxcf.intra_mode_cfg.enable_paeth_intra &&
mbmi->mode == PAETH_PRED)
continue;
is_directional_mode = av1_is_directional_mode(mbmi->mode);
#if !CONFIG_AIMC
if (is_directional_mode && av1_use_angle_delta(bsize) == 0 &&
mbmi->angle_delta[PLANE_TYPE_Y] != 0)
continue;
#endif // !CONFIG_AIMC
#if CONFIG_AIMC
if (is_directional_mode && directional_mode_skip_mask[mbmi->mode] &&
mode_idx >= FIRST_MODE_COUNT)
#else
if (is_directional_mode && directional_mode_skip_mask[mbmi->mode])
#endif // CONFIG_AIMC
continue;
if (!is_directional_mode && mrl_idx) continue;
#if !CONFIG_IMPROVED_INTRA_DIR_PRED
if (best_mbmi.mrl_index == 0 && mbmi->mrl_index > 1 &&
av1_is_directional_mode(best_mbmi.mode) == 0) {
continue;
}
#endif // !CONFIG_IMPROVED_INTRA_DIR_PRED
#if CONFIG_IMPROVED_INTRA_DIR_PRED
int mrl_ctx = get_mrl_index_ctx(xd->neighbors[0], xd->neighbors[1]);
int mrl_idx_cost =
(is_directional_mode && enable_mrls_flag)
? x->mode_costs.mrl_index_cost[mrl_ctx][mbmi->mrl_index]
: 0;
#else
int mrl_idx_cost = (is_directional_mode && enable_mrls_flag)
? x->mode_costs.mrl_index_cost[mbmi->mrl_index]
: 0;
#endif // CONFIG_IMPROVED_INTRA_DIR_PRED
#if CONFIG_AIMC
#if CONFIG_LOSSLESS_DPCM
if (dpcm_index == 0)
#endif // CONFIG_LOSSLESS_DPCM
mode_costs += mrl_idx_cost;
#endif // CONFIG_AIMC
int64_t this_model_rd;
this_model_rd = intra_model_yrd(cpi, x, bsize,
#if CONFIG_AIMC
mode_costs);
#else
bmode_costs[mbmi->mode] + mrl_idx_cost);
#endif // CONFIG_AIMC
if (prune_intra_y_mode(this_model_rd, &best_model_rd,
top_intra_model_rd)
#if CONFIG_LOSSLESS_DPCM
&& (!xd->lossless[mbmi->segment_id] || mbmi->use_dpcm_y == 0)
#endif // CONFIG_LOSSLESS_DPCM
)
continue;
av1_pick_uniform_tx_size_type_yrd(cpi, x, &this_rd_stats, bsize,
best_rd);
this_rate_tokenonly = this_rd_stats.rate;
this_distortion = this_rd_stats.dist;
s = this_rd_stats.skip_txfm;
if (this_rate_tokenonly == INT_MAX) continue;
if (!xd->lossless[mbmi->segment_id] &&
block_signals_txsize(mbmi->sb_type[PLANE_TYPE_Y])) {
// av1_pick_uniform_tx_size_type_yrd above includes the cost of the
// tx_size in the tokenonly rate, but for intra blocks, tx_size is
// always coded (prediction granularity), so we account for it in
// the full rate, not the tokenonly rate.
this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size);
}
this_rate =
this_rd_stats.rate + intra_mode_info_cost_y(cpi, x, mbmi, bsize
#if CONFIG_AIMC
,
mode_costs);
#else
,
bmode_costs[mbmi->mode] +
mrl_idx_cost);
#endif // CONFIG_AIMC
this_rd = RDCOST(x->rdmult, this_rate, this_distortion);
// Collect mode stats for multiwinner mode processing
const int txfm_search_done = 1;
const MV_REFERENCE_FRAME refs[2] = { -1, -1 };
store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, refs,
0, NULL, bsize, this_rd,
cpi->sf.winner_mode_sf.multi_winner_mode_type,
txfm_search_done);
if (this_rd < best_rd) {
best_mbmi = *mbmi;
best_rd = this_rd;
// Setting beat_best_rd flag because current mode rd is better than
// best_rd passed to this function
beat_best_rd = 1;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
memcpy(ctx->blk_skip[AOM_PLANE_Y],
x->txfm_search_info.blk_skip[AOM_PLANE_Y],
sizeof(*x->txfm_search_info.blk_skip[AOM_PLANE_Y]) *
ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
}
}
}
#if CONFIG_LOSSLESS_DPCM
}
#endif // CONFIG_LOSSLESS_DPCM
// Searches forward skip coding
if (beat_best_rd && allow_fsc_intra(&cpi->common,
#if !CONFIG_LOSSLESS_DPCM
xd,
#endif // CONFIG_LOSSLESS_DPCM
bsize, mbmi)) {
search_fsc_mode(cpi, x, rate, rate_tokenonly, distortion, skippable, bsize,
#if CONFIG_AIMC
mode_costs,
#else
bmode_costs,
#endif // CONFIG_AIMC
directional_mode_skip_mask, &best_rd, &best_model_rd, ctx,
&best_mbmi);
}
// Searches palette
#if CONFIG_AIMC
mode_costs = x->mode_costs.y_primary_flag_cost[DC_PRED];
mode_costs += x->mode_costs.y_first_mode_costs[context][DC_PRED];
#endif // CONFIG_AIMC
if (try_palette) {
av1_rd_pick_palette_intra_sby(cpi, x, bsize,
#if CONFIG_AIMC
mode_costs,
#else
bmode_costs[DC_PRED],
#endif // CONFIG_AIMC
&best_mbmi, best_palette_color_map, &best_rd,
&best_model_rd, rate, rate_tokenonly,
distortion, skippable, &beat_best_rd, ctx,
ctx->blk_skip[AOM_PLANE_Y], ctx->tx_type_map);
}
// Searches filter_intra
if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) {
if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion,
skippable, bsize,
#if CONFIG_AIMC
mode_costs,
#else
bmode_costs[DC_PRED],
#endif // CONFIG_AIMC
&best_rd, &best_model_rd, ctx)) {
best_mbmi = *mbmi;
}
}
// No mode is identified with less rd value than best_rd passed to this
// function. In such cases winner mode processing is not necessary and
// return best_rd as INT64_MAX to indicate best mode is not identified
if (!beat_best_rd) return INT64_MAX;
// In multi-winner mode processing, perform tx search for few best modes
// identified during mode evaluation. Winner mode processing uses best tx
// configuration for tx search.
if (cpi->sf.winner_mode_sf.multi_winner_mode_type) {
int best_mode_idx = 0;
int block_width, block_height;
uint8_t *color_map_dst = xd->plane[PLANE_TYPE_Y].color_index_map;
av1_get_block_dimensions(bsize, AOM_PLANE_Y, xd, &block_width,
&block_height, NULL, NULL);
for (int mode_idx = 0; mode_idx < x->winner_mode_count; mode_idx++) {
*mbmi = x->winner_mode_stats[mode_idx].mbmi;
if (is_winner_mode_processing_enabled(cpi, mbmi, mbmi->mode)) {
// Restore color_map of palette mode before winner mode processing
if (mbmi->palette_mode_info.palette_size[0] > 0) {
uint8_t *color_map_src =
x->winner_mode_stats[mode_idx].color_index_map;
memcpy(color_map_dst, color_map_src,
block_width * block_height * sizeof(*color_map_src));
}
// Set params for winner mode evaluation
set_mode_eval_params(cpi, x, WINNER_MODE_EVAL);
// Winner mode processing
// If previous searches use only the default tx type/no R-D
// optimization of quantized coeffs, do an extra search for the best
// tx type/better R-D optimization of quantized coeffs
if (intra_block_yrd(cpi, x, bsize,
#if CONFIG_AIMC
mode_costs,
#else
bmode_costs,
#endif // CONFIG_AIMC
&best_rd, rate, rate_tokenonly, distortion,
skippable, &best_mbmi, ctx))
best_mode_idx = mode_idx;
}
}
// Copy color_map of palette mode for final winner mode
if (best_mbmi.palette_mode_info.palette_size[0] > 0) {
uint8_t *color_map_src =
x->winner_mode_stats[best_mode_idx].color_index_map;
memcpy(color_map_dst, color_map_src,
block_width * block_height * sizeof(*color_map_src));
}
} else {
// If previous searches use only the default tx type/no R-D optimization
// of quantized coeffs, do an extra search for the best tx type/better R-D
// optimization of quantized coeffs
if (is_winner_mode_processing_enabled(cpi, mbmi, best_mbmi.mode)) {
// Set params for winner mode evaluation
set_mode_eval_params(cpi, x, WINNER_MODE_EVAL);
*mbmi = best_mbmi;
intra_block_yrd(cpi, x, bsize,
#if CONFIG_AIMC
mode_costs,
#else
bmode_costs,
#endif // CONFIG_AIMC
&best_rd, rate, rate_tokenonly, distortion, skippable,
&best_mbmi, ctx);
}
}
*mbmi = best_mbmi;
#if CONFIG_AIMC
if (mbmi->joint_y_mode_delta_angle < NON_DIRECTIONAL_MODES_COUNT)
assert(mbmi->joint_y_mode_delta_angle == mbmi->y_mode_idx);
#endif // CONFIG_AIMC
av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk);
return best_rd;
}