|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 3-Clause Clear License | 
|  | * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear | 
|  | * License was not distributed with this source code in the LICENSE file, you | 
|  | * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/.  If the | 
|  | * Alliance for Open Media Patent License 1.0 was not distributed with this | 
|  | * source code in the PATENTS file, you can obtain it at | 
|  | * aomedia.org/license/patent-license/. | 
|  | */ | 
|  |  | 
|  | #include <tuple> | 
|  |  | 
|  | #include "third_party/googletest/src/googletest/include/gtest/gtest.h" | 
|  |  | 
|  | #include "aom/aom_integer.h" | 
|  | #include "aom_ports/aom_timer.h" | 
|  | #include "av1/encoder/ml.h" | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  | #include "config/av1_rtcd.h" | 
|  | #include "test/util.h" | 
|  | #include "test/register_state_check.h" | 
|  | #include "test/acm_random.h" | 
|  | #include "test/clear_system_state.h" | 
|  |  | 
|  | namespace { | 
|  | typedef void (*NnPredict_Func)(const float *const input_nodes, | 
|  | const NN_CONFIG *const nn_config, | 
|  | int reduce_prec, float *const output); | 
|  |  | 
|  | typedef std::tuple<const NnPredict_Func> NnPredictTestParam; | 
|  |  | 
|  | const float epsilon = 1e-3f;  // Error threshold for functional equivalence | 
|  |  | 
|  | class NnPredictTest : public ::testing::TestWithParam<NnPredictTestParam> { | 
|  | public: | 
|  | virtual void SetUp() { | 
|  | const int MAX_NODES2 = NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; | 
|  | // Allocate two massive buffers on the heap for edge weights and node bias | 
|  | // Then set-up the double-dimension arrays pointing into the big buffers | 
|  | weights_buf = (float *)aom_malloc(MAX_NODES2 * (NN_MAX_HIDDEN_LAYERS + 1) * | 
|  | sizeof(*weights_buf)); | 
|  | bias_buf = | 
|  | (float *)aom_malloc(NN_MAX_NODES_PER_LAYER * | 
|  | (NN_MAX_HIDDEN_LAYERS + 1) * sizeof(*bias_buf)); | 
|  | ASSERT_NE(weights_buf, nullptr); | 
|  | ASSERT_NE(bias_buf, nullptr); | 
|  | for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) { | 
|  | weights[i] = &weights_buf[i * MAX_NODES2]; | 
|  | bias[i] = &bias_buf[i * NN_MAX_NODES_PER_LAYER]; | 
|  | } | 
|  | target_func_ = GET_PARAM(0); | 
|  | } | 
|  | virtual void TearDown() { | 
|  | aom_free(weights_buf); | 
|  | aom_free(bias_buf); | 
|  | } | 
|  | void RunNnPredictTest(const NN_CONFIG *const shape); | 
|  | void RunNnPredictSpeedTest(const NN_CONFIG *const shape, const int run_times); | 
|  | void RunNnPredictTest_all(const NN_CONFIG *const shapes, | 
|  | const int num_shapes); | 
|  | void RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes, | 
|  | const int num_shapes, const int run_times); | 
|  |  | 
|  | private: | 
|  | NnPredict_Func target_func_; | 
|  | libaom_test::ACMRandom rng_; | 
|  | float *weights[NN_MAX_HIDDEN_LAYERS + 1] = { 0 }; | 
|  | float *bias[NN_MAX_HIDDEN_LAYERS + 1] = { 0 }; | 
|  | float *weights_buf = nullptr, *bias_buf = nullptr; | 
|  | }; | 
|  | GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(NnPredictTest); | 
|  |  | 
|  | void NnPredictTest::RunNnPredictTest(const NN_CONFIG *const shape) { | 
|  | libaom_test::ClearSystemState(); | 
|  | float inputs[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
|  | float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
|  | float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
|  |  | 
|  | NN_CONFIG nn_config; | 
|  | memcpy(&nn_config, shape, sizeof(nn_config)); | 
|  |  | 
|  | char shape_str[32] = { 0 }; | 
|  | snprintf(shape_str, sizeof(shape_str), "%d", shape->num_inputs); | 
|  | for (int layer = 0; layer < shape->num_hidden_layers; layer++) | 
|  | snprintf(&shape_str[strlen(shape_str)], | 
|  | sizeof(shape_str) - strlen(shape_str), "x%d", | 
|  | shape->num_hidden_nodes[layer]); | 
|  | snprintf(&shape_str[strlen(shape_str)], sizeof(shape_str) - strlen(shape_str), | 
|  | "x%d", shape->num_outputs); | 
|  |  | 
|  | for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) { | 
|  | nn_config.weights[i] = weights[i]; | 
|  | nn_config.bias[i] = bias[i]; | 
|  | } | 
|  |  | 
|  | for (int iter = 0; iter < 10000 && !HasFatalFailure(); ++iter) { | 
|  | for (int node = 0; node < shape->num_inputs; node++) { | 
|  | inputs[node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); | 
|  | } | 
|  | for (int layer = 0; layer < shape->num_hidden_layers; layer++) { | 
|  | for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) { | 
|  | bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); | 
|  | } | 
|  | for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; | 
|  | node++) { | 
|  | weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); | 
|  | } | 
|  | } | 
|  | // Now the outputs: | 
|  | int layer = shape->num_hidden_layers; | 
|  | for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) { | 
|  | bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); | 
|  | } | 
|  | for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; | 
|  | node++) { | 
|  | weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); | 
|  | } | 
|  |  | 
|  | av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref); | 
|  | target_func_(inputs, &nn_config, 0, outputs_test); | 
|  | libaom_test::ClearSystemState(); | 
|  |  | 
|  | for (int node = 0; node < shape->num_outputs; node++) { | 
|  | if (outputs_ref[node] < epsilon) { | 
|  | ASSERT_LE(outputs_test[node], epsilon) | 
|  | << "Reference output was near-zero, test output was not (" | 
|  | << shape_str << ")"; | 
|  | } else { | 
|  | const float error = outputs_ref[node] - outputs_test[node]; | 
|  | const float relative_error = fabsf(error / outputs_ref[node]); | 
|  | ASSERT_LE(relative_error, epsilon) | 
|  | << "Excessive relative error between reference and test (" | 
|  | << shape_str << ")"; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void NnPredictTest::RunNnPredictSpeedTest(const NN_CONFIG *const shape, | 
|  | const int run_times) { | 
|  | libaom_test::ClearSystemState(); | 
|  | float inputs[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
|  | float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
|  | float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 }; | 
|  |  | 
|  | NN_CONFIG nn_config; | 
|  | memcpy(&nn_config, shape, sizeof(nn_config)); | 
|  |  | 
|  | for (int i = 0; i < NN_MAX_HIDDEN_LAYERS; i++) { | 
|  | nn_config.weights[i] = weights[i]; | 
|  | nn_config.bias[i] = bias[i]; | 
|  | } | 
|  | // Don't bother actually changing the values for inputs/weights/bias: it | 
|  | // shouldn't make any difference for a speed test. | 
|  |  | 
|  | aom_usec_timer timer; | 
|  | aom_usec_timer_start(&timer); | 
|  | for (int i = 0; i < run_times; ++i) { | 
|  | av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref); | 
|  | } | 
|  | aom_usec_timer_mark(&timer); | 
|  | const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
|  | aom_usec_timer_start(&timer); | 
|  | for (int i = 0; i < run_times; ++i) { | 
|  | target_func_(inputs, &nn_config, 0, outputs_test); | 
|  | } | 
|  | aom_usec_timer_mark(&timer); | 
|  | libaom_test::ClearSystemState(); | 
|  | const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer)); | 
|  |  | 
|  | printf("%d", shape->num_inputs); | 
|  | for (int layer = 0; layer < shape->num_hidden_layers; layer++) | 
|  | printf("x%d", shape->num_hidden_nodes[layer]); | 
|  | printf("x%d: ", shape->num_outputs); | 
|  | printf("%7.2f/%7.2fns (%3.2f)\n", time1, time2, time1 / time2); | 
|  | } | 
|  |  | 
|  | // This is all the neural network shapes observed executed in a few different | 
|  | // runs of the encoder.  It also conveniently covers all the kernels | 
|  | // implemented. | 
|  | static const NN_CONFIG shapes[] = { | 
|  | { 10, 16, 1, { 64 }, { 0 }, { 0 } }, { 12, 1, 1, { 12 }, { 0 }, { 0 } }, | 
|  | { 12, 1, 1, { 24 }, { 0 }, { 0 } },  { 12, 1, 1, { 32 }, { 0 }, { 0 } }, | 
|  | { 18, 4, 1, { 24 }, { 0 }, { 0 } },  { 18, 4, 1, { 32 }, { 0 }, { 0 } }, | 
|  | { 4, 1, 1, { 16 }, { 0 }, { 0 } },   { 8, 1, 1, { 16 }, { 0 }, { 0 } }, | 
|  | { 8, 4, 1, { 16 }, { 0 }, { 0 } },   { 8, 1, 1, { 24 }, { 0 }, { 0 } }, | 
|  | { 8, 1, 1, { 32 }, { 0 }, { 0 } },   { 8, 1, 1, { 64 }, { 0 }, { 0 } }, | 
|  | { 9, 3, 1, { 32 }, { 0 }, { 0 } },   { 4, 4, 1, { 8 }, { 0 }, { 0 } }, | 
|  | }; | 
|  |  | 
|  | void NnPredictTest::RunNnPredictTest_all(const NN_CONFIG *const shapes, | 
|  | const int num_shapes) { | 
|  | for (int i = 0; i < num_shapes; i++) RunNnPredictTest(&shapes[i]); | 
|  | } | 
|  |  | 
|  | void NnPredictTest::RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes, | 
|  | const int num_shapes, | 
|  | const int run_times) { | 
|  | for (int i = 0; i < num_shapes; i++) | 
|  | NnPredictTest::RunNnPredictSpeedTest(&shapes[i], run_times); | 
|  | } | 
|  |  | 
|  | TEST_P(NnPredictTest, RandomValues) { | 
|  | RunNnPredictTest_all(shapes, sizeof(shapes) / sizeof(*shapes)); | 
|  | } | 
|  |  | 
|  | TEST_P(NnPredictTest, DISABLED_Speed) { | 
|  | RunNnPredictSpeedTest_all(shapes, sizeof(shapes) / sizeof(*shapes), 10000000); | 
|  | } | 
|  |  | 
|  | #if HAVE_SSE3 && !CONFIG_EXCLUDE_SIMD_MISMATCH | 
|  | INSTANTIATE_TEST_SUITE_P(SSE3, NnPredictTest, | 
|  | ::testing::Values(av1_nn_predict_sse3)); | 
|  | #endif | 
|  |  | 
|  | #if HAVE_NEON && !CONFIG_EXCLUDE_SIMD_MISMATCH | 
|  | INSTANTIATE_TEST_SUITE_P(NEON, NnPredictTest, | 
|  | ::testing::Values(av1_nn_predict_neon)); | 
|  | #endif | 
|  |  | 
|  | }  // namespace |