| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "third_party/googletest/src/include/gtest/gtest.h" |
| |
| #include "./vp9_rtcd.h" |
| |
| #include "test/acm_random.h" |
| #include "vpx/vpx_integer.h" |
| |
| using libvpx_test::ACMRandom; |
| |
| namespace { |
| |
| #ifdef _MSC_VER |
| static int round(double x) { |
| if (x < 0) |
| return static_cast<int>(ceil(x - 0.5)); |
| else |
| return static_cast<int>(floor(x + 0.5)); |
| } |
| #endif |
| |
| void reference_dct_1d(double input[8], double output[8]) { |
| const double kPi = 3.141592653589793238462643383279502884; |
| const double kInvSqrt2 = 0.707106781186547524400844362104; |
| for (int k = 0; k < 8; k++) { |
| output[k] = 0.0; |
| for (int n = 0; n < 8; n++) |
| output[k] += input[n]*cos(kPi*(2*n+1)*k/16.0); |
| if (k == 0) |
| output[k] = output[k]*kInvSqrt2; |
| } |
| } |
| |
| void reference_dct_2d(int16_t input[64], double output[64]) { |
| // First transform columns |
| for (int i = 0; i < 8; ++i) { |
| double temp_in[8], temp_out[8]; |
| for (int j = 0; j < 8; ++j) |
| temp_in[j] = input[j*8 + i]; |
| reference_dct_1d(temp_in, temp_out); |
| for (int j = 0; j < 8; ++j) |
| output[j*8 + i] = temp_out[j]; |
| } |
| // Then transform rows |
| for (int i = 0; i < 8; ++i) { |
| double temp_in[8], temp_out[8]; |
| for (int j = 0; j < 8; ++j) |
| temp_in[j] = output[j + i*8]; |
| reference_dct_1d(temp_in, temp_out); |
| for (int j = 0; j < 8; ++j) |
| output[j + i*8] = temp_out[j]; |
| } |
| // Scale by some magic number |
| for (int i = 0; i < 64; ++i) |
| output[i] *= 2; |
| } |
| |
| void reference_idct_1d(double input[8], double output[8]) { |
| const double kPi = 3.141592653589793238462643383279502884; |
| const double kSqrt2 = 1.414213562373095048801688724209698; |
| for (int k = 0; k < 8; k++) { |
| output[k] = 0.0; |
| for (int n = 0; n < 8; n++) { |
| output[k] += input[n]*cos(kPi*(2*k+1)*n/16.0); |
| if (n == 0) |
| output[k] = output[k]/kSqrt2; |
| } |
| } |
| } |
| |
| void reference_idct_2d(double input[64], int16_t output[64]) { |
| double out[64], out2[64]; |
| // First transform rows |
| for (int i = 0; i < 8; ++i) { |
| double temp_in[8], temp_out[8]; |
| for (int j = 0; j < 8; ++j) |
| temp_in[j] = input[j + i*8]; |
| reference_idct_1d(temp_in, temp_out); |
| for (int j = 0; j < 8; ++j) |
| out[j + i*8] = temp_out[j]; |
| } |
| // Then transform columns |
| for (int i = 0; i < 8; ++i) { |
| double temp_in[8], temp_out[8]; |
| for (int j = 0; j < 8; ++j) |
| temp_in[j] = out[j*8 + i]; |
| reference_idct_1d(temp_in, temp_out); |
| for (int j = 0; j < 8; ++j) |
| out2[j*8 + i] = temp_out[j]; |
| } |
| for (int i = 0; i < 64; ++i) |
| output[i] = round(out2[i]/32); |
| } |
| |
| TEST(VP9Idct8x8Test, AccuracyCheck) { |
| ACMRandom rnd(ACMRandom::DeterministicSeed()); |
| const int count_test_block = 10000; |
| for (int i = 0; i < count_test_block; ++i) { |
| int16_t input[64], coeff[64]; |
| double output_r[64]; |
| uint8_t dst[64], src[64]; |
| |
| for (int j = 0; j < 64; ++j) { |
| src[j] = rnd.Rand8(); |
| dst[j] = rnd.Rand8(); |
| } |
| // Initialize a test block with input range [-255, 255]. |
| for (int j = 0; j < 64; ++j) |
| input[j] = src[j] - dst[j]; |
| |
| reference_dct_2d(input, output_r); |
| for (int j = 0; j < 64; ++j) |
| coeff[j] = round(output_r[j]); |
| vp9_idct8x8_64_add_c(coeff, dst, 8); |
| for (int j = 0; j < 64; ++j) { |
| const int diff = dst[j] - src[j]; |
| const int error = diff * diff; |
| EXPECT_GE(1, error) |
| << "Error: 8x8 FDCT/IDCT has error " << error |
| << " at index " << j; |
| } |
| } |
| } |
| |
| } // namespace |