| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "vpx_ports/config.h" |
| #include "encodemb.h" |
| #include "vp8/common/reconinter.h" |
| #include "quantize.h" |
| #include "tokenize.h" |
| #include "vp8/common/invtrans.h" |
| #include "vp8/common/reconintra.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "rdopt.h" |
| #include "vp8/common/systemdependent.h" |
| #include "vpx_rtcd.h" |
| |
| #if CONFIG_RUNTIME_CPU_DETECT |
| #define IF_RTCD(x) (x) |
| #else |
| #define IF_RTCD(x) NULL |
| #endif |
| |
| #ifdef ENC_DEBUG |
| extern int enc_debug; |
| #endif |
| |
| void vp9_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) { |
| unsigned char *src_ptr = (*(be->base_src) + be->src); |
| short *diff_ptr = be->src_diff; |
| unsigned char *pred_ptr = bd->predictor; |
| int src_stride = be->src_stride; |
| |
| int r, c; |
| |
| for (r = 0; r < 4; r++) { |
| for (c = 0; c < 4; c++) { |
| diff_ptr[c] = src_ptr[c] - pred_ptr[c]; |
| } |
| |
| diff_ptr += pitch; |
| pred_ptr += pitch; |
| src_ptr += src_stride; |
| } |
| } |
| |
| void vp9_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch) { |
| unsigned char *src_ptr = (*(be->base_src) + be->src); |
| short *diff_ptr = be->src_diff; |
| unsigned char *pred_ptr = bd->predictor; |
| int src_stride = be->src_stride; |
| int r, c; |
| |
| for (r = 0; r < 8; r++) { |
| for (c = 0; c < 8; c++) { |
| diff_ptr[c] = src_ptr[c] - pred_ptr[c]; |
| } |
| diff_ptr += pitch; |
| pred_ptr += pitch; |
| src_ptr += src_stride; |
| } |
| } |
| |
| void vp9_subtract_mbuv_s_c(short *diff, const unsigned char *usrc, |
| const unsigned char *vsrc, int src_stride, |
| const unsigned char *upred, |
| const unsigned char *vpred, int dst_stride) { |
| short *udiff = diff + 256; |
| short *vdiff = diff + 320; |
| int r, c; |
| |
| for (r = 0; r < 8; r++) { |
| for (c = 0; c < 8; c++) { |
| udiff[c] = usrc[c] - upred[c]; |
| } |
| |
| udiff += 8; |
| upred += dst_stride; |
| usrc += src_stride; |
| } |
| |
| for (r = 0; r < 8; r++) { |
| for (c = 0; c < 8; c++) { |
| vdiff[c] = vsrc[c] - vpred[c]; |
| } |
| |
| vdiff += 8; |
| vpred += dst_stride; |
| vsrc += src_stride; |
| } |
| } |
| |
| void vp9_subtract_mbuv_c(short *diff, unsigned char *usrc, |
| unsigned char *vsrc, unsigned char *pred, int stride) { |
| unsigned char *upred = pred + 256; |
| unsigned char *vpred = pred + 320; |
| |
| vp9_subtract_mbuv_s_c(diff, usrc, vsrc, stride, upred, vpred, 8); |
| } |
| |
| void vp9_subtract_mby_s_c(short *diff, const unsigned char *src, int src_stride, |
| const unsigned char *pred, int dst_stride) { |
| int r, c; |
| |
| for (r = 0; r < 16; r++) { |
| for (c = 0; c < 16; c++) { |
| diff[c] = src[c] - pred[c]; |
| } |
| |
| diff += 16; |
| pred += dst_stride; |
| src += src_stride; |
| } |
| } |
| |
| void vp9_subtract_mby_c(short *diff, unsigned char *src, |
| unsigned char *pred, int stride) { |
| vp9_subtract_mby_s_c(diff, src, stride, pred, 16); |
| } |
| |
| static void vp8_subtract_mb(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { |
| BLOCK *b = &x->block[0]; |
| |
| vp9_subtract_mby(x->src_diff, *(b->base_src), x->e_mbd.predictor, |
| b->src_stride); |
| vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer, |
| x->e_mbd.predictor, x->src.uv_stride); |
| } |
| |
| static void build_dcblock_4x4(MACROBLOCK *x) { |
| short *src_diff_ptr = &x->src_diff[384]; |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| src_diff_ptr[i] = x->coeff[i * 16]; |
| } |
| } |
| |
| void vp9_transform_mby_4x4(MACROBLOCK *x) { |
| int i; |
| |
| for (i = 0; i < 16; i += 2) { |
| x->vp9_short_fdct8x4(&x->block[i].src_diff[0], |
| &x->block[i].coeff[0], 32); |
| } |
| |
| if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) { |
| // build dc block from 16 y dc values |
| build_dcblock_4x4(x); |
| |
| // do 2nd order transform on the dc block |
| x->short_walsh4x4(&x->block[24].src_diff[0], |
| &x->block[24].coeff[0], 8); |
| } |
| } |
| |
| void vp9_transform_mbuv_4x4(MACROBLOCK *x) { |
| int i; |
| |
| for (i = 16; i < 24; i += 2) { |
| x->vp9_short_fdct8x4(&x->block[i].src_diff[0], |
| &x->block[i].coeff[0], 16); |
| } |
| } |
| |
| static void transform_mb_4x4(MACROBLOCK *x) { |
| vp9_transform_mby_4x4(x); |
| vp9_transform_mbuv_4x4(x); |
| } |
| |
| void vp9_build_dcblock_8x8(MACROBLOCK *x) { |
| int16_t *src_diff_ptr = x->block[24].src_diff; |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| src_diff_ptr[i] = 0; |
| } |
| src_diff_ptr[0] = x->coeff[0 * 16]; |
| src_diff_ptr[1] = x->coeff[4 * 16]; |
| src_diff_ptr[4] = x->coeff[8 * 16]; |
| src_diff_ptr[8] = x->coeff[12 * 16]; |
| } |
| |
| void vp9_transform_mby_8x8(MACROBLOCK *x) { |
| int i; |
| |
| for (i = 0; i < 9; i += 8) { |
| x->vp9_short_fdct8x8(&x->block[i].src_diff[0], |
| &x->block[i].coeff[0], 32); |
| } |
| for (i = 2; i < 11; i += 8) { |
| x->vp9_short_fdct8x8(&x->block[i].src_diff[0], |
| &x->block[i + 2].coeff[0], 32); |
| } |
| |
| if (x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) { |
| // build dc block from 2x2 y dc values |
| vp9_build_dcblock_8x8(x); |
| |
| // do 2nd order transform on the dc block |
| x->short_fhaar2x2(&x->block[24].src_diff[0], |
| &x->block[24].coeff[0], 8); |
| } |
| } |
| |
| void vp9_transform_mbuv_8x8(MACROBLOCK *x) { |
| int i; |
| |
| for (i = 16; i < 24; i += 4) { |
| x->vp9_short_fdct8x8(&x->block[i].src_diff[0], |
| &x->block[i].coeff[0], 16); |
| } |
| } |
| |
| void vp9_transform_mb_8x8(MACROBLOCK *x) { |
| vp9_transform_mby_8x8(x); |
| vp9_transform_mbuv_8x8(x); |
| } |
| |
| void vp9_transform_mby_16x16(MACROBLOCK *x) { |
| vp8_clear_system_state(); |
| x->vp9_short_fdct16x16(&x->block[0].src_diff[0], |
| &x->block[0].coeff[0], 32); |
| } |
| |
| void vp9_transform_mb_16x16(MACROBLOCK *x) { |
| vp9_transform_mby_16x16(x); |
| vp9_transform_mbuv_8x8(x); |
| } |
| |
| #define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) |
| #define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) |
| typedef struct vp8_token_state vp8_token_state; |
| |
| struct vp8_token_state { |
| int rate; |
| int error; |
| int next; |
| signed char token; |
| short qc; |
| }; |
| |
| // TODO: experiments to find optimal multiple numbers |
| #define Y1_RD_MULT 4 |
| #define UV_RD_MULT 2 |
| #define Y2_RD_MULT 4 |
| |
| static const int plane_rd_mult[4] = { |
| Y1_RD_MULT, |
| Y2_RD_MULT, |
| UV_RD_MULT, |
| Y1_RD_MULT |
| }; |
| |
| #define UPDATE_RD_COST()\ |
| {\ |
| rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\ |
| rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\ |
| if (rd_cost0 == rd_cost1) {\ |
| rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\ |
| rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\ |
| }\ |
| } |
| |
| static void optimize_b(MACROBLOCK *mb, int i, PLANE_TYPE type, |
| ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, |
| const VP8_ENCODER_RTCD *rtcd, int tx_size) { |
| BLOCK *b; |
| BLOCKD *d; |
| vp8_token_state tokens[65][2]; |
| uint64_t best_mask[2]; |
| const short *dequant_ptr; |
| const short *coeff_ptr; |
| short *qcoeff_ptr; |
| short *dqcoeff_ptr; |
| int eob; |
| int i0; |
| int rc; |
| int x; |
| int sz = 0; |
| int next; |
| int rdmult; |
| int rddiv; |
| int final_eob; |
| int64_t rd_cost0, rd_cost1; |
| int rate0, rate1; |
| int error0, error1; |
| int t0, t1; |
| int best; |
| int band; |
| int pt; |
| int err_mult = plane_rd_mult[type]; |
| int default_eob; |
| int const *scan, *bands; |
| |
| b = &mb->block[i]; |
| d = &mb->e_mbd.block[i]; |
| switch (tx_size) { |
| default: |
| case TX_4X4: |
| scan = vp8_default_zig_zag1d; |
| bands = vp8_coef_bands; |
| default_eob = 16; |
| // TODO: this isn't called (for intra4x4 modes), but will be left in |
| // since it could be used later |
| { |
| TX_TYPE tx_type = get_tx_type(&mb->e_mbd, d); |
| if (tx_type != DCT_DCT) { |
| switch (tx_type) { |
| case ADST_DCT: |
| scan = vp8_row_scan; |
| break; |
| |
| case DCT_ADST: |
| scan = vp8_col_scan; |
| break; |
| |
| default: |
| scan = vp8_default_zig_zag1d; |
| break; |
| } |
| } else { |
| scan = vp8_default_zig_zag1d; |
| } |
| } |
| break; |
| case TX_8X8: |
| scan = vp8_default_zig_zag1d_8x8; |
| bands = vp8_coef_bands_8x8; |
| default_eob = 64; |
| break; |
| } |
| |
| dequant_ptr = d->dequant; |
| coeff_ptr = b->coeff; |
| qcoeff_ptr = d->qcoeff; |
| dqcoeff_ptr = d->dqcoeff; |
| i0 = (type == PLANE_TYPE_Y_NO_DC); |
| eob = d->eob; |
| |
| /* Now set up a Viterbi trellis to evaluate alternative roundings. */ |
| rdmult = mb->rdmult * err_mult; |
| if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) |
| rdmult = (rdmult * 9) >> 4; |
| rddiv = mb->rddiv; |
| best_mask[0] = best_mask[1] = 0; |
| /* Initialize the sentinel node of the trellis. */ |
| tokens[eob][0].rate = 0; |
| tokens[eob][0].error = 0; |
| tokens[eob][0].next = default_eob; |
| tokens[eob][0].token = DCT_EOB_TOKEN; |
| tokens[eob][0].qc = 0; |
| *(tokens[eob] + 1) = *(tokens[eob] + 0); |
| next = eob; |
| for (i = eob; i-- > i0;) { |
| int base_bits; |
| int d2; |
| int dx; |
| |
| rc = scan[i]; |
| x = qcoeff_ptr[rc]; |
| /* Only add a trellis state for non-zero coefficients. */ |
| if (x) { |
| int shortcut = 0; |
| error0 = tokens[next][0].error; |
| error1 = tokens[next][1].error; |
| /* Evaluate the first possibility for this state. */ |
| rate0 = tokens[next][0].rate; |
| rate1 = tokens[next][1].rate; |
| t0 = (vp8_dct_value_tokens_ptr + x)->Token; |
| /* Consider both possible successor states. */ |
| if (next < default_eob) { |
| band = bands[i + 1]; |
| pt = vp8_prev_token_class[t0]; |
| rate0 += |
| mb->token_costs[tx_size][type][band][pt][tokens[next][0].token]; |
| rate1 += |
| mb->token_costs[tx_size][type][band][pt][tokens[next][1].token]; |
| } |
| UPDATE_RD_COST(); |
| /* And pick the best. */ |
| best = rd_cost1 < rd_cost0; |
| base_bits = *(vp8_dct_value_cost_ptr + x); |
| dx = dqcoeff_ptr[rc] - coeff_ptr[rc]; |
| d2 = dx * dx; |
| tokens[i][0].rate = base_bits + (best ? rate1 : rate0); |
| tokens[i][0].error = d2 + (best ? error1 : error0); |
| tokens[i][0].next = next; |
| tokens[i][0].token = t0; |
| tokens[i][0].qc = x; |
| best_mask[0] |= best << i; |
| /* Evaluate the second possibility for this state. */ |
| rate0 = tokens[next][0].rate; |
| rate1 = tokens[next][1].rate; |
| |
| if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc])) && |
| (abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) + dequant_ptr[rc != 0])) |
| shortcut = 1; |
| else |
| shortcut = 0; |
| |
| if (shortcut) { |
| sz = -(x < 0); |
| x -= 2 * sz + 1; |
| } |
| |
| /* Consider both possible successor states. */ |
| if (!x) { |
| /* If we reduced this coefficient to zero, check to see if |
| * we need to move the EOB back here. |
| */ |
| t0 = tokens[next][0].token == DCT_EOB_TOKEN ? |
| DCT_EOB_TOKEN : ZERO_TOKEN; |
| t1 = tokens[next][1].token == DCT_EOB_TOKEN ? |
| DCT_EOB_TOKEN : ZERO_TOKEN; |
| } else { |
| t0 = t1 = (vp8_dct_value_tokens_ptr + x)->Token; |
| } |
| if (next < default_eob) { |
| band = bands[i + 1]; |
| if (t0 != DCT_EOB_TOKEN) { |
| pt = vp8_prev_token_class[t0]; |
| rate0 += mb->token_costs[tx_size][type][band][pt][ |
| tokens[next][0].token]; |
| } |
| if (t1 != DCT_EOB_TOKEN) { |
| pt = vp8_prev_token_class[t1]; |
| rate1 += mb->token_costs[tx_size][type][band][pt][ |
| tokens[next][1].token]; |
| } |
| } |
| |
| UPDATE_RD_COST(); |
| /* And pick the best. */ |
| best = rd_cost1 < rd_cost0; |
| base_bits = *(vp8_dct_value_cost_ptr + x); |
| |
| if (shortcut) { |
| dx -= (dequant_ptr[rc != 0] + sz) ^ sz; |
| d2 = dx * dx; |
| } |
| tokens[i][1].rate = base_bits + (best ? rate1 : rate0); |
| tokens[i][1].error = d2 + (best ? error1 : error0); |
| tokens[i][1].next = next; |
| tokens[i][1].token = best ? t1 : t0; |
| tokens[i][1].qc = x; |
| best_mask[1] |= best << i; |
| /* Finally, make this the new head of the trellis. */ |
| next = i; |
| } |
| /* There's no choice to make for a zero coefficient, so we don't |
| * add a new trellis node, but we do need to update the costs. |
| */ |
| else { |
| band = bands[i + 1]; |
| t0 = tokens[next][0].token; |
| t1 = tokens[next][1].token; |
| /* Update the cost of each path if we're past the EOB token. */ |
| if (t0 != DCT_EOB_TOKEN) { |
| tokens[next][0].rate += mb->token_costs[tx_size][type][band][0][t0]; |
| tokens[next][0].token = ZERO_TOKEN; |
| } |
| if (t1 != DCT_EOB_TOKEN) { |
| tokens[next][1].rate += mb->token_costs[tx_size][type][band][0][t1]; |
| tokens[next][1].token = ZERO_TOKEN; |
| } |
| /* Don't update next, because we didn't add a new node. */ |
| } |
| } |
| |
| /* Now pick the best path through the whole trellis. */ |
| band = bands[i + 1]; |
| VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); |
| rate0 = tokens[next][0].rate; |
| rate1 = tokens[next][1].rate; |
| error0 = tokens[next][0].error; |
| error1 = tokens[next][1].error; |
| t0 = tokens[next][0].token; |
| t1 = tokens[next][1].token; |
| rate0 += mb->token_costs[tx_size][type][band][pt][t0]; |
| rate1 += mb->token_costs[tx_size][type][band][pt][t1]; |
| UPDATE_RD_COST(); |
| best = rd_cost1 < rd_cost0; |
| final_eob = i0 - 1; |
| for (i = next; i < eob; i = next) { |
| x = tokens[i][best].qc; |
| if (x) |
| final_eob = i; |
| rc = scan[i]; |
| qcoeff_ptr[rc] = x; |
| dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]); |
| |
| next = tokens[i][best].next; |
| best = (best_mask[best] >> i) & 1; |
| } |
| final_eob++; |
| |
| d->eob = final_eob; |
| *a = *l = (d->eob != !type); |
| } |
| |
| /************************************************************************** |
| our inverse hadamard transform effectively is weighted sum of all 16 inputs |
| with weight either 1 or -1. It has a last stage scaling of (sum+1)>>2. And |
| dc only idct is (dc+16)>>5. So if all the sums are between -65 and 63 the |
| output after inverse wht and idct will be all zero. A sum of absolute value |
| smaller than 65 guarantees all 16 different (+1/-1) weighted sums in wht |
| fall between -65 and +65. |
| **************************************************************************/ |
| #define SUM_2ND_COEFF_THRESH 65 |
| |
| static void check_reset_2nd_coeffs(MACROBLOCKD *xd, |
| ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { |
| int sum = 0; |
| int i; |
| BLOCKD *bd = &xd->block[24]; |
| if (bd->dequant[0] >= SUM_2ND_COEFF_THRESH |
| && bd->dequant[1] >= SUM_2ND_COEFF_THRESH) |
| return; |
| |
| for (i = 0; i < bd->eob; i++) { |
| int coef = bd->dqcoeff[vp8_default_zig_zag1d[i]]; |
| sum += (coef >= 0) ? coef : -coef; |
| if (sum >= SUM_2ND_COEFF_THRESH) |
| return; |
| } |
| |
| if (sum < SUM_2ND_COEFF_THRESH) { |
| for (i = 0; i < bd->eob; i++) { |
| int rc = vp8_default_zig_zag1d[i]; |
| bd->qcoeff[rc] = 0; |
| bd->dqcoeff[rc] = 0; |
| } |
| bd->eob = 0; |
| *a = *l = (bd->eob != 0); |
| } |
| } |
| |
| #define SUM_2ND_COEFF_THRESH_8X8 32 |
| static void check_reset_8x8_2nd_coeffs(MACROBLOCKD *xd, |
| ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { |
| int sum = 0; |
| BLOCKD *bd = &xd->block[24]; |
| int coef; |
| |
| coef = bd->dqcoeff[0]; |
| sum += (coef >= 0) ? coef : -coef; |
| coef = bd->dqcoeff[1]; |
| sum += (coef >= 0) ? coef : -coef; |
| coef = bd->dqcoeff[4]; |
| sum += (coef >= 0) ? coef : -coef; |
| coef = bd->dqcoeff[8]; |
| sum += (coef >= 0) ? coef : -coef; |
| |
| if (sum < SUM_2ND_COEFF_THRESH_8X8) { |
| bd->qcoeff[0] = 0; |
| bd->dqcoeff[0] = 0; |
| bd->qcoeff[1] = 0; |
| bd->dqcoeff[1] = 0; |
| bd->qcoeff[4] = 0; |
| bd->dqcoeff[4] = 0; |
| bd->qcoeff[8] = 0; |
| bd->dqcoeff[8] = 0; |
| bd->eob = 0; |
| *a = *l = (bd->eob != 0); |
| } |
| } |
| |
| void vp9_optimize_mby_4x4(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { |
| int b; |
| PLANE_TYPE type; |
| int has_2nd_order; |
| ENTROPY_CONTEXT_PLANES t_above, t_left; |
| ENTROPY_CONTEXT *ta; |
| ENTROPY_CONTEXT *tl; |
| MB_PREDICTION_MODE mode = x->e_mbd.mode_info_context->mbmi.mode; |
| |
| if (!x->e_mbd.above_context || !x->e_mbd.left_context) |
| return; |
| |
| vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); |
| vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); |
| |
| ta = (ENTROPY_CONTEXT *)&t_above; |
| tl = (ENTROPY_CONTEXT *)&t_left; |
| |
| has_2nd_order = (mode != B_PRED && mode != I8X8_PRED && mode != SPLITMV); |
| type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC; |
| |
| for (b = 0; b < 16; b++) { |
| optimize_b(x, b, type, |
| ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd, TX_4X4); |
| } |
| |
| if (has_2nd_order) { |
| b = 24; |
| optimize_b(x, b, PLANE_TYPE_Y2, |
| ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd, TX_4X4); |
| check_reset_2nd_coeffs(&x->e_mbd, |
| ta + vp8_block2above[b], tl + vp8_block2left[b]); |
| } |
| } |
| |
| void vp9_optimize_mbuv_4x4(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { |
| int b; |
| ENTROPY_CONTEXT_PLANES t_above, t_left; |
| ENTROPY_CONTEXT *ta; |
| ENTROPY_CONTEXT *tl; |
| |
| if (!x->e_mbd.above_context || !x->e_mbd.left_context) |
| return; |
| |
| vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); |
| vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); |
| |
| ta = (ENTROPY_CONTEXT *)&t_above; |
| tl = (ENTROPY_CONTEXT *)&t_left; |
| |
| for (b = 16; b < 24; b++) { |
| optimize_b(x, b, PLANE_TYPE_UV, |
| ta + vp8_block2above[b], tl + vp8_block2left[b], rtcd, TX_4X4); |
| } |
| } |
| |
| static void optimize_mb_4x4(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { |
| vp9_optimize_mby_4x4(x, rtcd); |
| vp9_optimize_mbuv_4x4(x, rtcd); |
| } |
| |
| void vp9_optimize_mby_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { |
| int b; |
| PLANE_TYPE type; |
| ENTROPY_CONTEXT_PLANES t_above, t_left; |
| ENTROPY_CONTEXT *ta; |
| ENTROPY_CONTEXT *tl; |
| int has_2nd_order = x->e_mbd.mode_info_context->mbmi.mode != SPLITMV; |
| |
| if (!x->e_mbd.above_context || !x->e_mbd.left_context) |
| return; |
| |
| vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); |
| vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); |
| |
| ta = (ENTROPY_CONTEXT *)&t_above; |
| tl = (ENTROPY_CONTEXT *)&t_left; |
| type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC; |
| for (b = 0; b < 16; b += 4) { |
| optimize_b(x, b, type, |
| ta + vp8_block2above_8x8[b], tl + vp8_block2left_8x8[b], |
| rtcd, TX_8X8); |
| ta[vp8_block2above_8x8[b] + 1] = ta[vp8_block2above_8x8[b]]; |
| tl[vp8_block2left_8x8[b] + 1] = tl[vp8_block2left_8x8[b]]; |
| } |
| |
| // 8x8 always have 2nd roder haar block |
| if (has_2nd_order) { |
| check_reset_8x8_2nd_coeffs(&x->e_mbd, |
| ta + vp8_block2above_8x8[24], |
| tl + vp8_block2left_8x8[24]); |
| } |
| } |
| |
| void vp9_optimize_mbuv_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { |
| int b; |
| ENTROPY_CONTEXT_PLANES t_above, t_left; |
| ENTROPY_CONTEXT *ta; |
| ENTROPY_CONTEXT *tl; |
| |
| if (!x->e_mbd.above_context || !x->e_mbd.left_context) |
| return; |
| |
| vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); |
| vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); |
| |
| ta = (ENTROPY_CONTEXT *)&t_above; |
| tl = (ENTROPY_CONTEXT *)&t_left; |
| |
| for (b = 16; b < 24; b += 4) { |
| optimize_b(x, b, PLANE_TYPE_UV, |
| ta + vp8_block2above_8x8[b], tl + vp8_block2left_8x8[b], |
| rtcd, TX_8X8); |
| ta[vp8_block2above_8x8[b] + 1] = ta[vp8_block2above_8x8[b]]; |
| tl[vp8_block2left_8x8[b] + 1] = tl[vp8_block2left_8x8[b]]; |
| } |
| } |
| |
| static void optimize_mb_8x8(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { |
| vp9_optimize_mby_8x8(x, rtcd); |
| vp9_optimize_mbuv_8x8(x, rtcd); |
| } |
| |
| static void optimize_b_16x16(MACROBLOCK *mb, int i, PLANE_TYPE type, |
| ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, |
| const VP8_ENCODER_RTCD *rtcd) { |
| BLOCK *b = &mb->block[i]; |
| BLOCKD *d = &mb->e_mbd.block[i]; |
| vp8_token_state tokens[257][2]; |
| unsigned best_index[257][2]; |
| const short *dequant_ptr = d->dequant, *coeff_ptr = b->coeff; |
| short *qcoeff_ptr = qcoeff_ptr = d->qcoeff; |
| short *dqcoeff_ptr = dqcoeff_ptr = d->dqcoeff; |
| int eob = d->eob, final_eob, sz = 0; |
| int rc, x, next; |
| int64_t rdmult, rddiv, rd_cost0, rd_cost1; |
| int rate0, rate1, error0, error1, t0, t1; |
| int best, band, pt; |
| int err_mult = plane_rd_mult[type]; |
| |
| /* Now set up a Viterbi trellis to evaluate alternative roundings. */ |
| rdmult = mb->rdmult * err_mult; |
| if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) |
| rdmult = (rdmult * 9)>>4; |
| rddiv = mb->rddiv; |
| memset(best_index, 0, sizeof(best_index)); |
| /* Initialize the sentinel node of the trellis. */ |
| tokens[eob][0].rate = 0; |
| tokens[eob][0].error = 0; |
| tokens[eob][0].next = 256; |
| tokens[eob][0].token = DCT_EOB_TOKEN; |
| tokens[eob][0].qc = 0; |
| *(tokens[eob] + 1) = *(tokens[eob] + 0); |
| next = eob; |
| for (i = eob; i-- > 0;) { |
| int base_bits, d2, dx; |
| |
| rc = vp8_default_zig_zag1d_16x16[i]; |
| x = qcoeff_ptr[rc]; |
| /* Only add a trellis state for non-zero coefficients. */ |
| if (x) { |
| int shortcut = 0; |
| error0 = tokens[next][0].error; |
| error1 = tokens[next][1].error; |
| /* Evaluate the first possibility for this state. */ |
| rate0 = tokens[next][0].rate; |
| rate1 = tokens[next][1].rate; |
| t0 = (vp8_dct_value_tokens_ptr + x)->Token; |
| /* Consider both possible successor states. */ |
| if (next < 256) { |
| band = vp8_coef_bands_16x16[i + 1]; |
| pt = vp8_prev_token_class[t0]; |
| rate0 += mb->token_costs[TX_16X16][type][band][pt][tokens[next][0].token]; |
| rate1 += mb->token_costs[TX_16X16][type][band][pt][tokens[next][1].token]; |
| } |
| UPDATE_RD_COST(); |
| /* And pick the best. */ |
| best = rd_cost1 < rd_cost0; |
| base_bits = *(vp8_dct_value_cost_ptr + x); |
| dx = dqcoeff_ptr[rc] - coeff_ptr[rc]; |
| d2 = dx*dx; |
| tokens[i][0].rate = base_bits + (best ? rate1 : rate0); |
| tokens[i][0].error = d2 + (best ? error1 : error0); |
| tokens[i][0].next = next; |
| tokens[i][0].token = t0; |
| tokens[i][0].qc = x; |
| best_index[i][0] = best; |
| /* Evaluate the second possibility for this state. */ |
| rate0 = tokens[next][0].rate; |
| rate1 = tokens[next][1].rate; |
| |
| if((abs(x)*dequant_ptr[rc!=0]>abs(coeff_ptr[rc])) && |
| (abs(x)*dequant_ptr[rc!=0]<abs(coeff_ptr[rc])+dequant_ptr[rc!=0])) |
| shortcut = 1; |
| else |
| shortcut = 0; |
| |
| if (shortcut) { |
| sz = -(x < 0); |
| x -= 2*sz + 1; |
| } |
| |
| /* Consider both possible successor states. */ |
| if (!x) { |
| /* If we reduced this coefficient to zero, check to see if |
| * we need to move the EOB back here. |
| */ |
| t0 = tokens[next][0].token == DCT_EOB_TOKEN ? |
| DCT_EOB_TOKEN : ZERO_TOKEN; |
| t1 = tokens[next][1].token == DCT_EOB_TOKEN ? |
| DCT_EOB_TOKEN : ZERO_TOKEN; |
| } |
| else |
| t0=t1 = (vp8_dct_value_tokens_ptr + x)->Token; |
| if (next < 256) { |
| band = vp8_coef_bands_16x16[i + 1]; |
| if (t0 != DCT_EOB_TOKEN) { |
| pt = vp8_prev_token_class[t0]; |
| rate0 += mb->token_costs[TX_16X16][type][band][pt] |
| [tokens[next][0].token]; |
| } |
| if (t1!=DCT_EOB_TOKEN) { |
| pt = vp8_prev_token_class[t1]; |
| rate1 += mb->token_costs[TX_16X16][type][band][pt] |
| [tokens[next][1].token]; |
| } |
| } |
| UPDATE_RD_COST(); |
| /* And pick the best. */ |
| best = rd_cost1 < rd_cost0; |
| base_bits = *(vp8_dct_value_cost_ptr + x); |
| |
| if(shortcut) { |
| dx -= (dequant_ptr[rc!=0] + sz) ^ sz; |
| d2 = dx*dx; |
| } |
| tokens[i][1].rate = base_bits + (best ? rate1 : rate0); |
| tokens[i][1].error = d2 + (best ? error1 : error0); |
| tokens[i][1].next = next; |
| tokens[i][1].token = best ? t1 : t0; |
| tokens[i][1].qc = x; |
| best_index[i][1] = best; |
| /* Finally, make this the new head of the trellis. */ |
| next = i; |
| } |
| /* There's no choice to make for a zero coefficient, so we don't |
| * add a new trellis node, but we do need to update the costs. |
| */ |
| else { |
| band = vp8_coef_bands_16x16[i + 1]; |
| t0 = tokens[next][0].token; |
| t1 = tokens[next][1].token; |
| /* Update the cost of each path if we're past the EOB token. */ |
| if (t0 != DCT_EOB_TOKEN) { |
| tokens[next][0].rate += mb->token_costs[TX_16X16][type][band][0][t0]; |
| tokens[next][0].token = ZERO_TOKEN; |
| } |
| if (t1 != DCT_EOB_TOKEN) { |
| tokens[next][1].rate += mb->token_costs[TX_16X16][type][band][0][t1]; |
| tokens[next][1].token = ZERO_TOKEN; |
| } |
| /* Don't update next, because we didn't add a new node. */ |
| } |
| } |
| |
| /* Now pick the best path through the whole trellis. */ |
| band = vp8_coef_bands_16x16[i + 1]; |
| VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); |
| rate0 = tokens[next][0].rate; |
| rate1 = tokens[next][1].rate; |
| error0 = tokens[next][0].error; |
| error1 = tokens[next][1].error; |
| t0 = tokens[next][0].token; |
| t1 = tokens[next][1].token; |
| rate0 += mb->token_costs[TX_16X16][type][band][pt][t0]; |
| rate1 += mb->token_costs[TX_16X16][type][band][pt][t1]; |
| UPDATE_RD_COST(); |
| best = rd_cost1 < rd_cost0; |
| final_eob = -1; |
| |
| for (i = next; i < eob; i = next) { |
| x = tokens[i][best].qc; |
| if (x) |
| final_eob = i; |
| rc = vp8_default_zig_zag1d_16x16[i]; |
| qcoeff_ptr[rc] = x; |
| dqcoeff_ptr[rc] = (x * dequant_ptr[rc!=0]); |
| |
| next = tokens[i][best].next; |
| best = best_index[i][best]; |
| } |
| final_eob++; |
| |
| d->eob = final_eob; |
| *a = *l = (d->eob != !type); |
| } |
| |
| void vp9_optimize_mby_16x16(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { |
| ENTROPY_CONTEXT_PLANES t_above, t_left; |
| ENTROPY_CONTEXT *ta, *tl; |
| |
| if (!x->e_mbd.above_context || !x->e_mbd.left_context) |
| return; |
| |
| vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); |
| vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); |
| |
| ta = (ENTROPY_CONTEXT *)&t_above; |
| tl = (ENTROPY_CONTEXT *)&t_left; |
| optimize_b_16x16(x, 0, PLANE_TYPE_Y_WITH_DC, ta, tl, rtcd); |
| } |
| |
| static void optimize_mb_16x16(MACROBLOCK *x, const VP8_ENCODER_RTCD *rtcd) { |
| vp9_optimize_mby_16x16(x, rtcd); |
| vp9_optimize_mbuv_8x8(x, rtcd); |
| } |
| |
| void vp9_encode_inter16x16(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; |
| |
| vp8_build_inter_predictors_mb(xd); |
| vp8_subtract_mb(rtcd, x); |
| |
| if (tx_size == TX_16X16) { |
| vp9_transform_mb_16x16(x); |
| vp9_quantize_mb_16x16(x); |
| if (x->optimize) |
| optimize_mb_16x16(x, rtcd); |
| vp8_inverse_transform_mb_16x16(IF_RTCD(&rtcd->common->idct), xd); |
| } else if (tx_size == TX_8X8) { |
| if (xd->mode_info_context->mbmi.mode == SPLITMV) { |
| assert(xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4); |
| vp9_transform_mby_8x8(x); |
| vp9_transform_mbuv_4x4(x); |
| vp9_quantize_mby_8x8(x); |
| vp9_quantize_mbuv_4x4(x); |
| if (x->optimize) { |
| vp9_optimize_mby_8x8(x, rtcd); |
| vp9_optimize_mbuv_4x4(x, rtcd); |
| } |
| vp8_inverse_transform_mby_8x8(IF_RTCD(&rtcd->common->idct), xd); |
| vp8_inverse_transform_mbuv_4x4(IF_RTCD(&rtcd->common->idct), xd); |
| } else { |
| vp9_transform_mb_8x8(x); |
| vp9_quantize_mb_8x8(x); |
| if (x->optimize) |
| optimize_mb_8x8(x, rtcd); |
| vp8_inverse_transform_mb_8x8(IF_RTCD(&rtcd->common->idct), xd); |
| } |
| } else { |
| transform_mb_4x4(x); |
| vp9_quantize_mb_4x4(x); |
| if (x->optimize) |
| optimize_mb_4x4(x, rtcd); |
| vp8_inverse_transform_mb_4x4(IF_RTCD(&rtcd->common->idct), xd); |
| } |
| |
| vp8_recon_mb(xd); |
| } |
| |
| /* this function is used by first pass only */ |
| void vp9_encode_inter16x16y(const VP8_ENCODER_RTCD *rtcd, MACROBLOCK *x) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| BLOCK *b = &x->block[0]; |
| |
| #if CONFIG_PRED_FILTER |
| // Disable the prediction filter for firstpass |
| xd->mode_info_context->mbmi.pred_filter_enabled = 0; |
| #endif |
| |
| vp8_build_1st_inter16x16_predictors_mby(xd, xd->predictor, 16, 0); |
| |
| vp9_subtract_mby(x->src_diff, *(b->base_src), xd->predictor, b->src_stride); |
| |
| vp9_transform_mby_4x4(x); |
| vp9_quantize_mby_4x4(x); |
| vp8_inverse_transform_mby_4x4(IF_RTCD(&rtcd->common->idct), xd); |
| |
| vp8_recon_mby(xd); |
| } |