| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_WARPED_MOTION_H_ |
| #define AOM_AV1_COMMON_WARPED_MOTION_H_ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <memory.h> |
| #include <math.h> |
| #include <assert.h> |
| #include <stdbool.h> |
| |
| #include "config/aom_config.h" |
| |
| #include "aom_ports/mem.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/convolve.h" |
| |
| #define LEAST_SQUARES_SAMPLES_MAX_BITS 3 |
| #define LEAST_SQUARES_SAMPLES_MAX (1 << LEAST_SQUARES_SAMPLES_MAX_BITS) |
| #define SAMPLES_ARRAY_SIZE (LEAST_SQUARES_SAMPLES_MAX * 2) |
| #define WARPED_MOTION_DEBUG 0 |
| #define DEFAULT_WMTYPE AFFINE |
| #define WARP_ERROR_BLOCK_LOG 5 |
| #define WARP_ERROR_BLOCK (1 << WARP_ERROR_BLOCK_LOG) |
| |
| #if CONFIG_EXT_WARP_FILTER |
| #define EXT_WARP_TAPS 6 |
| #define EXT_WARP_PHASES_LOG2 6 |
| #define EXT_WARP_PHASES (1 << EXT_WARP_PHASES_LOG2) |
| #define EXT_WARP_ROUND_BITS (WARPEDMODEL_PREC_BITS - EXT_WARP_PHASES_LOG2) |
| |
| // The extended warp filter is a 6-tap filter, but we store each kernel with |
| // two extra zeros at the end so that each kernel is 16-byte aligned |
| #define EXT_WARP_STORAGE_TAPS 8 |
| #endif // CONFIG_EXT_WARP_FILTER |
| |
| #define DIV_LUT_PREC_BITS 14 |
| #define DIV_LUT_BITS 8 |
| #define DIV_LUT_NUM (1 << DIV_LUT_BITS) |
| |
| extern const uint16_t div_lut[DIV_LUT_NUM + 1]; |
| |
| // Decomposes a divisor D such that 1/D = y/2^shift, where y is returned |
| // at precision of DIV_LUT_PREC_BITS along with the shift. |
| static INLINE int16_t resolve_divisor_64(uint64_t D, int16_t *shift) { |
| int64_t f; |
| *shift = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32 |
| : get_msb((unsigned int)D)); |
| // e is obtained from D after resetting the most significant 1 bit. |
| const int64_t e = D - ((uint64_t)1 << *shift); |
| // Get the most significant DIV_LUT_BITS (8) bits of e into f |
| if (*shift > DIV_LUT_BITS) |
| f = ROUND_POWER_OF_TWO_64(e, *shift - DIV_LUT_BITS); |
| else |
| f = e << (DIV_LUT_BITS - *shift); |
| assert(f <= DIV_LUT_NUM); |
| *shift += DIV_LUT_PREC_BITS; |
| // Use f as lookup into the precomputed table of multipliers |
| return div_lut[f]; |
| } |
| |
| static INLINE int16_t resolve_divisor_32(uint32_t D, int16_t *shift) { |
| int32_t f; |
| *shift = get_msb(D); |
| // e is obtained from D after resetting the most significant 1 bit. |
| const int32_t e = D - ((uint32_t)1 << *shift); |
| // Get the most significant DIV_LUT_BITS (8) bits of e into f |
| if (*shift > DIV_LUT_BITS) |
| f = ROUND_POWER_OF_TWO(e, *shift - DIV_LUT_BITS); |
| else |
| f = e << (DIV_LUT_BITS - *shift); |
| assert(f <= DIV_LUT_NUM); |
| *shift += DIV_LUT_PREC_BITS; |
| // Use f as lookup into the precomputed table of multipliers |
| return div_lut[f]; |
| } |
| |
| #if CONFIG_IMPROVED_CFL || CONFIG_BAWP |
| static INLINE int16_t resolve_divisor_32_CfL(int32_t N, int32_t D, |
| int16_t shift) { |
| int32_t f_n, f_d; |
| int ret; |
| |
| assert(D >= 0); |
| int sign_N = N >= 0 ? 0 : 1; |
| |
| if (sign_N) N = -N; |
| |
| if (N == 0 || D == 0) |
| return 0; |
| else { |
| int16_t shift_n = get_msb(N); |
| int16_t shift_d = get_msb(D); |
| // e is obtained from D after resetting the most significant 1 bit. |
| const int32_t e_d = D - ((uint32_t)1 << shift_d); |
| // Get the most significant DIV_LUT_BITS (8) bits of e into f |
| if (shift_d > DIV_LUT_BITS) |
| f_d = ROUND_POWER_OF_TWO(e_d, shift_d - DIV_LUT_BITS); |
| else |
| f_d = e_d << (DIV_LUT_BITS - shift_d); |
| assert(f_d <= DIV_LUT_NUM); |
| |
| if (shift_n > DIV_LUT_BITS) |
| f_n = ROUND_POWER_OF_TWO(N, shift_n - DIV_LUT_BITS); |
| else |
| f_n = N << (DIV_LUT_BITS - shift_n); |
| |
| assert(f_d <= DIV_LUT_NUM); |
| assert(f_n <= DIV_LUT_NUM * 2); |
| |
| const int shift_add = shift_d - shift_n - shift; |
| |
| // The maximum value of `div_lut[f_d] * f_n` is |
| // `1 << (DIV_LUT_PREC_BITS + DIV_LUT_BITS + 1)` |
| // Hence `shift_add`below is constrained to be <= 1. |
| if (shift_add <= 1) { |
| ret = (div_lut[f_d] * f_n) >> |
| (DIV_LUT_PREC_BITS + DIV_LUT_BITS + shift_add); |
| } else { |
| ret = 0; |
| } |
| if (ret >= (2 << shift) - 1) ret = (2 << shift) - 1; |
| |
| if (sign_N) ret = -ret; |
| return ret; |
| } |
| } |
| #endif |
| |
| extern const int16_t av1_warped_filter[WARPEDPIXEL_PREC_SHIFTS * 3 + 1][8]; |
| |
| DECLARE_ALIGNED(8, extern const int8_t, |
| av1_filter_8bit[WARPEDPIXEL_PREC_SHIFTS * 3 + 1][8]); |
| |
| #if CONFIG_EXT_WARP_FILTER |
| extern const int16_t av1_ext_warped_filter[EXT_WARP_PHASES + 1] |
| [EXT_WARP_STORAGE_TAPS]; |
| #endif // CONFIG_EXT_WARP_FILTER |
| |
| static const uint8_t warp_pad_left[14][16] = { |
| { 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
| { 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
| { 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
| { 4, 4, 4, 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
| { 5, 5, 5, 5, 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
| { 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
| { 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
| { 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15 }, |
| { 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 13, 14, 15 }, |
| { 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 13, 14, 15 }, |
| { 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 13, 14, 15 }, |
| { 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15 }, |
| { 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 15 }, |
| { 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15 }, |
| }; |
| |
| static const uint8_t warp_pad_right[14][16] = { |
| { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13, 13 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 12, 12 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 11, 11 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8 }, |
| { 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7 }, |
| { 0, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 }, |
| { 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 }, |
| { 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 }, |
| { 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, |
| { 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, |
| { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } |
| }; |
| |
| // Recompute the translational part of a warp model, so that the center |
| // of the current block (determined by `mi_row`, `mi_col`, `bsize`) |
| // has an induced motion vector of `mv` |
| void av1_set_warp_translation(int mi_row, int mi_col, BLOCK_SIZE bsize, MV mv, |
| WarpedMotionParams *wm); |
| |
| void highbd_warp_plane(WarpedMotionParams *wm, const uint16_t *const ref, |
| int width, int height, int stride, uint16_t *const pred, |
| int p_col, int p_row, int p_width, int p_height, |
| int p_stride, int subsampling_x, int subsampling_y, |
| int bd, ConvolveParams *conv_params); |
| |
| void warp_plane(WarpedMotionParams *wm, const uint8_t *const ref, int width, |
| int height, int stride, uint8_t *pred, int p_col, int p_row, |
| int p_width, int p_height, int p_stride, int subsampling_x, |
| int subsampling_y, ConvolveParams *conv_params); |
| #if CONFIG_AFFINE_REFINEMENT && CONFIG_EXT_WARP_FILTER |
| void av1_warp_plane_ext(WarpedMotionParams *wm, int bd, const uint16_t *ref, |
| int width, int height, int stride, uint16_t *pred, |
| int p_col, int p_row, int p_width, int p_height, |
| int p_stride, int subsampling_x, int subsampling_y, |
| ConvolveParams *conv_params); |
| #endif // CONFIG_AFFINE_REFINEMENT && CONFIG_EXT_WARP_FILTER |
| void av1_warp_plane(WarpedMotionParams *wm, int bd, const uint16_t *ref, |
| int width, int height, int stride, uint16_t *pred, |
| int p_col, int p_row, int p_width, int p_height, |
| int p_stride, int subsampling_x, int subsampling_y, |
| ConvolveParams *conv_params); |
| |
| int av1_find_projection(int np, const int *pts1, const int *pts2, |
| BLOCK_SIZE bsize, MV mv, WarpedMotionParams *wm_params, |
| int mi_row, int mi_col); |
| |
| int av1_get_shear_params(WarpedMotionParams *wm); |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| // Reduce the precision of a warp model, ready for use in the warp filter |
| // and for storage. This should be called after the non-translational parameters |
| // are calculated, but before av1_set_warp_translation() or |
| // av1_get_shear_params() are called |
| void av1_reduce_warp_model(WarpedMotionParams *wm); |
| |
| #if CONFIG_EXT_WARP_FILTER |
| // Check if a model is already properly reduced, according to the same logic |
| // used in av1_reduce_warp_model() |
| bool av1_is_warp_model_reduced(WarpedMotionParams *wm); |
| #endif // CONFIG_EXT_WARP_FILTER |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| int av1_extend_warp_model(const bool neighbor_is_above, const BLOCK_SIZE bsize, |
| const MV *center_mv, const int mi_row, |
| const int mi_col, |
| const WarpedMotionParams *neighbor_wm, |
| WarpedMotionParams *wm_params); |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| #if CONFIG_IMPROVED_GLOBAL_MOTION |
| // Given a warp model which was initially used at a temporal distance of |
| // `in_distance`, rescale it to a new temporal distance of `out_distance`. |
| // Both distances are allowed to be negative, but they must be nonzero. |
| // |
| // The mathematically ideal way to rescale a warp model from one temporal |
| // distance to another would be to use a matrix exponential: If we write the |
| // input model as a 3x3 matrix M, then the output model should be |
| // |
| // ideal output = M ^ (out_distance / in_distance) |
| // |
| // However, computing a matrix exponential is complicated, especially in |
| // fixed point, and so would not be very hardware friendly. In addition, |
| // this function is mainly used to predict global motion parameters, with |
| // the true values being coded as a delta from this prediction. As the |
| // global motion will not be perfectly consistent, there's a limit to how |
| // accurate our prediction can be. |
| // |
| // For these reasons, we approximate the matrix exponential using its |
| // first-order Taylor series: |
| // |
| // output = I + (M - I) * (out_distance / in_distance) |
| // |
| // This is far easier to compute, and provides a "good enough" approximation |
| // for the models we use in practice, which are all reasonably near to the |
| // identity model (all parameters except for the translational part are |
| // within +/- 1/2 of the identity). |
| static INLINE void av1_scale_warp_model(const WarpedMotionParams *in_params, |
| int in_distance, |
| WarpedMotionParams *out_params, |
| int out_distance) { |
| static int param_shift[MAX_PARAMDIM] = { |
| GM_TRANS_PREC_DIFF, GM_TRANS_PREC_DIFF, GM_ALPHA_PREC_DIFF, |
| GM_ALPHA_PREC_DIFF, GM_ALPHA_PREC_DIFF, GM_ALPHA_PREC_DIFF |
| }; |
| |
| static int param_min[MAX_PARAMDIM] = { GM_TRANS_MIN, GM_TRANS_MIN, |
| GM_ALPHA_MIN, GM_ALPHA_MIN, |
| GM_ALPHA_MIN, GM_ALPHA_MIN }; |
| |
| static int param_max[MAX_PARAMDIM] = { GM_TRANS_MAX, GM_TRANS_MAX, |
| GM_ALPHA_MAX, GM_ALPHA_MAX, |
| GM_ALPHA_MAX, GM_ALPHA_MAX }; |
| |
| // If in_distance == 0, then we can't meaningfully scale the model because |
| // this would correspond to a division by 0. So we fall back to using the |
| // identity model as a reference. |
| // |
| // Note: Global motion is disabled for temporal distances of 0, so in this |
| // situation the input model must be the identity model anyway. Check this |
| // constraint here to help keep things internally consistent. |
| if (in_distance == 0) { |
| for (int param = 0; param < MAX_PARAMDIM; param++) { |
| assert(in_params->wmmat[param] == default_warp_params.wmmat[param]); |
| } |
| *out_params = default_warp_params; |
| return; |
| } |
| |
| // If out_distance == 0, then global motion is disabled, so we shouldn't |
| // get to this function |
| assert(out_distance != 0); |
| |
| // Flip signs so that in_distance is positive. |
| // We do this because |
| // scaled_value = (... + divisor/2) / divisor |
| // is the simplest way to implement division with round-to-nearest in C, |
| // but it only works correctly if the divisor is positive |
| if (in_distance < 0) { |
| in_distance = -in_distance; |
| out_distance = -out_distance; |
| } |
| |
| out_params->wmtype = in_params->wmtype; |
| for (int param = 0; param < MAX_PARAMDIM; param++) { |
| int center = default_warp_params.wmmat[param]; |
| |
| int input = in_params->wmmat[param] - center; |
| int divisor = in_distance * (1 << param_shift[param]); |
| int output = (int)(((int64_t)input * out_distance + divisor / 2) / divisor); |
| output = clamp(output, param_min[param], param_max[param]) * |
| (1 << param_shift[param]); |
| |
| out_params->wmmat[param] = center + output; |
| } |
| } |
| #endif // CONFIG_IMPROVED_GLOBAL_MOTION |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| int_mv get_warp_motion_vector_xy_pos(const WarpedMotionParams *model, |
| const int x, const int y, |
| MvSubpelPrecision precision); |
| int get_model_from_corner_mvs(WarpedMotionParams *derive_model, int *pts, |
| int np, int *mvs, const BLOCK_SIZE bsize); |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| #endif // AOM_AV1_COMMON_WARPED_MOTION_H_ |