blob: 0725e2bf08dad769429d0240e352d72dc7174276 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#include "av1/common/common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
// Comparison function to sort reference frames in ascending score order
static int compare_score_data_asc(const void *a, const void *b) {
if (((RefScoreData *)a)->score == ((RefScoreData *)b)->score) {
return 0;
} else if (((const RefScoreData *)a)->score >
((const RefScoreData *)b)->score) {
return 1;
} else {
return -1;
}
}
static void bubble_sort_ref_scores(RefScoreData *scores, int n_ranked) {
for (int i = n_ranked - 1; i > 0; --i) {
for (int j = 0; j < i; j++) {
if (compare_score_data_asc(&scores[j], &scores[j + 1]) > 0) {
RefScoreData score_temp = scores[j];
scores[j] = scores[j + 1];
scores[j + 1] = score_temp;
}
}
}
}
// Checks to see if a particular reference frame is already in the reference
// frame map
static int is_in_ref_score(RefScoreData *map, int disp_order, int score,
int n_frames) {
for (int i = 0; i < n_frames; i++) {
if (disp_order == map[i].disp_order && score == map[i].score) return 1;
}
return 0;
}
// Only 7 out of 8 reference buffers will be used as reference frames. This
// function applies heuristics to determine which one to be left out.
static int get_unmapped_ref(RefScoreData *scores, int n_bufs) {
if (n_bufs < INTER_REFS_PER_FRAME) return INVALID_IDX;
int min_q = INT_MAX;
int max_q = INT_MIN;
for (int i = n_bufs - 1; i >= 0; i--) {
min_q = AOMMIN(min_q, scores[i].base_qindex);
max_q = AOMMAX(max_q, scores[i].base_qindex);
}
const int q_thresh = (max_q + min_q + 1) / 2;
int unmapped_past_idx = INVALID_IDX;
int unmapped_future_idx = INVALID_IDX;
int max_past_score = 0;
int max_future_score = 0;
int n_past = 0;
int n_future = 0;
for (int i = 0; i < n_bufs; i++) {
if (scores[i].base_qindex >= q_thresh) {
int dist = scores[i].distance;
if (dist > 0) {
if (dist > max_past_score) {
max_past_score = dist;
unmapped_past_idx = i;
}
n_past++;
} else if (dist < 0) {
if (-dist > max_future_score) {
max_future_score = -dist;
unmapped_future_idx = i;
}
n_future++;
}
}
}
if (n_past > n_future) return unmapped_past_idx;
if (n_past < n_future) return unmapped_future_idx;
if (n_past == n_future && n_past > 0)
return max_past_score >= max_future_score ? unmapped_past_idx
: unmapped_future_idx;
return INVALID_IDX;
}
// Obtain the lists of past/cur/future reference frames and their sizes.
void av1_get_past_future_cur_ref_lists(AV1_COMMON *cm, RefScoreData *scores) {
int n_future = 0;
int n_past = 0;
int n_cur = 0;
for (int i = 0; i < cm->ref_frames_info.num_total_refs; i++) {
// If order hint is disabled, the scores and past/future information are
// not available to the decoder. Assume all references are from the past.
if (!cm->seq_params.order_hint_info.enable_order_hint ||
scores[i].distance > 0) {
cm->ref_frames_info.past_refs[n_past] = i;
n_past++;
} else if (scores[i].distance < 0) {
cm->ref_frames_info.future_refs[n_future] = i;
n_future++;
} else {
cm->ref_frames_info.cur_refs[n_cur] = i;
n_cur++;
}
}
cm->ref_frames_info.num_past_refs = n_past;
cm->ref_frames_info.num_future_refs = n_future;
cm->ref_frames_info.num_cur_refs = n_cur;
}
#define DIST_WEIGHT_BITS 6
#define DECAY_DIST_CAP 6
static const int temp_dist_score_lookup[7] = {
0, 64, 96, 112, 120, 124, 126,
};
// Determine reference mapping by ranking the reference frames based on a
// score function.
int av1_get_ref_frames(AV1_COMMON *cm, int cur_frame_disp,
RefFrameMapPair *ref_frame_map_pairs) {
RefScoreData scores[REF_FRAMES];
memset(scores, 0, REF_FRAMES * sizeof(*scores));
for (int i = 0; i < REF_FRAMES; i++) {
scores[i].score = INT_MAX;
cm->remapped_ref_idx[i] = INVALID_IDX;
}
int n_ranked = 0;
// Give more weight to base_qindex if all references are from the past
int max_disp = 0;
for (int i = 0; i < REF_FRAMES; i++) {
RefFrameMapPair cur_ref = ref_frame_map_pairs[i];
if (cur_ref.disp_order == -1) continue;
max_disp = AOMMAX(max_disp, cur_ref.disp_order);
}
// Compute a score for each reference buffer
for (int i = 0; i < REF_FRAMES; i++) {
// Get reference frame buffer
RefFrameMapPair cur_ref = ref_frame_map_pairs[i];
if (cur_ref.disp_order == -1) continue;
const int ref_disp = cur_ref.disp_order;
// In error resilient mode, ref mapping must be independent of the
// base_qindex to ensure decoding independency
const int ref_base_qindex = cur_ref.base_qindex;
const int disp_diff = cur_frame_disp - ref_disp;
int tdist = abs(disp_diff);
const int score =
max_disp > cur_frame_disp
? ((tdist << DIST_WEIGHT_BITS) + ref_base_qindex)
: temp_dist_score_lookup[AOMMIN(tdist, DECAY_DIST_CAP)] +
AOMMAX(tdist - DECAY_DIST_CAP, 0) + ref_base_qindex;
if (is_in_ref_score(scores, ref_disp, score, n_ranked)) continue;
scores[n_ranked].index = i;
scores[n_ranked].score = score;
scores[n_ranked].distance = disp_diff;
scores[n_ranked].disp_order = ref_disp;
scores[n_ranked].base_qindex = ref_base_qindex;
n_ranked++;
}
if (n_ranked > INTER_REFS_PER_FRAME) {
const int unmapped_idx = get_unmapped_ref(scores, n_ranked);
if (unmapped_idx != INVALID_IDX) scores[unmapped_idx].score = INT_MAX;
}
// Sort the references according to their score
bubble_sort_ref_scores(scores, n_ranked);
cm->ref_frames_info.num_total_refs =
AOMMIN(n_ranked, cm->seq_params.max_reference_frames);
for (int i = 0; i < cm->ref_frames_info.num_total_refs; i++) {
cm->remapped_ref_idx[i] = scores[i].index;
// The distance is not available to the decoder when order_hint is disabled.
// In that case, set all distances to 1.
cm->ref_frames_info.ref_frame_distance[i] =
cm->seq_params.order_hint_info.enable_order_hint ? scores[i].distance
: 1;
}
// Fill in RefFramesInfo struct according to computed mapping
av1_get_past_future_cur_ref_lists(cm, scores);
if (n_ranked > INTER_REFS_PER_FRAME)
cm->remapped_ref_idx[n_ranked - 1] = scores[n_ranked - 1].index;
// Fill any slots that are empty (should only happen for the first 7 frames)
for (int i = 0; i < REF_FRAMES; i++) {
if (cm->remapped_ref_idx[i] == INVALID_IDX) cm->remapped_ref_idx[i] = 0;
}
return n_ranked;
}
#if CONFIG_PRIMARY_REF_FRAME_OPT
typedef struct {
int idx;
int disp_order;
int base_qindex;
} PrimaryRefCand;
// Check if one reference frame is better based on its distance to the current
// frame.
static int is_ref_better(const OrderHintInfo *oh, int cur_disp, int ref_disp,
int best_disp_so_far) {
const int d0 = get_relative_dist(oh, cur_disp, ref_disp);
const int d1 = get_relative_dist(oh, cur_disp, best_disp_so_far);
if (abs(d0) < abs(d1)) return 1;
if (abs(d0) == abs(d1) &&
get_relative_dist(oh, ref_disp, best_disp_so_far) > 0)
return 1;
return 0;
}
#if CONFIG_ENHANCED_FRAME_CONTEXT_INIT
// Derive the primary & secondary reference frame from the reference list based
// on qindex and frame distances.
void choose_primary_secondary_ref_frame(const AV1_COMMON *const cm,
int *ref_frame) {
const int intra_only = cm->current_frame.frame_type == KEY_FRAME ||
cm->current_frame.frame_type == INTRA_ONLY_FRAME;
if (intra_only || cm->features.error_resilient_mode) {
ref_frame[0] = PRIMARY_REF_NONE;
ref_frame[1] = PRIMARY_REF_NONE;
return;
}
// In large scale case, always use Last frame's frame contexts.
if (cm->tiles.large_scale) {
ref_frame[0] = 0;
ref_frame[1] = 0;
return;
}
// Find the most recent reference frame with the same reference type as the
// current frame
int primary_ref_frame = PRIMARY_REF_NONE;
int secondary_ref_frame = PRIMARY_REF_NONE;
const int n_refs = cm->ref_frames_info.num_total_refs;
const RefFrameMapPair *ref_frame_map_pairs = cm->ref_frame_map_pairs;
const int cur_frame_disp = cm->current_frame.display_order_hint;
int i;
PrimaryRefCand cand_lower_qp = { -1, -1, -1 };
PrimaryRefCand cand_higher_qp = { -1, -1, INT32_MAX };
PrimaryRefCand secondary_cand_lower_qp = { -1, -1, -1 };
PrimaryRefCand secondary_cand_higher_qp = { -1, -1, INT32_MAX };
const OrderHintInfo *oh = &cm->seq_params.order_hint_info;
for (i = 0; i < n_refs; i++) {
// Get reference frame buffer
RefFrameMapPair cur_ref = ref_frame_map_pairs[get_ref_frame_map_idx(cm, i)];
if (cur_ref.disp_order == -1) continue;
if (cur_ref.frame_type != INTER_FRAME) continue;
const int ref_base_qindex = cur_ref.base_qindex;
if (ref_base_qindex > cm->quant_params.base_qindex) {
if ((ref_base_qindex < cand_higher_qp.base_qindex) ||
(ref_base_qindex == cand_higher_qp.base_qindex &&
is_ref_better(oh, cur_frame_disp, cur_ref.disp_order,
cand_higher_qp.disp_order))) {
secondary_cand_higher_qp.idx = cand_higher_qp.idx;
secondary_cand_higher_qp.base_qindex = cand_higher_qp.base_qindex;
secondary_cand_higher_qp.disp_order = cand_higher_qp.disp_order;
cand_higher_qp.idx = i;
cand_higher_qp.base_qindex = ref_base_qindex;
cand_higher_qp.disp_order = cur_ref.disp_order;
}
} else {
if ((ref_base_qindex > cand_lower_qp.base_qindex) ||
(ref_base_qindex == cand_lower_qp.base_qindex &&
is_ref_better(oh, cur_frame_disp, cur_ref.disp_order,
cand_lower_qp.disp_order))) {
secondary_cand_lower_qp.idx = cand_lower_qp.idx;
secondary_cand_lower_qp.base_qindex = cand_lower_qp.base_qindex;
secondary_cand_lower_qp.disp_order = cand_lower_qp.disp_order;
cand_lower_qp.idx = i;
cand_lower_qp.base_qindex = ref_base_qindex;
cand_lower_qp.disp_order = cur_ref.disp_order;
}
}
}
if (cand_lower_qp.idx != -1)
primary_ref_frame = cand_lower_qp.idx;
else if (cand_higher_qp.idx != -1)
primary_ref_frame = cand_higher_qp.idx;
if (secondary_cand_lower_qp.idx != -1)
secondary_ref_frame = secondary_cand_lower_qp.idx;
else if (secondary_cand_higher_qp.idx != -1)
secondary_ref_frame = secondary_cand_higher_qp.idx;
ref_frame[0] = primary_ref_frame;
ref_frame[1] = secondary_ref_frame;
return;
}
#else
// Derive the primary reference frame from the reference list based on qindex
// and frame distances.
int choose_primary_ref_frame(const AV1_COMMON *const cm) {
const int intra_only = cm->current_frame.frame_type == KEY_FRAME ||
cm->current_frame.frame_type == INTRA_ONLY_FRAME;
if (intra_only || cm->features.error_resilient_mode) {
return PRIMARY_REF_NONE;
}
// In large scale case, always use Last frame's frame contexts.
if (cm->tiles.large_scale) return 0;
// Find the most recent reference frame with the same reference type as the
// current frame
int primary_ref_frame = PRIMARY_REF_NONE;
const int n_refs = cm->ref_frames_info.num_total_refs;
const RefFrameMapPair *ref_frame_map_pairs = cm->ref_frame_map_pairs;
const int cur_frame_disp = cm->current_frame.display_order_hint;
int i;
PrimaryRefCand cand_lower_qp = { -1, -1, -1 };
PrimaryRefCand cand_higher_qp = { -1, -1, INT32_MAX };
const OrderHintInfo *oh = &cm->seq_params.order_hint_info;
for (i = 0; i < n_refs; i++) {
// Get reference frame buffer
RefFrameMapPair cur_ref = ref_frame_map_pairs[get_ref_frame_map_idx(cm, i)];
if (cur_ref.disp_order == -1) continue;
if (cur_ref.frame_type != INTER_FRAME) continue;
const int ref_base_qindex = cur_ref.base_qindex;
if (ref_base_qindex > cm->quant_params.base_qindex) {
if ((ref_base_qindex < cand_higher_qp.base_qindex) ||
(ref_base_qindex == cand_higher_qp.base_qindex &&
is_ref_better(oh, cur_frame_disp, cur_ref.disp_order,
cand_higher_qp.disp_order))) {
cand_higher_qp.idx = i;
cand_higher_qp.base_qindex = ref_base_qindex;
cand_higher_qp.disp_order = cur_ref.disp_order;
}
} else {
if ((ref_base_qindex > cand_lower_qp.base_qindex) ||
(ref_base_qindex == cand_lower_qp.base_qindex &&
is_ref_better(oh, cur_frame_disp, cur_ref.disp_order,
cand_lower_qp.disp_order))) {
cand_lower_qp.idx = i;
cand_lower_qp.base_qindex = ref_base_qindex;
cand_lower_qp.disp_order = cur_ref.disp_order;
}
}
}
if (cand_lower_qp.idx != -1)
primary_ref_frame = cand_lower_qp.idx;
else if (cand_higher_qp.idx != -1)
primary_ref_frame = cand_higher_qp.idx;
return primary_ref_frame;
}
#endif // CONFIG_ENHANCED_FRAME_CONTEXT_INIT
#endif // CONFIG_PRIMARY_REF_FRAME_OPT
// Returns a context number for the given MB prediction signal
static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi,
const MACROBLOCKD *xd, int dir,
MV_REFERENCE_FRAME ref_frame) {
(void)xd;
if (ref_mbmi->ref_frame[0] != ref_frame &&
ref_mbmi->ref_frame[1] != ref_frame) {
return SWITCHABLE_FILTERS;
}
(void)dir;
return ref_mbmi->interp_fltr;
}
int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const int ctx_offset =
is_inter_ref_frame(mbmi->ref_frame[1]) * INTER_FILTER_COMP_OFFSET;
assert(dir == 0 || dir == 1);
const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET;
int left_type = SWITCHABLE_FILTERS;
int above_type = SWITCHABLE_FILTERS;
if (xd->left_available)
left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame);
if (xd->up_available)
above_type =
get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame);
if (left_type == above_type) {
filter_type_ctx += left_type;
} else if (left_type == SWITCHABLE_FILTERS) {
assert(above_type != SWITCHABLE_FILTERS);
filter_type_ctx += above_type;
} else if (above_type == SWITCHABLE_FILTERS) {
assert(left_type != SWITCHABLE_FILTERS);
filter_type_ctx += left_type;
} else {
filter_type_ctx += SWITCHABLE_FILTERS;
}
return filter_type_ctx;
}
static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) {
// Do not add an already existing value
#if !CONFIG_PALETTE_IMPROVEMENTS
if (*n > 0 && val == cache[*n - 1]) return;
#endif //! CONFIG_PALETTE_IMPROVEMENTS
cache[(*n)++] = val;
}
int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane,
uint16_t *cache) {
const int row = (plane > 0 ? xd->mi[0]->chroma_ref_info.mi_row_chroma_base
: xd->mi[0]->mi_row_start)
<< MI_SIZE_LOG2;
const MB_MODE_INFO *const above_mi =
(row % (1 << MIN_SB_SIZE_LOG2))
? (plane > 0 ? xd->chroma_above_mbmi : xd->above_mbmi)
: NULL;
const MB_MODE_INFO *const left_mi =
plane > 0 ? xd->chroma_left_mbmi : xd->left_mbmi;
int above_n = 0, left_n = 0;
if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0];
if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0];
if (above_n == 0 && left_n == 0) return 0;
int above_idx = plane * PALETTE_MAX_SIZE;
int left_idx = plane * PALETTE_MAX_SIZE;
int n = 0;
const uint16_t *above_colors =
above_mi ? above_mi->palette_mode_info.palette_colors : NULL;
const uint16_t *left_colors =
left_mi ? left_mi->palette_mode_info.palette_colors : NULL;
// Merge the sorted lists of base colors from above and left to get
// combined sorted color cache.
while (above_n > 0 && left_n > 0) {
uint16_t v_above = above_colors[above_idx];
uint16_t v_left = left_colors[left_idx];
#if CONFIG_PALETTE_IMPROVEMENTS
palette_add_to_cache(cache, &n, v_above);
++above_idx, --above_n;
palette_add_to_cache(cache, &n, v_left);
++left_idx, --left_n;
#else
if (v_left < v_above) {
palette_add_to_cache(cache, &n, v_left);
++left_idx, --left_n;
} else {
palette_add_to_cache(cache, &n, v_above);
++above_idx, --above_n;
if (v_left == v_above) ++left_idx, --left_n;
}
#endif // CONFIG_PALETTE_IMPROVEMENTS
}
while (above_n-- > 0) {
uint16_t val = above_colors[above_idx++];
palette_add_to_cache(cache, &n, val);
}
while (left_n-- > 0) {
uint16_t val = left_colors[left_idx++];
palette_add_to_cache(cache, &n, val);
}
assert(n <= 2 * PALETTE_MAX_SIZE);
return n;
}
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
// 0 - inter/inter, inter/--, --/inter, --/--
// 1 - intra/inter, inter/intra
// 2 - intra/--, --/intra
// 3 - intra/intra
int av1_get_intra_inter_context(const MACROBLOCKD *xd) {
const MB_MODE_INFO *const neighbor0 = xd->neighbors[0];
const MB_MODE_INFO *const neighbor1 = xd->neighbors[1];
if (neighbor0 && neighbor1) { // both neighbors available
const int is_neighbor0_intra = !is_inter_block(neighbor0, xd->tree_type);
const int is_neighbor1_intra = !is_inter_block(neighbor1, xd->tree_type);
return is_neighbor0_intra && is_neighbor1_intra
? 3
: is_neighbor0_intra || is_neighbor1_intra;
} else if (neighbor0 || neighbor1) { // one neighbor available
const MB_MODE_INFO *const neighbor = neighbor0 ? neighbor0 : neighbor1;
return 2 * !is_inter_block(neighbor, xd->tree_type);
} else {
return 0;
}
}
#if CONFIG_CCSO_IMPROVE
// This funtion is to check if the 1st mbmi of the current ccso unit is inside
// the current tile. The 1st mbmi is used to signal the ccso block control flag
// for the current ccso unit.
bool av1_check_ccso_mbmi_inside_tile(const MACROBLOCKD *xd,
const MB_MODE_INFO *const mbmi) {
const TileInfo *const tile = &xd->tile;
const int blk_size_y =
(1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_y - MI_SIZE_LOG2)) - 1;
const int blk_size_x =
(1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_x - MI_SIZE_LOG2)) - 1;
return (((mbmi->mi_row_start & ~blk_size_y) >= tile->mi_row_start) &&
((mbmi->mi_col_start & ~blk_size_x) >= tile->mi_col_start) &&
((mbmi->mi_row_start & ~blk_size_y) < tile->mi_row_end) &&
((mbmi->mi_col_start & ~blk_size_x) < tile->mi_col_end));
}
// This function is the derive the neighboring context of ccso_cdf. -- means
// neighbouring ccso unit or ccso flag is not available. 0 -
// neighbor0_ccso_false/neighbor1_ccso_false, neighbor0_ccso_false/--,
// --/neighbor1_ccso_false, --/-- 1 - neighbor0_ccso_true/neighbor0_ccso_false,
// neighbor0_ccso_false/neighbor1_ccso_true 2 - neighbor0_ccso_true/--,
// --/neighbor1_ccso_true, neighbor0_ccso_true/neighbor1_ccso_true &&
// neighbor0_ccso_unit==neighbor1_ccso_unit 3 -
// neighbor0_ccso_true/neighbor1_ccso_true &&
// neighbor0_ccso_unit!=neighbor1_ccso_unit
int av1_get_ccso_context(const MACROBLOCKD *xd, int plane) {
const MB_MODE_INFO *const neighbor0 = xd->neighbors[0];
const MB_MODE_INFO *const neighbor1 = xd->neighbors[1];
bool neighbor0_ccso_available = 0;
bool neighbor1_ccso_available = 0;
if (neighbor0) {
neighbor0_ccso_available = av1_check_ccso_mbmi_inside_tile(xd, neighbor0);
}
if (neighbor1) {
neighbor1_ccso_available = av1_check_ccso_mbmi_inside_tile(xd, neighbor1);
}
const int blk_size_y =
(1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_y - MI_SIZE_LOG2)) - 1;
const int blk_size_x =
(1 << (CCSO_BLK_SIZE + xd->plane[1].subsampling_x - MI_SIZE_LOG2)) - 1;
if (neighbor0_ccso_available && neighbor1_ccso_available) {
int is_neighbor0_ccso = 0;
int is_neighbor1_ccso = 0;
if (plane == 0) {
is_neighbor0_ccso = neighbor0->ccso_blk_y;
is_neighbor1_ccso = neighbor1->ccso_blk_y;
} else if (plane == 1) {
is_neighbor0_ccso = neighbor0->ccso_blk_u;
is_neighbor1_ccso = neighbor1->ccso_blk_u;
} else if (plane == 2) {
is_neighbor0_ccso = neighbor0->ccso_blk_v;
is_neighbor1_ccso = neighbor1->ccso_blk_v;
}
if ((neighbor0->mi_row_start & ~blk_size_y) !=
(neighbor1->mi_row_start & ~blk_size_y) ||
(neighbor0->mi_col_start & ~blk_size_x) !=
(neighbor1->mi_col_start & ~blk_size_x)) {
// neighbor0 and neighbor1 belong to different superblocks
return is_neighbor0_ccso && is_neighbor1_ccso
? 3
: is_neighbor0_ccso || is_neighbor1_ccso;
} else {
// neighbor0 and neighbor1 belong to the same superblock
return is_neighbor0_ccso ? 2 : 0;
}
} else if (neighbor0_ccso_available || neighbor1_ccso_available) {
const MB_MODE_INFO *const neighbor =
neighbor0_ccso_available ? neighbor0 : neighbor1;
int is_neighbor_ccso = 0;
if (plane == 0) {
is_neighbor_ccso = neighbor->ccso_blk_y;
} else if (plane == 1) {
is_neighbor_ccso = neighbor->ccso_blk_u;
} else if (plane == 2) {
is_neighbor_ccso = neighbor->ccso_blk_v;
}
return is_neighbor_ccso ? 2 : 0;
} else {
return 0;
}
}
#endif // CONFIG_CCSO_IMPROVE
#define IS_BACKWARD_REF_FRAME(ref_frame) \
(get_dir_rank(cm, ref_frame, NULL) == 1)
int av1_get_reference_mode_context(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
(void)cm;
int ctx = 0;
const MB_MODE_INFO *const neighbor0 = xd->neighbors[0];
const MB_MODE_INFO *const neighbor1 = xd->neighbors[1];
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
if (neighbor0 && neighbor1) { // both neighbors available
if (!has_second_ref(neighbor0) && !has_second_ref(neighbor1))
// neither neighbor uses comp pred (0/1)
ctx = IS_BACKWARD_REF_FRAME(neighbor0->ref_frame[0]) ^
IS_BACKWARD_REF_FRAME(neighbor1->ref_frame[0]);
else if (!has_second_ref(neighbor0))
// one of two neighbors uses comp pred (2/3)
ctx = 2 + (IS_BACKWARD_REF_FRAME(neighbor0->ref_frame[0]) ||
!is_inter_block(neighbor0, xd->tree_type));
else if (!has_second_ref(neighbor1))
// one of two neighbors uses comp pred (2/3)
ctx = 2 + (IS_BACKWARD_REF_FRAME(neighbor1->ref_frame[0]) ||
!is_inter_block(neighbor1, xd->tree_type));
else // both neighbors use comp pred (4)
ctx = 4;
} else if (neighbor0 || neighbor1) { // one neighbor available
const MB_MODE_INFO *neighbor = neighbor0 ? neighbor0 : neighbor1;
if (!has_second_ref(neighbor))
// neighbor does not use comp pred (0/1)
ctx = IS_BACKWARD_REF_FRAME(neighbor->ref_frame[0]);
else
// neighbor uses comp pred (3)
ctx = 3;
} else { // no neighbors available (1)
ctx = 1;
}
assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS);
return ctx;
}
// The context for reference frame is defined by comparing A) the count of
// rank n references and B) the count of rank > n references in the neighboring
// blocks. Context will be 0 if A<B, 1 if A=B, and 2 if A>B.
int av1_get_ref_pred_context(const MACROBLOCKD *xd, MV_REFERENCE_FRAME ref,
int num_total_refs) {
#if !CONFIG_SAME_REF_COMPOUND
assert((ref + 1) < num_total_refs);
#endif // !CONFIG_SAME_REF_COMPOUND
const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
const int this_ref_count = ref_counts[ref];
int next_refs_count = 0;
for (int i = ref + 1; i < num_total_refs; i++) {
next_refs_count += ref_counts[i];
}
const int pred_context = (this_ref_count == next_refs_count)
? 1
: ((this_ref_count < next_refs_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}