blob: ee999ba917ee41ffb033c3d8c9060cb04c8cfe90 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#ifndef AOM_AOM_DSP_BITREADER_H_
#define AOM_AOM_DSP_BITREADER_H_
#include <assert.h>
#include <limits.h>
#include "config/aom_config.h"
#include "aom/aomdx.h"
#include "aom/aom_integer.h"
#include "aom_dsp/entdec.h"
#include "aom_dsp/prob.h"
#include "av1/common/odintrin.h"
#if ENABLE_LR_4PART_CODE
#include "aom_dsp/recenter.h"
#endif // ENABLE_LR_4PART_CODE
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG
#if CONFIG_ACCOUNTING
#include "av1/decoder/accounting.h"
#define ACCT_STR_NAME acct_str
#define ACCT_STR_PARAM , const char *ACCT_STR_NAME
#define ACCT_STR_ARG(s) , s
#else
#define ACCT_STR_PARAM
#define ACCT_STR_ARG(s)
#endif
#define aom_read(r, prob, ACCT_STR_NAME) \
aom_read_(r, prob ACCT_STR_ARG(ACCT_STR_NAME))
#if CONFIG_BYPASS_IMPROVEMENT
#define aom_read_bypass(r, ACCT_STR_NAME) \
aom_read_bypass_(r ACCT_STR_ARG(ACCT_STR_NAME))
#endif // CONFIG_BYPASS_IMPROVEMENT
#define aom_read_bit(r, ACCT_STR_NAME) \
aom_read_bit_(r ACCT_STR_ARG(ACCT_STR_NAME))
#define aom_read_tree(r, tree, probs, ACCT_STR_NAME) \
aom_read_tree_(r, tree, probs ACCT_STR_ARG(ACCT_STR_NAME))
#define aom_read_literal(r, bits, ACCT_STR_NAME) \
aom_read_literal_(r, bits ACCT_STR_ARG(ACCT_STR_NAME))
#define aom_read_cdf(r, cdf, nsymbs, ACCT_STR_NAME) \
aom_read_cdf_(r, cdf, nsymbs ACCT_STR_ARG(ACCT_STR_NAME))
#define aom_read_symbol(r, cdf, nsymbs, ACCT_STR_NAME) \
aom_read_symbol_(r, cdf, nsymbs ACCT_STR_ARG(ACCT_STR_NAME))
#if CONFIG_BYPASS_IMPROVEMENT
#define aom_read_unary(r, bits, ACCT_STR_NAME) \
aom_read_unary_(r, bits ACCT_STR_ARG(ACCT_STR_NAME))
#endif // CONFIG_BYPASS_IMPROVEMENT
#if ENABLE_LR_4PART_CODE
#define aom_read_4part(r, cdf, nsymb_bits, ACCT_STR_NAME) \
aom_read_4part_(r, cdf, nsymb_bits ACCT_STR_ARG(ACCT_STR_NAME))
#define aom_read_4part_wref(r, ref_symb, cdf, nsymb_bits, ACCT_STR_NAME) \
aom_read_4part_wref_(r, ref_symb, cdf, nsymb_bits ACCT_STR_ARG(ACCT_STR_NAME))
#endif // ENABLE_LR_4PART_CODE
#ifdef __cplusplus
extern "C" {
#endif
struct aom_reader {
const uint8_t *buffer;
const uint8_t *buffer_end;
od_ec_dec ec;
#if CONFIG_ACCOUNTING
Accounting *accounting;
#endif
uint8_t allow_update_cdf;
};
typedef struct aom_reader aom_reader;
int aom_reader_init(aom_reader *r, const uint8_t *buffer, size_t size);
const uint8_t *aom_reader_find_begin(aom_reader *r);
const uint8_t *aom_reader_find_end(aom_reader *r);
// Returns true if the bit reader has tried to decode more data from the buffer
// than was actually provided.
int aom_reader_has_overflowed(const aom_reader *r);
// Returns the position in the bit reader in bits.
uint32_t aom_reader_tell(const aom_reader *r);
// Returns the position in the bit reader in 1/8th bits.
uint32_t aom_reader_tell_frac(const aom_reader *r);
#if CONFIG_ACCOUNTING
static INLINE void aom_process_accounting(const aom_reader *r ACCT_STR_PARAM) {
if (r->accounting != NULL) {
uint32_t tell_frac;
tell_frac = aom_reader_tell_frac(r);
aom_accounting_record(r->accounting, ACCT_STR_NAME,
tell_frac - r->accounting->last_tell_frac);
r->accounting->last_tell_frac = tell_frac;
}
}
#if CONFIG_THROUGHPUT_ANALYSIS
static INLINE void aom_update_symb_counts(const aom_reader *r, int is_binary,
int is_context_coded, int n_bits) {
#else
static INLINE void aom_update_symb_counts(const aom_reader *r, int is_binary,
int n_bits) {
#endif // CONFIG_THROUGHPUT_ANALYSIS
if (r->accounting != NULL) {
r->accounting->syms.num_multi_syms += is_binary ? 0 : n_bits;
r->accounting->syms.num_binary_syms += is_binary ? n_bits : 0;
#if CONFIG_THROUGHPUT_ANALYSIS
if (is_context_coded) {
r->accounting->syms.num_ctx_coded += n_bits;
} else {
r->accounting->syms.num_bypass_coded += n_bits;
}
#endif // CONFIG_THROUGHPUT_ANALYSIS
}
}
#endif
static INLINE int aom_read_(aom_reader *r, int prob ACCT_STR_PARAM) {
int p = (0x7FFFFF - (prob << 15) + prob) >> 8;
int bit = od_ec_decode_bool_q15(&r->ec, p);
#if CONFIG_BITSTREAM_DEBUG
{
int i;
int ref_bit, ref_nsymbs;
aom_cdf_prob ref_cdf[16];
const int queue_r = bitstream_queue_get_read();
const int frame_idx = aom_bitstream_queue_get_frame_read();
bitstream_queue_pop(&ref_bit, ref_cdf, &ref_nsymbs);
if (ref_nsymbs != 2) {
fprintf(stderr,
"\n *** [bit] nsymbs error, frame_idx_r %d nsymbs %d ref_nsymbs "
"%d queue_r %d\n",
frame_idx, 2, ref_nsymbs, queue_r);
assert(0);
}
if ((ref_nsymbs != 2) || (ref_cdf[0] != (aom_cdf_prob)p) ||
(ref_cdf[1] != 32767)) {
fprintf(stderr,
"\n *** [bit] cdf error, frame_idx_r %d cdf {%d, %d} ref_cdf {%d",
frame_idx, p, 32767, ref_cdf[0]);
for (i = 1; i < ref_nsymbs; ++i) fprintf(stderr, ", %d", ref_cdf[i]);
fprintf(stderr, "} queue_r %d\n", queue_r);
assert(0);
}
if (bit != ref_bit) {
fprintf(stderr,
"\n *** [bit] symb error, frame_idx_r %d symb %d ref_symb %d "
"queue_r %d\n",
frame_idx, bit, ref_bit, queue_r);
assert(0);
}
}
#endif // CONFIG_BITSTREAM_DEBUG
#if CONFIG_ACCOUNTING
if (ACCT_STR_NAME) aom_process_accounting(r, ACCT_STR_NAME);
#if CONFIG_THROUGHPUT_ANALYSIS
aom_update_symb_counts(r, 1, 0, 1);
#else
aom_update_symb_counts(r, 1, 1);
#endif // CONFIG_THROUGHPUT_ANALYSIS
#endif
return bit;
}
#if CONFIG_BITSTREAM_DEBUG
// Pop a literal (one or more equi-probably symbols) and check
// with decoded literal value.
static INLINE void bitstream_queue_pop_literal(int data, int bits) {
for (int b = bits - 1; b >= 0; b--) {
int bit = 1 & (data >> b);
int i;
int ref_bit, ref_nsymbs;
aom_cdf_prob ref_cdf[16];
const int queue_r = bitstream_queue_get_read();
const int frame_idx = aom_bitstream_queue_get_frame_read();
bitstream_queue_pop(&ref_bit, ref_cdf, &ref_nsymbs);
if (ref_nsymbs != 2) {
fprintf(stderr,
"\n *** [bit] nsymbs error, frame_idx_r %d nsymbs %d ref_nsymbs "
"%d queue_r %d\n",
frame_idx, 2, ref_nsymbs, queue_r);
assert(0);
}
if ((ref_nsymbs != 2) || (ref_cdf[0] != 128) || (ref_cdf[1] != 32767)) {
fprintf(stderr,
"\n *** [bit] cdf error, frame_idx_r %d cdf {%d, %d} ref_cdf {%d",
frame_idx, 128, 32767, ref_cdf[0]);
for (i = 1; i < ref_nsymbs; ++i) fprintf(stderr, ", %d", ref_cdf[i]);
fprintf(stderr, "} queue_r %d literal %d size %d bit %d\n", queue_r, data,
bits, b);
assert(0);
}
if (bit != ref_bit) {
fprintf(stderr,
"\n *** [bit] symb error, frame_idx_r %d symb %d ref_symb %d "
"queue_r %d literal %d size %d bit %d\n",
frame_idx, bit, ref_bit, queue_r, data, bits, b);
assert(0);
}
}
}
#endif // CONFIG_BITSTREAM_DEBUG
#if CONFIG_BYPASS_IMPROVEMENT
static INLINE int aom_read_bypass_(aom_reader *r ACCT_STR_PARAM) {
int ret = od_ec_decode_literal_bypass(&r->ec, 1);
#if CONFIG_BITSTREAM_DEBUG
bitstream_queue_pop_literal(ret, 1);
#endif // CONFIG_BITSTREAM_DEBUG
#if CONFIG_ACCOUNTING
if (ACCT_STR_NAME) aom_process_accounting(r, ACCT_STR_NAME);
#if CONFIG_THROUGHPUT_ANALYSIS
aom_update_symb_counts(r, 1, 0, 1);
#else
aom_update_symb_counts(r, 1, 1);
#endif
#endif
return ret;
}
#endif // CONFIG_BYPASS_IMPROVEMENT
static INLINE int aom_read_bit_(aom_reader *r ACCT_STR_PARAM) {
int ret;
#if CONFIG_BYPASS_IMPROVEMENT
ret = aom_read_bypass(r, NULL);
#else
ret = aom_read(r, 128, NULL); // aom_prob_half
#endif // CONFIG_BYPASS_IMPROVEMENT
#if CONFIG_ACCOUNTING
if (ACCT_STR_NAME) aom_process_accounting(r, ACCT_STR_NAME);
#endif
return ret;
}
static INLINE int aom_read_literal_(aom_reader *r, int bits ACCT_STR_PARAM) {
#if CONFIG_BYPASS_IMPROVEMENT
int literal = 0;
int n_bits = bits;
int n;
while (n_bits > 0) {
n = n_bits >= 8 ? 8 : n_bits;
literal <<= n;
literal += od_ec_decode_literal_bypass(&r->ec, n);
n_bits -= n;
}
#if CONFIG_BITSTREAM_DEBUG
bitstream_queue_pop_literal(literal, bits);
#endif // CONFIG_BITSTREAM_DEBUG
#if CONFIG_ACCOUNTING
if (ACCT_STR_NAME) aom_process_accounting(r, ACCT_STR_NAME);
#if CONFIG_THROUGHPUT_ANALYSIS
aom_update_symb_counts(r, 1, 0, bits);
#else
aom_update_symb_counts(r, 1, bits);
#endif
#endif // CONFIG_ACCOUNTING
#else
int literal = 0, bit;
for (bit = bits - 1; bit >= 0; bit--) literal |= aom_read_bit(r, NULL) << bit;
#endif // CONFIG_BYPASS_IMPROVEMENT
return literal;
}
#if CONFIG_BYPASS_IMPROVEMENT
// Deocode unary coded symbol with truncation at max_nbits.
static INLINE int aom_read_unary_(aom_reader *r, int max_nbits ACCT_STR_PARAM) {
int ret = od_ec_decode_unary_bypass(&r->ec, max_nbits);
#if CONFIG_BITSTREAM_DEBUG
int nbits = ret < max_nbits ? ret + 1 : max_nbits;
int data = ret == max_nbits ? 0 : 1;
bitstream_queue_pop_literal(data, nbits);
#endif // CONFIG_BITSTREAM_DEBUG
#if CONFIG_ACCOUNTING
int n_bits = ret < max_nbits ? ret + 1 : max_nbits;
if (ACCT_STR_NAME) aom_process_accounting(r, ACCT_STR_NAME);
#if CONFIG_THROUGHPUT_ANALYSIS
aom_update_symb_counts(r, 1, 0, n_bits);
#else
aom_update_symb_counts(r, 1, n_bits);
#endif
#endif
return ret;
}
#endif // CONFIG_BYPASS_IMPROVEMENT
static INLINE int aom_read_cdf_(aom_reader *r, const aom_cdf_prob *cdf,
int nsymbs ACCT_STR_PARAM) {
int symb;
assert(cdf != NULL);
symb = od_ec_decode_cdf_q15(&r->ec, cdf, nsymbs);
#if CONFIG_BITSTREAM_DEBUG
{
int i;
int cdf_error = 0;
int ref_symb, ref_nsymbs;
aom_cdf_prob ref_cdf[16];
const int queue_r = bitstream_queue_get_read();
const int frame_idx = aom_bitstream_queue_get_frame_read();
bitstream_queue_pop(&ref_symb, ref_cdf, &ref_nsymbs);
if (nsymbs != ref_nsymbs) {
fprintf(stderr,
"\n *** nsymbs error, frame_idx_r %d nsymbs %d ref_nsymbs %d "
"queue_r %d\n",
frame_idx, nsymbs, ref_nsymbs, queue_r);
cdf_error = 0;
assert(0);
} else {
for (i = 0; i < nsymbs; ++i)
if (cdf[i] != ref_cdf[i]) cdf_error = 1;
}
if (cdf_error) {
fprintf(stderr, "\n *** cdf error, frame_idx_r %d cdf {%d", frame_idx,
cdf[0]);
for (i = 1; i < nsymbs; ++i) fprintf(stderr, ", %d", cdf[i]);
fprintf(stderr, "} ref_cdf {%d", ref_cdf[0]);
for (i = 1; i < ref_nsymbs; ++i) fprintf(stderr, ", %d", ref_cdf[i]);
fprintf(stderr, "} queue_r %d\n", queue_r);
assert(0);
}
if (symb != ref_symb) {
fprintf(
stderr,
"\n *** symb error, frame_idx_r %d symb %d ref_symb %d queue_r %d\n",
frame_idx, symb, ref_symb, queue_r);
assert(0);
}
}
#endif // CONFIG_BITSTREAM_DEBUG
#if CONFIG_ACCOUNTING
if (ACCT_STR_NAME) aom_process_accounting(r, ACCT_STR_NAME);
#if CONFIG_THROUGHPUT_ANALYSIS
aom_update_symb_counts(r, (nsymbs == 2), 1, 1);
#else
aom_update_symb_counts(r, (nsymbs == 2), 1);
#endif // CONFIG_THROUGHPUT_ANALYSIS
#endif
return symb;
}
static INLINE int aom_read_symbol_(aom_reader *r, aom_cdf_prob *cdf,
int nsymbs ACCT_STR_PARAM) {
int ret;
ret = aom_read_cdf(r, cdf, nsymbs, ACCT_STR_NAME);
if (r->allow_update_cdf) update_cdf(cdf, ret, nsymbs);
return ret;
}
#if ENABLE_LR_4PART_CODE
// Implements a code where a symbol with an alphabet size a power of 2 with
// nsymb_bits bits (with nsymb_bits >= 3), is coded by decomposing the symbol
// into 4 parts convering 1/8, 1/8, 1/4, 1/2 of the total number of symbols.
// The part is arithmetically coded using the provided cdf of size 4. The
// offset within each part is coded using fixed length binary codes with
// (nsymb_bits - 3), (nsymb_bits - 3), (nsymb_bits - 2) or (nsymb_bits - 1)
// bits, depending on the part.
static INLINE int aom_read_4part_(aom_reader *r, aom_cdf_prob *cdf,
int nsymb_bits ACCT_STR_PARAM) {
assert(nsymb_bits >= 3);
int part_bits[4] = { (nsymb_bits - 3), (nsymb_bits - 3), (nsymb_bits - 2),
(nsymb_bits - 1) };
int part_offs[4] = { 0, 1 << (nsymb_bits - 3), 1 << (nsymb_bits - 2),
1 << (nsymb_bits - 1) };
const int part = aom_read_symbol(r, cdf, 4, ACCT_STR_NAME);
return aom_read_literal(r, part_bits[part], ACCT_STR_NAME) + part_offs[part];
}
// Implements a nsymb_bits bit 4-part code that codes a symbol symb given a
// reference ref_symb after recentering symb around ref_symb.
static INLINE int aom_read_4part_wref_(aom_reader *r, int ref_symb,
aom_cdf_prob *cdf,
int nsymb_bits ACCT_STR_PARAM) {
const int symb = aom_read_4part(r, cdf, nsymb_bits, ACCT_STR_NAME);
return inv_recenter_finite_nonneg(1 << nsymb_bits, ref_symb, symb);
}
#endif // ENABLE_LR_4PART_CODE
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AOM_DSP_BITREADER_H_