| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_ |
| #define AOM_AV1_COMMON_AV1_COMMON_INT_H_ |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom/internal/aom_codec_internal.h" |
| #include "aom_util/aom_thread.h" |
| #include "av1/common/alloccommon.h" |
| #include "av1/common/av1_loopfilter.h" |
| #if CONFIG_PEF |
| #include "av1/common/pef.h" |
| #endif // CONFIG_PEF |
| #include "av1/common/blockd.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/entropymv.h" |
| #include "av1/common/enums.h" |
| #include "av1/common/frame_buffers.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/restoration.h" |
| #include "av1/common/tile_common.h" |
| #include "av1/common/timing.h" |
| #include "av1/common/odintrin.h" |
| #include "av1/common/warped_motion.h" |
| #include "av1/encoder/hash_motion.h" |
| #include "aom_dsp/grain_synthesis.h" |
| #include "aom_dsp/grain_table.h" |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #if defined(__clang__) && defined(__has_warning) |
| #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough") |
| #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]] // NOLINT |
| #endif |
| #elif defined(__GNUC__) && __GNUC__ >= 7 |
| #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough)) // NOLINT |
| #endif |
| |
| #ifndef AOM_FALLTHROUGH_INTENDED |
| #define AOM_FALLTHROUGH_INTENDED \ |
| do { \ |
| } while (0) |
| #endif |
| |
| #define CDEF_MAX_STRENGTHS 16 |
| /* Constant value specifying size of subgop stats*/ |
| #define MAX_SUBGOP_STATS_SIZE 32 |
| |
| /* Constant values while waiting for the sequence header */ |
| #define FRAME_ID_LENGTH 15 |
| #define DELTA_FRAME_ID_LENGTH 14 |
| |
| #define DELTA_DCQUANT_BITS 5 |
| #define DELTA_DCQUANT_MAX (1 << (DELTA_DCQUANT_BITS - 2)) |
| #define DELTA_DCQUANT_MIN (DELTA_DCQUANT_MAX - (1 << DELTA_DCQUANT_BITS) + 1) |
| |
| #define DEBUG_EXTQUANT 0 |
| |
| #define FRAME_CONTEXTS (FRAME_BUFFERS + 1) |
| // Extra frame context which is always kept at default values |
| #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1) |
| #define PRIMARY_REF_BITS 3 |
| #define PRIMARY_REF_NONE 7 |
| |
| #define NUM_PING_PONG_BUFFERS 2 |
| |
| #define MAX_NUM_TEMPORAL_LAYERS 8 |
| #define MAX_NUM_SPATIAL_LAYERS 4 |
| /* clang-format off */ |
| // clang-format seems to think this is a pointer dereference and not a |
| // multiplication. |
| #define MAX_NUM_OPERATING_POINTS \ |
| (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS) |
| /* clang-format on */ |
| |
| // TODO(jingning): Turning this on to set up transform coefficient |
| // processing timer. |
| #define TXCOEFF_TIMER 0 |
| #define TXCOEFF_COST_TIMER 0 |
| |
| #if CONFIG_TIP |
| // Some arrays (e.g. x->pred_sse and yv12_mb) are defined such that their |
| // indices 0-8 correspond to inter ref0, ref1,... ref6, intra ref, and TIP ref. |
| // This macros maps the ref_frame indices to corresponding array indices, where |
| // intra ref_frame index, INTRA_FRAME (28) is mapped to INTRA_FRAME_INDEX (7). |
| // and tip ref_frame index, TIP_FRAME (29) is mapped to TIP_FRAME_INDEX (8) |
| #define COMPACT_INDEX0_NRS(r) \ |
| (((r) == INTRA_FRAME) ? INTRA_FRAME_INDEX \ |
| : (((r) == TIP_FRAME) ? TIP_FRAME_INDEX : (r))) |
| #else |
| // Some arrays (e.g. x->pred_sse and yv12_mb) are defined such that their |
| // indices 0-7 correspond to inter ref0, ref1,... ref6, and intra ref. This |
| // macros maps the ref_frame indices to corresponding array indices, where |
| // intra ref_frame index, INTRA_FRAME (28) is mapped to INTRA_FRAME_INDEX (7). |
| #define COMPACT_INDEX0_NRS(r) (((r) == INTRA_FRAME) ? INTRA_FRAME_INDEX : (r)) |
| #endif // CONFIG_TIP |
| |
| // This macro is similar to the previous one, but also maps INVALID_IDX |
| // (ref_frame[1] for the single reference case) to 7, which typically |
| // corresponds to an unused slot allocated for convenience. |
| #define COMPACT_INDEX1_NRS(r) \ |
| (!is_inter_ref_frame((r)) ? INTRA_FRAME_INDEX : (r)) |
| |
| #if CONFIG_TIP || CONFIG_PEF |
| // MI unit is 4x4, TMVP unit is 8x8, so there is 1 shift |
| // between TMVP unit and MI unit |
| #define TMVP_SHIFT_BITS 1 |
| // TMVP unit size |
| #define TMVP_MI_SZ_LOG2 (MI_SIZE_LOG2 + TMVP_SHIFT_BITS) |
| #define TMVP_MI_SIZE (1 << TMVP_MI_SZ_LOG2) |
| // TIP MV search range constraint in TMVP unit |
| #define TIP_MV_SEARCH_RANGE 4 |
| #endif // CONFIG_TIP || CONFIG_PEF |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| #define MIN_BSIZE_WARP_DELTA 8 |
| |
| // Using the WARP_DELTA motion mode, we can use a nearby block's warp model as |
| // a prediction and then modify it with an explicitly coded delta. |
| // |
| // If this flag is set to 0, then any spatial reference block (ie, a DRL entry |
| // which came from a block in the current frame) can provide a warp model which |
| // we can use as a prediction. |
| // |
| // If this flag is set to 1, then only directly adjacent blocks can be used |
| // as references (similar to WARP_EXTEND), meaning that we only need to store |
| // one above row and one left column of warp models. This can be enabled if |
| // the above behaviour causes concerns for hardware implementations. |
| // |
| // Interaction with different modes: |
| // |
| // For GLOBALMV, WARP_DELTA can always be used, and uses the global warp model |
| // (if any) as a base. If no global warp model was given, we use a translational |
| // model as a base. |
| // |
| // For NEARMV, WARP_DELTA can only be used if the reference block selected from |
| // the DRL can provide a warp model under the logic mentioned above. |
| // |
| // For NEWMV, WARP_DELTA can always be used. If the reference block can provide |
| // a warp model, then this is used as a base; otherwise the global warp model |
| // (or a translational model) is used. |
| #define WARP_DELTA_REQUIRES_NEIGHBOR 1 |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| |
| /*!\cond */ |
| |
| enum { |
| SINGLE_REFERENCE = 0, |
| COMPOUND_REFERENCE = 1, |
| REFERENCE_MODE_SELECT = 2, |
| REFERENCE_MODES = 3, |
| } UENUM1BYTE(REFERENCE_MODE); |
| |
| enum { |
| /** |
| * Frame context updates are disabled |
| */ |
| REFRESH_FRAME_CONTEXT_DISABLED, |
| /** |
| * Update frame context to values resulting from backward probability |
| * updates based on entropy/counts in the decoded frame |
| */ |
| REFRESH_FRAME_CONTEXT_BACKWARD, |
| } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE); |
| |
| #if CONFIG_TIP |
| enum { |
| /** |
| * TIP frame generation is disabled |
| */ |
| TIP_FRAME_DISABLED = 0, |
| /** |
| * TIP frame is used as a reference frame |
| */ |
| TIP_FRAME_AS_REF, |
| /** |
| * TIP frame is directly output for displaying |
| */ |
| TIP_FRAME_AS_OUTPUT, |
| /** |
| * TIP frame maximum mode |
| */ |
| TIP_FRAME_MODES, |
| } UENUM1BYTE(TIP_FRAME_MODE); |
| #endif // CONFIG_TIP |
| |
| typedef struct { |
| int_mv mfmv0; |
| uint8_t ref_frame_offset; |
| } TPL_MV_REF; |
| |
| #if CONFIG_TIP |
| typedef struct { |
| int_mv mv[2]; |
| MV_REFERENCE_FRAME ref_frame[2]; |
| } MV_REF; |
| #else |
| typedef struct { |
| int_mv mv; |
| MV_REFERENCE_FRAME ref_frame; |
| } MV_REF; |
| #endif // CONFIG_TIP |
| |
| typedef struct PlaneHash { |
| uint8_t md5[16]; |
| } PlaneHash; |
| |
| typedef struct FrameHash { |
| uint8_t unused : 2; |
| uint8_t has_grain : 1; |
| uint8_t per_plane : 1; |
| uint8_t hash_type : 4; |
| PlaneHash plane[3]; |
| int is_present; |
| } FrameHash; |
| |
| typedef struct RefCntBuffer { |
| // For a RefCntBuffer, the following are reference-holding variables: |
| // - cm->ref_frame_map[] |
| // - cm->cur_frame |
| // - cm->scaled_ref_buf[] (encoder only) |
| // - pbi->output_frame_index[] (decoder only) |
| // With that definition, 'ref_count' is the number of reference-holding |
| // variables that are currently referencing this buffer. |
| // For example: |
| // - suppose this buffer is at index 'k' in the buffer pool, and |
| // - Total 'n' of the variables / array elements above have value 'k' (that |
| // is, they are pointing to buffer at index 'k'). |
| // Then, pool->frame_bufs[k].ref_count = n. |
| int ref_count; |
| |
| unsigned int order_hint; |
| int ref_order_hints[INTER_REFS_PER_FRAME]; |
| int ref_display_order_hint[INTER_REFS_PER_FRAME]; |
| |
| // These variables are used only in encoder and compare the absolute |
| // display order hint to compute the relative distance and overcome |
| // the limitation of get_relative_dist() which returns incorrect |
| // distance when a very old frame is used as a reference. |
| unsigned int display_order_hint; |
| unsigned int absolute_poc; |
| // Frame's level within the hierarchical structure |
| unsigned int pyramid_level; |
| |
| MV_REF *mvs; |
| uint8_t *seg_map; |
| struct segmentation seg; |
| int mi_rows; |
| int mi_cols; |
| // Width and height give the size of the buffer (before any upscaling, unlike |
| // the sizes that can be derived from the buf structure) |
| int width; |
| int height; |
| WarpedMotionParams global_motion[INTER_REFS_PER_FRAME]; |
| int showable_frame; // frame can be used as show existing frame in future |
| uint8_t film_grain_params_present; |
| aom_film_grain_t film_grain_params; |
| aom_codec_frame_buffer_t raw_frame_buffer; |
| YV12_BUFFER_CONFIG buf; |
| FRAME_TYPE frame_type; |
| |
| // This is only used in the encoder but needs to be indexed per ref frame |
| // so it's extremely convenient to keep it here. |
| int interp_filter_selected[SWITCHABLE]; |
| |
| // Inter frame reference frame delta for loop filter |
| int8_t ref_deltas[SINGLE_REF_FRAMES]; |
| |
| // 0 = ZERO_MV, MV |
| int8_t mode_deltas[MAX_MODE_LF_DELTAS]; |
| |
| FRAME_CONTEXT frame_context; |
| int base_qindex; |
| |
| FrameHash raw_frame_hash; |
| FrameHash grain_frame_hash; |
| } RefCntBuffer; |
| |
| typedef struct BufferPool { |
| // Protect BufferPool from being accessed by several FrameWorkers at |
| // the same time during frame parallel decode. |
| // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. |
| // TODO(wtc): Remove this. See |
| // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630. |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_t pool_mutex; |
| #endif |
| |
| // Private data associated with the frame buffer callbacks. |
| void *cb_priv; |
| |
| aom_get_frame_buffer_cb_fn_t get_fb_cb; |
| aom_release_frame_buffer_cb_fn_t release_fb_cb; |
| |
| RefCntBuffer frame_bufs[FRAME_BUFFERS]; |
| |
| // Frame buffers allocated internally by the codec. |
| InternalFrameBufferList int_frame_buffers; |
| } BufferPool; |
| |
| /*!\endcond */ |
| |
| /*!\brief Parameters related to CDEF */ |
| typedef struct { |
| int cdef_damping; /*!< CDEF damping factor */ |
| int nb_cdef_strengths; /*!< Number of CDEF strength values */ |
| int cdef_strengths[CDEF_MAX_STRENGTHS]; /*!< CDEF strength values for luma */ |
| int cdef_uv_strengths[CDEF_MAX_STRENGTHS]; /*!< CDEF strength values for |
| chroma */ |
| int cdef_bits; /*!< Number of CDEF strength values in bits */ |
| #if CONFIG_FIX_CDEF_SYNTAX |
| int cdef_frame_enable; /*!< CDEF on/off for current frame */ |
| #endif // CONFIG_FIX_CDEF_SYNTAX |
| } CdefInfo; |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| enum { |
| /*! |
| * MV refinement disabled for the current frame. |
| */ |
| REFINE_NONE = 0, |
| /*! |
| * MV refinement is switchable per block for the current frame. |
| */ |
| REFINE_SWITCHABLE = 1, |
| /*! |
| * MV refinement applied to all compound blocks for the current frame. |
| */ |
| REFINE_ALL = 2, |
| } UENUM1BYTE(OPTFLOW_REFINE_TYPE); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| #if CONFIG_CCSO |
| /** ccso info */ |
| typedef struct { |
| /** ccso enable */ |
| bool ccso_enable[CCSO_NUM_COMPONENTS]; |
| /** ccso filter offset */ |
| int8_t filter_offset[CCSO_NUM_COMPONENTS][CCSO_BAND_NUM * 16]; |
| #if CONFIG_CCSO_EXT |
| /** ccso log2 of max bands */ |
| int max_band_log2[CCSO_NUM_COMPONENTS]; |
| #endif |
| /** quant index */ |
| uint8_t quant_idx[CCSO_NUM_COMPONENTS]; |
| /** extended filter support */ |
| uint8_t ext_filter_support[CCSO_NUM_COMPONENTS]; |
| } CcsoInfo; |
| #endif |
| |
| /*!\cond */ |
| |
| typedef struct { |
| int delta_q_present_flag; |
| // Resolution of delta quant |
| int delta_q_res; |
| int delta_lf_present_flag; |
| // Resolution of delta lf level |
| int delta_lf_res; |
| // This is a flag for number of deltas of loop filter level |
| // 0: use 1 delta, for y_vertical, y_horizontal, u, and v |
| // 1: use separate deltas for each filter level |
| int delta_lf_multi; |
| } DeltaQInfo; |
| |
| typedef struct { |
| int enable_order_hint; // 0 - disable order hint, and related tools |
| int order_hint_bits_minus_1; // dist_wtd_comp, ref_frame_mvs, |
| // frame_sign_bias |
| // if 0, enable_dist_wtd_comp and |
| // enable_ref_frame_mvs must be set as 0. |
| int enable_ref_frame_mvs; // 0 - disable ref frame mvs |
| // 1 - enable it |
| } OrderHintInfo; |
| |
| // Sequence header structure. |
| // Note: All syntax elements of sequence_header_obu that need to be |
| // bit-identical across multiple sequence headers must be part of this struct, |
| // so that consistency is checked by are_seq_headers_consistent() function. |
| // One exception is the last member 'op_params' that is ignored by |
| // are_seq_headers_consistent() function. |
| typedef struct SequenceHeader { |
| int num_bits_width; |
| int num_bits_height; |
| int max_frame_width; |
| int max_frame_height; |
| // Whether current and reference frame IDs are signaled in the bitstream. |
| // Frame id numbers are additional information that do not affect the |
| // decoding process, but provide decoders with a way of detecting missing |
| // reference frames so that appropriate action can be taken. |
| uint8_t frame_id_numbers_present_flag; |
| int frame_id_length; |
| int delta_frame_id_length; |
| BLOCK_SIZE sb_size; // Size of the superblock used for this frame |
| int mib_size; // Size of the superblock in units of MI blocks |
| int mib_size_log2; // Log 2 of above. |
| int explicit_ref_frame_map; // Explicitly signal the reference frame mapping |
| int max_reference_frames; // Number of reference frames allowed |
| #if CONFIG_ALLOW_SAME_REF_COMPOUND |
| int num_same_ref_compound; // Number of the allowed same reference frames for |
| // the compound mode |
| #endif // CONFIG_ALLOW_SAME_REF_COMPOUND |
| |
| OrderHintInfo order_hint_info; |
| |
| uint8_t force_screen_content_tools; // 0 - force off |
| // 1 - force on |
| // 2 - adaptive |
| uint8_t still_picture; // Video is a single frame still picture |
| uint8_t reduced_still_picture_hdr; // Use reduced header for still picture |
| uint8_t force_integer_mv; // 0 - Don't force. MV can use subpel |
| // 1 - force to integer |
| // 2 - adaptive |
| uint8_t enable_sdp; // enables/disables semi-decoupled partitioning |
| uint8_t enable_mrls; // enables/disables multiple reference line selection |
| #if CONFIG_TIP |
| uint8_t enable_tip; // enables/disables temporal interpolated prediction |
| uint8_t enable_tip_hole_fill; // enables/disables hole fill for TIP |
| #endif // CONFIG_TIP |
| #if CONFIG_BAWP |
| uint8_t enable_bawp; // enables/disables block adaptive weighted prediction |
| #endif // CONFIG_BAWP |
| #if CONFIG_CWP |
| uint8_t enable_cwp; // enables/disables compound weighted prediction |
| #endif // CONFIG_CWP |
| uint8_t enable_fsc; // enables/disables forward skip coding |
| uint8_t enable_filter_intra; // enables/disables filterintra |
| uint8_t enable_intra_edge_filter; // enables/disables edge upsampling |
| |
| #if CONFIG_ORIP |
| uint8_t enable_orip; // To turn on/off sub-block based ORIP |
| #endif |
| uint8_t enable_ist; // enables/disables intra secondary transform |
| #if CONFIG_CROSS_CHROMA_TX |
| uint8_t enable_cctx; // enables/disables cross-chroma component transform |
| #endif // CONFIG_CROSS_CHROMA_TX |
| uint8_t enable_ibp; // enables/disables intra bi-prediction(IBP) |
| #if CONFIG_ADAPTIVE_MVD |
| uint8_t enable_adaptive_mvd; // enables/disables adaptive MVD resolution |
| #endif // CONFIG_ADAPTIVE_MVD |
| #if CONFIG_FLEX_MVRES |
| uint8_t enable_flex_mvres; // enables/disables flexible MV resolution |
| #endif // CONFIG_FLEX_MVRES |
| |
| #if CONFIG_ADAPTIVE_DS_FILTER |
| uint8_t enable_cfl_ds_filter; // enable/disables adaptive downsampling filter |
| #endif // CONFIG_ADAPTIVE_DS_FILTER |
| |
| #if CONFIG_JOINT_MVD |
| uint8_t enable_joint_mvd; // enables/disables joint MVD coding |
| #endif // CONFIG_JOINT_MVD |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| int seq_enabled_motion_modes; // Bit mask of enabled motion modes for |
| // sequence |
| #endif |
| |
| #if !CONFIG_EXTENDED_WARP_PREDICTION |
| uint8_t enable_interintra_compound; // enables/disables interintra_compound |
| #endif |
| uint8_t enable_masked_compound; // enables/disables masked compound |
| #if CONFIG_OPTFLOW_REFINEMENT |
| aom_opfl_refine_type enable_opfl_refine; // optical flow refinement type for |
| // this frame |
| #endif // 1 - enable vert/horz filter selection |
| #if !CONFIG_EXTENDED_WARP_PREDICTION |
| uint8_t enable_warped_motion; // 0 - disable warp for the sequence |
| // 1 - enable warp for the sequence |
| #endif |
| uint8_t enable_superres; // 0 - Disable superres for the sequence |
| // and no frame level superres flag |
| // 1 - Enable superres for the sequence |
| // enable per-frame superres flag |
| uint8_t enable_cdef; // To turn on/off CDEF |
| |
| uint8_t enable_restoration; // To turn on/off loop restoration |
| #if CONFIG_CCSO |
| uint8_t enable_ccso; // To turn on/off CCSO |
| #endif |
| #if CONFIG_PEF |
| uint8_t enable_pef; // To turn on/off prediction enhancement filter |
| #endif // CONFIG_PEF |
| #if CONFIG_REF_MV_BANK |
| uint8_t enable_refmvbank; // To turn on/off Ref MV Bank |
| #endif // CONFIG_REF_MV_BANK |
| #if CONFIG_LR_FLEX_SYNTAX |
| uint8_t lr_tools_disable_mask[2]; // mask of lr tool(s) to disable. |
| // To disable tool i in RestorationType |
| // enum where: |
| // 1 <= i <= RESTORE_SWITCHABLE_TYPES, set |
| // the ith bit in least to most significant |
| // order to 1. |
| #endif // CONFIG_LR_FLEX_SYNTAX |
| #if CONFIG_PAR_HIDING |
| uint8_t enable_parity_hiding; // To turn on/off PAR_HIDING |
| #endif // CONFIG_PAR_HIDING |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| uint8_t enable_ext_partitions; // enable extended partitions |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| BITSTREAM_PROFILE profile; |
| |
| // Color config. |
| aom_bit_depth_t bit_depth; // AOM_BITS_8 in profile 0 or 1, |
| // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3. |
| uint8_t monochrome; // Monochorme video |
| aom_color_primaries_t color_primaries; |
| aom_transfer_characteristics_t transfer_characteristics; |
| aom_matrix_coefficients_t matrix_coefficients; |
| int color_range; |
| int subsampling_x; // Chroma subsampling for x |
| int subsampling_y; // Chroma subsampling for y |
| aom_chroma_sample_position_t chroma_sample_position; |
| uint8_t separate_uv_delta_q; |
| int8_t base_y_dc_delta_q; |
| int8_t base_uv_dc_delta_q; |
| uint8_t film_grain_params_present; |
| |
| // Operating point info. |
| int operating_points_cnt_minus_1; |
| int operating_point_idc[MAX_NUM_OPERATING_POINTS]; |
| int timing_info_present; |
| aom_timing_info_t timing_info; |
| uint8_t decoder_model_info_present_flag; |
| aom_dec_model_info_t decoder_model_info; |
| uint8_t display_model_info_present_flag; |
| AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS]; |
| uint8_t tier[MAX_NUM_OPERATING_POINTS]; // seq_tier in spec. One bit: 0 or 1. |
| |
| // IMPORTANT: the op_params member must be at the end of the struct so that |
| // are_seq_headers_consistent() can be implemented with a memcmp() call. |
| // TODO(urvang): We probably don't need the +1 here. |
| aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1]; |
| } SequenceHeader; |
| |
| typedef struct { |
| int skip_mode_allowed; |
| int skip_mode_flag; |
| int ref_frame_idx_0; |
| int ref_frame_idx_1; |
| } SkipModeInfo; |
| |
| typedef struct { |
| FRAME_TYPE frame_type; |
| REFERENCE_MODE reference_mode; |
| |
| unsigned int order_hint; |
| unsigned int display_order_hint; |
| // Frame's level within the hierarchical structure |
| unsigned int pyramid_level; |
| unsigned int absolute_poc; |
| unsigned int key_frame_number; |
| unsigned int frame_number; |
| SkipModeInfo skip_mode_info; |
| int refresh_frame_flags; // Which ref frames are overwritten by this frame |
| } CurrentFrame; |
| |
| /*!\endcond */ |
| |
| /*! |
| * \brief Frame level features. |
| */ |
| typedef struct { |
| /*! |
| * If true, CDF update in the symbol encoding/decoding process is disabled. |
| */ |
| bool disable_cdf_update; |
| #if CONFIG_FLEX_MVRES |
| /*! |
| * The maximum allowable mv precision of the current frame. |
| */ |
| MvSubpelPrecision fr_mv_precision; |
| /*! |
| * The most probable mv precision of the current frame. |
| */ |
| MvSubpelPrecision most_probable_fr_mv_precision; |
| #else |
| /*! |
| * If true, motion vectors are specified to eighth pel precision; and |
| * if false, motion vectors are specified to quarter pel precision. |
| */ |
| bool allow_high_precision_mv; |
| #endif |
| |
| /*! |
| * If true, force integer motion vectors; if false, use the default. |
| */ |
| bool cur_frame_force_integer_mv; |
| #if CONFIG_FLEX_MVRES |
| /*! |
| * If true, allow the mv precision to be changed at the prediction block |
| * level. |
| */ |
| bool use_pb_mv_precision; |
| #endif // CONFIG_FLEX_MVRES |
| #if DS_FRAME_LEVEL |
| /*! |
| * Dowsample filter type |
| */ |
| int ds_filter_type; |
| #endif // DS_FRAME_LEVEl |
| /*! |
| * If true, palette tool and/or intra block copy tools may be used. |
| */ |
| bool allow_screen_content_tools; |
| bool allow_intrabc; /*!< If true, intra block copy tool may be used. */ |
| #if CONFIG_IBC_SR_EXT |
| bool allow_global_intrabc; /*!< If true, intra block copy tool may use the |
| global search range. */ |
| bool allow_local_intrabc; /*!< If true, intra block copy tool may use the |
| local search range. */ |
| #endif // CONFIG_IBC_SR_EXT |
| #if !CONFIG_EXTENDED_WARP_PREDICTION |
| bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */ |
| #endif |
| /*! |
| * If true, using previous frames' motion vectors for prediction is allowed. |
| */ |
| bool allow_ref_frame_mvs; |
| /*! |
| * If true, frame is fully lossless at coded resolution. |
| * */ |
| bool coded_lossless; |
| /*! |
| * If true, frame is fully lossless at upscaled resolution. |
| */ |
| bool all_lossless; |
| /*! |
| * If true, the frame is restricted to a reduced subset of the full set of |
| * transform types. |
| */ |
| bool reduced_tx_set_used; |
| /*! |
| * If true, error resilient mode is enabled. |
| * Note: Error resilient mode allows the syntax of a frame to be parsed |
| * independently of previously decoded frames. |
| */ |
| bool error_resilient_mode; |
| #if !CONFIG_EXTENDED_WARP_PREDICTION |
| /*! |
| * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION; |
| * if true, all MOTION_MODES may be used. |
| */ |
| bool switchable_motion_mode; |
| #endif |
| TX_MODE tx_mode; /*!< Transform mode at frame level. */ |
| InterpFilter interp_filter; /*!< Interpolation filter at frame level. */ |
| /*! |
| * The reference frame that contains the CDF values and other state that |
| * should be loaded at the start of the frame. |
| */ |
| int primary_ref_frame; |
| /*! |
| * Byte alignment of the planes in the reference buffers. |
| */ |
| int byte_alignment; |
| /*! |
| * Flag signaling how frame contexts should be updated at the end of |
| * a frame decode. |
| */ |
| REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; |
| /*! |
| * Max_drl_bits. Note number of ref MVs allowed is max_drl_bits + 1 |
| */ |
| int max_drl_bits; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| /*! |
| * Ternary symbol for optical flow refinement type. 0: do not refine, |
| * 1: always refine, 2: switchable at block level. |
| */ |
| OPTFLOW_REFINE_TYPE opfl_refine_type; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| #if CONFIG_TIP |
| /*! |
| * TIP mode. |
| */ |
| TIP_FRAME_MODE tip_frame_mode; |
| #if CONFIG_OPTFLOW_ON_TIP |
| /*! |
| * Whether optflow refinement is used for TIP frames |
| */ |
| int use_optflow_tip; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| /*! |
| * Enables/disables hole fill for TIP |
| */ |
| bool allow_tip_hole_fill; |
| #endif // CONFIG_TIP |
| #if CONFIG_PEF |
| /*! |
| * Enables/disables prediction enhancement filter |
| */ |
| bool allow_pef; |
| #endif // CONFIG_PEF |
| #if CONFIG_PAR_HIDING |
| /*! |
| * Enables/disables parity hiding. |
| */ |
| bool allow_parity_hiding; |
| #endif // CONFIG_PAR_HIDING |
| #if CONFIG_BAWP |
| /*! |
| * Enables/disables block adaptive weighted prediction |
| */ |
| bool enable_bawp; |
| #endif // CONFIG_BAWP |
| #if CONFIG_CWP |
| /*! |
| * Enables/disables compound weighted prediction |
| */ |
| bool enable_cwp; |
| #endif // CONFIG_CWP |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| /*! |
| * Bit mask of enabled motion modes for this frame |
| */ |
| int enabled_motion_modes; |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| #if CONFIG_LR_FLEX_SYNTAX |
| /*! |
| * mask of lr tool(s) to disable. To disable tool i in RestorationType enum |
| * where: * 1 <= i <= RESTORE_SWITCHABLE_TYPES, set the ith bit in least to |
| * most ignificant order to 1. |
| */ |
| uint8_t lr_tools_disable_mask[MAX_MB_PLANE]; |
| /*! |
| * Number of lr tools enabled |
| */ |
| int lr_tools_count[MAX_MB_PLANE]; |
| /*! |
| * Number of lr options in switchable mode |
| */ |
| int lr_switchable_tools_count[MAX_MB_PLANE]; |
| /*! |
| * Number of lr modes available at frame level |
| */ |
| int lr_frame_tools_count[MAX_MB_PLANE]; |
| /*! |
| * index of last bit transmitted for convenience. Beyond this index |
| * there is exactly one allowed option, and therefore there is no need |
| * to signal anything. |
| */ |
| int lr_last_switchable_ndx[MAX_MB_PLANE]; |
| /*! |
| * Restoration Type if last bit transmitted is 0 for convenience. If the |
| * last bit (lr_last_switchable_ndx) transmitted is 0, the |
| * restoration type is lr_last_switchable_ndx_0_type. |
| */ |
| int lr_last_switchable_ndx_0_type[MAX_MB_PLANE]; |
| #endif // CONFIG_LR_FLEX_SYNTAX |
| } FeatureFlags; |
| |
| /*! |
| * \brief Params related to tiles. |
| */ |
| typedef struct CommonTileParams { |
| int cols; /*!< number of tile columns that frame is divided into */ |
| int rows; /*!< number of tile rows that frame is divided into */ |
| int max_width_sb; /*!< maximum tile width in superblock units. */ |
| int max_height_sb; /*!< maximum tile height in superblock units. */ |
| |
| /*! |
| * Min width of non-rightmost tile in MI units. Only valid if cols > 1. |
| */ |
| int min_inner_width; |
| |
| /*! |
| * If true, tiles are uniformly spaced with power-of-two number of rows and |
| * columns. |
| * If false, tiles have explicitly configured widths and heights. |
| */ |
| int uniform_spacing; |
| |
| /** |
| * \name Members only valid when uniform_spacing == 1 |
| */ |
| /**@{*/ |
| int log2_cols; /*!< log2 of 'cols'. */ |
| int log2_rows; /*!< log2 of 'rows'. */ |
| int width; /*!< tile width in MI units */ |
| int height; /*!< tile height in MI units */ |
| /**@}*/ |
| |
| /*! |
| * Min num of tile columns possible based on 'max_width_sb' and frame width. |
| */ |
| int min_log2_cols; |
| /*! |
| * Min num of tile rows possible based on 'max_height_sb' and frame height. |
| */ |
| int min_log2_rows; |
| /*! |
| * Min num of tile columns possible based on frame width. |
| */ |
| int max_log2_cols; |
| /*! |
| * Max num of tile columns possible based on frame width. |
| */ |
| int max_log2_rows; |
| /*! |
| * log2 of min number of tiles (same as min_log2_cols + min_log2_rows). |
| */ |
| int min_log2; |
| /*! |
| * col_start_sb[i] is the start position of tile column i in superblock units. |
| * valid for 0 <= i <= cols |
| */ |
| int col_start_sb[MAX_TILE_COLS + 1]; |
| /*! |
| * row_start_sb[i] is the start position of tile row i in superblock units. |
| * valid for 0 <= i <= rows |
| */ |
| int row_start_sb[MAX_TILE_ROWS + 1]; |
| /*! |
| * If true, we are using large scale tile mode. |
| */ |
| unsigned int large_scale; |
| /*! |
| * Only relevant when large_scale == 1. |
| * If true, the independent decoding of a single tile or a section of a frame |
| * is allowed. |
| */ |
| unsigned int single_tile_decoding; |
| } CommonTileParams; |
| |
| typedef struct CommonModeInfoParams CommonModeInfoParams; |
| /*! |
| * \brief Params related to MB_MODE_INFO arrays and related info. |
| */ |
| struct CommonModeInfoParams { |
| /*! |
| * Number of rows in the frame in 16 pixel units. |
| * This is computed from frame height aligned to a multiple of 8. |
| */ |
| int mb_rows; |
| /*! |
| * Number of cols in the frame in 16 pixel units. |
| * This is computed from frame width aligned to a multiple of 8. |
| */ |
| int mb_cols; |
| |
| /*! |
| * Total MBs = mb_rows * mb_cols. |
| */ |
| int MBs; |
| |
| /*! |
| * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units. |
| * This is computed from frame height aligned to a multiple of 8. |
| */ |
| int mi_rows; |
| /*! |
| * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units. |
| * This is computed from frame width aligned to a multiple of 8. |
| */ |
| int mi_cols; |
| |
| /*! |
| * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block |
| * in the frame. |
| * Note: This array should be treated like a scratch memory, and should NOT be |
| * accessed directly, in most cases. Please use 'mi_grid_base' array instead. |
| */ |
| MB_MODE_INFO *mi_alloc; |
| #if CONFIG_C071_SUBBLK_WARPMV |
| /*! |
| * An array of SUBMB_INFO structs for every 'mi_alloc_bsize' sized block |
| * in the frame. |
| */ |
| SUBMB_INFO *mi_alloc_sub; |
| #endif // CONFIG_C071_SUBBLK_WARPMV |
| /*! |
| * Number of allocated elements in 'mi_alloc'. |
| */ |
| int mi_alloc_size; |
| /*! |
| * Stride for 'mi_alloc' array. |
| */ |
| int mi_alloc_stride; |
| /*! |
| * The minimum block size that each element in 'mi_alloc' can correspond to. |
| * For decoder, this is always BLOCK_4X4. |
| * For encoder, this is currently set to BLOCK_4X4 for resolution < 4k, |
| * and BLOCK_8X8 for resolution >= 4k. |
| */ |
| BLOCK_SIZE mi_alloc_bsize; |
| |
| /*! |
| * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'. |
| * It's possible that: |
| * - Multiple pointers in the grid point to the same element in 'mi_alloc' |
| * (for example, for all 4x4 blocks that belong to the same partition block). |
| * - Some pointers can be NULL (for example, for blocks outside visible area). |
| */ |
| MB_MODE_INFO **mi_grid_base; |
| #if CONFIG_C071_SUBBLK_WARPMV |
| /*! |
| * Grid of pointers to 4x4 SUBMB_INFO structs allocated in 'mi_alloc_sub'. |
| */ |
| SUBMB_INFO **submi_grid_base; |
| #endif // CONFIG_C071_SUBBLK_WARPMV |
| /*! |
| * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also). |
| */ |
| int mi_grid_size; |
| /*! |
| * Stride for 'mi_grid_base' (and 'tx_type_map' also). |
| */ |
| int mi_stride; |
| |
| /*! |
| * An array of tx types for each 4x4 block in the frame. |
| * Number of allocated elements is same as 'mi_grid_size', and stride is |
| * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of |
| * 'mi_grid_base'. |
| * If secondary transform in enabled (IST) each element of the array |
| * stores both primary and secondary transform types as shown below: Bits 4~5 |
| * of each element stores secondary tx_type Bits 0~3 of each element stores |
| * primary tx_type |
| */ |
| TX_TYPE *tx_type_map; |
| #if CONFIG_PC_WIENER |
| /*! |
| * indicate if a transform block has any non-zero coefficients or not. |
| * the buffer is allocated for each 4x4 block |
| */ |
| uint8_t *tx_skip[MAX_MB_PLANE]; |
| /*! |
| * tx_skip buffer allocated for each 4x4 block |
| */ |
| uint32_t tx_skip_buf_size[MAX_MB_PLANE]; |
| /*! |
| * tx_skip stride |
| */ |
| uint32_t tx_skip_stride[MAX_MB_PLANE]; |
| /*! |
| * Buffer that stores pc-wiener classification information. |
| */ |
| uint8_t *wiener_class_id[MAX_MB_PLANE]; |
| /*! |
| * wiener_class_id stride |
| */ |
| uint32_t wiener_class_id_stride[MAX_MB_PLANE]; |
| #endif // CONFIG_PC_WIENER |
| #if CONFIG_CROSS_CHROMA_TX |
| /*! |
| * An array of cctx types for each 4x4 block in the frame. |
| * Number of allocated elements is same as 'mi_grid_size', and stride is |
| * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of |
| * 'mi_grid_base'. |
| */ |
| CctxType *cctx_type_map; |
| #endif // CONFIG_CROSS_CHROMA_TX |
| |
| /** |
| * \name Function pointers to allow separate logic for encoder and decoder. |
| */ |
| /**@{*/ |
| /*! |
| * Free the memory allocated to arrays in 'mi_params'. |
| * \param[in,out] mi_params object containing common mode info parameters |
| */ |
| void (*free_mi)(struct CommonModeInfoParams *mi_params); |
| /*! |
| * Initialize / reset appropriate arrays in 'mi_params'. |
| * \param[in,out] mi_params object containing common mode info parameters |
| */ |
| void (*setup_mi)(struct CommonModeInfoParams *mi_params); |
| /*! |
| * Allocate required memory for arrays in 'mi_params'. |
| * \param[in,out] mi_params object containing common mode info parameters |
| * \param width frame width |
| * \param height frame height |
| */ |
| void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width, |
| int height); |
| /**@}*/ |
| }; |
| |
| /*! |
| * \brief Params related to SB_INFO arrays and related info. |
| */ |
| typedef struct CommonSBInfoParams { |
| /*! |
| * Grid of pointers to SB_INFO structs. |
| */ |
| SB_INFO *sbi_grid_base; |
| /*! |
| * Stride for 'sbi_grid_base'. |
| */ |
| int sbi_stride; |
| /*! |
| * Number of superblocks in the vertical direction. |
| */ |
| int sb_rows; |
| /*! |
| * Number of superblocks in the horizontal direction. |
| */ |
| int sb_cols; |
| /*! |
| * Number of SB_INFO structs that are currently allocated. |
| */ |
| int sbi_alloc_size; |
| } CommonSBInfoParams; |
| |
| typedef struct CommonQuantParams CommonQuantParams; |
| /*! |
| * \brief Parameters related to quantization at the frame level. |
| */ |
| struct CommonQuantParams { |
| /*! |
| * Base qindex of the frame in the range 0 to 255. |
| */ |
| int base_qindex; |
| |
| /*! |
| * Delta of qindex (from base_qindex) for Y plane DC coefficient. |
| * Note: y_ac_delta_q is implicitly 0. |
| */ |
| int y_dc_delta_q; |
| |
| /*! |
| * Delta of qindex (from base_qindex) for U plane DC coefficients. |
| */ |
| int u_dc_delta_q; |
| /*! |
| * Delta of qindex (from base_qindex) for U plane AC coefficients. |
| */ |
| int v_dc_delta_q; |
| |
| /*! |
| * Delta of qindex (from base_qindex) for V plane DC coefficients. |
| * Same as those for U plane if cm->seq_params.separate_uv_delta_q == 0. |
| */ |
| int u_ac_delta_q; |
| /*! |
| * Delta of qindex (from base_qindex) for V plane AC coefficients. |
| * Same as those for U plane if cm->seq_params.separate_uv_delta_q == 0. |
| */ |
| int v_ac_delta_q; |
| |
| /* |
| * Note: The qindex per superblock may have a delta from the qindex obtained |
| * at frame level from parameters above, based on 'cm->delta_q_info'. |
| */ |
| |
| /** |
| * \name True dequantizers. |
| * The dequantizers below are true dequantizers used only in the |
| * dequantization process. They have the same coefficient |
| * shift/scale as TX. |
| */ |
| /**@{*/ |
| int32_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */ |
| int32_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */ |
| int32_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */ |
| /**@}*/ |
| |
| /** |
| * \name Global quantization matrix tables. |
| */ |
| /**@{*/ |
| /*! |
| * Global dquantization matrix table. |
| */ |
| const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; |
| /*! |
| * Global quantization matrix table. |
| */ |
| const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL]; |
| /**@}*/ |
| |
| /** |
| * \name Local dequantization matrix tables for each frame. |
| */ |
| /**@{*/ |
| /*! |
| * Local dequant matrix for Y plane. |
| */ |
| const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; |
| /*! |
| * Local dequant matrix for U plane. |
| */ |
| const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; |
| /*! |
| * Local dequant matrix for V plane. |
| */ |
| const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL]; |
| /**@}*/ |
| |
| /*! |
| * Flag indicating whether quantization matrices are being used: |
| * - If true, qm_level_y, qm_level_u and qm_level_v indicate the level |
| * indices to be used to access appropriate global quant matrix tables. |
| * - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'. |
| */ |
| bool using_qmatrix; |
| /** |
| * \name Valid only when using_qmatrix == true |
| * Indicate the level indices to be used to access appropriate global quant |
| * matrix tables. |
| */ |
| /**@{*/ |
| int qmatrix_level_y; /*!< Level index for Y plane */ |
| int qmatrix_level_u; /*!< Level index for U plane */ |
| int qmatrix_level_v; /*!< Level index for V plane */ |
| /**@}*/ |
| }; |
| |
| typedef struct CommonContexts CommonContexts; |
| /*! |
| * \brief Contexts used for transmitting various symbols in the bitstream. |
| */ |
| struct CommonContexts { |
| /*! |
| * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type. |
| * partition[i][j] is the context for ith tile row, jth mi_col. |
| */ |
| PARTITION_CONTEXT **partition[MAX_MB_PLANE]; |
| |
| /*! |
| * Context used to derive context for multiple symbols: |
| * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit |
| * to transmit skip_txfm flag. |
| * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit |
| * sign. |
| * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col. |
| */ |
| ENTROPY_CONTEXT **entropy[MAX_MB_PLANE]; |
| |
| /*! |
| * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to |
| * transmit 'is_split' flag to indicate if this transform block should be |
| * split into smaller sub-blocks. |
| * txfm[i][j] is the context for ith tile row, jth mi_col. |
| */ |
| TXFM_CONTEXT **txfm; |
| |
| /*! |
| * Dimensions that were used to allocate the arrays above. |
| * If these dimensions change, the arrays may have to be re-allocated. |
| */ |
| int num_planes; /*!< Corresponds to av1_num_planes(cm) */ |
| int num_tile_rows; /*!< Corresponds to cm->tiles.row */ |
| int num_mi_cols; /*!< Corresponds to cm->mi_params.mi_cols */ |
| }; |
| |
| #if CONFIG_THROUGHPUT_ANALYSIS |
| struct total_sym_stats { |
| /** Frame number (decoding order)*/ |
| int frame_dec_order; |
| /** Total number of bits*/ |
| int64_t tot_bits; |
| /** total ctx coded symbols. */ |
| int64_t tot_ctx_syms; |
| /** total bypass coded symbols. */ |
| int64_t tot_bypass_syms; |
| /** peak ctx coded symbols. */ |
| int peak_ctx_syms; |
| /** peak bypass coded symbols. */ |
| int peak_bypass_syms; |
| /** peak bits. */ |
| int peak_bits; |
| }; |
| #endif // CONFIG_THROUGHPUT_ANALYSIS |
| |
| /*! |
| * \brief Structure to contain information about the reference frame mapping |
| * scheme. |
| */ |
| typedef struct { |
| /*! |
| * Distance of ref frame from current frame. Negative value indicates |
| * reference in the future, and positive value indicates reference in |
| * the past from the current frame |
| */ |
| int ref_frame_distance[INTER_REFS_PER_FRAME]; |
| /*! |
| * Total number of reference buffers available to the current frame. |
| */ |
| int num_total_refs; |
| /*! |
| * Contains the indices of the frames in ref_frame_map that are future |
| * references. |
| */ |
| int future_refs[INTER_REFS_PER_FRAME]; |
| /*! |
| * Number of future references. |
| */ |
| int num_future_refs; |
| /*! |
| * Contains the indices of the frames in ref_frame_map that are past |
| * references. |
| */ |
| int past_refs[INTER_REFS_PER_FRAME]; |
| /*! |
| * Number of past references. |
| */ |
| int num_past_refs; |
| /*! |
| * Contains the indices of the frames in ref_frame_map with same order hint |
| * as current frame. -1 if unset. |
| */ |
| int cur_refs[INTER_REFS_PER_FRAME]; |
| /*! |
| * Number of references with the same order hint. |
| */ |
| int num_cur_refs; |
| #if CONFIG_ALLOW_SAME_REF_COMPOUND |
| /*! |
| * Number of references for the compound mode with the same slot. |
| */ |
| int num_same_ref_compound; |
| #endif // CONFIG_ALLOW_SAME_REF_COMPOUND |
| } RefFramesInfo; |
| |
| #if CONFIG_TIP |
| /*! |
| * \brief Structure used for storing tip reconstruct and prediction |
| */ |
| typedef struct { |
| /** dst buffer */ |
| struct buf_2d dst; |
| /** pred buffer */ |
| struct buf_2d pred[2]; |
| } TIP_PLANE; |
| |
| /*! |
| * \brief Structure used for tip |
| */ |
| typedef struct TIP_Buffer { |
| /*! |
| * Buffer into which the interpolated tip frame will be stored and other |
| * related info. |
| */ |
| RefCntBuffer *tip_frame; |
| /*! |
| * Info specific to each plane. |
| */ |
| TIP_PLANE tip_plane[MAX_MB_PLANE]; |
| /*! |
| * Offset of TIP frame to its reference frame. |
| */ |
| int ref_offset[2]; |
| /*! |
| * Order hint of TIP's reference frames. |
| */ |
| int ref_order_hint[2]; |
| /*! |
| * Reference frame type of TIP's reference frames. |
| */ |
| MV_REFERENCE_FRAME ref_frame[2]; |
| /*! |
| * Buffer where TIP's reference frame is stored. |
| */ |
| RefCntBuffer *ref_frame_buffer[2]; |
| /*! |
| * Temporal scaling factor of the frame offset between current frame to one of |
| * TIP's reference frame with respect to the frame offset between TIP's two |
| * reference frames. |
| */ |
| int ref_frames_offset_sf[2]; |
| /*! |
| * Frame offset between TIP's two reference frames. |
| */ |
| int ref_frames_offset; |
| /*! |
| * Scale factors of the reference frame with respect to the current frame. |
| * This is required for generating inter prediction and will be non-identity |
| * for a reference frame, if it has different dimensions than the coded |
| * dimensions of the current frame. |
| */ |
| const struct scale_factors *ref_scale_factor[2]; |
| /*! |
| * Scale factors of tip frame. |
| */ |
| struct scale_factors scale_factor; |
| /*! |
| * Buffer into which the scaled interpolated tip frame will be stored and |
| * other related info. This is required for generating inter prediction and |
| * will be non-identity for a reference frame, if it has different dimensions |
| * than the coded dimensions of the current frame. |
| */ |
| RefCntBuffer *scaled_tip_frame; |
| /*! |
| * Check a block is already interpolated |
| */ |
| int *available_flag; |
| /*! |
| * Check the motion field of TIP block is within the frame |
| */ |
| int *mf_need_clamp; |
| } TIP; |
| #endif // CONFIG_TIP |
| |
| /*! |
| * \brief Top level common structure used by both encoder and decoder. |
| */ |
| typedef struct AV1Common { |
| #if CONFIG_THROUGHPUT_ANALYSIS |
| /*! |
| * Symbol stats. |
| */ |
| struct total_sym_stats sym_stats; |
| #endif // CONFIG_THROUGHPUT_ANALYSIS |
| /*! |
| * Bitmask indicating which reference buffers may be referenced by this frame. |
| */ |
| int ref_frame_flags; |
| |
| /*! |
| * Information about the current frame that is being coded. |
| */ |
| CurrentFrame current_frame; |
| /*! |
| * Code and details about current error status. |
| */ |
| struct aom_internal_error_info error; |
| |
| /*! |
| * AV1 allows two types of frame scaling operations: |
| * 1. Frame super-resolution: that allows coding a frame at lower resolution |
| * and after decoding the frame, normatively uscales and restores the frame -- |
| * inside the coding loop. |
| * 2. Frame resize: that allows coding frame at lower/higher resolution, and |
| * then non-normatively upscale the frame at the time of rendering -- outside |
| * the coding loop. |
| * Hence, the need for 3 types of dimensions. |
| */ |
| |
| /** |
| * \name Coded frame dimensions. |
| */ |
| /**@{*/ |
| int width; /*!< Coded frame width */ |
| int height; /*!< Coded frame height */ |
| /**@}*/ |
| |
| /** |
| * \name Rendered frame dimensions. |
| * Dimensions after applying both super-resolution and resize to the coded |
| * frame. Different from coded dimensions if super-resolution and/or resize |
| * are being used for this frame. |
| */ |
| /**@{*/ |
| int render_width; /*!< Rendered frame width */ |
| int render_height; /*!< Rendered frame height */ |
| /**@}*/ |
| |
| /** |
| * \name Super-resolved frame dimensions. |
| * Frame dimensions after applying super-resolution to the coded frame (if |
| * present), but before applying resize. |
| * Larger than the coded dimensions if super-resolution is being used for |
| * this frame. |
| * Different from rendered dimensions if resize is being used for this frame. |
| */ |
| /**@{*/ |
| int superres_upscaled_width; /*!< Super-resolved frame width */ |
| int superres_upscaled_height; /*!< Super-resolved frame height */ |
| /**@}*/ |
| |
| /*! |
| * The denominator of the superres scale used by this frame. |
| * Note: The numerator is fixed to be SCALE_NUMERATOR. |
| */ |
| uint8_t superres_scale_denominator; |
| |
| /*! |
| * If true, buffer removal times are present. |
| */ |
| bool buffer_removal_time_present; |
| /*! |
| * buffer_removal_times[op_num] specifies the frame removal time in units of |
| * DecCT clock ticks counted from the removal time of the last random access |
| * point for operating point op_num. |
| * TODO(urvang): We probably don't need the +1 here. |
| */ |
| uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1]; |
| /*! |
| * Presentation time of the frame in clock ticks DispCT counted from the |
| * removal time of the last random access point for the operating point that |
| * is being decoded. |
| */ |
| uint32_t frame_presentation_time; |
| |
| /*! |
| * Buffer where previous frame is stored. |
| */ |
| RefCntBuffer *prev_frame; |
| |
| /*! |
| * Buffer into which the current frame will be stored and other related info. |
| * TODO(hkuang): Combine this with cur_buf in macroblockd. |
| */ |
| RefCntBuffer *cur_frame; |
| |
| /*! |
| * An alternative to remapped_ref_idx (above) which contains a mapping to |
| * ref_frame_map[] according to a "usefulness" score. It also contains all |
| * other relevant data to aid the reference mapping and signaling. |
| */ |
| RefFramesInfo ref_frames_info; |
| /*! |
| * For encoder, we have a two-level mapping from reference frame type to the |
| * corresponding buffer in the buffer pool: |
| * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: 0 ... |
| * INTER_REFS_PER_FRAME - 1) to a remapped index 'j' in the same range. |
| * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to |
| * the reference counted buffer structure RefCntBuffer, taken from the buffer |
| * pool cm->buffer_pool->frame_bufs. |
| * |
| * 0, ..., INTER_REFS_PER_FRAME - 1 |
| * | | |
| * v v |
| * remapped_ref_idx[0], ..., remapped_ref_idx[INTER_REFS_PER_FRAME- 1] |
| * | | |
| * v v |
| * ref_frame_map[], ..., ref_frame_map[] |
| * |
| * Note: INTRA_FRAME always refers to the current frame, so there's no need to |
| * have a remapped index for the same. |
| */ |
| int remapped_ref_idx[REF_FRAMES]; |
| |
| /*! |
| * Scale of the current frame with respect to itself. |
| * This is currently used for intra block copy, which behaves like an inter |
| * prediction mode, where the reference frame is the current frame itself. |
| */ |
| struct scale_factors sf_identity; |
| |
| /*! |
| * Scale factors of the reference frame with respect to the current frame. |
| * This is required for generating inter prediction and will be non-identity |
| * for a reference frame, if it has different dimensions than the coded |
| * dimensions of the current frame. |
| */ |
| struct scale_factors ref_scale_factors[REF_FRAMES]; |
| |
| /*! |
| * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to |
| * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'. |
| * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps |
| * remapped reference index 'j' (that is, original reference type 'i') to |
| * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'. |
| */ |
| RefCntBuffer *ref_frame_map[REF_FRAMES]; |
| |
| /*! |
| * If true, this frame is actually shown after decoding. |
| * If false, this frame is coded in the bitstream, but not shown. It is only |
| * used as a reference for other frames coded later. |
| */ |
| int show_frame; |
| |
| /*! |
| * If true, this frame can be used as a show-existing frame for other frames |
| * coded later. |
| * When 'show_frame' is true, this is always true for all non-keyframes. |
| * When 'show_frame' is false, this value is transmitted in the bitstream. |
| */ |
| int showable_frame; |
| |
| /*! |
| * If true, show an existing frame coded before, instead of actually coding a |
| * frame. The existing frame comes from one of the existing reference buffers, |
| * as signaled in the bitstream. |
| */ |
| int show_existing_frame; |
| |
| /*! |
| * Whether some features are allowed or not. |
| */ |
| FeatureFlags features; |
| |
| /*! |
| * Params related to MB_MODE_INFO arrays and related info. |
| */ |
| CommonModeInfoParams mi_params; |
| |
| /*! |
| * Params related to SB_INFO arrays and related info. |
| */ |
| CommonSBInfoParams sbi_params; |
| |
| #if CONFIG_ENTROPY_STATS |
| /*! |
| * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1). |
| */ |
| int coef_cdf_category; |
| #endif // CONFIG_ENTROPY_STATS |
| |
| /*! |
| * Quantization params. |
| */ |
| CommonQuantParams quant_params; |
| |
| /*! |
| * Segmentation info for current frame. |
| */ |
| struct segmentation seg; |
| |
| /*! |
| * Segmentation map for previous frame. |
| */ |
| uint8_t *last_frame_seg_map; |
| |
| /** |
| * \name Deblocking filter parameters. |
| */ |
| /**@{*/ |
| loop_filter_info_n lf_info; /*!< Loop filter info */ |
| struct loopfilter lf; /*!< Loop filter parameters */ |
| /**@}*/ |
| |
| #if CONFIG_PEF |
| /** |
| * \name Prediction enhancement filter parameters. |
| */ |
| /**@{*/ |
| PefInfo pef_info; /*!< Prediction enhancement filter info*/ |
| PefParams pef_params; /*!< Prediction enhancement filter parameters*/ |
| /**@}*/ |
| #endif // CONFIG_PEF |
| |
| /** |
| * \name Loop Restoration filter parameters. |
| */ |
| /**@{*/ |
| RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */ |
| int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */ |
| RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */ |
| YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */ |
| /**@}*/ |
| |
| /*! |
| * CDEF (Constrained Directional Enhancement Filter) parameters. |
| */ |
| CdefInfo cdef_info; |
| |
| #if CONFIG_CCSO |
| /*! |
| * CCSO (Cross Component Sample Offset) parameters. |
| */ |
| CcsoInfo ccso_info; |
| #endif |
| |
| /*! |
| * Parameters for film grain synthesis. |
| */ |
| aom_film_grain_t film_grain_params; |
| |
| /*! |
| * Parameters for delta quantization and delta loop filter level. |
| */ |
| DeltaQInfo delta_q_info; |
| |
| /*! |
| * Global motion parameters for each reference frame. |
| */ |
| WarpedMotionParams global_motion[INTER_REFS_PER_FRAME]; |
| |
| /*! |
| * Elements part of the sequence header, that are applicable for all the |
| * frames in the video. |
| */ |
| SequenceHeader seq_params; |
| |
| /*! |
| * Current CDFs of all the symbols for the current frame. |
| */ |
| FRAME_CONTEXT *fc; |
| /*! |
| * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE |
| * (e.g. for a keyframe). These default CDFs are defined by the bitstream and |
| * copied from default CDF tables for each symbol. |
| */ |
| FRAME_CONTEXT *default_frame_context; |
| |
| /*! |
| * Parameters related to tiling. |
| */ |
| CommonTileParams tiles; |
| |
| /*! |
| * External BufferPool passed from outside. |
| */ |
| BufferPool *buffer_pool; |
| |
| /*! |
| * Above context buffers and their sizes. |
| * Note: above contexts are allocated in this struct, as their size is |
| * dependent on frame width, while left contexts are declared and allocated in |
| * MACROBLOCKD struct, as they have a fixed size. |
| */ |
| CommonContexts above_contexts; |
| |
| /** |
| * \name Signaled when cm->seq_params.frame_id_numbers_present_flag == 1 |
| */ |
| /**@{*/ |
| int current_frame_id; /*!< frame ID for the current frame. */ |
| int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */ |
| /**@}*/ |
| |
| /*! |
| * Motion vectors provided by motion field estimation. |
| * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where: |
| * mi_row = 2 * row, |
| * mi_col = 2 * col, and |
| * stride = cm->mi_params.mi_stride / 2 |
| */ |
| TPL_MV_REF *tpl_mvs; |
| /*! |
| * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function. |
| */ |
| int tpl_mvs_mem_size; |
| /*! |
| * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and |
| * current frame is positive; and 0 otherwise. |
| */ |
| int ref_frame_sign_bias[INTER_REFS_PER_FRAME]; |
| /*! |
| * ref_frame_side[k] is 1 if relative distance between reference 'k' and |
| * current frame is positive, -1 if relative distance is 0; and 0 otherwise. |
| * TODO(jingning): This can be combined with sign_bias later. |
| */ |
| int8_t ref_frame_side[INTER_REFS_PER_FRAME]; |
| #if CONFIG_SMVP_IMPROVEMENT || CONFIG_JOINT_MVD |
| /*! |
| * relative distance between reference 'k' and current frame. |
| */ |
| int8_t ref_frame_relative_dist[REF_FRAMES]; |
| #endif // CONFIG_SMVP_IMPROVEMENT || CONFIG_JOINT_MVD |
| /*! |
| * Number of temporal layers: may be > 1 for SVC (scalable vector coding). |
| */ |
| unsigned int number_temporal_layers; |
| /*! |
| * Temporal layer ID of this frame |
| * (in the range 0 ... (number_temporal_layers - 1)). |
| */ |
| int temporal_layer_id; |
| |
| /*! |
| * Number of spatial layers: may be > 1 for SVC (scalable vector coding). |
| */ |
| unsigned int number_spatial_layers; |
| /*! |
| * Spatial layer ID of this frame |
| * (in the range 0 ... (number_spatial_layers - 1)). |
| */ |
| int spatial_layer_id; |
| |
| /*! |
| * Weights for IBP of directional modes. |
| */ |
| uint8_t *ibp_directional_weights[TX_SIZES_ALL][DIR_MODES_0_90]; |
| |
| #if TXCOEFF_TIMER |
| int64_t cum_txcoeff_timer; |
| int64_t txcoeff_timer; |
| int txb_count; |
| #endif // TXCOEFF_TIMER |
| |
| #if TXCOEFF_COST_TIMER |
| int64_t cum_txcoeff_cost_timer; |
| int64_t txcoeff_cost_timer; |
| int64_t txcoeff_cost_count; |
| #endif // TXCOEFF_COST_TIMER |
| |
| #if CONFIG_LPF_MASK |
| int is_decoding; |
| #endif // CONFIG_LPF_MASK |
| |
| #if DEBUG_EXTQUANT |
| FILE *fEncCoeffLog; |
| FILE *fDecCoeffLog; |
| #endif |
| |
| #if CONFIG_TIP |
| /*! |
| * Flag to indicate if current frame has backward ref frame |
| */ |
| int has_bwd_ref; |
| /*! |
| * TIP reference frame |
| */ |
| TIP tip_ref; |
| |
| #if CONFIG_OPTFLOW_ON_TIP |
| /*! |
| * Blk buffer of the first reference for tip optflow |
| */ |
| uint16_t *dst0_16_tip; |
| /*! |
| * Blk buffer of the second reference for tip optflow |
| */ |
| uint16_t *dst1_16_tip; |
| /*! |
| * Buffer of horizontal gradient in buffer 0 |
| */ |
| int16_t *gx0; |
| /*! |
| * Buffer of vertical gradient in buffer 0 |
| */ |
| int16_t *gy0; |
| /*! |
| * Buffer of horizontal gradient in buffer 1 |
| */ |
| int16_t *gx1; |
| /*! |
| * Buffer of vertical gradient in buffer 1 |
| */ |
| int16_t *gy1; |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| #endif // CONFIG_TIP |
| } AV1_COMMON; |
| |
| /*!\cond */ |
| |
| #if CONFIG_PC_WIENER |
| #define ILLEGAL_TXK_SKIP_VALUE 255 |
| void av1_alloc_txk_skip_array(CommonModeInfoParams *mi_params, AV1_COMMON *cm); |
| void av1_dealloc_txk_skip_array(CommonModeInfoParams *mi_params); |
| void av1_reset_txk_skip_array(AV1_COMMON *cm); |
| void av1_reset_txk_skip_array_using_mi_params(CommonModeInfoParams *mi_params); |
| void av1_init_txk_skip_array(const AV1_COMMON *cm, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, uint8_t value, |
| TREE_TYPE tree_type, |
| const CHROMA_REF_INFO *chroma_ref_info, |
| int plane_start, int plane_end); |
| void av1_update_txk_skip_array(const AV1_COMMON *cm, int mi_row, int mi_col, |
| TREE_TYPE tree_type, |
| const CHROMA_REF_INFO *chroma_ref_info, |
| int plane, int blk_row, int blk_col, |
| TX_SIZE tx_size); |
| uint8_t av1_get_txk_skip(const AV1_COMMON *cm, int mi_row, int mi_col, |
| int plane, int blk_row, int blk_col); |
| void av1_alloc_class_id_array(CommonModeInfoParams *mi_params, AV1_COMMON *cm); |
| void av1_dealloc_class_id_array(CommonModeInfoParams *mi_params); |
| #endif // CONFIG_PC_WIENER |
| |
| // TODO(hkuang): Don't need to lock the whole pool after implementing atomic |
| // frame reference count. |
| static void lock_buffer_pool(BufferPool *const pool) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(&pool->pool_mutex); |
| #else |
| (void)pool; |
| #endif |
| } |
| |
| static void unlock_buffer_pool(BufferPool *const pool) { |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_unlock(&pool->pool_mutex); |
| #else |
| (void)pool; |
| #endif |
| } |
| |
| static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) { |
| #if CONFIG_TIP |
| if (is_tip_ref_frame(index)) return &cm->tip_ref.tip_frame->buf; |
| #endif // CONFIG_TIP |
| if (index < 0 || index >= REF_FRAMES) return NULL; |
| if (cm->ref_frame_map[index] == NULL) return NULL; |
| return &cm->ref_frame_map[index]->buf; |
| } |
| |
| static INLINE int get_free_fb(AV1_COMMON *cm) { |
| RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; |
| int i; |
| |
| lock_buffer_pool(cm->buffer_pool); |
| for (i = 0; i < FRAME_BUFFERS; ++i) |
| if (frame_bufs[i].ref_count == 0) break; |
| |
| if (i != FRAME_BUFFERS) { |
| if (frame_bufs[i].buf.use_external_reference_buffers) { |
| // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the |
| // external reference buffers. Restore the buffer pointers to point to the |
| // internally allocated memory. |
| YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf; |
| ybf->y_buffer = ybf->store_buf_adr[0]; |
| ybf->u_buffer = ybf->store_buf_adr[1]; |
| ybf->v_buffer = ybf->store_buf_adr[2]; |
| ybf->use_external_reference_buffers = 0; |
| } |
| |
| frame_bufs[i].ref_count = 1; |
| } else { |
| // We should never run out of free buffers. If this assertion fails, there |
| // is a reference leak. |
| assert(0 && "Ran out of free frame buffers. Likely a reference leak."); |
| // Reset i to be INVALID_IDX to indicate no free buffer found. |
| i = INVALID_IDX; |
| } |
| |
| unlock_buffer_pool(cm->buffer_pool); |
| return i; |
| } |
| |
| static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) { |
| // Release the previously-used frame-buffer |
| if (cm->cur_frame != NULL) { |
| --cm->cur_frame->ref_count; |
| cm->cur_frame = NULL; |
| } |
| |
| // Assign a new framebuffer |
| const int new_fb_idx = get_free_fb(cm); |
| if (new_fb_idx == INVALID_IDX) return NULL; |
| |
| cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx]; |
| cm->cur_frame->buf.buf_8bit_valid = 0; |
| av1_zero(cm->cur_frame->interp_filter_selected); |
| av1_zero(cm->cur_frame->raw_frame_hash); |
| av1_zero(cm->cur_frame->grain_frame_hash); |
| return cm->cur_frame; |
| } |
| |
| // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref |
| // counts accordingly. |
| static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr, |
| RefCntBuffer *rhs_ptr) { |
| RefCntBuffer *const old_ptr = *lhs_ptr; |
| if (old_ptr != NULL) { |
| assert(old_ptr->ref_count > 0); |
| // One less reference to the buffer at 'old_ptr', so decrease ref count. |
| --old_ptr->ref_count; |
| } |
| |
| *lhs_ptr = rhs_ptr; |
| // One more reference to the buffer at 'rhs_ptr', so increase ref count. |
| ++rhs_ptr->ref_count; |
| } |
| |
| static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) { |
| return cm->current_frame.frame_type == KEY_FRAME || |
| cm->current_frame.frame_type == INTRA_ONLY_FRAME; |
| } |
| |
| static INLINE int frame_is_sframe(const AV1_COMMON *cm) { |
| return cm->current_frame.frame_type == S_FRAME; |
| } |
| |
| static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm, |
| const int ref_frame) { |
| return (ref_frame >= 0 && ref_frame < REF_FRAMES) |
| ? cm->remapped_ref_idx[ref_frame] |
| : INVALID_IDX; |
| } |
| |
| static INLINE RefCntBuffer *get_ref_frame_buf( |
| const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { |
| #if CONFIG_TIP |
| if (is_tip_ref_frame(ref_frame)) { |
| return cm->tip_ref.tip_frame; |
| } |
| #endif // CONFIG_TIP |
| const int map_idx = get_ref_frame_map_idx(cm, ref_frame); |
| return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL; |
| } |
| |
| // Both const and non-const versions of this function are provided so that it |
| // can be used with a const AV1_COMMON if needed. |
| static INLINE const struct scale_factors *get_ref_scale_factors_const( |
| const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { |
| #if CONFIG_TIP |
| if (is_tip_ref_frame(ref_frame)) { |
| return &cm->tip_ref.scale_factor; |
| } |
| #endif // CONFIG_TIP |
| const int map_idx = get_ref_frame_map_idx(cm, ref_frame); |
| return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL; |
| } |
| |
| static INLINE struct scale_factors *get_ref_scale_factors( |
| AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) { |
| #if CONFIG_TIP |
| if (is_tip_ref_frame(ref_frame)) { |
| return &cm->tip_ref.scale_factor; |
| } |
| #endif // CONFIG_TIP |
| const int map_idx = get_ref_frame_map_idx(cm, ref_frame); |
| return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL; |
| } |
| |
| static INLINE RefCntBuffer *get_primary_ref_frame_buf( |
| const AV1_COMMON *const cm) { |
| const int primary_ref_frame = cm->features.primary_ref_frame; |
| if (primary_ref_frame == PRIMARY_REF_NONE) return NULL; |
| #if CONFIG_TIP |
| if (is_tip_ref_frame(primary_ref_frame)) { |
| return cm->tip_ref.tip_frame; |
| } |
| #endif // CONFIG_TIP |
| const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame); |
| return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL; |
| } |
| |
| // Returns 1 if this frame might allow mvs from some reference frame. |
| static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) { |
| return !cm->features.error_resilient_mode && |
| cm->seq_params.order_hint_info.enable_ref_frame_mvs && |
| cm->seq_params.order_hint_info.enable_order_hint && |
| !frame_is_intra_only(cm); |
| } |
| |
| #if !CONFIG_EXTENDED_WARP_PREDICTION |
| // Returns 1 if this frame might use warped_motion |
| static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) { |
| return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) && |
| cm->seq_params.enable_warped_motion; |
| } |
| #endif // !CONFIG_EXTENDED_WARP_PREDICTION |
| |
| static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) { |
| const int buf_rows = buf->mi_rows; |
| const int buf_cols = buf->mi_cols; |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| |
| #if CONFIG_TIP |
| const int tpl_rows = ROUND_POWER_OF_TWO(mi_params->mi_rows, TMVP_SHIFT_BITS); |
| const int tpl_cols = ROUND_POWER_OF_TWO(mi_params->mi_cols, TMVP_SHIFT_BITS); |
| const int mem_size = tpl_rows * tpl_cols; |
| #endif // CONFIG_TIP |
| |
| if (buf->mvs == NULL || buf_rows != mi_params->mi_rows || |
| buf_cols != mi_params->mi_cols) { |
| aom_free(buf->mvs); |
| buf->mi_rows = mi_params->mi_rows; |
| buf->mi_cols = mi_params->mi_cols; |
| #if CONFIG_TIP |
| CHECK_MEM_ERROR(cm, buf->mvs, |
| (MV_REF *)aom_calloc(mem_size, sizeof(*buf->mvs))); |
| #else |
| CHECK_MEM_ERROR(cm, buf->mvs, |
| (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) * |
| ((mi_params->mi_cols + 1) >> 1), |
| sizeof(*buf->mvs))); |
| #endif // CONFIG_TIP |
| aom_free(buf->seg_map); |
| CHECK_MEM_ERROR( |
| cm, buf->seg_map, |
| (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols, |
| sizeof(*buf->seg_map))); |
| } |
| |
| #if !CONFIG_TIP |
| const int mem_size = |
| ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1); |
| #endif // !CONFIG_TIP |
| const int is_tpl_mvs_mem_size_too_small = (cm->tpl_mvs_mem_size < mem_size); |
| int realloc = cm->tpl_mvs == NULL || is_tpl_mvs_mem_size_too_small; |
| if (realloc) { |
| aom_free(cm->tpl_mvs); |
| CHECK_MEM_ERROR(cm, cm->tpl_mvs, |
| (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs))); |
| cm->tpl_mvs_mem_size = mem_size; |
| } |
| |
| #if CONFIG_TIP |
| realloc = cm->tip_ref.available_flag == NULL || is_tpl_mvs_mem_size_too_small; |
| if (realloc) { |
| aom_free(cm->tip_ref.available_flag); |
| CHECK_MEM_ERROR( |
| cm, cm->tip_ref.available_flag, |
| (int *)aom_calloc(mem_size, sizeof(*cm->tip_ref.available_flag))); |
| } |
| |
| realloc = cm->tip_ref.mf_need_clamp == NULL || is_tpl_mvs_mem_size_too_small; |
| if (realloc) { |
| aom_free(cm->tip_ref.mf_need_clamp); |
| CHECK_MEM_ERROR( |
| cm, cm->tip_ref.mf_need_clamp, |
| (int *)aom_calloc(mem_size, sizeof(*cm->tip_ref.mf_need_clamp))); |
| } |
| #endif // CONFIG_TIP |
| } |
| |
| void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params); |
| |
| static INLINE int av1_num_planes(const AV1_COMMON *cm) { |
| return cm->seq_params.monochrome ? 1 : MAX_MB_PLANE; |
| } |
| |
| static INLINE void av1_init_above_context(CommonContexts *above_contexts, |
| int num_planes, int tile_row, |
| MACROBLOCKD *xd) { |
| for (int i = 0; i < num_planes; ++i) { |
| xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row]; |
| xd->above_partition_context[i] = above_contexts->partition[i][tile_row]; |
| } |
| xd->above_txfm_context = above_contexts->txfm[tile_row]; |
| } |
| |
| static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) { |
| const int num_planes = av1_num_planes(cm); |
| const CommonQuantParams *const quant_params = &cm->quant_params; |
| |
| for (int i = 0; i < num_planes; ++i) { |
| if (xd->plane[i].plane_type == PLANE_TYPE_Y) { |
| memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX, |
| sizeof(quant_params->y_dequant_QTX)); |
| memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix, |
| sizeof(quant_params->y_iqmatrix)); |
| |
| } else { |
| if (i == AOM_PLANE_U) { |
| memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX, |
| sizeof(quant_params->u_dequant_QTX)); |
| memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix, |
| sizeof(quant_params->u_iqmatrix)); |
| } else { |
| memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX, |
| sizeof(quant_params->v_dequant_QTX)); |
| memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix, |
| sizeof(quant_params->v_iqmatrix)); |
| } |
| } |
| } |
| xd->mi_stride = cm->mi_params.mi_stride; |
| xd->error_info = &cm->error; |
| cfl_init(&xd->cfl, &cm->seq_params); |
| } |
| |
| static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col, |
| const int num_planes, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| for (int i = (xd->tree_type == CHROMA_PART); i < num_planes; ++i) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| // Offset the buffer pointer |
| const int row_offset = |
| i && chroma_ref_info ? chroma_ref_info->mi_row_chroma_base : mi_row; |
| const int col_offset = |
| i && chroma_ref_info ? chroma_ref_info->mi_col_chroma_base : mi_col; |
| assert(row_offset >= 0); |
| assert(col_offset >= 0); |
| const int above_idx = col_offset; |
| const int left_idx = row_offset & MAX_MIB_MASK; |
| pd->above_entropy_context = |
| &xd->above_entropy_context[i][above_idx >> pd->subsampling_x]; |
| pd->left_entropy_context = |
| &xd->left_entropy_context[i][left_idx >> pd->subsampling_y]; |
| } |
| } |
| |
| static INLINE int calc_mi_size(int len) { |
| // len is in mi units. Align to a multiple of SBs. |
| return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2); |
| } |
| |
| static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, |
| const int num_planes, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| int i; |
| for (i = (xd->tree_type == CHROMA_PART); i < num_planes; i++) { |
| if (chroma_ref_info && i > 0) { |
| const BLOCK_SIZE plane_bsize = chroma_ref_info->bsize_base; |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| |
| xd->plane[i].width = |
| block_size_wide[plane_bsize] >> xd->plane[i].subsampling_x; |
| xd->plane[i].height = |
| block_size_high[plane_bsize] >> xd->plane[i].subsampling_y; |
| } else { |
| xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x; |
| xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y; |
| } |
| |
| xd->plane[i].width = AOMMAX(xd->plane[i].width, 4); |
| xd->plane[i].height = AOMMAX(xd->plane[i].height, 4); |
| } |
| } |
| |
| static INLINE void fetch_spatial_neighbors(MACROBLOCKD *xd) { |
| // Scan from bottom left->above right->left->above |
| for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) { |
| xd->neighbors[i] = NULL; |
| } |
| |
| int index = 0; |
| #if CONFIG_NEW_CONTEXT_MODELING |
| if (xd->bottom_left_mbmi) { |
| xd->neighbors[index++] = xd->bottom_left_mbmi; |
| if (index >= MAX_NUM_NEIGHBORS) return; |
| } |
| |
| if (xd->above_right_mbmi) { |
| xd->neighbors[index++] = xd->above_right_mbmi; |
| if (index >= MAX_NUM_NEIGHBORS) return; |
| } |
| #endif // CONFIG_NEW_CONTEXT_MODELING |
| |
| if (xd->left_mbmi) { |
| xd->neighbors[index++] = xd->left_mbmi; |
| if (index >= MAX_NUM_NEIGHBORS) return; |
| } |
| |
| if (xd->above_mbmi) { |
| xd->neighbors[index++] = xd->above_mbmi; |
| if (index >= MAX_NUM_NEIGHBORS) return; |
| } |
| } |
| |
| static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, |
| int mi_row, int bh, int mi_col, int bw, |
| int mi_rows, int mi_cols, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE); |
| xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE); |
| xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE)); |
| xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE); |
| |
| xd->mi_row = mi_row; |
| xd->mi_col = mi_col; |
| xd->mi[0]->mi_row_start = mi_row; |
| xd->mi[0]->mi_col_start = mi_col; |
| |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| xd->tile.mi_col_start = tile->mi_col_start; |
| xd->tile.mi_col_end = tile->mi_col_end; |
| xd->tile.mi_row_start = tile->mi_row_start; |
| xd->tile.mi_row_end = tile->mi_row_end; |
| #endif |
| |
| // Are edges available for intra prediction? |
| xd->up_available = (mi_row > tile->mi_row_start); |
| xd->left_available = (mi_col > tile->mi_col_start); |
| xd->chroma_up_available = xd->up_available; |
| xd->chroma_left_available = xd->left_available; |
| if (xd->up_available) { |
| xd->above_mbmi = xd->mi[-xd->mi_stride]; |
| } else { |
| xd->above_mbmi = NULL; |
| } |
| |
| if (xd->left_available) { |
| xd->left_mbmi = xd->mi[-1]; |
| } else { |
| xd->left_mbmi = NULL; |
| } |
| |
| #if CONFIG_AIMC || CONFIG_NEW_CONTEXT_MODELING |
| if (xd->up_available) { |
| xd->above_right_mbmi = xd->mi[-xd->mi_stride + bw - 1]; |
| } else { |
| xd->above_right_mbmi = NULL; |
| } |
| if (xd->left_available) { |
| xd->bottom_left_mbmi = xd->mi[-1 + xd->mi_stride * (bh - 1)]; |
| } else { |
| xd->bottom_left_mbmi = NULL; |
| } |
| #endif // CONFIG_AIMC || CONFIG_NEW_CONTEXT_MODELING |
| |
| fetch_spatial_neighbors(xd); |
| |
| if (chroma_ref_info) { |
| xd->is_chroma_ref = chroma_ref_info->is_chroma_ref; |
| xd->chroma_left_available = |
| chroma_ref_info->mi_col_chroma_base > tile->mi_col_start; |
| xd->chroma_up_available = |
| chroma_ref_info->mi_row_chroma_base > tile->mi_row_start; |
| if (xd->is_chroma_ref) { |
| // To help calculate the "above" and "left" chroma blocks, note that the |
| // current block may cover multiple luma blocks (eg, if partitioned into |
| // 4x4 luma blocks). |
| // First, find the top-left-most luma block covered by this chroma block |
| const int ss_x = xd->plane[1].subsampling_x; |
| const int ss_y = xd->plane[1].subsampling_y; |
| const int mi_row_offset = mi_row - chroma_ref_info->mi_row_chroma_base; |
| const int mi_col_offset = mi_col - chroma_ref_info->mi_col_chroma_base; |
| MB_MODE_INFO **base_mi = |
| &xd->mi[-mi_row_offset * xd->mi_stride - mi_col_offset]; |
| |
| // Then, we consider the luma region covered by the left or above 4x4 |
| // chroma prediction. We want to point to the chroma reference block in |
| // that region, which is the bottom-right-most mi unit. This leads to the |
| // following offsets: |
| MB_MODE_INFO *chroma_above_mi = |
| xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL; |
| xd->chroma_above_mbmi = chroma_above_mi; |
| |
| MB_MODE_INFO *chroma_left_mi = |
| xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL; |
| xd->chroma_left_mbmi = chroma_left_mi; |
| } |
| } else { |
| xd->is_chroma_ref = 1; |
| } |
| |
| xd->height = bh; |
| xd->width = bw; |
| |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| xd->is_last_vertical_rect = 0; |
| if (xd->width < xd->height) { |
| if (!((mi_col + xd->width) & (xd->height - 1))) { |
| xd->is_last_vertical_rect = 1; |
| } |
| } |
| |
| xd->is_first_horizontal_rect = 0; |
| if (xd->width > xd->height) |
| if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1; |
| |
| #if CONFIG_C043_MVP_IMPROVEMENTS |
| xd->is_last_horizontal_rect = 0; |
| if (xd->width > xd->height) { |
| if (!((mi_row + xd->height) & (xd->width - 1))) { |
| xd->is_last_horizontal_rect = 1; |
| } |
| } |
| |
| xd->is_first_vertical_rect = 0; |
| if (xd->width < xd->height) |
| if (!(mi_col & (xd->height - 1))) xd->is_first_vertical_rect = 1; |
| #endif // CONFIG_C043_MVP_IMPROVEMENTS |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| } |
| |
| #if CONFIG_ATC_DCTX_ALIGNED |
| // Return the inter TX context based on last position value. |
| static INLINE int get_lp2tx_ctx(TX_SIZE tx_size, int bwl, int eob) { |
| assert(eob != 0); |
| const int lim = 2; |
| const int eoby = (eob - 1) >> bwl; |
| const int eobx = (eob - 1) - (eoby << bwl); |
| const int diag = eobx + eoby; |
| const int max_diag = tx_size_wide[tx_size] + tx_size_high[tx_size] - 2; |
| int ctx_idx = 0; |
| if (diag < lim) { |
| ctx_idx = 1; |
| } else if (diag > (max_diag - lim)) { |
| ctx_idx = 2; |
| } |
| return ctx_idx; |
| } |
| #endif // CONFIG_ATC_DCTX_ALIGNED |
| |
| static INLINE int get_fsc_mode_ctx(const MACROBLOCKD *xd, const int is_key) { |
| int ctx = 0; |
| if (is_key) { |
| for (int i = 0; i < MAX_NUM_NEIGHBORS; ++i) { |
| const MB_MODE_INFO *const neighbor = xd->neighbors[i]; |
| if (neighbor != NULL) { |
| ctx += neighbor->fsc_mode[PLANE_TYPE_Y]; |
| } |
| } |
| } else { |
| ctx = 3; |
| } |
| |
| return ctx; |
| } |
| |
| static INLINE aom_cdf_prob *get_fsc_mode_cdf(const MACROBLOCKD *xd, |
| const BLOCK_SIZE bsize, |
| const int is_key) { |
| FRAME_CONTEXT *tile_ctx = xd->tile_ctx; |
| const uint8_t fsc_size_group = fsc_bsize_groups[bsize]; |
| assert(fsc_size_group < FSC_BSIZE_CONTEXTS); |
| const int ctx = get_fsc_mode_ctx(xd, is_key); |
| return tile_ctx->fsc_mode_cdf[ctx][fsc_size_group]; |
| } |
| |
| #if !CONFIG_AIMC |
| static INLINE int get_y_mode_ctx(const MB_MODE_INFO *neighbor) { |
| const PREDICTION_MODE neighbor_mode = av1_get_block_mode(neighbor); |
| return intra_mode_context[neighbor_mode]; |
| } |
| |
| static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx, |
| const MB_MODE_INFO *neighbor0, |
| const MB_MODE_INFO *neighbor1) { |
| const int neighbor0_ctx = get_y_mode_ctx(neighbor0); |
| const int neighbor1_ctx = get_y_mode_ctx(neighbor1); |
| return tile_ctx->kf_y_cdf[neighbor0_ctx][neighbor1_ctx]; |
| } |
| #endif // !CONFIG_AIMC |
| |
| static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, |
| int mi_col, BLOCK_SIZE subsize, |
| BLOCK_SIZE bsize) { |
| const int plane = xd->tree_type == CHROMA_PART; |
| PARTITION_CONTEXT *const above_ctx = |
| xd->above_partition_context[plane] + mi_col; |
| PARTITION_CONTEXT *const left_ctx = |
| xd->left_partition_context[plane] + (mi_row & MAX_MIB_MASK); |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| memset(above_ctx, partition_context_lookup[subsize].above, bw); |
| memset(left_ctx, partition_context_lookup[subsize].left, bh); |
| } |
| |
| static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int subsampling_x, int subsampling_y) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) && |
| ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x); |
| return ref_pos; |
| } |
| |
| static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf, |
| size_t element) { |
| assert(cdf != NULL); |
| return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element]; |
| } |
| |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| static INLINE void partition_gather_horz_alike(aom_cdf_prob *out, |
| const aom_cdf_prob *const in, |
| BLOCK_SIZE bsize) { |
| (void)bsize; |
| out[0] = CDF_PROB_TOP; |
| out[0] -= cdf_element_prob(in, PARTITION_HORZ); |
| out[0] -= cdf_element_prob(in, PARTITION_SPLIT); |
| out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); |
| out[0] -= cdf_element_prob(in, PARTITION_HORZ_B); |
| out[0] -= cdf_element_prob(in, PARTITION_VERT_A); |
| if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4); |
| out[0] = AOM_ICDF(out[0]); |
| out[1] = AOM_ICDF(CDF_PROB_TOP); |
| } |
| |
| static INLINE void partition_gather_vert_alike(aom_cdf_prob *out, |
| const aom_cdf_prob *const in, |
| BLOCK_SIZE bsize) { |
| (void)bsize; |
| out[0] = CDF_PROB_TOP; |
| out[0] -= cdf_element_prob(in, PARTITION_VERT); |
| out[0] -= cdf_element_prob(in, PARTITION_SPLIT); |
| out[0] -= cdf_element_prob(in, PARTITION_HORZ_A); |
| out[0] -= cdf_element_prob(in, PARTITION_VERT_A); |
| out[0] -= cdf_element_prob(in, PARTITION_VERT_B); |
| if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4); |
| out[0] = AOM_ICDF(out[0]); |
| out[1] = AOM_ICDF(CDF_PROB_TOP); |
| } |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| |
| static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, |
| int mi_col, BLOCK_SIZE subsize, |
| BLOCK_SIZE bsize, |
| PARTITION_TYPE partition) { |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| if (partition == PARTITION_NONE) { |
| assert(bsize == subsize); |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| } |
| #else |
| if (is_partition_point(bsize)) { |
| const int hbs = mi_size_wide[bsize] / 2; |
| const BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| switch (partition) { |
| case PARTITION_SPLIT: |
| if (bsize != BLOCK_8X8) break; |
| AOM_FALLTHROUGH_INTENDED; |
| case PARTITION_NONE: |
| case PARTITION_HORZ: |
| case PARTITION_VERT: |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| break; |
| case PARTITION_HORZ_A: |
| update_partition_context(xd, mi_row, mi_col, bsize2, subsize); |
| update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); |
| break; |
| case PARTITION_HORZ_B: |
| update_partition_context(xd, mi_row, mi_col, subsize, subsize); |
| update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); |
| break; |
| case PARTITION_VERT_A: |
| update_partition_context(xd, mi_row, mi_col, bsize2, subsize); |
| update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); |
| break; |
| case PARTITION_VERT_B: |
| update_partition_context(xd, mi_row, mi_col, subsize, subsize); |
| update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); |
| break; |
| case PARTITION_HORZ_4: |
| case PARTITION_VERT_4: |
| update_partition_context(xd, mi_row, mi_col, subsize, bsize); |
| break; |
| default: assert(0 && "Invalid partition type"); |
| } |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| |
| static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| const int plane = xd->tree_type == CHROMA_PART; |
| const PARTITION_CONTEXT *above_ctx = |
| xd->above_partition_context[plane] + mi_col; |
| const PARTITION_CONTEXT *left_ctx = |
| xd->left_partition_context[plane] + (mi_row & MAX_MIB_MASK); |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| assert(bsize < BLOCK_SIZES); |
| const int bsl_w = mi_size_wide_log2[bsize]; |
| const int bsl_h = mi_size_high_log2[bsize]; |
| |
| const int above = (*above_ctx >> AOMMAX(bsl_w - 1, 0)) & 1; |
| const int left = (*left_ctx >> AOMMAX(bsl_h - 1, 0)) & 1; |
| |
| return (left * 2 + above) + bsize * PARTITION_PLOFFSET; |
| #else |
| // Minimum partition point is 8x8. Offset the bsl accordingly. |
| const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8]; |
| int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1; |
| |
| assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]); |
| assert(bsl >= 0); |
| |
| return (left * 2 + above) + bsl * PARTITION_PLOFFSET; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| // Return the number of elements in the partition CDF when |
| // partitioning the (square) block with luma block size of bsize. |
| static INLINE int partition_cdf_length(BLOCK_SIZE bsize) { |
| if (bsize <= BLOCK_8X8) |
| return PARTITION_TYPES; |
| else if (bsize == BLOCK_128X128) |
| return EXT_PARTITION_TYPES - 2; |
| else |
| return EXT_PARTITION_TYPES; |
| } |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| |
| static INLINE void av1_zero_above_context(AV1_COMMON *const cm, |
| const MACROBLOCKD *xd, |
| int mi_col_start, int mi_col_end, |
| const int tile_row) { |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| const int num_planes = av1_num_planes(cm); |
| const int width = mi_col_end - mi_col_start; |
| const int aligned_width = |
| ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2); |
| const int offset_y = mi_col_start; |
| const int width_y = aligned_width; |
| const int offset_uv = offset_y >> seq_params->subsampling_x; |
| const int width_uv = width_y >> seq_params->subsampling_x; |
| CommonContexts *const above_contexts = &cm->above_contexts; |
| |
| av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y); |
| if (num_planes > 1) { |
| if (above_contexts->entropy[1][tile_row] && |
| above_contexts->entropy[2][tile_row]) { |
| av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv, |
| width_uv); |
| av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv, |
| width_uv); |
| } else { |
| aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid value of planes"); |
| } |
| } |
| av1_zero_array(above_contexts->partition[0][tile_row] + mi_col_start, |
| aligned_width); |
| if (num_planes > 1) { |
| if (above_contexts->partition[1][tile_row] && |
| above_contexts->partition[2][tile_row]) { |
| av1_zero_array(above_contexts->partition[1][tile_row] + mi_col_start, |
| aligned_width); |
| av1_zero_array(above_contexts->partition[2][tile_row] + mi_col_start, |
| aligned_width); |
| } else { |
| aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME, |
| "Invalid value of planes"); |
| } |
| } |
| |
| memset(above_contexts->txfm[tile_row] + mi_col_start, |
| tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT)); |
| } |
| |
| static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) { |
| av1_zero(xd->left_entropy_context); |
| av1_zero(xd->left_partition_context); |
| |
| memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST], |
| sizeof(xd->left_txfm_context_buffer)); |
| } |
| |
| // Disable array-bounds checks as the TX_SIZE enum contains values larger than |
| // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround |
| // infeasible. The assert is enough for static analysis and this or other tools |
| // asan, valgrind would catch oob access at runtime. |
| #if defined(__GNUC__) && __GNUC__ >= 4 |
| #pragma GCC diagnostic ignored "-Warray-bounds" |
| #endif |
| |
| #if defined(__GNUC__) && __GNUC__ >= 4 |
| #pragma GCC diagnostic warning "-Warray-bounds" |
| #endif |
| |
| static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) { |
| int i; |
| for (i = 0; i < len; ++i) txfm_ctx[i] = txs; |
| } |
| |
| static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip, |
| const MACROBLOCKD *xd) { |
| uint8_t bw = tx_size_wide[tx_size]; |
| uint8_t bh = tx_size_high[tx_size]; |
| |
| if (skip) { |
| bw = n4_w * MI_SIZE; |
| bh = n4_h * MI_SIZE; |
| } |
| |
| set_txfm_ctx(xd->above_txfm_context, bw, n4_w); |
| set_txfm_ctx(xd->left_txfm_context, bh, n4_h); |
| } |
| |
| static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params, |
| int mi_row, int mi_col) { |
| return mi_row * mi_params->mi_stride + mi_col; |
| } |
| |
| static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params, |
| int mi_row, int mi_col) { |
| const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize]; |
| const int mi_alloc_row = mi_row / mi_alloc_size_1d; |
| const int mi_alloc_col = mi_col / mi_alloc_size_1d; |
| |
| return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col; |
| } |
| |
| // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi. |
| static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params, |
| MACROBLOCKD *const xd, int mi_row, int mi_col |
| #if CONFIG_C071_SUBBLK_WARPMV |
| , |
| int x_inside_boundary, int y_inside_boundary |
| #endif // CONFIG_C071_SUBBLK_WARPMV |
| ) { |
| // 'mi_grid_base' should point to appropriate memory in 'mi'. |
| const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); |
| const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col); |
| mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx]; |
| // 'xd->mi' should point to an offset in 'mi_grid_base'; |
| xd->mi = mi_params->mi_grid_base + mi_grid_idx; |
| #if CONFIG_C071_SUBBLK_WARPMV |
| mi_params->submi_grid_base[mi_grid_idx] = |
| &mi_params->mi_alloc_sub[mi_alloc_idx]; |
| xd->submi = mi_params->submi_grid_base + mi_grid_idx; |
| for (int y = 0; y < y_inside_boundary; y++) { |
| for (int x = 0; x < x_inside_boundary; x++) { |
| if (x == 0 && y == 0) continue; |
| const int mi_alloc_sub_idx = |
| get_alloc_mi_idx(mi_params, mi_row + y, mi_col + x); |
| xd->submi[y * mi_params->mi_stride + x] = |
| &mi_params->mi_alloc_sub[mi_alloc_sub_idx]; |
| } |
| } |
| #endif // CONFIG_C071_SUBBLK_WARPMV |
| // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'. |
| if (xd->tree_type != CHROMA_PART) { |
| xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx; |
| } |
| xd->tx_type_map_stride = mi_params->mi_stride; |
| #if CONFIG_CROSS_CHROMA_TX |
| if (xd->tree_type != LUMA_PART) { |
| xd->cctx_type_map = mi_params->cctx_type_map + mi_grid_idx; |
| } |
| xd->cctx_type_map_stride = mi_params->mi_stride; |
| #endif // CONFIG_CROSS_CHROMA_TX |
| } |
| |
| // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi. |
| static INLINE void set_blk_offsets(const CommonModeInfoParams *const mi_params, |
| MACROBLOCKD *const xd, int mi_row, |
| int mi_col, int blk_row, int blk_col) { |
| // 'mi_grid_base' should point to appropriate memory in 'mi'. |
| const int mi_grid_idx = |
| get_mi_grid_idx(mi_params, mi_row + blk_row, mi_col + blk_col); |
| const int mi_alloc_idx = |
| get_alloc_mi_idx(mi_params, mi_row + blk_row, mi_col + blk_col); |
| mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx]; |
| // 'xd->mi' should point to an offset in 'mi_grid_base'; |
| xd->mi[mi_params->mi_stride * blk_row + blk_col] = |
| mi_params->mi_grid_base[mi_grid_idx]; |
| xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx; |
| xd->tx_type_map_stride = mi_params->mi_stride; |
| #if CONFIG_CROSS_CHROMA_TX |
| xd->cctx_type_map = mi_params->cctx_type_map + mi_grid_idx; |
| xd->cctx_type_map_stride = mi_params->mi_stride; |
| #endif // CONFIG_CROSS_CHROMA_TX |
| } |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| // The blocksize above which chroma and luma partitions will stayed coupled. |
| // Currently this is set to BLOCK_128X128 (e.g. chroma always follows luma at |
| // BLOCK_128X128, but can be de-coupled later). |
| static AOM_INLINE bool is_bsize_above_decoupled_thresh(BLOCK_SIZE bsize) { |
| return bsize == BLOCK_128X128; |
| } |
| |
| // Whether the partition tree contains a block size that is strictly smaller |
| // than width x height. |
| static AOM_INLINE bool tree_has_bsize_smaller_than(const PARTITION_TREE *ptree, |
| int width, int height) { |
| if (!ptree || ptree->partition == PARTITION_INVALID) { |
| return false; |
| } |
| const BLOCK_SIZE bsize = ptree->bsize; |
| if (ptree->partition == PARTITION_NONE) { |
| return block_size_wide[bsize] < width && block_size_high[bsize] < height; |
| } |
| for (int idx = 0; idx < 4; idx++) { |
| if (tree_has_bsize_smaller_than(ptree->sub_tree[idx], width, height)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static AOM_INLINE bool is_luma_chroma_share_same_partition( |
| TREE_TYPE tree_type, const PARTITION_TREE *ptree_luma, BLOCK_SIZE bsize) { |
| if (tree_type != CHROMA_PART || !ptree_luma || |
| !is_bsize_above_decoupled_thresh(bsize)) { |
| return false; |
| } |
| if (ptree_luma->partition == PARTITION_NONE) { |
| return false; |
| } |
| // For now, follow the logic in baseline SDP. i.e. we will force the current |
| // chroma partition to follow the luma split iff all the luma subblocks |
| // split further into blocks that's strictly smaller than half of the current |
| // bsize. |
| const int width_threshold = block_size_wide[bsize] / 2, |
| height_threshold = block_size_high[bsize] / 2; |
| for (int idx = 0; idx < 4; idx++) { |
| const PARTITION_TREE *sub_tree = ptree_luma->sub_tree[idx]; |
| if (sub_tree && sub_tree->partition != PARTITION_INVALID) { |
| if (!tree_has_bsize_smaller_than(sub_tree, width_threshold, |
| height_threshold)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| static INLINE int check_is_chroma_size_valid( |
| TREE_TYPE tree_type, PARTITION_TYPE partition, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int ss_x, int ss_y, |
| const CHROMA_REF_INFO *parent_chroma_ref_info) { |
| if (tree_type == LUMA_PART) { |
| // If we handling luma tree and the current luma tree is decoupled from |
| // chroma tree, we don't need to concern with chroma bsize. But if they are |
| // still coupled, then we need to make sure the corresponding chroma bsize |
| // is valid. |
| if (is_bsize_above_decoupled_thresh(bsize)) { |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| if (subsize == BLOCK_INVALID) { |
| return false; |
| } |
| return get_plane_block_size(subsize, ss_x, ss_y) != BLOCK_INVALID; |
| } |
| |
| return true; |
| } |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| int is_valid = 0; |
| if (subsize < BLOCK_SIZES_ALL) { |
| CHROMA_REF_INFO tmp_chroma_ref_info = { 1, 0, mi_row, |
| mi_col, subsize, subsize }; |
| set_chroma_ref_info(mi_row, mi_col, 0, subsize, &tmp_chroma_ref_info, |
| parent_chroma_ref_info, bsize, partition, ss_x, ss_y); |
| is_valid = get_plane_block_size(tmp_chroma_ref_info.bsize_base, ss_x, |
| ss_y) != BLOCK_INVALID; |
| } |
| return is_valid; |
| } |
| |
| // Returns true if partition is implied for blocks near bottom/right |
| // border, and not signaled in the bistream. And when it returns true, it also |
| // sets `implied_partition` appropriately. |
| // Note: `implied_partition` can be passed NULL. |
| static AOM_INLINE bool is_partition_implied_at_boundary( |
| const CommonModeInfoParams *const mi_params, TREE_TYPE tree_type, bool ss_x, |
| bool ss_y, int mi_row, int mi_col, BLOCK_SIZE bsize, |
| const CHROMA_REF_INFO *chroma_ref_info, PARTITION_TYPE *implied_partition) { |
| if (bsize >= BLOCK_SIZES_ALL) return false; |
| bool is_implied = false; |
| PARTITION_TYPE tmp_implied_partition = PARTITION_INVALID; |
| if (implied_partition) *implied_partition = PARTITION_INVALID; |
| |
| const int hbs_w = mi_size_wide[bsize] / 2; |
| const int hbs_h = mi_size_high[bsize] / 2; |
| const int has_rows = (mi_row + hbs_h) < mi_params->mi_rows; |
| const int has_cols = (mi_col + hbs_w) < mi_params->mi_cols; |
| |
| if (has_rows && has_cols) return false; // Not at boundary. |
| assert(!has_rows || !has_cols); |
| |
| if (is_square_block(bsize)) { |
| is_implied = true; |
| if (has_rows && !has_cols) { |
| tmp_implied_partition = PARTITION_VERT; |
| } else { |
| tmp_implied_partition = PARTITION_HORZ; |
| } |
| } else if (is_tall_block(bsize)) { |
| // Force PARTITION_HORZ if |
| // * We are missing rows, OR |
| // * We are missing cols and PARTITION_VERT will produce 1:4 block that is |
| // still missing cols. |
| if (!has_rows) { |
| is_implied = true; |
| tmp_implied_partition = PARTITION_HORZ; |
| } else { |
| assert(!has_cols); |
| const bool sub_has_cols = |
| (mi_col + mi_size_wide[bsize] / 4) < mi_params->mi_cols; |
| if (mi_size_wide[bsize] >= 4 && !sub_has_cols) { |
| is_implied = true; |
| tmp_implied_partition = PARTITION_HORZ; |
| } |
| } |
| } else { |
| assert(is_wide_block(bsize)); |
| // Force PARTITION_VERT if |
| // * We are missing cols, OR |
| // * We are missing rows and PARTITION_HORZ will produce 1:4 block that is |
| // still missing rows. |
| if (!has_cols) { |
| is_implied = true; |
| tmp_implied_partition = PARTITION_VERT; |
| } else { |
| assert(!has_rows); |
| const bool sub_has_rows = |
| (mi_row + mi_size_high[bsize] / 4) < mi_params->mi_rows; |
| if (mi_size_high[bsize] >= 4 && !sub_has_rows) { |
| is_implied = true; |
| tmp_implied_partition = PARTITION_VERT; |
| } |
| } |
| } |
| if (is_implied) { |
| assert(tmp_implied_partition == PARTITION_HORZ || |
| tmp_implied_partition == PARTITION_VERT); |
| if (!check_is_chroma_size_valid(tree_type, tmp_implied_partition, bsize, |
| mi_row, mi_col, ss_x, ss_y, |
| chroma_ref_info)) { |
| is_implied = false; |
| tmp_implied_partition = PARTITION_INVALID; |
| } |
| } |
| assert(IMPLIES(is_implied && implied_partition, |
| tmp_implied_partition == PARTITION_HORZ || |
| tmp_implied_partition == PARTITION_VERT)); |
| if (implied_partition) { |
| *implied_partition = tmp_implied_partition; |
| } |
| return is_implied; |
| } |
| |
| #else |
| // Return the number of sub-blocks whose width and height are |
| // less than half of the parent block. |
| static INLINE int get_luma_split_flag( |
| BLOCK_SIZE bsize, const CommonModeInfoParams *const mi_params, int mi_row, |
| int mi_col) { |
| int luma_split_flag = 0; |
| int width_unit = mi_size_wide[bsize]; |
| int height_unit = mi_size_high[bsize]; |
| int parent_block_width = block_size_wide[bsize]; |
| const int x_inside_boundary = AOMMIN(width_unit, mi_params->mi_cols - mi_col); |
| const int y_inside_boundary = |
| AOMMIN(height_unit, mi_params->mi_rows - mi_row); |
| int x_mis_half = x_inside_boundary >> 1; |
| int y_mis_half = y_inside_boundary >> 1; |
| int half_parent_width = parent_block_width >> 1; |
| for (int y_district = 0; y_district < 2; y_district++) { |
| for (int x_district = 0; x_district < 2; x_district++) { |
| int find_small_block = 0; |
| for (int y = 0; y < y_mis_half; ++y) { |
| for (int x = 0; x < x_mis_half; ++x) { |
| int y_pos = y_district * y_mis_half + y; |
| int x_pos = x_district * x_mis_half + x; |
| MB_MODE_INFO *temp_mi = &mi_params->mi_alloc[get_alloc_mi_idx( |
| mi_params, mi_row + y_pos, mi_col + x_pos)]; |
| BLOCK_SIZE temp_size = temp_mi->sb_type[PLANE_TYPE_Y]; |
| if (block_size_wide[temp_size] < half_parent_width && |
| block_size_high[temp_size] < half_parent_width) { |
| find_small_block++; |
| } |
| } |
| } |
| if (find_small_block > 0) luma_split_flag++; |
| } |
| } |
| return luma_split_flag; |
| } |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx, |
| TXFM_CONTEXT *left_ctx, |
| TX_SIZE tx_size, TX_SIZE txb_size) { |
| BLOCK_SIZE bsize = txsize_to_bsize[txb_size]; |
| int bh = mi_size_high[bsize]; |
| int bw = mi_size_wide[bsize]; |
| uint8_t txw = tx_size_wide[tx_size]; |
| uint8_t txh = tx_size_high[tx_size]; |
| int i; |
| for (i = 0; i < bh; ++i) left_ctx[i] = txh; |
| for (i = 0; i < bw; ++i) above_ctx[i] = txw; |
| } |
| |
| static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) { |
| switch (tx_dim) { |
| case 128: |
| case 64: return TX_64X64; break; |
| case 32: return TX_32X32; break; |
| case 16: return TX_16X16; break; |
| case 8: return TX_8X8; break; |
| default: return TX_4X4; |
| } |
| } |
| |
| static INLINE TX_SIZE get_tx_size(int width, int height) { |
| if (width == height) { |
| return get_sqr_tx_size(width); |
| } |
| if (width < height) { |
| if (width + width == height) { |
| switch (width) { |
| case 4: return (height == 8) ? TX_4X8 : TX_INVALID; |
| case 8: return (height == 16) ? TX_8X16 : TX_INVALID; |
| case 16: return (height == 32) ? TX_16X32 : TX_INVALID; |
| case 32: return (height == 64) ? TX_32X64 : TX_INVALID; |
| } |
| } else { |
| switch (width) { |
| case 4: return (height == 16) ? TX_4X16 : TX_INVALID; |
| case 8: return (height == 32) ? TX_8X32 : TX_INVALID; |
| case 16: return (height == 64) ? TX_16X64 : TX_INVALID; |
| } |
| } |
| } else { |
| if (height + height == width) { |
| switch (height) { |
| case 4: return (width == 8) ? TX_8X4 : TX_INVALID; |
| case 8: return (width == 16) ? TX_16X8 : TX_INVALID; |
| case 16: return (width == 32) ? TX_32X16 : TX_INVALID; |
| case 32: return (width == 64) ? TX_64X32 : TX_INVALID; |
| } |
| } else { |
| switch (height) { |
| case 4: return (width == 16) ? TX_16X4 : TX_INVALID; |
| case 8: return (width == 32) ? TX_32X8 : TX_INVALID; |
| case 16: return (width == 64) ? TX_64X16 : TX_INVALID; |
| } |
| } |
| } |
| return TX_INVALID; |
| } |
| |
| #if CONFIG_NEW_TX_PARTITION |
| #define MAX_TX_PARTITIONS 4 |
| typedef struct { |
| int rows[MAX_TX_PARTITIONS]; |
| int cols[MAX_TX_PARTITIONS]; |
| int n_partitions; |
| } TX_PARTITION_BIT_SHIFT; |
| |
| // Defines the number of bits to use to divide a block's dimensions |
| // to create the tx sizes in each partition. |
| // Keep square and rectangular separate for now, but we can potentially |
| // merge them in the future. |
| static const TX_PARTITION_BIT_SHIFT |
| partition_shift_bits[2][TX_PARTITION_TYPES] = { |
| // Square |
| { |
| { { 0 }, { 0 }, 1 }, // TX_PARTITION_NONE |
| { { 1, 1, 1, 1 }, { 1, 1, 1, 1 }, 4 }, // TX_PARTITION_SPLIT |
| { { 1, 1 }, { 0, 0 }, 2 }, // TX_PARTITION_HORZ |
| { { 0, 0 }, { 1, 1 }, 2 }, // TX_PARTITION_VERT |
| }, |
| // Rectangular |
| { |
| { { 0 }, { 0 }, 1 }, // TX_PARTITION_NONE |
| { { 1, 1, 1, 1 }, { 1, 1, 1, 1 }, 4 }, // TX_PARTITION_SPLIT |
| { { 1, 1 }, { 0, 0 }, 2 }, // TX_PARTITION_HORZ |
| { { 0, 0 }, { 1, 1 }, 2 }, // TX_PARTITION_VERT |
| }, |
| }; |
| |
| static INLINE int get_tx_partition_sizes(TX_PARTITION_TYPE partition, |
| TX_SIZE max_tx_size, |
| TX_SIZE sub_txs[MAX_TX_PARTITIONS]) { |
| const int txw = tx_size_wide[max_tx_size]; |
| const int txh = tx_size_high[max_tx_size]; |
| int sub_txw = 0, sub_txh = 0; |
| const TX_PARTITION_BIT_SHIFT subtx_shift = |
| partition_shift_bits[is_rect_tx(max_tx_size)][partition]; |
| const int n_partitions = subtx_shift.n_partitions; |
| for (int i = 0; i < n_partitions; i++) { |
| sub_txw = txw >> subtx_shift.cols[i]; |
| sub_txh = txh >> subtx_shift.rows[i]; |
| sub_txs[i] = get_tx_size(sub_txw, sub_txh); |
| assert(sub_txs[i] != TX_INVALID); |
| } |
| return n_partitions; |
| } |
| |
| /* |
| Gets the type to signal for the 4 way split tree in the tx partition |
| type signaling. |
| */ |
| static INLINE int get_split4_partition(TX_PARTITION_TYPE partition) { |
| switch (partition) { |
| case TX_PARTITION_NONE: |
| case TX_PARTITION_SPLIT: |
| case TX_PARTITION_VERT: |
| case TX_PARTITION_HORZ: return partition; |
| default: assert(0); |
| } |
| assert(0); |
| return 0; |
| } |
| |
| static INLINE int allow_tx_horz_split(TX_SIZE max_tx_size) { |
| const int sub_txw = tx_size_wide[max_tx_size]; |
| const int sub_txh = tx_size_high[max_tx_size] >> 1; |
| const TX_SIZE sub_tx_size = get_tx_size(sub_txw, sub_txh); |
| return sub_tx_size != TX_INVALID; |
| } |
| |
| static INLINE int allow_tx_vert_split(TX_SIZE max_tx_size) { |
| const int sub_txw = tx_size_wide[max_tx_size] >> 1; |
| const int sub_txh = tx_size_high[max_tx_size]; |
| const TX_SIZE sub_tx_size = get_tx_size(sub_txw, sub_txh); |
| return sub_tx_size != TX_INVALID; |
| } |
| |
| static INLINE int allow_tx_horz4_split(TX_SIZE max_tx_size) { |
| const int sub_txw = tx_size_wide[max_tx_size]; |
| const int sub_txh = tx_size_high[max_tx_size] >> 2; |
| const TX_SIZE sub_tx_size = get_tx_size(sub_txw, sub_txh); |
| return sub_tx_size != TX_INVALID; |
| } |
| |
| static INLINE int allow_tx_vert4_split(TX_SIZE max_tx_size) { |
| const int sub_txw = tx_size_wide[max_tx_size] >> 2; |
| const int sub_txh = tx_size_high[max_tx_size]; |
| const TX_SIZE sub_tx_size = get_tx_size(sub_txw, sub_txh); |
| return sub_tx_size != TX_INVALID; |
| } |
| |
| static INLINE int use_tx_partition(TX_PARTITION_TYPE partition, |
| TX_SIZE max_tx_size) { |
| const int allow_horz = allow_tx_horz_split(max_tx_size); |
| const int allow_vert = allow_tx_vert_split(max_tx_size); |
| switch (partition) { |
| case TX_PARTITION_NONE: return 1; |
| case TX_PARTITION_SPLIT: return (allow_horz && allow_vert); |
| case TX_PARTITION_HORZ: return allow_horz; |
| case TX_PARTITION_VERT: return allow_vert; |
| default: assert(0); |
| } |
| assert(0); |
| return 0; |
| } |
| |
| static INLINE int txfm_partition_split4_inter_context( |
| const TXFM_CONTEXT *const above_ctx, const TXFM_CONTEXT *const left_ctx, |
| BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| const uint8_t txw = tx_size_wide[tx_size]; |
| const uint8_t txh = tx_size_high[tx_size]; |
| const int above = *above_ctx < txw; |
| const int left = *left_ctx < txh; |
| int category = TXFM_PARTITION_INTER_CONTEXTS; |
| |
| // dummy return, not used by others. |
| if (tx_size <= TX_4X4) return 0; |
| |
| TX_SIZE max_tx_size = |
| get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])); |
| |
| if (max_tx_size >= TX_8X8) { |
| category = |
| (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) + |
| (TX_SIZES - 1 - max_tx_size) * 2; |
| } |
| assert(category != TXFM_PARTITION_INTER_CONTEXTS); |
| return category * 3 + above + left; |
| } |
| |
| #else |
| static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx, |
| const TXFM_CONTEXT *const left_ctx, |
| BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| const uint8_t txw = tx_size_wide[tx_size]; |
| const uint8_t txh = tx_size_high[tx_size]; |
| const int above = *above_ctx < txw; |
| const int left = *left_ctx < txh; |
| int category = TXFM_PARTITION_CONTEXTS; |
| |
| // dummy return, not used by others. |
| if (tx_size <= TX_4X4) return 0; |
| |
| TX_SIZE max_tx_size = |
| get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize])); |
| |
| if (max_tx_size >= TX_8X8) { |
| category = |
| (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) + |
| (TX_SIZES - 1 - max_tx_size) * 2; |
| } |
| assert(category != TXFM_PARTITION_CONTEXTS); |
| return category * 3 + above + left; |
| } |
| #endif // CONFIG_NEW_TX_PARTITION |
| |
| // Compute the next partition in the direction of the sb_type stored in the mi |
| // array, starting with bsize. |
| static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm, |
| const int plane_type, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| const CommonModeInfoParams *const mi_params = &cm->mi_params; |
| if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) |
| return PARTITION_INVALID; |
| |
| const int offset = mi_row * mi_params->mi_stride + mi_col; |
| MB_MODE_INFO **mi = mi_params->mi_grid_base + offset; |
| const BLOCK_SIZE subsize = mi[0]->sb_type[plane_type]; |
| |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| if (subsize == bsize) return PARTITION_NONE; |
| |
| const int bhigh = mi_size_high[bsize]; |
| const int bwide = mi_size_wide[bsize]; |
| const int sshigh = mi_size_high[subsize]; |
| const int sswide = mi_size_wide[subsize]; |
| |
| if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows && |
| mi_col + bhigh / 2 < mi_params->mi_cols) { |
| // In this case, the block might be using an extended partition |
| // type. |
| const MB_MODE_INFO *const mbmi_right = mi[bwide / 2]; |
| const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride]; |
| |
| if (sswide == bwide) { |
| // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or |
| // PARTITION_HORZ_B. To distinguish the latter two, check if the lower |
| // half was split. |
| if (sshigh * 4 == bhigh) { |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| return PARTITION_HORZ_3; |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| return PARTITION_HORZ_4; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| assert(sshigh * 2 == bhigh); |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| if (mbmi_below->sb_type[plane_type] == subsize) return PARTITION_HORZ; |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| else |
| return PARTITION_HORZ_B; |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| } else if (sshigh == bhigh) { |
| // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or |
| // PARTITION_VERT_B. To distinguish the latter two, check if the right |
| // half was split. |
| if (sswide * 4 == bwide) { |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| return PARTITION_VERT_3; |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| return PARTITION_VERT_4; |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| } |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| assert(sswide * 2 == bhigh); |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| if (mbmi_right->sb_type[plane_type] == subsize) return PARTITION_VERT; |
| |
| #if !CONFIG_EXT_RECUR_PARTITIONS |
| else |
| return PARTITION_VERT_B; |
| #endif // !CONFIG_EXT_RECUR_PARTITIONS |
| } else { |
| // Smaller width and smaller height. Might be PARTITION_SPLIT or could be |
| // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both |
| // dimensions, we immediately know this is a split (which will recurse to |
| // get to subsize). Otherwise look down and to the right. With |
| // PARTITION_VERT_A, the right block will have height bhigh; with |
| // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise |
| // it's PARTITION_SPLIT. |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| if (sswide * 2 != bwide || sshigh * 2 != bhigh) { |
| if (mi_size_wide[mbmi_below->sb_type[plane_type]] < bwide && |
| mi_size_high[mbmi_right->sb_type[plane_type]] < bhigh) |
| return PARTITION_SPLIT; |
| } |
| #else // CONFIG_EXT_RECUR_PARTITIONS |
| if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT; |
| if (mi_size_wide[mbmi_below->sb_type[plane_type]] == bwide) |
| return PARTITION_HORZ_A; |
| if (mi_size_high[mbmi_right->sb_type<
|