| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 3-Clause Clear License |
| * and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear |
| * License was not distributed with this source code in the LICENSE file, you |
| * can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the |
| * Alliance for Open Media Patent License 1.0 was not distributed with this |
| * source code in the PATENTS file, you can obtain it at |
| * aomedia.org/license/patent-license/. |
| */ |
| |
| #ifndef AOM_AV1_COMMON_RECONINTER_H_ |
| #define AOM_AV1_COMMON_RECONINTER_H_ |
| |
| #include "av1/common/av1_common_int.h" |
| #include "av1/common/convolve.h" |
| #include "av1/common/filter.h" |
| #include "av1/common/warped_motion.h" |
| #include "aom/aom_integer.h" |
| |
| #if CONFIG_WEDGE_MOD_EXT |
| #include "av1/encoder/block.h" |
| #endif |
| |
| // Work out how many pixels off the edge of a reference frame we're allowed |
| // to go when forming an inter prediction. |
| // The outermost row/col of each referernce frame is extended by |
| // (AOM_BORDER_IN_PIXELS >> subsampling) pixels, but we need to keep |
| // at least AOM_INTERP_EXTEND pixels within that to account for filtering. |
| // |
| // We have to break this up into two macros to keep both clang-format and |
| // tools/lint-hunks.py happy. |
| #define AOM_LEFT_TOP_MARGIN_PX(subsampling) \ |
| ((AOM_BORDER_IN_PIXELS >> subsampling) - AOM_INTERP_EXTEND) |
| #define AOM_LEFT_TOP_MARGIN_SCALED(subsampling) \ |
| (AOM_LEFT_TOP_MARGIN_PX(subsampling) << SCALE_SUBPEL_BITS) |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #if !CONFIG_WEDGE_MOD_EXT |
| #define MAX_WEDGE_TYPES 16 |
| #endif |
| |
| #if CONFIG_WEDGE_MOD_EXT |
| #define MAX_WEDGE_SIZE_LOG2 6 // 64x64 |
| #else |
| #define MAX_WEDGE_SIZE_LOG2 5 // 32x32 |
| #endif |
| #define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2) |
| #define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE) |
| |
| #define WEDGE_WEIGHT_BITS 6 |
| |
| #define WEDGE_NONE -1 |
| |
| #if CONFIG_WEDGE_MOD_EXT |
| static const int wedge_angle_dist_2_index[WEDGE_ANGLES][NUM_WEDGE_DIST] = { |
| { -1, 0, 1, 2 }, // WEDGE_0 |
| { 3, 4, 5, 6 }, // WEDGE_14 |
| { 7, 8, 9, 10 }, // WEDGE_27 |
| { 11, 12, 13, 14 }, // WEDGE_45 |
| { 15, 16, 17, 18 }, // WEDGE_63 |
| { -1, 19, 20, 21 }, // WEDGE_90 |
| { 22, 23, 24, 25 }, // WEDGE_117 |
| { 26, 27, 28, 29 }, // WEDGE_135 |
| { 30, 31, 32, 33 }, // WEDGE_153 |
| { 34, 35, 36, 37 }, // WEDGE_166 |
| { -1, 38, 39, 40 }, // WEDGE_180 |
| { -1, 41, 42, 43 }, // WEDGE_194 |
| { -1, 44, 45, 46 }, // WEDGE_207 |
| { -1, 47, 48, 49 }, // WEDGE_225 |
| { -1, 50, 51, 52 }, // WEDGE_243 |
| { -1, 53, 54, 55 }, // WEDGE_270 |
| { -1, 56, 57, 58 }, // WEDGE_297 |
| { -1, 59, 60, 61 }, // WEDGE_315 |
| { -1, 62, 63, 64 }, // WEDGE_333 |
| { -1, 65, 66, 67 }, // WEDGE_346 |
| }; |
| |
| static const int wedge_index_2_angle[MAX_WEDGE_TYPES] = { |
| WEDGE_0, WEDGE_0, WEDGE_0, // WEDGE_0 |
| WEDGE_14, WEDGE_14, WEDGE_14, WEDGE_14, // WEDGE_14 |
| WEDGE_27, WEDGE_27, WEDGE_27, WEDGE_27, // WEDGE_27 |
| WEDGE_45, WEDGE_45, WEDGE_45, WEDGE_45, // WEDGE_45 |
| WEDGE_63, WEDGE_63, WEDGE_63, WEDGE_63, // WEDGE_63 |
| WEDGE_90, WEDGE_90, WEDGE_90, // WEDGE_90 |
| WEDGE_117, WEDGE_117, WEDGE_117, WEDGE_117, // WEDGE_117 |
| WEDGE_135, WEDGE_135, WEDGE_135, WEDGE_135, // WEDGE_135 |
| WEDGE_153, WEDGE_153, WEDGE_153, WEDGE_153, // WEDGE_153 |
| WEDGE_166, WEDGE_166, WEDGE_166, WEDGE_166, // WEDGE_166 |
| WEDGE_180, WEDGE_180, WEDGE_180, // WEDGE_180 |
| WEDGE_194, WEDGE_194, WEDGE_194, // WEDGE_194 |
| WEDGE_207, WEDGE_207, WEDGE_207, // WEDGE_207 |
| WEDGE_225, WEDGE_225, WEDGE_225, // WEDGE_225 |
| WEDGE_243, WEDGE_243, WEDGE_243, // WEDGE_243 |
| WEDGE_270, WEDGE_270, WEDGE_270, // WEDGE_270 |
| WEDGE_297, WEDGE_297, WEDGE_297, // WEDGE_297 |
| WEDGE_315, WEDGE_315, WEDGE_315, // WEDGE_315 |
| WEDGE_333, WEDGE_333, WEDGE_333, // WEDGE_333 |
| WEDGE_346, WEDGE_346, WEDGE_346 // WEDGE_346 |
| }; |
| |
| static const int wedge_index_2_dist[MAX_WEDGE_TYPES] = { |
| 1, 2, 3, // WEDGE_0 |
| 0, 1, 2, 3, // WEDGE_14 |
| 0, 1, 2, 3, // WEDGE_27 |
| 0, 1, 2, 3, // WEDGE_45 |
| 0, 1, 2, 3, // WEDGE_63 |
| 1, 2, 3, // WEDGE_90 |
| 0, 1, 2, 3, // WEDGE_117 |
| 0, 1, 2, 3, // WEDGE_135 |
| 0, 1, 2, 3, // WEDGE_153 |
| 0, 1, 2, 3, // WEDGE_166 |
| 1, 2, 3, // WEDGE_180 |
| 1, 2, 3, // WEDGE_194 |
| 1, 2, 3, // WEDGE_207 |
| 1, 2, 3, // WEDGE_225 |
| 1, 2, 3, // WEDGE_243 |
| 1, 2, 3, // WEDGE_270 |
| 1, 2, 3, // WEDGE_297 |
| 1, 2, 3, // WEDGE_315 |
| 1, 2, 3, // WEDGE_333 |
| 1, 2, 3, // WEDGE_346 |
| }; |
| #endif // CONFIG_WEDGE_MOD_EXT |
| |
| #if CONFIG_BAWP |
| #define BAWP_REF_LINES 1 |
| #endif |
| |
| // Angles are with respect to horizontal anti-clockwise |
| #if !CONFIG_WEDGE_MOD_EXT |
| enum { |
| WEDGE_HORIZONTAL = 0, |
| WEDGE_VERTICAL = 1, |
| WEDGE_OBLIQUE27 = 2, |
| WEDGE_OBLIQUE63 = 3, |
| WEDGE_OBLIQUE117 = 4, |
| WEDGE_OBLIQUE153 = 5, |
| WEDGE_DIRECTIONS |
| } UENUM1BYTE(WedgeDirectionType); |
| #endif |
| |
| // 3-tuple: {direction, x_offset, y_offset} |
| typedef struct { |
| WedgeDirectionType direction; |
| int x_offset; |
| int y_offset; |
| } wedge_code_type; |
| |
| typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES]; |
| |
| typedef struct { |
| int wedge_types; |
| const wedge_code_type *codebook; |
| uint8_t *signflip; |
| wedge_masks_type *masks; |
| } wedge_params_type; |
| |
| extern const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL]; |
| |
| typedef struct SubpelParams { |
| int xs; |
| int ys; |
| int subpel_x; |
| int subpel_y; |
| } SubpelParams; |
| |
| struct build_prediction_ctxt { |
| const AV1_COMMON *cm; |
| uint16_t **tmp_buf; |
| int *tmp_width; |
| int *tmp_height; |
| int *tmp_stride; |
| int mb_to_far_edge; |
| void *dcb; // Decoder-only coding block. |
| }; |
| |
| typedef enum InterPredMode { |
| TRANSLATION_PRED, |
| WARP_PRED, |
| } InterPredMode; |
| |
| typedef enum InterCompMode { |
| UNIFORM_SINGLE, |
| UNIFORM_COMP, |
| MASK_COMP, |
| } InterCompMode; |
| |
| typedef struct InterPredParams { |
| InterPredMode mode; |
| InterCompMode comp_mode; |
| WarpedMotionParams warp_params; |
| ConvolveParams conv_params; |
| const InterpFilterParams *interp_filter_params[2]; |
| int block_width; |
| int block_height; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // In optical flow refinement, block_width and block_height will pass the |
| // subblock size into av1_make_inter_predictor, while orig_block_width and |
| // orig_block_height keep the original block size that is needed by |
| // calc_subpel_params_func |
| int orig_block_width; |
| int orig_block_height; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| int pix_row; |
| int pix_col; |
| struct buf_2d ref_frame_buf; |
| int subsampling_x; |
| int subsampling_y; |
| const struct scale_factors *scale_factors; |
| int bit_depth; |
| INTERINTER_COMPOUND_DATA mask_comp; |
| BLOCK_SIZE sb_type; |
| int is_intrabc; |
| #if CONFIG_TIP |
| /** |
| * \name Distance of this block from frame edges in 1/8th pixel units. |
| */ |
| /**@{*/ |
| int dist_to_left_edge; /*!< Distance from left edge */ |
| int dist_to_right_edge; /*!< Distance from right edge */ |
| int dist_to_top_edge; /*!< Distance from top edge */ |
| int dist_to_bottom_edge; /*!< Distance from bottom edge */ |
| #endif // CONFIG_TIP |
| } InterPredParams; |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| |
| // Apply bilinear and bicubic interpolation for subpel gradient to avoid |
| // calls of build_one_inter_predictor function. Bicubic interpolation |
| // brings better quality but the speed results are neutral. As such, bilinear |
| // interpolation is used by default for a better trade-off between quality |
| // and complexity. |
| #define OPFL_BILINEAR_GRAD 0 |
| #define OPFL_BICUBIC_GRAD 1 |
| |
| // Use downsampled gradient arrays to compute MV offsets |
| #define OPFL_DOWNSAMP_QUINCUNX 1 |
| |
| // Delta to use for computing gradients in bits, with 0 referring to |
| // integer-pel. The actual delta value used from the 1/8-pel original MVs |
| // is 2^(3 - SUBPEL_GRAD_DELTA_BITS). The max value of this macro is 3. |
| #define SUBPEL_GRAD_DELTA_BITS 3 |
| |
| // Combine computations of interpolated gradients and the least squares |
| // solver. The basic idea is that, typically we would compute the following: |
| // 1. d0, d1, P0 and P1 |
| // 2. Gradients of P0 and P1: gx0, gx1, gy0, and gy1 |
| // 3. Solving least squares for vx and vy, which requires d0*gx0-d1*gx1, |
| // d0*gy0-d1*gy1, and P0-P1. |
| // When this flag is turned on, we compute the following |
| // 1. d0, d1, P0 and P1 |
| // 2. tmp0 = d0*P0-d1*P1 and tmp1 = P0-P1 |
| // 3. Gradients of tmp0: gx and gy |
| // 4. Solving least squares for vx and vy using gx, gy and tmp1 |
| // Note that this only requires 2 gradient operators instead of 4 and thus |
| // reduces the complexity. However, it is only feasible when gradients are |
| // obtained using bilinear or bicubic interpolation. Thus, this flag should |
| // only be on when either of OPFL_BILINEAR_GRAD and OPFL_BICUBIC_GRAD is on. |
| #define OPFL_COMBINE_INTERP_GRAD_LS 1 |
| |
| // Bilinear and bicubic coefficients. Note that, at boundary, we apply |
| // coefficients that are doubled because spatial distance between the two |
| // interpolated pixels is halved. In other words, instead of computing |
| // coeff * (v[delta] - v[-delta]) / (2 * delta), |
| // we are practically computing |
| // coeff * (v[delta] - v[0]) / (2 * delta). |
| // Thus, coeff is doubled to get a better gradient quality. |
| #if OPFL_BILINEAR_GRAD |
| static const int bilinear_bits = 3; |
| static const int32_t coeffs_bilinear[4][2] = { |
| { 8, 16 }, // delta = 1 (SUBPEL_GRAD_DELTA_BITS = 0) |
| { 4, 8 }, // delta = 0.5 (SUBPEL_GRAD_DELTA_BITS = 1) |
| { 2, 4 }, // delta = 0.25 (SUBPEL_GRAD_DELTA_BITS = 2) |
| { 1, 2 }, // delta = 0.125 (SUBPEL_GRAD_DELTA_BITS = 3) |
| }; |
| #endif |
| |
| #if OPFL_BICUBIC_GRAD |
| static const int bicubic_bits = 7; |
| static const int32_t coeffs_bicubic[4][2][2] = { |
| { { 128, 256 }, { 0, 0 } }, // delta = 1 (SUBPEL_GRAD_DELTA_BITS = 0) |
| { { 80, 160 }, { -8, -16 } }, // delta = 0.5 (SUBPEL_GRAD_DELTA_BITS = 1) |
| { { 42, 84 }, { -5, -10 } }, // delta = 0.25 (SUBPEL_GRAD_DELTA_BITS = 2) |
| { { 21, 42 }, { -3, -6 } }, // delta = 0.125 (SUBPEL_GRAD_DELTA_BITS = 3) |
| }; |
| #endif |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| void av1_init_inter_params(InterPredParams *inter_pred_params, int block_width, |
| int block_height, int pix_row, int pix_col, |
| int subsampling_x, int subsampling_y, int bit_depth, |
| int is_intrabc, const struct scale_factors *sf, |
| const struct buf_2d *ref_buf, |
| InterpFilter interp_filter); |
| |
| #if CONFIG_WARP_REF_LIST |
| // Check if the signaling of the warp delta parameters are allowed |
| static INLINE int allow_warp_parameter_signaling(const MB_MODE_INFO *mbmi) { |
| return ( |
| #if CONFIG_WARPMV |
| mbmi->mode != WARPMV && |
| #endif // CONFIG_WARPMV |
| mbmi->motion_mode == WARP_DELTA && mbmi->warp_ref_idx == 1); |
| } |
| #endif // CONFIG_WARP_REF_LIST |
| |
| #if CONFIG_CWP |
| // Map the index to weighting factor for compound weighted prediction |
| static INLINE int get_cwp_coding_idx(int val, int encode, |
| const AV1_COMMON *const cm, |
| const MB_MODE_INFO *const mbmi) { |
| int is_same_side = 0; |
| int cur_ref_side = 0; |
| int other_ref_side = 0; |
| if (has_second_ref(mbmi)) { |
| cur_ref_side = cm->ref_frame_side[mbmi->ref_frame[0]]; |
| other_ref_side = cm->ref_frame_side[mbmi->ref_frame[1]]; |
| |
| is_same_side = (cur_ref_side > 0 && other_ref_side > 0) || |
| (cur_ref_side == 0 && other_ref_side == 0); |
| } |
| |
| if (encode) { |
| for (int i = 0; i < MAX_CWP_NUM; i++) { |
| if (cwp_weighting_factor[is_same_side][i] == val) return i; |
| } |
| return 0; |
| } else { |
| return cwp_weighting_factor[is_same_side][val]; |
| } |
| } |
| #endif // CONFIG_CWP |
| |
| #if CONFIG_ADAPTIVE_MVD |
| static INLINE int enable_adaptive_mvd_resolution(const AV1_COMMON *const cm, |
| const MB_MODE_INFO *mbmi) { |
| const int mode = mbmi->mode; |
| |
| return (mode == NEAR_NEWMV || mode == NEW_NEARMV |
| #if CONFIG_OPTFLOW_REFINEMENT |
| || mode == NEAR_NEWMV_OPTFLOW || mode == NEW_NEARMV_OPTFLOW |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| || mode == JOINT_AMVDNEWMV_OPTFLOW |
| #endif // IMPROVED_AMVD && CONFIG_JOINT_MVD |
| #endif |
| #if IMPROVED_AMVD |
| || mode == AMVDNEWMV |
| #endif // IMPROVED_AMVD |
| #if IMPROVED_AMVD && CONFIG_JOINT_MVD |
| || mode == JOINT_AMVDNEWMV |
| #endif |
| ) && |
| cm->seq_params.enable_adaptive_mvd; |
| } |
| #endif // CONFIG_ADAPTIVE_MVD |
| #if CONFIG_JOINT_MVD |
| // get the base reference frame list for joint MVD coding, the MVD for base |
| // reference frame is the same as the joint MVD, the MVD for the other reference |
| // frame is scaled from the joint MVD. |
| static INLINE int get_joint_mvd_base_ref_list(const AV1_COMMON *const cm, |
| const MB_MODE_INFO *mbmi) { |
| int base_ref_list = 0; |
| int first_ref_dist = 0; |
| int sec_ref_dist = 0; |
| if (has_second_ref(mbmi)) { |
| first_ref_dist = cm->ref_frame_relative_dist[mbmi->ref_frame[0]]; |
| sec_ref_dist = cm->ref_frame_relative_dist[mbmi->ref_frame[1]]; |
| |
| if (first_ref_dist >= sec_ref_dist) { |
| base_ref_list = 0; |
| } else { |
| base_ref_list = 1; |
| } |
| } |
| return base_ref_list; |
| } |
| // check whether the direction of two reference frames are from same side |
| static INLINE int is_ref_frame_same_side(const AV1_COMMON *const cm, |
| const MB_MODE_INFO *mbmi) { |
| int is_same_side = 0; |
| int cur_ref_side = 0; |
| int other_ref_side = 0; |
| if (has_second_ref(mbmi)) { |
| cur_ref_side = cm->ref_frame_side[mbmi->ref_frame[0]]; |
| other_ref_side = cm->ref_frame_side[mbmi->ref_frame[1]]; |
| |
| is_same_side = (cur_ref_side > 0 && other_ref_side > 0) || |
| (cur_ref_side == 0 && other_ref_side == 0); |
| } |
| return is_same_side; |
| } |
| #endif // CONFIG_JOINT_MVD |
| |
| void av1_init_comp_mode(InterPredParams *inter_pred_params); |
| |
| void av1_init_warp_params(InterPredParams *inter_pred_params, |
| const WarpTypesAllowed *warp_types, int ref, |
| const MACROBLOCKD *xd, const MB_MODE_INFO *mi); |
| |
| static INLINE int has_scale(int xs, int ys) { |
| return xs != SCALE_SUBPEL_SHIFTS || ys != SCALE_SUBPEL_SHIFTS; |
| } |
| |
| static INLINE void revert_scale_extra_bits(SubpelParams *sp) { |
| sp->subpel_x >>= SCALE_EXTRA_BITS; |
| sp->subpel_y >>= SCALE_EXTRA_BITS; |
| sp->xs >>= SCALE_EXTRA_BITS; |
| sp->ys >>= SCALE_EXTRA_BITS; |
| assert(sp->subpel_x < SUBPEL_SHIFTS); |
| assert(sp->subpel_y < SUBPEL_SHIFTS); |
| assert(sp->xs <= SUBPEL_SHIFTS); |
| assert(sp->ys <= SUBPEL_SHIFTS); |
| } |
| |
| static INLINE void highbd_inter_predictor( |
| const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, |
| const SubpelParams *subpel_params, int w, int h, |
| ConvolveParams *conv_params, const InterpFilterParams *interp_filters[2], |
| int bd) { |
| assert(conv_params->do_average == 0 || conv_params->do_average == 1); |
| const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys); |
| if (is_scaled) { |
| av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, |
| interp_filters, subpel_params->subpel_x, |
| subpel_params->xs, subpel_params->subpel_y, |
| subpel_params->ys, 1, conv_params, bd); |
| } else { |
| SubpelParams sp = *subpel_params; |
| revert_scale_extra_bits(&sp); |
| av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h, |
| interp_filters, sp.subpel_x, sp.xs, |
| sp.subpel_y, sp.ys, 0, conv_params, bd); |
| } |
| } |
| |
| void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi); |
| int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, |
| const struct macroblockd_plane *pd, int dir); |
| |
| static INLINE int is_interinter_compound_used(COMPOUND_TYPE type, |
| BLOCK_SIZE sb_type) { |
| const int comp_allowed = is_comp_ref_allowed(sb_type); |
| switch (type) { |
| case COMPOUND_AVERAGE: |
| case COMPOUND_DIFFWTD: return comp_allowed; |
| case COMPOUND_WEDGE: |
| return comp_allowed && av1_wedge_params_lookup[sb_type].wedge_types > 0; |
| default: assert(0); return 0; |
| } |
| } |
| |
| static INLINE int is_any_masked_compound_used(BLOCK_SIZE sb_type) { |
| COMPOUND_TYPE comp_type; |
| int i; |
| if (!is_comp_ref_allowed(sb_type)) return 0; |
| for (i = 0; i < COMPOUND_TYPES; i++) { |
| comp_type = (COMPOUND_TYPE)i; |
| if (is_masked_compound_type(comp_type) && |
| is_interinter_compound_used(comp_type, sb_type)) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static INLINE int get_wedge_types_lookup(BLOCK_SIZE sb_type) { |
| return av1_wedge_params_lookup[sb_type].wedge_types; |
| } |
| |
| static INLINE int av1_is_wedge_used(BLOCK_SIZE sb_type) { |
| return av1_wedge_params_lookup[sb_type].wedge_types > 0; |
| } |
| |
| void av1_make_inter_predictor(const uint16_t *src, int src_stride, |
| uint16_t *dst, int dst_stride, |
| InterPredParams *inter_pred_params, |
| const SubpelParams *subpel_params); |
| |
| typedef void (*CalcSubpelParamsFunc)(const MV *const src_mv, |
| InterPredParams *const inter_pred_params, |
| MACROBLOCKD *xd, int mi_x, int mi_y, |
| int ref, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| uint16_t **mc_buf, uint16_t **pre, |
| SubpelParams *subpel_params, |
| int *src_stride); |
| |
| void av1_build_one_inter_predictor( |
| uint16_t *dst, int dst_stride, const MV *const src_mv, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func); |
| |
| void av1_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int plane, MB_MODE_INFO *mi, |
| #if CONFIG_BAWP |
| const BUFFER_SET *dst_orig, |
| #endif |
| int build_for_obmc, int bw, int bh, int mi_x, |
| int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func); |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // This parameter k=OPFL_DIST_RATIO_THR is used to prune MV refinement for the |
| // case where d0 and d1 are very different. Assuming a = max(|d0|, |d1|) and |
| // b = min(|d0|, |d1|), MV refinement will only be allowed only if a/b <= k. |
| // If k is set to 0, refinement will always be enabled. |
| // If k is set to 1, refinement will only be enabled when |d0|=|d1|. |
| #define OPFL_DIST_RATIO_THR 0 |
| |
| // Apply regularized least squares (RLS). The RLS parameter is bw * bh * 2^(b-4) |
| // where b = OPFL_RLS_PARAM_BITS. |
| #define OPFL_REGULARIZED_LS 1 |
| #define OPFL_RLS_PARAM_BITS 4 |
| |
| // Number of bits allowed for covariance matrix elements (su2, sv2, suv, suw |
| // and svw) so that det, det_x, and det_y does not cause overflow issue in |
| // int64_t. Its value must be <= (64 - mv_prec_bits - grad_prec_bits) / 2. |
| #define OPFL_COV_CLAMP_BITS 28 |
| #define OPFL_COV_CLAMP_VAL (1 << OPFL_COV_CLAMP_BITS) |
| |
| // Precision of refined MV returned, 0 being integer pel. For now, only 1/8 or |
| // 1/16-pel can be used. |
| #define MV_REFINE_PREC_BITS 4 // (1/16-pel) |
| void av1_opfl_mv_refinement_highbd(const uint16_t *p0, int pstride0, |
| const uint16_t *p1, int pstride1, |
| const int16_t *gx0, const int16_t *gy0, |
| const int16_t *gx1, const int16_t *gy1, |
| int gstride, int bw, int bh, int d0, int d1, |
| int grad_prec_bits, int mv_prec_bits, |
| int *vx0, int *vy0, int *vx1, int *vy1); |
| |
| void av1_opfl_build_inter_predictor( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, |
| int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| InterPredParams *inter_pred_params, |
| CalcSubpelParamsFunc calc_subpel_params_func, int ref, uint16_t *pred_dst); |
| |
| static INLINE int is_opfl_refine_allowed(const AV1_COMMON *cm, |
| const MB_MODE_INFO *mbmi) { |
| if (cm->seq_params.enable_opfl_refine == AOM_OPFL_REFINE_NONE || |
| cm->features.opfl_refine_type == REFINE_NONE) |
| return 0; |
| const unsigned int cur_index = cm->cur_frame->order_hint; |
| int d0, d1; |
| #if CONFIG_OPTFLOW_ON_TIP |
| if (mbmi->ref_frame[0] == TIP_FRAME) { |
| d0 = cm->tip_ref.ref_offset[0]; |
| d1 = cm->tip_ref.ref_offset[1]; |
| } else { |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| if (!mbmi->ref_frame[1]) return 0; |
| const RefCntBuffer *const ref0 = get_ref_frame_buf(cm, mbmi->ref_frame[0]); |
| const RefCntBuffer *const ref1 = get_ref_frame_buf(cm, mbmi->ref_frame[1]); |
| d0 = (int)cur_index - (int)ref0->order_hint; |
| d1 = (int)cur_index - (int)ref1->order_hint; |
| #if CONFIG_OPTFLOW_ON_TIP |
| } |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| if (!((d0 <= 0) ^ (d1 <= 0))) return 0; |
| |
| return OPFL_DIST_RATIO_THR == 0 || |
| (AOMMAX(abs(d0), abs(d1)) <= |
| OPFL_DIST_RATIO_THR * AOMMIN(abs(d0), abs(d1))); |
| } |
| |
| // Generate refined MVs using optflow refinement |
| int av1_get_optflow_based_mv_highbd( |
| const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mbmi, |
| int_mv *mv_refined, int bw, int bh, int mi_x, int mi_y, uint16_t **mc_buf, |
| CalcSubpelParamsFunc calc_subpel_params_func, int16_t *gx0, int16_t *gy0, |
| int16_t *gx1, int16_t *gy1, int *vx0, int *vy0, int *vx1, int *vy1, |
| uint16_t *dst0, uint16_t *dst1 |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| int do_pred, int use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| |
| // With the refined MVs, generate the inter prediction for the block. |
| void av1_opfl_rebuild_inter_predictor( |
| uint16_t *dst, int dst_stride, int plane, int_mv *const mv_refined, |
| InterPredParams *inter_pred_params, MACROBLOCKD *xd, int mi_x, int mi_y, |
| int ref, uint16_t **mc_buf, CalcSubpelParamsFunc calc_subpel_params_func |
| #if CONFIG_OPTFLOW_ON_TIP |
| , |
| int use_4x4 |
| #endif // CONFIG_OPTFLOW_ON_TIP |
| ); |
| |
| // Integer division based on lookup table. |
| // num: numerator |
| // den: denominator |
| // out: output result (num / den) |
| static INLINE int32_t divide_and_round_signed(int64_t num, int64_t den) { |
| if (llabs(den) == 1) return (int32_t)(den < 0 ? -num : num); |
| const int optflow_prec_bits = 16; |
| int16_t shift; |
| const int sign_den = (den < 0 ? -1 : 1); |
| uint16_t inverse_den = resolve_divisor_64(llabs(den), &shift); |
| shift -= optflow_prec_bits; |
| if (shift < 0) { |
| inverse_den <<= (-shift); |
| shift = 0; |
| } |
| int32_t out; |
| // Make sure 1) the bits for right shift is < 63 and 2) the bit depth |
| // of num is < 48 to avoid overflow in num * inverse_den |
| if (optflow_prec_bits + shift >= 63 || |
| ROUND_POWER_OF_TWO_SIGNED_64(num, 63 - optflow_prec_bits) != 0) { |
| int64_t out_tmp = ROUND_POWER_OF_TWO_SIGNED_64(num, optflow_prec_bits); |
| out = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64( |
| out_tmp * (int64_t)inverse_den * sign_den, shift); |
| } else { |
| out = (int32_t)ROUND_POWER_OF_TWO_SIGNED_64( |
| num * (int64_t)inverse_den * sign_den, optflow_prec_bits + shift); |
| } |
| #ifndef NDEBUG |
| // Verify that the result is consistent with built-in division. |
| // Quick overflow check |
| int32_t out_div = (llabs(num) + llabs(den) < 0) |
| ? (int32_t)DIVIDE_AND_ROUND_SIGNED( |
| ROUND_POWER_OF_TWO_SIGNED_64(num, 2), |
| ROUND_POWER_OF_TWO_SIGNED_64(den, 2)) |
| : (int32_t)DIVIDE_AND_ROUND_SIGNED(num, den); |
| // check if error is at most 1 at usable values of out_div |
| if (abs(out_div - out) > 1 && abs(out_div) <= 64) { |
| printf("Warning: num = %" PRId64 ", den = %" PRId64 |
| ", inverse_den = %d, shift = %d, v0 = %d, v = %d\n", |
| num, den, inverse_den, shift, out_div, out); |
| } |
| #endif // NDEBUG |
| return out; |
| } |
| |
| // Return 1 if current frame is REFINE_ALL and the current block uses optical |
| // flow refinement, i.e., inter mode is in {NEAR_NEARMV, NEAR_NEWMV, |
| // NEW_NEARMV, NEW_NEWMV}, and compound type is simple compound average. |
| static INLINE int use_opfl_refine_all(const AV1_COMMON *cm, |
| const MB_MODE_INFO *mbmi) { |
| return cm->features.opfl_refine_type == REFINE_ALL && |
| mbmi->mode >= COMP_INTER_MODE_START && |
| mbmi->mode < COMP_OPTFLOW_MODE_START && |
| mbmi->mode != GLOBAL_GLOBALMV && |
| mbmi->interinter_comp.type == COMPOUND_AVERAGE; |
| } |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| |
| // TODO(jkoleszar): yet another mv clamping function :-( |
| static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, |
| const MV *src_mv, int bw, int bh, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| int use_optflow_refinement, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| int ss_x, int ss_y) { |
| // If the MV points so far into the UMV border that no visible pixels |
| // are used for reconstruction, the subpel part of the MV can be |
| // discarded and the MV limited to 16 pixels with equivalent results. |
| const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS; |
| const int spel_right = spel_left - SUBPEL_SHIFTS; |
| const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS; |
| const int spel_bottom = spel_top - SUBPEL_SHIFTS; |
| #if CONFIG_OPTFLOW_REFINEMENT |
| MV clamped_mv; |
| if (use_optflow_refinement) { |
| // optflow refinement always returns MVs with 1/16 precision so it is not |
| // necessary to shift the MV before clamping |
| clamped_mv.row = (int16_t)ROUND_POWER_OF_TWO_SIGNED( |
| src_mv->row * (1 << SUBPEL_BITS), MV_REFINE_PREC_BITS + ss_y); |
| clamped_mv.col = (int16_t)ROUND_POWER_OF_TWO_SIGNED( |
| src_mv->col * (1 << SUBPEL_BITS), MV_REFINE_PREC_BITS + ss_x); |
| } else { |
| clamped_mv.row = (int16_t)(src_mv->row * (1 << (1 - ss_y))); |
| clamped_mv.col = (int16_t)(src_mv->col * (1 << (1 - ss_x))); |
| } |
| #else |
| MV clamped_mv = { (int16_t)(src_mv->row * (1 << (1 - ss_y))), |
| (int16_t)(src_mv->col * (1 << (1 - ss_x))) }; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| assert(ss_x <= 1); |
| assert(ss_y <= 1); |
| const SubpelMvLimits mv_limits = { |
| xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left, |
| xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right, |
| xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top, |
| xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom |
| }; |
| |
| clamp_mv(&clamped_mv, &mv_limits); |
| |
| return clamped_mv; |
| } |
| |
| static INLINE int64_t scaled_buffer_offset(int x_offset, int y_offset, |
| int stride, |
| const struct scale_factors *sf) { |
| const int x = |
| sf ? sf->scale_value_x(x_offset, sf) >> SCALE_EXTRA_BITS : x_offset; |
| const int y = |
| sf ? sf->scale_value_y(y_offset, sf) >> SCALE_EXTRA_BITS : y_offset; |
| return (int64_t)y * stride + x; |
| } |
| |
| static INLINE void setup_pred_plane(struct buf_2d *dst, uint16_t *src, |
| int width, int height, int stride, |
| int mi_row, int mi_col, |
| const struct scale_factors *scale, |
| int subsampling_x, int subsampling_y, |
| const CHROMA_REF_INFO *chroma_ref_info) { |
| // Offset the buffer pointer |
| if (chroma_ref_info && (subsampling_x || subsampling_y)) { |
| mi_row = chroma_ref_info->mi_row_chroma_base; |
| mi_col = chroma_ref_info->mi_col_chroma_base; |
| } |
| |
| const int x = (MI_SIZE * mi_col) >> subsampling_x; |
| const int y = (MI_SIZE * mi_row) >> subsampling_y; |
| dst->buf = src + scaled_buffer_offset(x, y, stride, scale); |
| dst->buf0 = src; |
| dst->width = width; |
| dst->height = height; |
| dst->stride = stride; |
| } |
| |
| void av1_setup_dst_planes(struct macroblockd_plane *planes, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const int plane_start, const int plane_end, |
| const CHROMA_REF_INFO *chroma_ref_info); |
| |
| void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *sf, const int num_planes, |
| const CHROMA_REF_INFO *chroma_ref_info); |
| |
| static INLINE void set_default_interp_filters( |
| MB_MODE_INFO *const mbmi, |
| #if CONFIG_OPTFLOW_REFINEMENT |
| const AV1_COMMON *cm, |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| InterpFilter frame_interp_filter) { |
| |
| #if CONFIG_SKIP_MODE_ENHANCEMENT |
| if (mbmi->skip_mode) { |
| mbmi->interp_fltr = MULTITAP_SHARP; |
| return; |
| } |
| #endif // CONFIG_SKIP_MODE_ENHANCEMENT |
| #if CONFIG_OPTFLOW_REFINEMENT |
| mbmi->interp_fltr = |
| (mbmi->mode >= NEAR_NEARMV_OPTFLOW || use_opfl_refine_all(cm, mbmi)) |
| ? MULTITAP_SHARP |
| : av1_unswitchable_filter(frame_interp_filter); |
| #else |
| mbmi->interp_fltr = av1_unswitchable_filter(frame_interp_filter); |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| } |
| |
| static INLINE int av1_is_interp_needed(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd) { |
| (void)cm; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| if (mbmi->skip_mode) return 0; |
| |
| #if CONFIG_WARPMV |
| if (mbmi->mode == WARPMV) return 0; |
| #endif // CONFIG_WARPMV |
| |
| #if CONFIG_OPTFLOW_REFINEMENT |
| // No interpolation filter search when optical flow MV refinement is used. |
| if (mbmi->mode >= NEAR_NEARMV_OPTFLOW || use_opfl_refine_all(cm, mbmi)) |
| return 0; |
| #endif // CONFIG_OPTFLOW_REFINEMENT |
| if (is_warp_mode(mbmi->motion_mode)) return 0; |
| if (is_nontrans_global_motion(xd, xd->mi[0])) return 0; |
| return 1; |
| } |
| |
| // Sets up buffers 'dst_buf1' and 'dst_buf2' from relevant buffers in 'xd' for |
| // subsequent use in OBMC prediction. |
| void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint16_t **dst_buf1, |
| uint16_t **dst_buf2); |
| |
| void av1_setup_build_prediction_by_above_pred( |
| MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, |
| MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt, |
| const int num_planes); |
| void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row, |
| uint8_t left_mi_height, |
| MB_MODE_INFO *left_mbmi, |
| struct build_prediction_ctxt *ctxt, |
| const int num_planes); |
| void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint16_t *above[MAX_MB_PLANE], |
| int above_stride[MAX_MB_PLANE], |
| uint16_t *left[MAX_MB_PLANE], |
| int left_stride[MAX_MB_PLANE]); |
| |
| const uint8_t *av1_get_obmc_mask(int length); |
| void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd); |
| |
| #define MASK_MASTER_SIZE ((MAX_WEDGE_SIZE) << 1) |
| #define MASK_MASTER_STRIDE (MASK_MASTER_SIZE) |
| |
| void av1_init_wedge_masks(); |
| |
| static INLINE const uint8_t *av1_get_contiguous_soft_mask(int8_t wedge_index, |
| int8_t wedge_sign, |
| BLOCK_SIZE sb_type) { |
| return av1_wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index]; |
| } |
| |
| const uint8_t *av1_get_compound_type_mask( |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type); |
| |
| #if CONFIG_CWP |
| // Init the masks for compound weighted prediction |
| void init_cwp_masks(); |
| // Get the mask for compound weighted prediction |
| const int8_t *av1_get_cwp_mask(int list_idx, int idx); |
| #endif // CONFIG_CWP |
| |
| // build interintra_predictors for one plane |
| void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| uint16_t *pred, int stride, |
| const BUFFER_SET *ctx, int plane, |
| BLOCK_SIZE bsize); |
| |
| #if CONFIG_EXT_RECUR_PARTITIONS |
| void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, |
| MACROBLOCKD *xd, int plane, |
| const BUFFER_SET *ctx, |
| uint16_t *dst, int dst_stride); |
| #else |
| void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, |
| MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int plane, |
| const BUFFER_SET *ctx, |
| uint16_t *dst, int dst_stride); |
| #endif // CONFIG_EXT_RECUR_PARTITIONS |
| |
| void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, |
| const uint16_t *inter_pred, int inter_stride, |
| const uint16_t *intra_pred, int intra_stride); |
| |
| int av1_allow_warp(const MB_MODE_INFO *const mbmi, |
| const WarpTypesAllowed *const warp_types, |
| const WarpedMotionParams *const gm_params, |
| #if CONFIG_EXTENDED_WARP_PREDICTION |
| int ref, |
| #endif // CONFIG_EXTENDED_WARP_PREDICTION |
| int build_for_obmc, const struct scale_factors *const sf, |
| WarpedMotionParams *final_warp_params); |
| |
| #if CONFIG_FLEX_MVRES |
| // derive the context of the mpp_flag |
| int av1_get_mpp_flag_context(const AV1_COMMON *cm, const MACROBLOCKD *xd); |
| |
| // derive the context of the precision signaling |
| int av1_get_pb_mv_precision_down_context(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd); |
| |
| // derive the context of the mv class |
| int av1_get_mv_class_context(const MvSubpelPrecision pb_mv_precision); |
| |
| // set the precision of a block to the precision |
| void set_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision); |
| #if BUGFIX_AMVD_AMVR |
| void set_amvd_mv_precision(MB_MODE_INFO *mbmi, MvSubpelPrecision precision); |
| #endif // BUGFIX_AMVD_AMVR |
| |
| // set the most probable mv precision of the block |
| // Currently, the most probable MV precision is same as the maximum precision of |
| // the block. |
| void set_most_probable_mv_precision(const AV1_COMMON *const cm, |
| MB_MODE_INFO *mbmi, const BLOCK_SIZE bsize); |
| |
| // Set the default value fo the precision set. Currently the value is always 0. |
| void set_default_precision_set(const AV1_COMMON *const cm, MB_MODE_INFO *mbmi, |
| const BLOCK_SIZE bsize); |
| |
| // Set the precision set of the block. Currently, the value is 0. |
| void set_precision_set(const AV1_COMMON *const cm, MACROBLOCKD *const xd, |
| MB_MODE_INFO *mbmi, const BLOCK_SIZE bsize, |
| uint8_t ref_mv_idx); |
| // Get the index of the precision |
| // this index is signalled when precision is not same as the most probable |
| // precision |
| int av1_get_pb_mv_precision_index(const MB_MODE_INFO *mbmi); |
| |
| // get the actual precision value from the signalled index |
| MvSubpelPrecision av1_get_precision_from_index(MB_MODE_INFO *mbmi, |
| int precision_idx_coded_value); |
| |
| // Set the maximum precision to the default value |
| void set_default_max_mv_precision(MB_MODE_INFO *mbmi, |
| MvSubpelPrecision precision); |
| |
| // get the maximum allowed precision value of the block |
| MvSubpelPrecision av1_get_mbmi_max_mv_precision(const AV1_COMMON *const cm, |
| const SB_INFO *sbi, |
| const MB_MODE_INFO *mbmi); |
| |
| // check if pb_mv_precision is allowed or not |
| int is_pb_mv_precision_active(const AV1_COMMON *const cm, |
| const MB_MODE_INFO *mbmi, const BLOCK_SIZE bsize); |
| |
| #endif |
| |
| #if CONFIG_WARPMV |
| // check if the WARPMV mode is allwed for a given blocksize |
| static INLINE int is_warpmv_allowed_bsize(BLOCK_SIZE bsize) { |
| assert(bsize < BLOCK_SIZES_ALL); |
| return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8; |
| } |
| |
| // check if WARPMV mode is allowed |
| static INLINE int is_warpmv_mode_allowed(const AV1_COMMON *const cm, |
| const MB_MODE_INFO *mbmi, |
| BLOCK_SIZE bsize) { |
| if (has_second_ref(mbmi) || !cm->features.enabled_motion_modes |
| #if CONFIG_TIP |
| || is_tip_ref_frame(mbmi->ref_frame[0]) |
| #endif // CONFIG_TIP |
| ) |
| return 0; |
| |
| int frame_warp_delta_allowed = |
| cm->features.enabled_motion_modes & (1 << WARP_DELTA); |
| return frame_warp_delta_allowed && is_warpmv_allowed_bsize(bsize); |
| } |
| #endif // CONFIG_WARPMV |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |
| |
| #endif // AOM_AV1_COMMON_RECONINTER_H_ |