blob: 7b4a21f33ff386405a9b4e3a91abcde16fa0d4d3 [file] [log] [blame] [edit]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 3-Clause Clear License
* and the Alliance for Open Media Patent License 1.0. If the BSD 3-Clause Clear
* License was not distributed with this source code in the LICENSE file, you
* can obtain it at aomedia.org/license/software-license/bsd-3-c-c/. If the
* Alliance for Open Media Patent License 1.0 was not distributed with this
* source code in the PATENTS file, you can obtain it at
* aomedia.org/license/patent-license/.
*/
#ifndef AOM_AV1_COMMON_RECONINTRA_H_
#define AOM_AV1_COMMON_RECONINTRA_H_
#include <stdlib.h>
#include "aom/aom_integer.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#ifdef __cplusplus
extern "C" {
#endif
#define DF_RESTRICT_ORIP 1
#define ORIP_BLOCK_SIZE 32
#if CONFIG_AIMC
/*! \brief set the luma intra mode and delta angles for a given mode index.
* \param[in] mode_idx mode index in intra mode decision
* process.
* \param[in] mbmi Pointer to structure holding
* the mode info for the current macroblock.
*/
void set_y_mode_and_delta_angle(const int mode_idx, MB_MODE_INFO *const mbmi);
int get_y_mode_idx_ctx(MACROBLOCKD *const xd);
void get_y_intra_mode_set(MB_MODE_INFO *mi, MACROBLOCKD *const xd);
void get_uv_intra_mode_set(MB_MODE_INFO *mi);
static const PREDICTION_MODE reordered_y_mode[INTRA_MODES] = {
DC_PRED, SMOOTH_PRED, SMOOTH_V_PRED, SMOOTH_H_PRED, PAETH_PRED,
D45_PRED, D67_PRED, V_PRED, D113_PRED, D135_PRED,
D157_PRED, H_PRED, D203_PRED
};
static const int
default_mode_list_y[LUMA_MODE_COUNT - NON_DIRECTIONAL_MODES_COUNT] = {
17, 45, 3, 10, 24, 31, 38, 52,
// (-2, +2)
15, 19, 43, 47, 1, 5, 8, 12, 22, 26, 29, 33, 36, 40, 50, 54,
// (-1, +1)
16, 18, 44, 46, 2, 4, 9, 11, 23, 25, 30, 32, 37, 39, 51, 53,
// (-3, +3)
14, 20, 42, 48, 0, 6, 7, 13, 21, 27, 28, 34, 35, 41, 49, 55
};
static const int default_mode_list_uv[DIR_MODE_END - DIR_MODE_START] = {
UV_V_PRED, UV_H_PRED, UV_D45_PRED, UV_D135_PRED,
UV_D67_PRED, UV_D113_PRED, UV_D157_PRED, UV_D203_PRED
};
#endif // CONFIG_AIMC
void av1_init_intra_predictors(void);
void av1_predict_intra_block_facade(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, int blk_col, int blk_row,
TX_SIZE tx_size);
void av1_predict_intra_block(
const AV1_COMMON *cm, const MACROBLOCKD *xd, int wpx, int hpx,
TX_SIZE tx_size, PREDICTION_MODE mode, int angle_delta, int use_palette,
FILTER_INTRA_MODE filter_intra_mode, const uint16_t *ref, int ref_stride,
uint16_t *dst, int dst_stride, int col_off, int row_off, int plane);
#if CONFIG_ORIP
void av1_apply_orip_4x4subblock_hbd(uint16_t *dst, ptrdiff_t stride,
TX_SIZE tx_size, const uint16_t *above,
const uint16_t *left, PREDICTION_MODE mode,
int bd);
#endif
// Mapping of interintra to intra mode for use in the intra component
static const PREDICTION_MODE interintra_to_intra_mode[INTERINTRA_MODES] = {
DC_PRED, V_PRED, H_PRED, SMOOTH_PRED
};
// Mapping of intra mode to the interintra mode
static const INTERINTRA_MODE intra_to_interintra_mode[INTRA_MODES] = {
II_DC_PRED, II_V_PRED, II_H_PRED, II_V_PRED, II_SMOOTH_PRED, II_V_PRED,
II_H_PRED, II_H_PRED, II_V_PRED, II_SMOOTH_PRED, II_SMOOTH_PRED
};
#define FILTER_INTRA_SCALE_BITS 4
static INLINE int av1_is_directional_mode(PREDICTION_MODE mode) {
return mode >= V_PRED && mode <= D67_PRED;
}
// TODO(any): Verify the correct behavior when we have BLOCK_4X16
static INLINE int av1_use_angle_delta(BLOCK_SIZE bsize) {
return bsize >= BLOCK_8X8;
}
static INLINE int av1_allow_intrabc(const AV1_COMMON *const cm) {
#if CONFIG_IBC_SR_EXT
return (frame_is_intra_only(cm) || cm->features.allow_local_intrabc) &&
cm->features.allow_screen_content_tools && cm->features.allow_intrabc;
#else
return frame_is_intra_only(cm) && cm->features.allow_screen_content_tools &&
cm->features.allow_intrabc;
#endif // CONFIG_IBC_SR_EXT
}
static INLINE int allow_fsc_intra(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, BLOCK_SIZE bs,
const MB_MODE_INFO *const mbmi) {
bool allow_fsc = cm->seq_params.enable_fsc &&
!is_inter_block(mbmi, PLANE_TYPE_Y) &&
!xd->lossless[mbmi->segment_id] &&
(block_size_wide[bs] <= FSC_MAXWIDTH) &&
(block_size_high[bs] <= FSC_MAXHEIGHT) &&
(block_size_wide[bs] >= FSC_MINWIDTH) &&
(block_size_high[bs] >= FSC_MINHEIGHT);
return allow_fsc;
}
static INLINE int use_inter_fsc(const AV1_COMMON *const cm,
PLANE_TYPE plane_type, TX_TYPE tx_type,
int is_inter) {
bool allow_fsc = cm->seq_params.enable_fsc &&
#if !CONFIG_ATC_DCTX_ALIGNED
cm->features.allow_screen_content_tools &&
#endif // !CONFIG_ATC_DCTX_ALIGNED
plane_type == PLANE_TYPE_Y && is_inter && tx_type == IDTX;
return allow_fsc;
}
static INLINE int av1_filter_intra_allowed_bsize(const AV1_COMMON *const cm,
BLOCK_SIZE bs) {
if (!cm->seq_params.enable_filter_intra || bs == BLOCK_INVALID) return 0;
return block_size_wide[bs] <= 32 && block_size_high[bs] <= 32;
}
static INLINE int av1_filter_intra_allowed(const AV1_COMMON *const cm,
const MB_MODE_INFO *mbmi) {
return mbmi->mode == DC_PRED && mbmi->mrl_index == 0 &&
mbmi->palette_mode_info.palette_size[0] == 0 &&
av1_filter_intra_allowed_bsize(cm, mbmi->sb_type[PLANE_TYPE_Y]);
}
#if CONFIG_ORIP
#if DF_RESTRICT_ORIP
static INLINE int av1_allow_orip_smooth_dc(PREDICTION_MODE mode, int plane,
TX_SIZE tx_size) {
#if CONFIG_ORIP_DC_DISABLED
#if CONFIG_ORIP_NONDC_DISABLED
return 0;
#else
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
int orip_allowed = 1;
if (bw >= ORIP_BLOCK_SIZE || bh >= ORIP_BLOCK_SIZE) orip_allowed = 0;
if (plane == AOM_PLANE_Y) return ((mode == SMOOTH_PRED) && orip_allowed);
return ((mode == UV_SMOOTH_PRED) && orip_allowed);
#endif
#else
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
int orip_allowed = 1;
if (bw >= ORIP_BLOCK_SIZE || bh >= ORIP_BLOCK_SIZE) orip_allowed = 0;
#if CONFIG_ORIP_NONDC_DISABLED
if (plane == AOM_PLANE_Y) return ((mode == DC_PRED) && orip_allowed);
return 0;
#else
if (plane == AOM_PLANE_Y)
return ((mode == SMOOTH_PRED || mode == DC_PRED) && orip_allowed);
return ((mode == UV_SMOOTH_PRED) && orip_allowed);
#endif
#endif
}
static INLINE int av1_allow_orip_dir(int p_angle, TX_SIZE tx_size) {
const int bw = tx_size_wide[tx_size];
const int bh = tx_size_high[tx_size];
int orip_allowed = 1;
if (p_angle == 90 && bw >= ORIP_BLOCK_SIZE) orip_allowed = 0;
if (p_angle == 180 && bh >= ORIP_BLOCK_SIZE) orip_allowed = 0;
return ((p_angle == 90 || p_angle == 180) && orip_allowed);
}
#else
static INLINE int av1_allow_orip_smooth_dc(PREDICTION_MODE mode, int plane) {
#if CONFIG_ORIP_DC_DISABLED
#if CONFIG_ORIP_NONDC_DISABLED
return 0;
#else
if (plane == AOM_PLANE_Y) return (mode == SMOOTH_PRED);
return (mode == UV_SMOOTH_PRED);
#endif
#else
#if CONFIG_ORIP_NONDC_DISABLED
if (plane == AOM_PLANE_Y) return (mode == DC_PRED);
return 0;
#else
if (plane == AOM_PLANE_Y) return (mode == SMOOTH_PRED || mode == DC_PRED);
return (mode == UV_SMOOTH_PRED);
#endif
#endif
}
static INLINE int av1_allow_orip_dir(int p_angle) {
return (p_angle == 90 || p_angle == 180);
}
#endif
#endif
extern const int8_t av1_filter_intra_taps[FILTER_INTRA_MODES][8][8];
#if CONFIG_IMPROVED_ANGULAR_INTRA
static const int16_t dr_intra_derivative[90] = {
// Angles are dense around vertical and horizontal directions, and coarse
// close to
// diagonal directions.
// Approx angle
0, 0, 0, //
2048, 0, 0, // 3, ...
1024, 0, 0, // 6, ...
512, 0, 0, 0, 0, // 9, ...
340, 0, 0, // 14, ...
256, 0, 0, // 17, ...
204, 0, 0, // 20, ...
170, 0, 0, // 23, ... (113 & 203 are base angles)
146, 0, 0, // 26, ...
128, 0, 0, // 29, ...
106, 0, 0, 0, // 32, ...
92, 0, 0, // 36, ...
82, 0, 0, // 39, ...
72, 0, 0, // 42, ...
64, 0, 0, // 45, ... (45 & 135 are base angles)
56, 0, 0, // 48, ...
50, 0, 0, // 51, ...
44, 0, 0, 0, // 54, ...
38, 0, 0, // 58, ...
32, 0, 0, // 61, ...
28, 0, 0, // 64, ...
24, 0, 0, // 67, ... (67 & 157 are base angles)
20, 0, 0, // 70, ...
16, 0, 0, // 73, ...
12, 0, 0, 0, 0, // 76, ...
8, 0, 0, // 81, ...
4, 0, 0, // 84, ...
2, 0, 0, // 87, ...
};
#else
static const int16_t dr_intra_derivative[90] = {
// More evenly spread out angles and limited to 10-bit
// Values that are 0 will never be used
// Approx angle
0, 0, 0, //
1023, 0, 0, // 3, ...
547, 0, 0, // 6, ...
372, 0, 0, 0, 0, // 9, ...
273, 0, 0, // 14, ...
215, 0, 0, // 17, ...
178, 0, 0, // 20, ...
151, 0, 0, // 23, ... (113 & 203 are base angles)
132, 0, 0, // 26, ...
116, 0, 0, // 29, ...
102, 0, 0, 0, // 32, ...
90, 0, 0, // 36, ...
80, 0, 0, // 39, ...
71, 0, 0, // 42, ...
64, 0, 0, // 45, ... (45 & 135 are base angles)
57, 0, 0, // 48, ...
51, 0, 0, // 51, ...
45, 0, 0, 0, // 54, ...
40, 0, 0, // 58, ...
35, 0, 0, // 61, ...
31, 0, 0, // 64, ...
27, 0, 0, // 67, ... (67 & 157 are base angles)
23, 0, 0, // 70, ...
19, 0, 0, // 73, ...
15, 0, 0, 0, 0, // 76, ...
11, 0, 0, // 81, ...
7, 0, 0, // 84, ...
3, 0, 0, // 87, ...
};
#endif // CONFIG_IMPROVED_ANGULAR_INTRA
// Get the shift (up-scaled by 256) in X w.r.t a unit change in Y.
// If angle > 0 && angle < 90, dx = -((int)(256 / t));
// If angle > 90 && angle < 180, dx = (int)(256 / t);
// If angle > 180 && angle < 270, dx = 1;
static INLINE int av1_get_dx(int angle) {
if (angle > 0 && angle < 90) {
return dr_intra_derivative[angle];
} else if (angle > 90 && angle < 180) {
return dr_intra_derivative[180 - angle];
} else {
// In this case, we are not really going to use dx. We may return any value.
return 1;
}
}
// Get the shift (up-scaled by 256) in Y w.r.t a unit change in X.
// If angle > 0 && angle < 90, dy = 1;
// If angle > 90 && angle < 180, dy = (int)(256 * t);
// If angle > 180 && angle < 270, dy = -((int)(256 * t));
static INLINE int av1_get_dy(int angle) {
if (angle > 90 && angle < 180) {
return dr_intra_derivative[angle - 90];
} else if (angle > 180 && angle < 270) {
return dr_intra_derivative[270 - angle];
} else {
// In this case, we are not really going to use dy. We may return any value.
return 1;
}
}
static INLINE int av1_use_intra_edge_upsample(int bs0, int bs1, int delta,
int type) {
const int d = abs(delta);
const int blk_wh = bs0 + bs1;
if (d == 0 || d >= 40) return 0;
return type ? (blk_wh <= 8) : (blk_wh <= 16);
}
static const int32_t transpose_tx_size[TX_SIZES_ALL] = {
TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_8X4, TX_4X8,
TX_16X8, TX_8X16, TX_32X16, TX_16X32, TX_64X32, TX_32X64, TX_16X4,
TX_4X16, TX_32X8, TX_8X32, TX_64X16, TX_16X64,
};
#if CONFIG_EXT_RECUR_PARTITIONS
static AOM_INLINE void set_have_top_and_left(int *have_top, int *have_left,
const MACROBLOCKD *xd, int row_off,
int col_off, int plane) {
*have_top = row_off || (plane ? xd->chroma_up_available : xd->up_available);
*have_left =
col_off || (plane ? xd->chroma_left_available : xd->left_available);
}
#endif // CONFIG_EXT_RECUR_PARTITIONS
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_COMMON_RECONINTRA_H_